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Abstract. We show that there exists a Banach space X which contains closed sub-
spaces Y and Z with Y +Z = X such that the associated surjective summation operator
Σ: Y × Z → X defined by Σ(y, z) = y + z for y ∈ Y and z ∈ Z has no Lipschitz right
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1. Introduction and statement of the main result

Given closed subspaces Y and Z of a Banach space X, we consider the summation operator
Σ: Y × Z → X defined by

Σ(y, z) = y + z (y ∈ Y, z ∈ Z). (1.1)

This operator is linear and bounded, with norm at most 1 provided that we equip Y × Z
with the norm ‖(y, z)‖ = ‖y‖ + ‖z‖ for y ∈ Y and z ∈ Z. (As usual, we consider Y × Z
as a vector space with respect to the coordinatewise defined operations.) Moreover, Σ is
surjective if and only if Y + Z = X.

The purpose of this paper is to prove the following result.

Theorem 1.1. There exists a Banach space X which contains closed subspaces Y and Z
with Y + Z = X such that the associated surjective summation operator Σ: Y × Z → X
defined by (1.1) has no Lipschitz right inverse.

Outline of the proof of Theorem 1.1. The proof consists of three steps which we
state in Propositions 1.2, 1.3 and 1.5 below. These results involve two technical notions,
namely that two Banach spaces are “essentially incomparable” and that a Banach space
is “hereditarily indecomposable”. We refer to Definitions 3.1 and 4.1, respectively, for the
formal definitions of these notions.

Proposition 1.2. Let X be a Banach space which is reflexive or separable. Suppose that X
contains closed subspaces Y and Z such that Y + Z = X and

(A) the subspace Y ∩Z is infinite-dimensional and essentially incomparable with both Y
and Z.

Then Σ: Y × Z → X defined by (1.1) has no Lipschitz right inverse.
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Proposition 1.3. Let X be a hereditarily indecomposable Banach space containing closed
subspaces Y and Z such that Y + Z = X and

(B) the subspace Y ∩ Z has infinite codimension in both Y and Z.
Then condition (A) in Proposition 1.2 is satisfied.

Remark 1.4. Condition (B) evidently implies that the subspaces Y and Z are infinite-
dimensional. In fact, the first part of condition (A) follows from this hypothesis alone: Y ∩Z
is infinite-dimensional whenever Y and Z are closed, infinite-dimensional subspaces of a
hereditarily indecomposable Banach space X such that Y + Z = X; see Lemma 4.6 for
details. However, we require the full strength of condition (B) in order to deduce the
second part of condition (A).

Proposition 1.5. There exists a reflexive (and hence separable) hereditarily indecompos-
able Banach space X containing closed subspaces Y and Z such that Y + Z = X and
condition (B) in Proposition 1.3 is satisfied.

The proof of Theorem 1.1 is now immediate. Indeed, take X, Y and Z as in Propo-
sition 1.5. Then Proposition 1.3 shows that condition (A) in Proposition 1.2 is satisfied.
Since X is reflexive, we conclude that Σ has no Lipschitz right inverse. 2

Organization. In the remainder of this section, we explain our motivation for proving
Theorem 1.1. Next, in Section 2, we set up a general framework for studying whether the
summation operator Σ has a right Lipschitz (or bounded linear) inverse (assuming that Σ
is surjective, that is, Y +Z = X), before we apply it to prove Propositions 1.2, 1.3 and 1.5
in Sections 3–4. Finally, Section 5 contains a discussion of the main technical ingredient
in the proof of Theorem 1.1.

Motivation. Let Y and Z be subsets of a Banach space X such that Y +Z = X. By the
axiom of choice, there exist maps a : X → Y and b : X → Z which satisfy x = a(x) + b(x)
for every x ∈ X. We refer to pairs of maps (a, b) with this property as a decomposition
of X into Y and Z, and say that a decomposition is continuous (respectively, Lipschitz ) if
the maps a and b are continuous (respectively, Lipschitz).

The motivation behind this paper comes from the following general question: Among
all possible decompositions of X into Y and Z, can we always find one that possesses a
particular form of topological or algebraic regularity? It is a standard consequence of the
Closed Graph Theorem that if Y and Z are closed, complementary subspaces of X (that
is, they satisfy Y ∩ Z = {0} in addition to our standing hypothesis that Y + Z = X),
then a bounded and linear decomposition exists. Naturally, this raises the question: If we
drop the requirement that Y ∩Z = {0}, how much regularity of the decomposition can we
retain? The following theorem implies that we can always find a continuous decomposition
in this case.

Theorem 1.6 (Bartle–Graves [2, Corollary 17.67]). Let T : E → F be a bounded linear
surjection between Banach spaces E and F . Then T has a continuous (but not necessarily
linear) right inverse.
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Indeed, assuming that Y and Z are closed subspaces of X such that Y + Z = X, we
may apply Theorem 1.6 to the bounded linear surjection Σ: Y × Z → X defined by (1.1)
to obtain a continuous decomposition of X into Y and Z. With some extra work, one
may strengthen this conclusion to produce a continuous decomposition that is pointwise
Lipschitz on a dense subset of X, as shown in [20, Theorem 5.2].

In view of this result, and since the condition that Y ∩ Z = {0} seems fairly innocuous
in this context, one may hope that, whenever Y and Z are closed subspaces of X such
that Y + Z = X, it is always possible to obtain some higher level of regularity in the
decomposition than the above, perhaps a Lipschitz decomposition, or maybe even one that
is bounded and linear? However, Theorem 1.1 shows that this is not true in general: There
exists a Banach space X containing closed subspaces Y and Z satisfying Y + Z = X such
that the bounded linear surjection Σ: Y × Z → X defined by (1.1) has no Lipschitz right
inverse, and therefore X has no Lipschitz decomposition into Y and Z.

Remark 1.7. Examples are known where a Banach space E contains a closed subspace F
for which the quotient map from E onto E/F does not admit any Lipschitz, or even uni-
formly continuous, right inverse; see [1], [4, Example 1.20] and [14, Theorem 4.2]. The fla-
vour of Theorem 1.1 is somewhat different from these examples. However, taking E = Y×Z
and F = ker Σ, where Y and Z are chosen as in Theorem 1.1 and Σ: E = Y × Z → X
is the bounded linear surjection defined by (1.1), we obtain another example where the
quotient map from E onto E/F does not admit any Lipschitz right inverse.

A variant for ordered Banach spaces. The problem of how regular a decomposition
one can find has a natural counterpart in the field of “positivity”. Throughout this subsec-
tion, we consider real scalars only. A subset C of a Banach space X is a wedge if C 6= ∅,
C + C ⊆ C and λC ⊆ C for every λ ∈ [0,∞). A wedge C is generating if C−C = X, and
it is a cone if C ∩ (−C) = {0}.

It is a well-known, easy consequence of the axioms that wedges correspond to translation-
invariant, positively homogeneous preorders on the underlying Banach space X in the
following precise sense: Given a wedge C in a Banach space X, the relation > on X
defined by

x > y ⇐⇒ x− y ∈ C

is a translation-invariant, positively homogeneous preorder, and conversely, given a trans-
lation-invariant, positively homogeneous preorder > on X, the set C = {x ∈ X : x > 0} is
a wedge in X. Moreover, a wedge C is a cone if and only if the corresponding preorder >
is anti-symmetric (and hence a partial order). Due to this correspondence, the elements of
a wedge C are called positive.

Let C be a norm-closed, generating wedge in a Banach space X. Then, using a general-
ization of Theorem 1.6, it was shown in [12, 19] that the continuous surjection C×C → X
defined by (x, y) 7→ x − y has a continuous right inverse. In other words, in a Banach
space X preordered by a wedge, one can always decompose any element into the difference
between two positive elements in a continuous manner. In the case where X is a Banach
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lattice, or an order unit space, the decomposition of an element into the difference be-
tween two positive elements can even be achieved in a Lipschitz manner, as shown in [24,
Proposition 5.2] and [21, Proposition 3.2], respectively.

Closed subspaces are wedges, so Theorem 1.1 implies that, for closed wedges C and D in
a Banach space X such that C−D = X, no Lipschitz decomposition of X into a difference
between two elements of C and D exists in general. However, to the authors’ knowledge,
the following question remains open.

Question 1.8. Let C be a norm-closed, generating wedge (or cone) in a Banach space X.
Is it always possible to find Lipschitz maps a, b : X → C such that x = a(x) − b(x) for
every x ∈ X?

2. A general framework

General conventions. All Banach spaces are over the same scalar field, either R or C.
The term “operator” means a bounded linear map between Banach spaces. Given a closed
subspace W of a Banach space X, QW : X → X/W denotes the quotient map.

We begin with an elementary result which shows that writing a Banach space X as the
sum of two closed subspaces corresponds to decomposing a certain quotient of X into two
closed, complementary subspaces. This result is surely known to specialists, but as we
have not been able to locate a proof of it in the literature, we include one.

Lemma 2.1. Let X be a Banach space.
(i) Suppose that Y and Z are closed subspaces of X such that Y + Z = X, and set

W = Y ∩ Z. Then QW [Y ] and QW [Z] are closed, complementary subspaces of the
quotient space X/W .

(ii) Let W be a closed subspace of X, and suppose that F and G are closed, complemen-
tary subspaces of the quotient space X/W . Then Y = Q−1W [F ] and Z = Q−1W [G] are
closed subspaces of X such that Y +Z = X, Y ∩Z = W , Y/W = F and Z/W = G.

Proof. (i). We must show that the subspaces QW [Y ] and QW [Z] of X/W are closed and
satisfy: (1) QW [Y ] ∩QW [Z] = {0} and (2) QW [Y ] +QW [Z] = X/W .

To verify that QW [Y ] is closed, take a sequence (fn) in QW [Y ] such that the series∑∞
n=1‖fn‖ converges. For each n ∈ N, choose yn ∈ Y such that QW (yn) = fn and

‖yn‖ 6 ‖fn‖ + 1/2n. Then
∑∞

n=1 yn converges absolutely, and therefore, by completeness,
it converges in norm to some y ∈ Y . Since QW is linear and continuous, it follows that∑∞

n=1 fn converges to QW (y) ∈ QW [Y ]. This shows that the subspace QW [Y ] is complete
and hence closed. A similar argument proves that QW [Z] is closed.

(1). Suppose that e ∈ QW [Y ] ∩QW [Z], and write e = QW (y) = QW (z) for some y ∈ Y
and z ∈ Z. Then w = y − z belongs to kerQW = Y ∩ Z, and therefore y = w + z ∈ Z.
This implies that y ∈ Y ∩ Z = W , so e = QW (y) = 0. Conversely, it is clear that
0 ∈ QW [Y ] ∩QW [Z], and consequently QW [Y ] ∩QW [Z] = {0}.

(2). Given e ∈ X/W , take x ∈ X such that QW (x) = e, and write x = y + z for some
y ∈ Y and z ∈ Z. Then e = QW (y) +QW (z) ∈ QW [Y ] +QW [Z]. Conversely, the inclusion
QW [Y ] +QW [Z] ⊆ X/W is clear, and (2) follows.
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(ii). First, we note that Y = Q−1W [F ] and Z = Q−1W [G] are closed subspaces of X
because QW is continuous and linear.

Second, we show that Y + Z = X. Only the inclusion X ⊆ Y + Z is non-trivial. Given
x ∈ X, write QW (x) = f + g for some f ∈ F and g ∈ G, and choose y, z ∈ X such that
QW (y) = f and QW (z) = g. The definitions of Y and Z imply that y ∈ Y and z ∈ Z.
Since QW (x − y − z) = QW (x) − f − g = 0, the element w = x − y − z belongs to W .
Consequently y + w ∈ Y , and therefore x = (y + w) + z ∈ Y + Z.

Third, it follows directly from the definitions that

Y ∩ Z = Q−1W [F ] ∩Q−1W [G] = Q−1W [F ∩G] = Q−1W [{0}] = kerQW = W

and
Y/W = QW [Y ] = QW [[Q−1W [F ]] = F,

with a similar argument showing that Z/W = G. �

Remark 2.2. Let Y and Z be closed subspaces of a Banach space X. An essential feature
of the problem we consider is that Y +Z = X; otherwise the operator Σ is not surjective,
so it cannot have a right inverse of any kind. This issue can of course be overcome by
replacing X with Y +Z, but this approach will work only if the sum Y +Z is closed in X;
otherwise it is not complete, so Y + Z fails to be a Banach space in its own right.

The question of when the sum of two closed subspaces Y and Z of a Banach space X
is closed is well studied in the literature. It is folklore that Y + Z is closed if Y or Z is
finite-dimensional. On the other hand, concrete examples where Y + Z is not closed are
easy to find; see for instance [17, Exercise 1.84]. If Y ∩ Z = {0} (and Y and Z are both
non-zero), then a standard result states that Y + Z is closed if and only if

inf
{
‖y − z‖ : y ∈ Y, z ∈ Z, ‖y‖ = ‖z‖ = 1

}
> 0,

as mentioned in [10, p. 852], for instance. In the general case whereW = Y ∩Z is non-zero,
and excluding the trivial case where Y ⊆ Z, one can use the above result in the quotient
space X/W to show that Y + Z is closed if and only if

inf

{
‖QZ(y)‖
‖QW (y)‖

: y ∈ Y \ Z
}
> 0;

see [15, Theorem 4.2 (page 219)].

The problem whether a surjective operator such as Σ has a bounded linear (or Lipschitz)
right inverse has a well-known reformulation in the language of short exact sequences. Let
us recall the basics of this terminology. We refer to [6] for a comprehensive modern account
of this theory in the context of Banach spaces.

Definition 2.3. A short exact sequence of Banach spaces is a sequence of the form

0 // W
S // E

T // X // 0, (2.1)

where W , E and X are Banach spaces, S : W → E is an injective operator, T : E → X is
a surjective operator and S[W ] = kerT .
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In particular, S has closed range, so it is an isomorphic embedding. In the context of
Banach spaces, the Splitting Lemma from homological algebra reads as follows (see for
instance [6, Lemma 2.1.5]).

Lemma 2.4. The following three conditions are equivalent for a short exact sequence of
the form (2.1):

(a) the operator S has a bounded linear left inverse;
(b) the operator T has a bounded linear right inverse;
(c) the subspace kerT (= S[W ]) is complemented in E.

Definition 2.5. When one, and hence all three, of the conditions in Lemma 2.4 are
satisfied, we say that the short exact sequence (2.1) splits.

Lindenstrauss [16] and Godefroy and Kalton [9] showed that in certain cases one can
pass from Lipschitz splittings to splittings in the above sense. We require the following
result from their work.

Theorem 2.6 (Lindenstrauss; Godefroy–Kalton). Consider a short exact sequence of the
form (2.1), and suppose that the Banach space E is reflexive or that the Banach space X
is separable. Then (2.1) splits if and only if it “Lipschitz splits” in the sense that the
operator T has a Lipschitz right inverse (which need not be linear).

Proof. This follows from [16, Corollary 2] for E reflexive, and from [9, Proposition 2.8 and
Theorem 3.1], in the same way as in the proof of [9, Corollary 3.2], for X separable. �

The following lemma makes the connection between short exact sequences and Theo-
rem 1.1 explicit.

Lemma 2.7. Let Y and Z be closed subspaces of a Banach space X such that Y +Z = X,
and set W = Y ∩ Z. Then we have a short exact sequence

0 // W
∆ // Y × Z Σ // X // 0, (2.2)

where the operator ∆: W → Y × Z is defined by ∆(w) = (w,−w) for w ∈ W , and
Σ: Y × Z → X is the summation operator defined by (1.1).

Proof. It is clear that ∆ is a bounded linear injection and Σ a bounded linear surjection,
so the following chain of equations completes the proof:

ker Σ = {(y, z) ∈ Y × Z : y + z = 0} = {(y,−y) : y ∈ Y ∩ Z} = ∆[W ]. �

We conclude this collection of general material with a result which shows that to con-
struct examples where the short exact sequence (2.2) does not split, one must work with
closed subspaces which are not complemented.

Lemma 2.8. Let X be a Banach space containing closed subspaces Y and Z such that
Y + Z = X, and suppose that the subspace W = Y ∩ Z is complemented in Y or in Z.
Then the short exact sequence (2.2) splits.
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Proof. Suppose that W is complemented in Y , so that there is an operator P : Y → W
such that Pw = w for every w ∈ W . Define L : Y × Z → W by L(y, z) = Py. Then L is
an operator which satisfies

L∆w = L(w,−w) = Pw = w (w ∈ W ),

so condition (a) in Lemma 2.4 is satisfied. The case where W is complemented in Z is
similar (except that we need to define L(y, z) = −Pz). �

Remark 2.9. Let X be a Banach space which contains closed subspaces Y and Z such
that Y + Z = X, and set W = Y ∩ Z. We can represent this information in the following
commutative diagram with exact rows and columns:

0

��

0

��
0 // W

JZW
��

JYW // Y

JY
��

QZ�Y // X/Z // 0

0 // Z

QY �Z
��

JZ // X

QY

��

QZ // X/Z // 0

X/Y

��

X/Y

��
0 0,

(2.3)

where JYW , JZW , JY and JZ denote the inclusion maps and QY and QZ the quotient maps.
Comparing this diagram with [6, Diagram (2.34)], we see that the Banach space X can be
viewed as the pushout of the diagram

W

JZW
��

JYW // Y

Z,

(2.4)

and the sequence (2.2) arises as the “diagonal pushout sequence” of (2.3) in the sense of
[6, page 92]. Alternatively, combining Lemma 2.7 with the explicit definition given in [6,
page 73] of the pushout of (2.4) as the quotient space (Y × Z)/{(w,−w) : w ∈ W}, we
obtain a direct, non-diagrammatic proof that this pushout is X.
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3. Essential incomparability and the proof of Proposition 1.2

Definition 3.1. An operator S : E → F between Banach spaces E and F is:
• Fredholm if the kernel of S is finite-dimensional and the range of S has finite co-
dimension in F . (It is a standard result that the latter condition implies that S
has closed range.)
• inessential if IE−TS is a Fredholm operator for every operator T : F → E. (Here,
and elsewhere, IE denotes the identity operator on E.)

We say that a Banach space E is essentially incomparable with another Banach space F if
every operator from E to F is inessential.

Remark 3.2. (i) The definitions of inessential operator and essential incomparability
appear to lack symmetry. However, it is an elementary fact that IE − TS is a
Fredholm operator if and only if IF−ST is a Fredholm operator (see for instance [18,
Sätze 2.4-A–2.5-A]). This implies in particular that E is essentially incomparable
with F if and only if every operator from F to E is inessential, and so we can make
statements like “the Banach spaces E and F are essentially incomparable” without
ambiguity.

(ii) The class of inessential operators forms a proper operator ideal in the sense of
Pietsch [23, Section 3.4]. Specifically, this means that every finite-rank operator
is inessential, the sum of two inessential operators is inessential, the composition
of an inessential operator with an arbitrary operator from the left or the right is
inessential, and the identity operator on an infinite-dimensional Banach space is
never inessential.

Lemma 3.3. Let W , Y and Z be Banach spaces, and suppose that W is essentially in-
comparable with both Y and Z. Then W is essentially incomparable with Y × Z.

Proof. Define JY : Y → Y × Z and PY : Y × Z → Y by JY y = (y, 0) and PY (y, z) = y
for y ∈ Y and z ∈ Z, and define JZ : Z → Y × Z and PZ : Y × Z → Z analogously.
Since IY×Z = JY PY + JZPZ , every operator S : W → Y × Z can be written as S =
JY (PY S) +JZ(PZS), where the operators PY S : W → Y and PZS : W → Z are inessential
by hypothesis. This implies that S is inessential because the inessential operators form an
operator ideal. �

Lemma 3.4. Consider a short exact sequence of the form

0 // W
S // E

T // X // 0,

and suppose that W is infinite-dimensional and essentially incomparable with E. Then the
short exact sequence does not split.

Proof. The essential incomparability of W with E implies that the operator S : W → E
is inessential; that is, IW − LS is a Fredholm operator for every operator L : E → W . In
particular IW − LS 6= 0 because W is infinite-dimensional, so condition (a) in Lemma 2.4
fails. �



A SURJECTIVE SUMMATION OPERATOR WITH NO LIPSCHITZ RIGHT INVERSE 9

Combining Lemmas 3.3 and 3.4 with Lemma 2.7, we obtain the following conclusion.

Corollary 3.5. Let X be a Banach space containing closed subspaces Y and Z such that
Y+Z = X and the subspaceW = Y ∩Z is infinite-dimensional and essentially incomparable
with both Y and Z. Then the short exact sequence

0 // W
∆ // Y × Z Σ // X // 0

from (2.2) does not split.

Finally, Proposition 1.2 follows by combining Corollary 3.5 with Theorem 2.6, bearing
in mind that if X is reflexive, then the subspaces Y and Z are also reflexive, so Y × Z is
reflexive.

4. Hereditarily indecomposable Banach spaces and the proofs of
Propositions 1.3 and 1.5

Definition 4.1. A Banach space E is:
• decomposable if E contains a pair of infinite-dimensional, closed, complementary
subspaces; that is, E = F + G for some infinite-dimensional, closed subspaces F
and G with F ∩G = {0}.
• indecomposable if E is infinite-dimensional and fails to be decomposable.
• hereditarily indecomposable, abbreviated HI, if E is infinite-dimensional and every
closed, infinite-dimensional subspace of E is indecomposable.

The fact that there exist Banach spaces which are HI (and hence indecomposable) is a
highly non-trivial result due to Gowers and Maurey [10]. In line with common practice,
we shall write HI space instead of “hereditarily indecomposable Banach space”.

Remark 4.2. Every non-separable reflexive Banach space E is decomposable. This is a
well-known consequence of the fact that E has the “separable complementation property”
(this follows for instance from [11, Theorem 3.42 and Proposition 3.43]), which means
that every separable subspace of E is contained in a separable complemented subspace.
Indeed, since every infinite-dimensional Banach space contains basic sequences, E contains
an infinite-dimensional, separable subspace, so it also contains an infinite-dimensional,
separable complemented subspace F . Take a closed subspace G of E such that F +G = E
and F ∩G = {0}. Then G must be non-separable and therefore infinite-dimensional, so E
is decomposable.

Definition 4.3. An operator S : E → F between Banach spaces E and F is strictly sin-
gular if the restriction of S to any closed, infinite-dimensional subspace of E is not an
isomorphism onto its range.

Theorem 4.4 (Ferenczi). Every operator on an HI space is either Fredholm or strictly
singular.
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Proof. A proof of this result is contained in the final paragraph of the proof of [7, The-
orem 2]. We observe that while [7, Theorem 2] itself is stated for real scalars only, the
proof we require applies in both the real and complex case. (However, for complex scalars,
Theorem 4.4 is also an easy consequence of the famous result of Gowers and Maurey [10]
that every operator on a complex HI space is the sum of a scalar multiple of the identity
and a strictly singular operator.) �

Corollary 4.5. Let W be a closed subspace of infinite codimension in an HI space E.
Then every operator from E to W is strictly singular, and hence W and E are essentially
incomparable.

Proof. Let S : E → W be an operator, and denote the inclusion map by JW : W → E. Since
the range of the operator JWS : E → E is contained inW , it has infinite codimension in E,
so JWS cannot be a Fredholm operator. It is therefore strictly singular by Theorem 4.4,
and hence S is strictly singular.

The essential incomparability ofW and E follows because every strictly singular operator
is inessential (see for instance [23, §26.7.3], bearing in mind that in the notation of [23], S
and R denote the ideals of strictly singular and inessential operators, respectively). �

We shall also require the following elementary, standard fact about intersections of sub-
spaces of an indecomposable Banach space. We include a simple proof for completeness.

Lemma 4.6. Let Y and Z be closed, infinite-dimensional subspaces of an indecomposable
Banach space X, and suppose that Y + Z = X. Then Y ∩ Z is infinite-dimensional.

Proof. To prove the contrapositive, let Y and Z be closed, infinite-dimensional subspaces of
a Banach spaceX such that Y +Z = X, and suppose that the subspaceW = Y ∩Z is finite-
dimensional. Then W is complemented in Y , so Y contains a closed subspace Y0 such that
Y0∩W = {0} and Y0+W = Y . SinceW ⊆ Z, we have Y0+Z = Y0+W +Z = Y +Z = X,
and Y0 ∩ Z = Y0 ∩ Y ∩ Z = Y0 ∩ W = {0}, which shows that Y0 and Z are closed,
complementary subspaces of X. Moreover, Y0 is infinite-dimensional because it has finite
codimension in Y , so X is decomposable. �

Proof of Proposition 1.3. Suppose that Y and Z are closed subspaces of an HI spaceX such
that Y +Z = X andW = Y ∩Z has infinite codimension in both Y and Z. Then Y and Z
must both be infinite-dimensional, so Lemma 4.6 implies that W is infinite-dimensional.
Applying Corollary 4.5 twice, first with E = Y and then with E = Z, we see that W is
essentially incomparable with both Y and Z. �

Theorem 4.7 (Ferenczi). There exists a reflexive HI space X which contains a closed
subspace W such that the quotient space X/W is decomposable.

Proof. In [8, Section 3], Ferenczi constructs an HI space E which is not “quotient hereditari-
ly indecomposable”. The latter term is defined in [8, Definition 1]. Negating it, we see
that E contains closed subspaces W ⊂ X such that the quotient space X/W is decompos-
able. Moreover, E is reflexive, as stated in the second line of [8, Section 3]. Since reflexivity
and being HI both pass to closed, infinite-dimensional subspaces, we conclude that X has
the stated properties. �
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Remark 4.8. More generally, Argyros and Felouzis [3, Section 8] have shown that many
classical decomposable Banach spaces, including `p and Lp[0, 1] for 1 < p <∞, can be
realized as quotient spaces of reflexive HI spaces.

Proof of Proposition 1.5. For ease of reference, let us recall that the statement we seek to
prove is:

There exists a reflexive (and hence separable) HI space X containing closed
subspaces Y and Z such that Y +Z = X and the subspace Y ∩Z has infinite
codimension in both Y and Z.

Theorem 4.7 shows that there exists a reflexive HI space X which contains a closed sub-
space W such that the quotient space X/W is decomposable. Consequently we can apply
Lemma 2.1(ii) to obtain subspaces Y and Z of X with the specified properties. Remark 4.2
explains why X must be separable. �

Remark 4.9. Ferenczi’s Banach space E that we used in the proof of Theorem 4.7 above
is defined as the pushout of a diagram

V

U2

��

U1 // X1

X2,

(4.1)

whereX1 andX2 are suitably constructed HI spaces, the operators U1 and U2 are isometries,
and the Banach space V is infinite-dimensional. This follows from [8, Proposition 23]. In
fact, reading this result carefully, one can see that X = E satisfies the conclusions of
Theorem 4.7 (using our notation, not Ferenczi’s, who writes X̂ for the space we call E);
that is, we do not need to pass to a subspace of E to find an HI space which admits a
decomposable quotient space.

The reason is that [8, Proposition 23] states that E is an HI space whose dual space E∗
is not HI. Therefore E∗ contains a closed, infinite-dimensional subspace F which is decom-
posable. Let JF : F → E∗ be the inclusion map. Its adjoint J∗F : E∗∗ → F ∗ is a quotient
map. Since E is reflexive and decomposability passes from F to its dual, we conclude
that E admits a decomposable quotient space, namely F ∗.

Scrutinizing the proof of [8, Proposition 23], we see that F = W⊥, where W denotes the
canonical isometric image in E of the subspace V used in the pushout construction (4.1)
above. This implies that F ∗ ∼= E/W by reflexivity and standard duality results.

In summary, Ferenczi’s work produces a reflexive HI space E which is the pushout of
the diagram (4.1) and such that the quotient space E/W is decomposable (where W is
the canonical image in E of the subspace V , as above). One could use this result as the
starting point of a proof of Theorem 1.1 instead of the final piece of the jigsaw, as we have
done.
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5. Reflections on the proof of Theorem 1.1

It is natural to wonder whether we really need the heavy machinery of Ferenczi’s HI space
with a decomposable quotient in order to apply Proposition 1.2 to prove Theorem 1.1.
In other words, is it possible to find a more “classical”, or less “exotic”, Banach space X
containing closed subspaces Y and Z such that Y + Z = X and the intersection Y ∩ Z is
infinite-dimensional and essentially incomparable with both Y and Z? Note that, by the
definition of essential incomparability, this cannot happen if Y ∩ Z is complemented in Y
or in Z.

While we cannot answer the above question in complete generality, we know that it
is impossible in many cases. This relies on the following notion: A Banach space X is
subprojective if every closed, infinite-dimensional subspace of X contains a closed, infinite-
dimensional subspace which is complemented in X. Pfaffenberger [22] has shown that
every inessential operator on a subprojective Banach space is strictly singular. It is not
hard to generalize this result to operators defined only on subspaces. For good measure,
we provide a proof.

Lemma 5.1. Let W be a closed, infinite-dimensional subspace of a subprojective Banach
space X. Then every inessential operator from W to X is strictly singular, and conse-
quently W and X are not essentially incomparable.

Proof. To prove the contrapositive, suppose that S : W → X is an operator which is not
strictly singular. Then W contains a closed, infinite-dimensional subspace Y such that the
restriction of S to Y is an isomorphism onto S[Y ].

The subprojectivity of X means that we can find a closed, infinite-dimensional sub-
space Z of S[Y ] and an operator P : X → Z such that Pz = z for every z ∈ Z. Set
V = Y ∩ S−1[Z]. We observe that the restriction S̃ : V → Z given by S̃v = Sv for v ∈ V
is an isomorphism, so we may consider the composite operator T = JV S̃

−1P : X → W ,
where JV : V → W denotes the inclusion map. It satisfies

TSv = JV S̃
−1PS̃v = v (v ∈ V ),

which shows that V ⊆ ker(IW−TS). This implies that IW−TS is not a Fredholm operator
because V is isomorphic to Z and therefore infinite-dimensional. Hence S is not inessential.

It follows that W and X are not essentially incomparable because the inclusion map
from W to X is evidently not strictly singular and therefore not inessential. �

Since subprojectivity passes to closed subspaces simply by restricting the relevant pro-
jection, Lemma 5.1 implies that the answer to the question posed above is “no” whenever X
is subprojective. More precisely, in this case, given any pair of closed subspaces Y and Z
ofX whose intersection Y ∩Z is infinite-dimensional, we see that Y ∩Z is neither essentially
incomparable with Y nor Z, so Corollary 3.5 and Proposition 1.2 do not apply.

Many “standard” Banach spaces are subprojective, including the following:
(i) The classical sequence spaces c0 and `p for 1 6 p <∞.
(ii) The Lebesgue spaces Lp[0, 1] for 2 6 p < ∞ [13, Corollaries 1–2]. (By contrast,

we remark that Lp[0, 1] is not subprojective for 1 6 p < 2. Indeed, set q = 2 if
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p = 1 and choose q ∈ (p, 2) otherwise. Then Lp[0, 1] contains a subspace which is
isomorphic to `q, but no complemented subspace of Lp[0, 1] is isomorphic to `q.)

(iii) The quasi-reflexive James spaces Jp for 1 < p <∞.
(iv) The Tsirelson space T .
(v) The Schreier space X[Sα] associated with the Schreier family Sα for every countable

ordinal α, and also the pth variant of X[S1] defined in [5].
(vi) The Baernstein spaces Bp for 1 < p <∞.
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