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3030–790 Coimbra, Portugal.
dDepartment of Neurology, University Hospital Marburg, 35043 Marburg, Germany.

eCenter of Brain, Mind and Behaviour, Philipps-University Marburg, 35043 Marburg, Germany.

Abstract

The paper studies randomization rules for a sequential two-treatment, two-site
clinical trial in Parkinson’s disease. An important feature is that we have values
of responses and five potential prognostic factors from a sample of 144 patients
similar to those to be enrolled in the trial. Analysis of this sample provides a
model for trial analysis. The comparison of allocation rules is made by simulation
yielding measures of loss due to imbalance and of potential bias. A major nov-
elty of the paper is the use of this sample, via a two-stage algorithm, to provide
an empirical distribution of covariates for the simulation; sampling of a correlated
multivariate normal distribution is followed by transformation to variables follow-
ing the empirical marginal distributions. Six allocation rules are evaluated. The
paper concludes with some comments on general aspects of the evaluation of such
rules and provides a recommendation for two allocation rules, one for each site,
depending on the target number of patients to be enrolled.
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1. Introduction

We study methods for randomized treatment allocation for a clinical trial on
neuro-degenerative diseases. Two of the best known of such are Alzheimer’s and
Parkinson’s diseases. We describe the background to the clinical trial and the
forthcoming economic burden of these diseases on advanced societies in the next5

section. The purpose of this paper is to compare various randomization methods
in sequential trials in which patients present with prognostic factors which may
be included in the analysis of the data and so should be allowed for in the ran-
domization scheme. We use data from a sample of patients similar to those to be
included in the trial10

Our focused objective is to provide a scientific basis for the randomization
scheme for this particular trial, based on empirical evidence. It is intended that
our results will contribute to justify this particular aspect of the trial protocol.

Because we have a clear objective we do not provide a general survey of ran-
domization methods in clinical trials. Such a survey can be found in Rosenberger15

and Lachin [1]. Several of the methods we compare are derived from forms of
randomized treatment allocation introduced by Atkinson [2] using the methods of
optimum experimental design. These were extended by Atkinson [3] to include
comparisons of the statistical properties of the designs, particularly the loss of
efficiency due to randomization and potential bias from the ability to guess the20

next treatment to be allocated. Both that paper and Rosenberger and Sverdlov [4]
contain background material on randomization in sequential clinical trials in the
presence of covariates. A recent review of inference after covariate-adaptive ran-
domization is Ma et al. [5]. The review of Sverdlov et al. [6] focuses on the use
of the methods of optimum experimental design in clinical trials.25

The paper is organized as follows. The medical background and the structure
of the proposed two-treatment trial, to be performed at two sites, are described in
§2, followed in §3 by the statistical analysis of the sample values of the five covari-
ates (prognostic factors) which may be used in the analysis of the trial results. The
analysis of the sample results shows that two variables are important and that a lin-30

ear regression model should be appropriate for analysis of the clinical trial. The
use of randomized forms of the sequential construction of optimum experimental
design in sequential clinical trials is introduced in §4. The two important measures
of the performance of a trial design, loss and bias, are formalized in §4.2. Protec-
tion against the biases that can result from the absence of proper randomization35
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is especially important in an unblinded trial such as the one we describe. Sec-
tion 4.3 presents six allocation rules, ranging from deterministic allocation which
minimizes the variance of the estimated treatment difference, to random selection
of the treatment to be allocated. We also investigate a randomized version of the
minimization rule of Pocock and Simon [7].40

We use simulation to compare these six rules. A major novelty of our approach
is the use of the empirical sample of potential covariates to provide a sampling dis-
tribution of covariates, which have some correlations, rather than assuming inde-
pendent normal distributions for covariate values. The algorithm is in two stages
described in §5: sampling of correlated multivariate normal variates is followed by45

marginal transformation of the sampled normal variates to samples from the em-
pirical marginal distributions of the covariates. The main numerical results on the
comparison of allocation rules are in §6. Extensions in §7 explore (i) the effects
of designing for either more or fewer covariates than are used in the analysis; and
(ii) how comparisons of trial designs change if independent normal covariates are50

sampled instead of those with the empirical distribution. Shortcomings of the use
of categorised covariates in the analysis of the results from trials are also briefly
mentioned. The final section discusses a few more general topics, including a
more flexible sampling rule and the use of a concept of admissibility in the com-
parison of trial designs. An alternative to admissibility is a rule due to Ryeznik55

and Sverdlov [8]. The paper concludes with recommendations for randomization
rules at the two trial sites which have different target numbers of patients.

2. Background

We first describe the trial and then, in §2.2, introduce the main variables in the
statistical analysis of §360

2.1. The Trial
Part of this project is integrated within a larger study to test the effectiveness

of complex interventions. Parkinson’s disease (PD) is one of the most common
neurodegenerative diseases, leading to significant disability in patients with motor
and non-motor symptoms [9]. PD impacts patients’ health-related quality of life65

and causes a high burden for (informal) caregivers [9]. It is assumed that there
are around 400.000 PD patients in Germany [10], many of whom are older than
65 years. In the future, an increasing number of people suffering from PD in
Germany is to be expected [11, 10], while at the same time the life expectancy
of patients is also increasing [10]. This fundamental societal change requires the70
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development of new and innovative care strategies for people suffering from PD
[11, 12].

In Germany, care coordination is primarily the responsibility of resident neu-
rologists and, in some cases, general practitioners. Commonly, outpatient care is
only provided once a quarter by the resident neurologist. The coordination of ther-75

apies that are tailored to individual needs and the involvement of specially trained
care professionals such as Parkinson nurses are rarely implemented [13]. In the
case of non-mobile patients, these deficits are further aggravated as trips to the
doctor’s office become ever more challenging as the degree of illness increases;
home visits are rare in Germany [14].80

However, this situation is not sustainable. Therefore, modern therapies, espe-
cially for neuro-degenerative diseases, are increasingly moving towards a holis-
tic approach to patient care [15]. Advances in digital technologies open up new
possibilities in the field of healthcare provision and professional collaboration.
The attractiveness of digital technologies lies in their ability to mitigate both85

mobility-related barriers and economic obstacles. Digital solutions are also suit-
able for evaluating the disease activity of movement disorders, since tests de-
veloped for this purpose can easily be implemented within the framework of e-
Health solutions. In Germany, there are regionally implemented digital solutions
for PD patients, but there are no nation-wide healthcare models [16, 14]. As90

part of the “ParkProReakt” project, a cross-sectoral, proactive, needs-oriented and
technology-supported care model is being developed. The heart of the project will
be a digitally supported care model in which a multidisciplinary care team (neu-
rologists, Parkinson nurses, outpatient care service and study nurses) are linked
to the patients virtually and in real-life. The aim of this project is to improve95

healthcare and achieve a measurably improved quality of life for PD patients. In
addition, the burden on care givers should be reduced, since the use of digital so-
lutions provides support in assessing changes in the course of the disease. This
project is funded under a program of the Federal German government, through the
Ministry of Health [17].100

The healthcare model is being evaluated as part of a clinical study where we
will look at the perceived practicability of healthcare professionals working in the
model, the impact on the everyday life of people with PD and the economic ben-
efits as well as the effects on patients quality of life. We will include sequentially
a certain number of people at two centres of different sizes. Both centres will105

include and take care of a number of patients who are divided 1:1 into controls
(receiving only standard care) and an intervention group (with the complex care
we have developed). Our sample size calculation, in terms of quality of life and
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according to previous publications (see Kleinholdermann et al. [18, 19], Mestre
et al. [20], Butterfield et al. [21] among others), is based on a total of 292 people110

distributed as follows:

• 184 patients in Center 1 (92 receiving standard care and 92 treated in the
complex care program);

• 108 patients in Center 2 (54 receiving standard care and 54 treated in the
complex care program).115

2.2. Response and Prognostic Factors
To provide guidance on the design of the study we collected data on a sample

of 144 PD patients representative of those being followed at the Department of
Neurology, University Hospital Marburg. These are not the patients who will be
enrolled in the trial.120

The response variable of the data sample is Quality of life, (QoL), which can
be practically measured with two similar questionnaires: (i) the Parkinson’s Dis-
ease Questionnaire (PDQ39) with 39 items; and (ii) a PDQ with 8 items. The
8-item disease questionnaire, with response pdq8, [22] is the patient reported out-
come measure constructed by taking one question from each of the eight domains125

of PDQ39 [23]. Of course both are an oversimplification being a reduction of the
abstract QoL. Both metrics have been extensively used [24, 25]; PDQ39 allows
a better and wider characterization of QoL than PDQ8, but the latter is practi-
cally easier to measure. Unfortunately, we do not routinely administer the PDQ39
questionnaire, so we cannot explore the loss of information in using the shorter130

version (PDQ8). Several authors report a strong correlation between the results
of the two, for instance Chen et al. [26]. In our trial the primary endpoint is pdq8
which measures the QoL on a percentage scale (0-100%), higher values showing
reduced quality of life.

Now, we introduce the prognostic factors. The literature recognizes various135

important factors related with: (i) disease duration and the stage of disease; (ii)
psychological well-being/neuropsychiatric symptoms (depression, anxiety); (iii)
demographic metrics (age, gender, area of living, income) and (iv) cognitive im-
pairment. The first, here denoted by h&q, is measured on the Hoehn and Yahr
scale, see [27, 28]. Increasing values indicate more severe affection on an ordinal140

scale. The second, bdi, measures the symptoms of depression via Beck’s Depres-
sion Inventory (BDI). This indicator is determined from a questionnaire, see Beck
et al. [29]. Values from 10 and higher indicate increasing levels of depression.
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Although many different aspects might be expected to influence quality of life,
recent literature has highlighted these two factors as important determinants [13],145

so a balance between them may be indicated. In this paper, we extend this list and
include three more variables in the data analysis of the next section, namely age,
gender and moca, that is cognitive impairment measured by the Montreal Cog-
nitive Assessment (MoCA) test [30]. Resources were not available to measure
further variables.150

3. Data Modelling

Because our allocation rules depend on a statistical model of the data, we
start with an analysis of the data on the response and the five potential prognostic
factors. The analysis leads to building a regression model.

There are data from 144 patients on the response pdq8 and on the five prognos-155

tic factors. The correlations between all variables are shown in Table 1. The most
noticeable features are the correlations of 0.640 and 0.332 between the response
pdq8 and two of the prognostic factors, bdi and h&y. These two variables, in turn,
have a correlation of 0.325.

Table 1: Correlation matrix between the response and prognostic factors.
gender age h&y bdi moca pdq8

gender 1.0000 0.0792 0.0180 -0.1218 -0.0376 -0.0807
age 1.0000 0.2266 -0.0513 -0.4766 -0.1415
h&y 1.0000 0.3250 -0.6435 0.3318
bdi 1.0000 -0.2689 0.6402

moca 1.0000 0.0419
pdq8 1.0000

The regression of pdq8 on all five prognostic factors produces the results re-160

ported in Table 2. The order of the appearance of the covariates in Table 2 is that
of their inclusion in the linear model obtained via stepwise regression. Surpris-
ingly, in the light of the correlations in Table 1, there is significant regression on
bdi but not on h&y; due to the correlation between the covariates, much of the
variability of pdq8 explained by bdi is already explained by h&y.165

We checked several models using normal probability plots of the residuals.
The left-hand panel of Figure 1 shows the normal quantile-quantile (QQ) plot of
the residuals from least squares regression on just bdi and the right-hand panel
shows a similar plot from regression on both bdi and h&y. The plot from regres-
sion on two variables is appreciably straighter, indicating a more nearly normal170
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Table 2: Order of addition of covariates to pdq8 model (via stepwise regression).
Order of addition Source SSE SSR d.f. MSE MSR F Prob¡F

1 Intercept 1
2 bdi 4.4768� 103 5.5662� 103 1 172.1852 5.5662� 103 32.3266 5.560� 10�6

3 age 4.4280� 103 5.6150� 103 1 177.1190 48.8340 0.2757 0.6041
4 gender 4.3909� 103 5.6521� 103 1 182.9536 37.0898 0.2027 0.6566
5 h&y 4.3756� 103 5.6674� 103 1 190.2426 15.3065 0.0805 0.7792
6 moca 4.3593� 103 5.6836� 103 1 198.1522 16.2311 0.0819 0.7774

SSE - sum of square error; SSR - sum of squares of treatments; d.f. - degrees of freedom; MSE - mean square error (MSE=SSE/(n-d.f.));
MSR - incremental mean of squares of treatments (MSR=SSRi-SSRi�1); F - F ratio (F=MSR/MSE).

distribution of residuals. This plot is also straighter than that of the residuals
from regression on all five variables (not shown). In our exploration of meth-
ods for balancing and randomizing treatment allocations we therefore take as our
standard allocations those using just two prognostic factors with homoscedastic
independent normal errors. However, in §7.1 we also briefly consider the effect175

of allocations using fewer or more prognostic factors.
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Figure 1: Normal probability plots of residuals from two fitted models: (a) pdq8 vs. bdi; (b) pdq8
vs. h&y and bdi.

Although there are partial data on 144 patients, the QQ plots in Figure 1
present 28 points from regressing pdq8 on one and two regressors. To produce
the plots we used only those patients with complete records, that is patients with
known h&y and bdi.180

As a final introduction to the structure of the data used in our simulations of
designs, we give in Figure 2 scatterplots of the response pdq8 against bdi and h&y,
together with histograms of the distributions of the variables. As is to be expected

7



from the analyses given above, the stronger relationship is between pdq8 and bdi.
Note that there are different numbers of points in the two plots. The marginal185

distribution of pdq8 is not normal. Normality is revealed by the residuals from
joint regression on these two prognostic factors.

(a) (b)

Figure 2: Scatterplots with histograms for: (a) pdq8 vs. bdi; (b) pdq8 vs. h&y.

The plots in Figure 2 also reveal that the distributions of bdi and h&y are not
particularly normal. This comment is important when, in §7.2, we explore the
properties of designs using normally distributed covariates. Similar plots for age190

and moca show no relationship with the response pdq8.

4. Experimental Design

4.1. Sequential Optimum Experimental Design
Patients arrive sequentially. Patient i presents with a vector of q�1 prognostic

factors zi and is allocated to one of two treatments, τ1 or τ2; the response (here,195

pdq8) for this patient is yi. The parameter of interest is the treatment difference
∆ � pτ1 � τ2q{2. The regression model for all n observations, in matrix form, is

EpY q � a∆� Iβ0 � Zψ � a∆� Fβ � G ω. (1)

In this model a is the n � 1 vector of allocations with elements �1 and �1, de-
pending on whether treatment 1 or treatment 2 is allocated, and I is the n � 1
vector of ones. The average effect of the two treatments, written as the constant200

term β0 � pτ1� τ2q{2, is not of importance. The parameter vector ψ of regression
parameters for the prognostic factors is also unimportant, although some balance
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is required over these variables, which will be included in the analysis of the data.
The constant and covariates are included in the n� q matrix F . The value of q is
important in determining the properties of some allocation rules.205

In sequential treatment allocation the covariates and allocations are known for
the first n patients, giving a matrix Gn of allocations and explanatory variables in
(1). Let patient n � 1 have a vector zn�1 of explanatory variables. If treatment
j is allocated, the vector of allocation and explanatory variables for the pn � 1qst
patient is gj,n�1, j � 1, 2. Results in the sequential construction of optimum210

experimental designs (see Atkinson [2] and Smith [31, §10]) show that the vari-
ance of the estimate ∆̂ after n� 1 observations is minimized by the choice of that
treatment for which the sensitivity function

dspj, n, zn�1q � gTj,n�1pG
T
nGnq

�1gj,n�1 � fT
j,n�1pF

T
n Fnq

�1fj,n�1 (2)

is a maximum. This result is a special case of the use of optimum design theory
to minimize the variance of a single parameter estimate in a model with several215

nuisance parameters, a criterion called Ds-optimality. See Atkinson et al. [32,
§10.3] with s � 1.

Once the prognostic factors are known for patient n � 1, treatment allocation
in the sequential optimum design of experiments is determined. This procedure
leads to a trial in which the variance of ∆̂ is minimized; there is no allowance220

for randomization. Randomness in the allocations will provide protection against
biases and unexpected trends, but at the cost of a slight loss in efficiency, that is
an increase of the variance of ∆̂.

4.2. Assessing Rules: Bias and Loss
The loss from randomization is assessed from Var(∆̂). Let b � F Ta, a “bal-225

ance” vector which is identically zero when all covariates are balanced across all
treatments, which is a consequence of the sequential construction of §4.1 for the
linear model (1). Then

varp∆̂q �
σ2

n� bT pF TF q�1b
�

σ2

n� Ln

, (3)

giving an explicit expression for calculation of the loss Ln. The loss is minimized
for the balanced design when the estimate of ∆ is independent of the estimates230

of the nuisance parameters. As (3) indicates, the loss quantifies the number of
patients on whom information is effectively lost due to imbalance in the trial.
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The loss Ln in a specific trial depends on the particular sequence of random-
ized allocations. In this paper, interest is in comparing the properties of various
allocation rules, so that the focus is on the expectation EpLnq � Ln, approximated235

by L̄n, the average over nsim simulations. For some allocation rules theory pro-
vides a value for the expected value of the loss Ln as n Ñ 8. However, even in
such cases, simulation is informative about trials for moderate values of n.

A numerical measure for randomization is selection bias [33] which measures
the ability to guess the next treatment to be allocated. Bias depends on the de-240

sign, the guessing strategy and, for some rules, the value of n. For a particular
combination of strategy and design the expected bias Bn is estimated from nsim
simulations as

B̄n �
number of correct guesses of allocation to patient� number of incorrect guesses

nsim
.

(4)
This definition is similar to that of (4.2) of Smith [31]. The guessing strategy used
in our numerical comparisons is the sensible one of guessing that the treatment for245

which the allocation probability is higher will be selected.
Amongst many others, Efron [34] and Smith [31] consider that selection bias

should not be an issue in double-blind trials with treatment allocation made re-
motely from the trial, although it may be if there are local attempts towards insti-
tutional balance [35]. It is however impossible to blind the trial with which we are250

concerned. Allocation may be blinded, but the patient and medical staff will know
without doubt which treatment has been allocated. For us, then, randomization is
particularly important. In general, a trial without randomization appears to lack
objectivity. Efron [34] and Smith [31] accordingly study the effect of biased-coin
designs on freedom from accidental bias due to omitted factors including time255

trends and, in the case of Smith [31], correlated errors and outliers. The con-
clusion of Smith [31] is that biased-coin designs that are not completely random
provide good protection against several sources of bias and that selection bias is a
good measure of the properties of the design.

Randomization and balance are in conflict. The deterministic rule of sequen-260

tial optimum design minimizes loss. However, the allocation can always be cor-
rectly guessed, so that Bn � 1. The antithesis is the random rule in which the
treatment is allocated by the toss of a fair coin. This has the maximum loss of all
rules we consider, but it is impossible to have any systematic success in guessing
the next allocation, so that Bn � 0. In this paper we study several design strate-265

gies intermediate in properties between sequential optimum design and random
allocation.
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4.3. Six Allocation Rules
We now describe the six rules that we compare in a variety of scenarios for

randomizing the experiment. Some of the rules are based on the sequential con-270

struction of the optimum design for estimation of ∆. Let the treatment maximizing
(2) be τ[1], which is allocated with probability πpr1sq.

Rule D: Deterministic Allocation. This is the sequential construction of the
Ds-optimum design; πDpr1sq � 1. It follows that L8 � 0 and, since there is no275

randomization, B8 � 1. The simulations in later sections show that, from very
small values of n, L̄n � 0 and B̄n � 1.

Rule A: Randomized DA-optimality. Atkinson [2] introduced a randomized
form of the sequential construction of DA-optimum designs. For two treatments280

the probability of allocation of treatment j is

πApjq �
dpj, n, zn�1q

dp1, n, zn�1q � dp2, n, zn�1q
. (5)

Burman [36] showed that for this rule L8 � q{5. The values of dp1, n, zn�1q and
dp2, n, zn�1q are not standardized by n. As n increases the difference between the
two decreases and as nÑ 8, πApjq Ñ 0.5. As a consequence, B8 � 0.

285

Rule E: Efron’s Biased Coin. Efron [34] introduced a design for the sequential
comparison of two treatments, without covariates, in which the under-represented
treatment was allocated with probability 2/3. In the presence of covariates let the
under-represented treatment be denoted [1]. Then

πEpr1sq � 2{3 (6)

The loss decreases with n but, from small n, the values of Bn are close to the290

asymptotic value of 1/3.

Rule MwC: Minimization with a Coin. The deterministic minimization rule of
[7] depends on calculating the total effect on all measures of marginal imbalance
when treatment j is allocated. With q�1 covariates z, there will be q�1 measures295

to be summed. The individual measures count the number of observations in each
category of the covariate. Continuous covariates therefore have to be categorised.

Let the total effect on imbalance be Cpjq. The allocations are ranked so that
Cpr1sq ¤ Cpr2sq. In this deterministic allocation treatment [1] is allocated, with
random allocation if both treatments have the same value of Cpjq.300
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We introduce randomization by replacing certain allocation by the 2/3 of Efron’s
biased coin. Thus

πMwCpr1sq � 2{3, (7)

with random allocation if there is a tie, as there may well be, since the prognostic
factors are discretized. The deterministic calculations are exemplified by [37] and
[3] as well as by [7].305

Rule R: Randomized Allocation. πRpr1sq � 0.5. This is the furthest in proper-
ties from deterministic allocation, Rule D. Now since there is complete random-
ization, B8 � 0. A special case of the calculations in Burman [36] is that L8 � q,
a result that goes back at least to Cox [38].310

Rule RwS: Randomized Allocation within Strata. This is rule similar to rule R
but allocates the individuals in each stratum. That is the most important factors
in pdq8 regression are discretized using the median value as cut-off and the allo-
cation of patients based on the complete randomization in each (of the four) strata.315

The randomization in Rules MwC and RwS depends upon stratification of the
covariates. In the comparisons of §6.2, it is assumed that the unstratified variables
are used to fit the data. At the end of §7.2 we briefly consider the effect of using
the stratified variables in modelling.320

5. Sampling from the Multivariate Empirical Distribution of Prognostic Fac-
tors

Simulation is often used, as here, to find the small sample properties of treat-
ment allocation procedures. Many such investigations, such as Atkinson [3, 39],
assume that the prognostic factors are uncorrelated and normally distributed. Here325

we sample from an approximation to the empirical correlated distribution of the
prognostic factors analysed in §3. In the absence of the empirical distribution the
procedure is unchanged, except that sampling is from a prior distribution, prefer-
ably based on some empirical evidence.

In general, it is difficult to sample from multivariate distributions with arbi-330

trary covariances. One possibility is to sample, with replacement, from the q � 1
dimensional discrete distribution of the observed covariates. An alternative, which
gives more sampling points, is to generate a q�1 dimensional multivariate normal
sample with the desired correlation and then to transform the normal distributions
to have the univariate empirical distributions discussed in §3.335
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Let the q � 1 prognostic factors of patients entering the trial have the corre-
lation matrix, Γ, extracted from the data in Table 1. Let u be a q � 1 vector of
uncorrelated standard normal variables. To generate a vector of correlated normal
random variables v, we first decompose Γ using the Cholesky decomposition, i.e.
Γ � Λ ΛT, where Λ is a pq � 1q � pq � 1q lower triangular matrix. We then form340

the elements of the correlated normal q vector for a new patient using the rule

v1 � 1.0 (8a)

vi �
q�1̧

j�1

Λi�1,j uj, i � 2, � � � , q, (8b)

where (8a) is for the constant term and (8b) is for the prognostic factors.
We now further transform the vi, i � 2, � � � , q to have the desired empirical

distribution. Let the ordered vector of sampled values of the empirical prognostic
factors of §3 for variable i be si. Then . . . si,k�1   si,k   si,k�1 . . . with cdf345

Fipsi,kq � P pSi ¤ si,kq. We sample the distribution of Si using the cdf of the
normal distribution of vi to provide the probabilities for our correlated sample.
That is, let pi � Φpviq, where Φ is the cdf of the standard normal distribution.
Then the values of the simulated covariates zi are found by numerical search:

if Fipsi,k�1q   pi ¤ Fipsi,kq, zi � si,k, i � 2, � � � , q, (9)

with z1 � 1.0.350

In our analyses we consider: (i) q � 6, that is including all the prognostic
factors when samples are generated from a five-variate normal distribution; (ii)
q � 3, including the variables h&y and bdi and so sampling from a bivariate
normal distribution and (iii) q � 2, only the variable bdi is used for prediction
of pdq8. In this case samples come from a standard normal distribution and Γ �355

r1.0s. For non-correlated prognostic factors we consider only the normal case and
put zi � vi in (8) with Γ � Iq�1 where Iq�1 is the q � 1 identity matrix.

6. The Trial Design and Comparison of Allocation Rules: Empirical Prog-
nostic Factors

6.1. The Overall Design of the Sequential Trial360

There are two sites for the trial. Budget constraints and power considerations
led to a design in which one site is expected to enrol 184 patients and the other
108. It is sensible to randomize separately for the two centres. One reason is
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that of robustness of the procedure. It will be more straightforward to run two
separate schemes, rather than to rely on communication between the centres and365

the transfer of covariate information. Practically, separate randomization schemes
reduce the probability of confusion and errors. The second reason is that it is
possible the distribution of covariates at the two site may be different - perhaps
due, for example, to socio-economic or demographic factors. In the data analysis
we need to be prepared to be able to fit models to well-balanced data from the370

individual sites, as part of the process that, it is to be hoped, will lead to a single
model and analysis for all patients.

The properties of randomization rules depend on the number of patients in the
trial. Since it is not certain that the two centres will be able to recruit exactly the
specified number of patients, we compare the properties of randomization rules for375

values of n up to 184. These results are given graphically. Because, however, there
are two specific target values of n, we also provide tabulations of the properties of
the rules for n � 108 and 184.

6.2. Comparison of Allocation Rules: Empirical Prognostic Factors
We start our comparison of the allocation rules taking q � 3, that is the inter-380

cept and the two prognostic factors bdi and h&y which are most highly correlated
with the response. There were 20.000 simulations in all comparisons.
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Figure 3: Results for model including 3 parameters (the intercept plus 2 the two covariates to h&y
and bdi – those with the largest correlation with the response): (a) Loss and (b) Bias, as functions
of the number of patients.

The results are plotted in Figure 3 and summarized in the central panel of
Table 3. The left-hand panel of the figure shows the loss for values of n up to
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184. Rule R has a loss of 3 p� qq throughout, in line with the results quoted385

in §4.3; the loss for RwS rapidly increases to be indistinguishable from that for
R. Reading down in the centre of the plot, the loss for Rule MwC is gradually
decreasing, being slightly less than one at n � 184. The loss for Rule A settles to
a value of q{5 � 0.6 just after n � 108. The loss for Rule E decreases steadily,
becoming less than that for Rule A when n is close to 60. It is however always390

greater than that for Rule D, for which L8 � 0.
The right-hand panel of the figure shows the plot for bias. This has a simpler

structure. Rules R, RwS, E and D have constant biases of 0, 0, 1/3 and 1, within
sampling fluctuation. The bias for MwC is also constant, but lower than that for
Rule E because of the occurrence of ties; the value is close to 0.25 rather than 1/3.395

The bias for Rule A, unlike the others, decreases steadily, in line with the argument
of §4.3. The close similarity of R and RwS is a feature of all comparisons; we
return to this point at the end of the section.

Table 3: Performance of allocation rules after 108 and 184 patients (model with correlated empir-
ical covariates).

After 108 patients After 184 patients

Covariates Rule Loss Bias Loss Bias

1 D 0.0149 1.0000 0.0086 1.0000
R 1.9837 -0.0041 1.9979 0.0009

RwS 1.9809 -0.0016 1.9838 0.0035
A 0.4011 0.1132 0.4072 0.0751
E 0.1706 0.3330 0.1036 0.3288

MwC 0.4967 0.2598 0.4421 0.2448

2 D 0.0360 1.0000 0.0209 1.0000
R 3.0047 -0.0012 3.0300 -0.0001

RwS 3.0301 -0.0098 3.0243 0.0040
A 0.6157 0.1157 0.6042 0.0941
E 0.3673 0.3336 0.2202 0.3280

MwC 1.1030 0.2419 0.9768 0.2407

5 D 0.1483 1.0000 0.0848 1.0000
R 5.9836 -0.0106 5.9980 -0.0035

RwS 6.0220 -0.0002 5.9743 -0.0134
A 1.2633 0.1728 1.2167 0.1397
E 1.3253 0.3332 0.8210 0.3352

MwC 3.0433 0.2990 2.6117 0.3004

We also investigated the properties of the six rules for two further values of
q. The two panels of Figure 4 show the plots of loss for q � 2 and q � 6. Now400

the losses for Rule R are two and six and those for Rule A tend to 0.4 and 6{5
for large n. For q � 2 (the left-hand panel) the losses all proportionately decrease
faster than they do for the right-hand panel. This effect is particularly marked for
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the two Rules MwC and E that randomize using Efron’s coin. The biases for both
values of q are similar in structure to those for q � 3 in the right-hand panel of405

Figure 3 and so are not shown here.

20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

(b)

Figure 4: Losses as a function of n. Left-hand panel q � 2 (just bdi) and Right-hand panel q � 6
(all prognostic factors).

Values of both loss and bias for q � 6, 3 and 1 and n � 108 and 184 are in Ta-
ble 3, these being the two values of importance for the trial on neuro-degenerative
diseases. The table confirms the suggestion of the figures that Rule A provides a
good compromise between loss and bias, low values of both of which are desir-410

able. More generally, the losses for Rules E and MwC in the right-hand panel of
Figure 4 show the poor performance of these two rules as q increases.

Finally, we consider the close relationship between Rules R and RwS. In the
latter, the covariates are categorised into 2q�1 cells. Any particular patient will
have a treatment randomly assigned within the appropriate cell; cell membership415

is then ignored in the analysis of the data. Consequently, there is no effect of the
cell and no difference between Rules R and RwS.

7. Extensions

7.1. Design for an Incorrect Number of Prognostic Factors
It may be that a trial is designed with randomization over q prognostic factors420

but the final data analysis incorporates r factors, where r may be greater than, or
less than q. Results for allocations using the six rules are in Table 4. The top half
of the table is when extra covariates are included in the design: balancing is over
five covariates, but only two are used in the data analysis. Rule R does not depend
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on the value of q and here, with r � 3, the loss of this rule is very close to three.425

The losses for the other rules are close to two. There is little effect of n, but the
loss for Rule D is lowest. The next highest losses after R are 2.23 for E when
n � 108 and 2.19 for Rule A when n � 184. The lower half of the table is for the
reverse situation, when two are included in the design, but the analysis has r � 6.
Now the losses for Rule R are just above six, with the other rules giving losses430

round about five. Again Rule D gives the lowest losses with Rule A now giving
the highest values, 5.24 and 5.23 for the two values of n. The conclusion is that,
in order to obtain the benefit of a rule balancing bias and loss, it is important to
design for the variables that will eventually be used in the analysis.

There is some recent theoretical work on the properties of designs when r ¡ q,435

that is “what is the effect of the randomization on the non-randomized covari-
ates?”. Unfortunately, this work does not cover our situation as Liu and Hu [40]
only consider discretized covariates and Ye et al. [41] develop a model-free ap-
proach. Both papers usefully present details of recent work on covariate-adaptive
randomization.440

Table 4: Performance of allocation rules after 108 and 184 patients when the design is obtained
with q covariates and used in a model including r covariates (models with correlated empirical
covariates).

After 108 patients After 184 patients

Covariates (q{r) Rule Loss Loss

6/3 D 0.0703 0.0402
R 2.9709 2.9877

RwS 3.0016 3.0043
A 0.6221 0.6169
E 0.6284 0.3850

MwC 1.1163 0.9245

3/6 D 3.1025 3.0591
R 5.9956 6.0308

RwS 6.0072 5.9794
A 3.6977 3.6397
E 3.4379 3.2565

MwC 3.9348 3.7727

7.2. Independent Normal Covariates
Many simulation studies of treatment allocation in clinical trials, such as Atkin-

son [39] have taken the prognostic factors to be independently normally dis-
tributed. We now check whether, in our example, the more complicated simu-
lation strategy we have used leads to results distinct from those from the simple445

assumption of normality.
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Table 5: Performance of allocation rules after 108 and 184 patients (model with two non-correlated
normal covariates.

After 108 patients After 184 patients

Covariates Rule Loss Bias Loss Bias

2 D 0.0355 1.0000 0.0207 1.0000
R 3.0015 -0.0012 3.0274 -0.0001

RwS 3.0127 -0.0098 2.9886 0.0040
A 0.6145 0.1081 0.6012 0.0896
E 0.3670 0.3336 0.2197 0.3280

MwC 0.8907 0.2442 0.7388 0.2372

The results for simulations with independent normal prognostic factors when
q � 3 are in Table 5. Comparison with the central panel of Table 3 shows only a
few slight differences between the use of independent normal prognostic factors
and the correlated empirical factors coming from the data. The two largest dif-450

ferences are in the reduction in loss for Rule MwC when normal covariates are
used.

It is a matter for further exploration as to how general is this result. For meth-
ods that allocate according to a function of the information matrix of the design, it
is clear that the distribution of the factors will have little effect on the value of loss455

as n Ñ 8, provided the distribution of the covaraites has a finite variance. The
behaviour of minimization, without randomization, which we did not consider,
depends strongly on the distribution and correlation structure of the prognostic
factors. Some details are in Figure 2 and Table 2 of Atkinson [3]. However, min-
imization is not sensitive to a binary covariate, in our case gender. These results460

also demonstrate the lack of sensitivity of values of loss from Rules R, A and D
to the marginal distributions and correlation of the prognostic factors.

The results in Atkinson [3] assume that, however the randomization is achieved,
the model is fitted with uncategorised covariates. Categorization of the covariates
for fitting is not in general to be encouraged [42]. Even if a symmetrically dis-465

tributed covariate is categorised about its true median, there is an appreciable loss
in information. This is a loss for each observation, so that Ln Ñ 8 with n.
The efficiency is further reduced if the distribution is skew when the important
information that comes from the tails of the distribution is ignored in fitting the
model with categorical variables. Furthermore, the evaluation of the categorisa-470

tion points in the light of the data leads to problems with the levels of significance
tests.
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8. Discussion

The purpose of our paper is to compare the performance of several random-
ization rules for treatment allocation for a specific clinical trial on treatment of475

neuro-degenerative diseases. We were fortunate in having available a preliminary
set of data from which we were able to estimate the empirical distribution of the
prognostic factors. In order to simulate from this empirical distribution, as we
describe in §5, we sampled from correlated normal random variables which were
then transformed to have the desired marginal distributions. As far as we know480

this procedure has not previously been used in the context of randomizing treat-
ment allocation in clinical trials. The results of our simulations suggest the use of
randomized forms of sequential design construction based on D- or Ds-optimality.

Use of the preliminary set of data provides an analysis of randomization pro-
cedures based on the appropriate model for these data. As we mention in §1, in485

the absence of such information, studies of randomization procedures customarily
assume a multivariate normal distribution of the prognostic factors. Results in Ta-
ble 5 indicate, for our example, that a similar assessment of the relative merits of
the different rules is obtained with such a distribution. Simulation results in §4.4
of Atkinson [3] show that discrete or skew covariate distributions have a small490

effect on comparisons of the rules.
There are many other allocation rules that have been studied in the reviews

mentioned in §1. One possibility is to use a different function of dsp.q (2) in
the definition of the allocation probability. Atkinson [3] developed ideas on the
balance between randomness and information in Ball et al. [43] to replace (5) with495

the Bayesian form

πBpjq �
t1� dpj, n, zn�1qu

1{γ

°2
k�1t1� dpk, n, zn�1qu1{γ

. (10)

An advantage of this rule is that initially, for small n, the allocations force balance
at the cost of high bias. As n increases the allocation moves towards low bias and
a higher loss, although with a proportionately smaller loss for values standardized
by n. This rule is particularly appropriate if it is not known when the trial is500

likely to stop. The rate of change of emphasis in the allocation depends on the
value of the parameter γ. A suitable value for a specified n can be determined by
simulation.

In general, all rules involve a trade-off between bias and loss. Comparisons
are helped by the use of the normalized loss, scaled to lie between zero and one:505

Normalized loss � Loss{q.
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Figure 5: Normalized loss vs. bias for q � 3: empirical correlated covariates. The symbol “�”
indicates the performance after 108 patients, and “�” the performance after 184 patients.

Figure 5 presents the normalized loss vs. bias for all rules for q � 3. As we have
seen from earlier figures, the comparative properties of the rules depend upon the
value of n. We have marked the values for n � 108 and 184 on the plot. It is
clear that, for all rules except R, increasing n leads to decreasing loss. It is also
clear from the closeness of the plotted symbols for n � 108 and n � 184 that the510

majority of the change in properties occurs for small values of n.
The concept of the admissibility of a rule [3] is helpful in interpreting such

plots. Small values of both loss and bias are desirable: if Rule 2 has higher levels
of bias and loss than Rule 1, then Rule 2 is inadmissable. Rules D and R are
always admissible, since they respectively have the minimum values of loss and515

bias. Figure 5 shows that Rule MwC is inadmissible compared with Rule A, for
both values of n of interest. Rule E has lower loss for these values of n than does
Rule A. However, the bias is greater; admissibility does not provide a rationale for
preferring one of the designs to the other.

Table 6: Performance of allocation rules A and R for 108 and 184 patients - percentage of loss per
patient.

For 108 patients For 184 patients

Rule % Loss Bias % Loss Bias

A 0.57 0.11 0.33 0.05
R 2.78 0.00 1.64 0.00
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The situation in the trial of this paper is simple; we require to find good alloca-520

tion rules for just two values of n; 108 and 184. A source of guidance comes from
Table 6 which gives results, extracted from Table 3, for Rules A and R, where loss
is expressed as a percentage of the number of patients. For Rule A the percentage
loss when n � 108 is 0.57, rising to 2.78 if Rule R is used. This number may
well represent too large a loss of information despite the value of zero for bias.525

However, when n � 184, the percentage loss for Rule R is only 1.64. One might
therefore suggest that Rule A be used for the centre with 108 patients and Rule R
for the centre with 184 patients, the larger sample size leading to a lower potential
bias from allocation. Since the centres are randomizing independently, we see no
reason why the two sites should follow the same allocation rule.530

The values of bias and normalized loss both lie between zero and one. Ryeznik
and Sverdlov [8, §3.3] suggest a quantification of the distance from the (bias,
normalized loss) point to the unachievable origin (0,0), which is the “ideal point”
for the two criteria. See also Berger et al. [44]. They suggest a scaled Euclidean
distance, which we rescale by

`
2 to give the measure535

BL � t(biasq2 � (normalized loss)2u0.5, (11)

for which R and D both have the value 1. The results are in Table 7.

Table 7: Distances BL (7) from the rules to point p0, 0q.
Rules

Number of patients D R RwS A E MwC

108 1.0001 1.0016 1.0101 0.2356 0.3554 0.4401
184 1.0000 1.0100 1.0081 0.2223 0.3361 0.4049

For this particular weighting of bias against loss, the results show that Rule
A is best for both values of n, as is also evident on inspection of Figure 5. The
procedures of this paper present methods for selecting a randomization rule for
the allocation of treatments that can respond to the clinician’s assessment of the540

relative importance of bias and loss.
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