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Abstract 

BACKGROUND: The development of new biomarkers allows for the accurate 

prediction of breast cancer therapy response in the neoadjuvant setting. The 

implementation of these tools in routine NHS operations could have the potential for 

better clinical outcomes and a more cost-effective use of resources. AIMS: A 

decision-analytic modelling platform was created to evaluate the clinical 

effectiveness and cost-effectiveness of on-treatment biomarker-based predictive 

tools in a routine NHS implementation. The biomarker-based tool used in the 

simulation was EER4, developed at Edinburgh Institute of Genetics and Cancer. 

METHODS: Patient simulation models were constructed by integrating molecular 

biomarker data with clinical outcomes and healthcare cost data. The simulation 

benefits from the incorporation of NHS patient data and it features two 

complementary sub-models: a Discrete Event Simulation for the neoadjuvant setting 

and a Markov cohort model for the adjuvant setting. The results of the simulation 

compare the per-patient costs and health outcomes, expressed as Quality Adjusted 

Life Years (QALY), for each of the evaluated strategies. Moreover, this study 

includes a decision and budget impact analysis of OncotypeDX after its introduction 

in Edinburgh’s Breast Clinic. RESULTS: Treatment-decision strategies that utilize 

EER4 are likely to be cost-effective. Specifically, EER4 in conjunction with PREDICT 

shows lower costs and marginally superior QALYs, compared to PREDICT alone or 

OncotypeDX with PREDICT. At a threshold of 20,000£/QALY, EER4 with PREDICT 

has an 86% probability of being a cost-effective alternative to the current standard of 

care. EER4 in conjunction with neoadjuvant Letrozole increases breast-conserving 

surgery rates, displacing radical mastectomy by 16%. The Probabilistic One-way 

Sensitivity Analysis shows that results are robust to the uncertainty of EER4 per-unit 

costs and clinical performance. The decision and budget impact analysis of 

OncotypeDX indicates that while this technology might reduce the number of 

chemotherapies administered, the unit cost is greater than any savings produced by 

chemotherapy displacement. CONCLUSION: The early cost-effectiveness analysis 

shows that these biomarker-based technologies are likely to be cost-effective. 

However, further research is needed to assess the clinical effectiveness of EER4. 

The simulation platform developed in this study has the potential for further 

evaluation of decision-making tools for other subtypes of breast malignancies. 
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Lay Summary 
New predictive health technologies have the potential to improve the lives of breast 

cancer patient and make a more efficient use of NHS resources: by identifying early 

which patients will better respond to a specific treatment and which patients will not, 

the opportunity to select the most appropriate therapy can increase cancer survival 

rates and quality of life. If a new breast cancer test can deliver better health 

outcomes than the current standard of care, before it can be introduced to routine 

care, its cost-effectiveness must be assessed. That is, it is necessary to estimate the 

potentially higher costs of the new test relative to the better performance it can 

deliver compared to the standard of care.  

This project uses “EER4” as an example of predictive test for breast cancer, 

currently under development at Edinburgh’s Institute of Genetics and Cancer 

(previously known as Institute of Genetics and Molecular Medicine). It can accurately 

predict how a patient will respond to pre-operative hormone therapy two weeks after 

diagnosis, granted that the patient has started treatment in the meantime. The 

response to treatment, as described by the test, is also predictive of long-term 

survival. 

In order to estimate the cost-effectiveness of a new test, we simulate its 

implementation in clinical care and record the estimated costs and health benefits. 

Given the limited amount of data available, the simulation makes use of previous 

research and of Scottish patient clinical records.  

The results of the simulation indicate that EER4 is likely a cost-effective use of NHS 

resources if implemented in routine operations. Furthermore, while there is still some 

uncertainty regarding the true costs and health benefits of EER4, the simulation 

platform suggests that it can likely deliver better health outcomes at a lower cost, 

compared to the standard of care. 

Overall, the results of the analysis show that tests predicting response to treatment 

before surgery are likely to be beneficial for patients and the NHS, and that further 

research and data collection is needed to reduce the uncertainty surrounding the 

impact of introducing this kind of technology in routine care. 
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1. Introduction 

1.1 Background 
Breast cancer is the most common type of cancer in the United Kingdom, accounting 

for 15% of all new cancer cases and 31% of all new female cancer cases (1). 

Similarly to other tumour types, breast cancer is not a single, monolithic disease, but 

a diversified collection of tumour subtypes, where each subtype has its own specific 

characteristics, cellular composition, and clinical outcomes (2). Research and 

commercial interest in methods to better identify and define patients with high-risk 

disease has been growing over the last twenty years and several prognosticators 

and decision-making tools have entered current clinical practice of many healthcare 

services across the world. By comparing the genomic profiles of breast cancer 

specimens from patients with, and those without disease recurrence, studies based 

on multi-gene panels have led to the development of several prognostic assays that 

should enable more accurate predictions of clinical outcomes, compared to the use 

of conventional approaches. In contrast, the traditional clinical and pathological 

methods of estimating the probability of breast cancer recurrence use standard 

descriptors and physical characteristics, such as patient age, tumour size, 

histological features, and number of involved axillary lymph nodes. Oestrogen 

receptor (ER) and progesterone receptor (PR) expression are evaluated using 

immunohistochemistry (IHC), and both IHC and Fluorescence In Situ Hybridization 

(FISH) are used to determine HER2 (human epidermal growth factor 2) status (3). 

Expression of these biomarkers in tumour specimens obtained after surgery or 

biopsy sampling is used as both a prognostic and predictive marker to identify 

patients who are more likely to develop a recurrence and might benefit from 

endocrine therapy, chemotherapy, or anti-HER2-directed therapies (4, 5).  

A wide range of clinical decision-making tools based on molecular markers have 

been proposed for selecting the most appropriate treatment for breast cancer 

patients. There is significant uncertainty on how decisions based upon these tests 

impact costs in routine NHS care pathways. Yet, the implementation of these 

diagnostic and prognostic tools in routine NHS operations could have the potential 

for better clinical outcomes and a more cost-effective use of resources. New 

biomarkers are under development that may predict benefit from specific drug 
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therapies for breast cancer. In particular, the development of these new biomarkers 

allows for the accurate prediction of breast cancer therapy response in the 

neoadjuvant setting. When used before surgery, effective drugs may shrink a cancer, 

increase the rate of successful surgery, and improve the chance of increasing 

recurrence-free survival (6).  

The aim of this study is to investigate the current research landscape of neoadjuvant 

biomarkers and, with the use of decision-analytic modelling, assess the likely impact 

of introducing this type of technology within the NHS. This will take the form of a 

flexible decision-analytic modelling platform for the early economic evaluation of on-

treatment biomarker-based predictive tools to compare the clinical effectiveness and 

cost-effectiveness in a potential routine NHS implementation.  The specific example 

of biomarker-based tool used in the simulation is EER4, currently under development 

at the Edinburgh Institute of Genetics and Cancer (previously known as Institute of 

Genetics and Molecular Medicine), details of which can be found in Chapter 2. 

Moreover, the decision-analytic modelling platform will make use of NHS patient 

records, thus integrating evidence from previous literature and Real-World Data 

(RWD). Details on the use of RWD within the process of generating cost-

effectiveness evidence can be found in Chapter 3. 

 

1.2 Current Guidelines for the treatment of early breast cancer in the UK 
The contemporary treatment of early breast cancer is complex, and it usually 

involves local therapy modalities, such as surgery and radiotherapy, in combination 

with systemic anticancer treatments and supportive measures, all of which can be 

delivered in diverse sequences. The following paragraphs offer a summary of the 

National Institute of Health and Care Excellence (NICE) guidelines for the treatment 

of patients diagnosed with early breast cancer (7). The guidelines were initially 

published in 2009, and have been updated several times since then, reflecting the 

outcomes of relevant technology appraisals, with the most recent update in 2018. 

Surgery, with or without radiotherapy, remains the mainstay of early breast cancer 

treatment. Surgical treatment for breast cancer may consist of an excision of the 

tumour with surrounding normal breast tissue (breast conserving surgery, 

lumpectomy), or complete removal of the breast (mastectomy). In addition, surgery 
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can also include axillary node clearance, or alternatively sentinel lymph node biopsy. 

For patients that had a mastectomy and are at high risk of recurrence, chest wall 

radiotherapy is recommended.  

Systemic anti-cancer therapy administered after surgery is referred to as adjuvant 

therapy, and depending on the tumour’s molecular subtype and risk of recurrence, 

the choice of adjuvant systemic anti-cancer therapy can vary. 

Patients with ER positive tumour are likely to receive adjuvant anti-oestrogen 

endocrine therapy, in the form of tamoxifen and/or aromatase inhibitors. Tamoxifen 

is indicated for ER-positive pre/perimenopausal patients, low risk patients, or 

patients with contraindications or severe reactions to aromatase inhibitors. 

Aromatase inhibitors are indicated as the first hormone therapy for post-menopausal 

patients at medium to high-risk of recurrence. If the patient is receiving adjuvant 

chemotherapy, endocrine therapy is usually deferred until all chemotherapy courses 

have been given. Patients with hormone receptor negative disease do not generally 

receive endocrine therapy.  Adjuvant hormone therapy is normally indicated for a 

duration of at least 5 years, but can be extended up to 10 years, with either 

tamoxifen or an aromatase inhibitor depending on menopausal status. NICE’s 

guidelines recommend treating all early ER-positive breast cancer patients with 

surgery and appropriate systemic therapy, rather than endocrine therapy alone, 

unless significant comorbidities are preventing surgery. 

Adjuvant chemotherapy is recommended for patient at sufficient risk of recurrence, 

and administered as regimens that contain combinations of taxane and 

anthracycline-based chemotherapies. For patients with HER2 positive tumours, 

adjuvant trastuzumab (biological therapy) is recommended. 

Systemic anti-cancer therapy delivered before surgery is referred to as neoadjuvant 

treatment. Neoadjuvant hormone therapy and neoadjuvant chemotherapy can be 

recommended as an option to reduce tumour size before surgery, especially in 

cases where the size reduction can result in breast conserving surgery rather than 

complete mastectomy. For HER2 positive tumours, neoadjuvant pertuzumab 

(biological therapy) can be offered as an option, in line with NICE’s technology 

appraisal guidance on pertuzumab. For patients with triple‑negative invasive breast 
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cancer, a neoadjuvant chemotherapy regimen that contains both platinum agents 

and anthracycline is recommended. 

 

1.3  Predicting risk and treatment decisions 
Section 1.2 often mentions that different treatment option can be offered depending 

on the patient’s risk of recurrence. When it comes to estimating a tumour’s risk of 

recurrence, two different broad strategies are available: prognostication tools that 

use clinical and pathological factors, or molecular tests that measure the level of 

expression of specific genes. The first approach generally stratifies risk based on 

variables that are routinely collected as part of the diagnostic and prognostic course 

of the patient; the most common tools for this approach are the Nottingham 

Prognostic Index, Adjuvant!, and PREDICT. 

The Nottingham Prognostic Index (NPI) is a prognostic scoring system based on a 

large English cohort of patients with early breast cancer and it is based on tumour 

size, grade, and lymph node status (8, 9) In its first formulation, it categorized 

patients into three groups with significantly different survival; the index has been 

validated and updated since, with its most recent formulation allocating patients to 

one of six prognostic groups (10, 11). 

Adjuvant! Online is an evidence-based online tool that enables the recurrence risk 

prediction for breast cancer patients using standardized clinical and pathological 

variables, based on data from large US databases (12). An individual's 10-year risk 

of disease recurrence can be used to estimate the overall risk reduction provided by 

adjuvant therapy, assuming a constant proportional risk reduction.  

PREDICT is an online prognostication and treatment benefit tool for patients with 

early-stage breast cancer that can inform decisions on various combinations of 

therapy after breast cancer surgery (13). Similarly to Adjuvant! Online, PREDICT 

provides prognostic information as 10-year survival estimates by using clinical and 

pathological variables. The survival estimates can then be combined with the 

estimated therapy benefits of various adjuvant treatment combinations 

(chemotherapy, hormone therapy and trastuzumab). The first online version of the 

tool was published in 2010, followed by a series of updates that added new 

prognostic factors.  
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PREDICT, as an online tool, is limited in its capacity: producing survival estimates for 

only one patient at a time, it can make it difficult and time-consuming to generate 

survival estimates for large cohorts of patients. Given that this thesis makes use of a 

large cohort of breast cancer patients, and it uses PREDICT as a risk stratification 

tool extensively, a software package for R Programming Language (14) was created 

for the purpose of calculating PREDICT estimates for large numbers of patients with 

data recorded in tabular form. The package, “nhs.predict”, is available on the 

Comprehensive R Archive Network, and it is currently being used by the SCAN Audit 

team for quality performance indicators audit purposes (15). The functions within the 

package apply the very same algorithm used by PREDICT, granted that any given 

patient observation occupies a single row. The functions automatically check for 

missing data, apply the correct modifiers for unknown values, and attach the survival 

estimates to the corresponding observation. 

As for the second approach to estimating risk of recurrence and treatment benefit, 

the strategy involves the pathological analysis and/or genomic sequencing of tumour 

tissue samples. This has led to the development of clinically useful assays to identify 

each intrinsic subtype and improve prognostication and risk stratification in patients 

with early-stage breast cancer, attracting considerable commercial and clinical 

interest. The majority of commercially available multigene assays focus on the 

evaluation of patients with hormone receptor-positive, HER2-negative disease, which 

includes OncotypeDX, Prosigna, MammaPrint, EndoPredict, and 

Immunohistochemistry 4 (IHC4). 

OncotypeDX was one of the earliest clinically validated and commercially available 

molecular tests for patients with early-stage breast cancer (16). The assay measures 

the relative expression of 21 genes, 16 that are tumour-associated and five that 

serve as controls, with the results expressed as a computed quantitative recurrence 

score (RS) ranging 0–100, and it assumes that patients are given adjuvant endocrine 

therapy. Tumour samples with RS <18 are classified as low-risk disease, those with 

RS between 18 and 30 as intermediate-risk disease, and those with RS ≥31 as high-

risk disease, where intermediate and high-risk patients might benefit from receiving 

adjuvant chemotherapy. 



14 
 

The Prediction Analysis of Microarrays 50 (PAM50) established a set of 50 gene 

transcripts used to identify intrinsic breast cancer subtypes with a high level of 

prognostic validity (17). The expression of 50 classifier genes and five control genes 

can be used to categorize breast cancer samples into one of four intrinsic subtypes 

(luminal A, luminal B, HER2-enriched, and basal-like). Subsequently, an algorithm 

(Prosigna) determines a risk-of-recurrence score ranging 0-100, and assigns risk 

categories (low, intermediate, or high) that reflect both the 10-year risk of distant 

recurrence of patients with early-stage hormone receptor-positive breast cancer and 

the potential benefit of adjuvant systemic anti-cancer therapy. 

MammaPrint is a 70-gene assay that uses DNA microarray technology for 

quantification of gene expression associated with long-term survival (18). 

Mammaprint is intended for use on stage 2, hormone-positive HER2-negative 

tumours. The genes that form this signature are predominantly associated with 

tumour progression and metastasis, the analysis of which produces a binary result, 

high-risk or low-risk classification. Patients classified as high-risk might benefit from 

adjuvant chemotherapy. 

EndoPredict involves the quantification of the expression of eight cancer-related and 

three control genes in order to calculate a risk score (19). This approach enables 

stratification of patients with ER-positive or HER2-negative early-stage breast cancer 

into a low or high 10-year recurrence risk group, when treated with adjuvant 

endocrine therapy alone. The results of an EndoPredict tests are usually combined 

with tumour size and nodal status to enable the calculation of a comprehensive risk 

score, EPclin. 

The combination of ER, PR, HER2, and Ki-67 expression levels, as determined 

using IHC, have been integrated into the IHC4 score (20). IHC4 score was initially 

developed as a simplified comparator and surrogate for OncotypeDX, and was found 

to provide a similar level of information and accuracy as the 21-gene signature. 

However, the widespread use of IHC4 requires standardization of the IHC methods 

used to measure proliferative activity (Ki-67), a topic that is covered more in-depth in 

Chapter 2. 
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1.4  Pros and Cons of Neoadjuvant Therapy 
Neoadjuvant systemic anti-cancer therapy has seen an increased use in clinical 

practice. With the same overall survival and recurrence-free survival rates are as 

post-operative therapy (21), neoadjuvant therapy has the advantage of potentially 

serving an in vivo sensitivity test for adjuvant therapies, while increasing the rate of 

breast conserving therapy (22). Moreover, it offers the opportunity of further studying 

tumour biology. These advantages often come at a cost: treatment before surgery 

modifies the stage and creates the potential for over-treatment. There is also the 

potential risk that residual intraductal components may be left behind after breast 

conserving surgery.  

A growing body of evidence indicates that tumour response to neoadjuvant therapy 

may predict long-term outcomes of patients on adjuvant endocrine therapy (23-25), 

which argues in favour of its wider application in treating hormone receptor-positive 

patients. From the research perspective, neoadjuvant endocrine therapy provides a 

unique opportunity for studying therapy response and the development of novel 

therapies and predictive/prognostic markers. 

 

1.5 Cost-Effectiveness Analysis and Analytical Models 
This thesis aims to assess the impact of a novel biomarker on NHS routine practices 

by performing a cost-effectiveness analysis (CEA) using a two-stage decision 

analytic model. The following paragraphs provide a brief explanation on the nature of 

CEA and definitions for the types of models used in the analysis. 

CEA is a quantitative approach that examines the costs and health outcomes of one 

or more interventions. By comparing two or more interventions, one of which is 

usually the standard of care (SOC), it estimates how much it would cost, at the 

margin, to gain a unit of a health outcome, such as a life-year gained or a death 

prevented, when considering a more effective and more costly option. The results of 

the analysis are usually presented as an Incremental Cost-Effectiveness Ratio 

(ICER): net cost divided by changes in health outcomes. Examples can include cost 

per case of disease prevented or cost per life-year gained. However, if the net costs 

of the intervention to be compared to the SOC are negative (which means a more 
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effective intervention is less costly), this results in a negative ICER, which can be 

interpreted as net cost savings. 

In addition to ICERs, the results of a CEA can be presented as Net Monetary 

Benefits (NMB), which are calculated by subtracting the total costs of implementing 

the new intervention from the total monetary benefits that result from it. Monetary 

benefits can either include direct cost savings as measured in natural units (e.g. 

reduced hospitalizations or number of cancers detected early), as well as indirect 

benefits, such as improved quality of life. In particular, this study makes use of 

Quality-Adjusted Life Years (QALY) to calculate NMB: QALY is a measure of health 

outcomes that takes into account both the quantity and the quality of life, by 

multiplying the number of years gained by the quality of life of those years. Quality of 

life is expressed as a weight between 0 and 1, and it is typically measured with 

standardized tools and questionnaires. The monetary benefits calculated using 

QALYs are then obtained by multiplying the QALY of an intervention with a cost-

effectiveness threshold, which measures the financial value of additional QALY and 

is expressed as a specified amount of currency per QALY gained. This operation 

effectively converts health outcomes into financial outcomes, conditional on the 

specified cost-effectiveness threshold. Calculating the difference between the NMB 

of the new intervention and the NMB of the SOC produces Incremental Net Monetary 

Benefit (INMB): depending on the specified cost-effectiveness threshold, positive 

INMB signify that the new intervention is cost-effective compared to the SOC, while 

negative INMB indicate that the new intervention should not be implemented.  

As the novel biomarkers considered by this study are still under development, the 

CEA for the intervention can be considered an early cost-effectiveness study. This 

type of decision modelling refers to analyses that are conducted early in the 

technology’s development process (26) and eventually could guide the performance 

of the technology under development. More specifically, the focus of early modelling 

is often on the commercial viability of new interventions, as to allow the developers 

of a new intervention to stop further development if the results indicate that the 

product is unlikely to become cost-effective. The primary question that early 

modelling is trying to answer is whether or not the development of an intervention 

should proceed, and the secondary question is, if the development is to go ahead, 

what the conditions for the new intervention to operate cost-effectively. As a 
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consequence, early CEAs are characterized by higher levels of uncertainty and by 

assumptions that define which minimum criteria the technology needs to meet for it 

to be cost-effective. Early economic modelling can yield numerous advantages for all 

the stakeholders involved in the development of a new intervention (27). The primary 

benefit for the developers of the new intervention is to estimate the range of values 

of key parameters within which the new technology would be deemed cost-effective. 

Moreover, early CEA can inform clinicians and final users of potential enhancements 

in the clinical pathway and treatment plan, particularly for patient subpopulations 

wherein the new technology is cost-effective. For payers, regardless of whether it is 

a universal health service or a private health insurance provider, early CEA can 

assist in the timely identification of promising new technologies that may result in 

quicker reimbursement decisions. 

This study makes use of two analytical frameworks to achieve the results of the 

CEA: a semi-Markov model (Chapter 5), which simulates the adjuvant setting of a 

breast cancer cohort, and a discrete event simulation (DES), which accounts for the 

neoadjuvant setting and it integrates the results of the semi-Markov model (Chapter 

6). The following definitions are summarised from Brennan et al 2006 (28). 

The Markov model is probably the most common type of model used in economic 

evaluation of healthcare interventions. Markov models use disease states to 

represent all possible consequences of the intervention of interest. These states are 

mutually exclusive and exhaustive, so that every individual represented in the model 

can only occupy a single health state at any given time. For example, disease states 

that could be used to model cancer interventions could be: disease-free, recurrence, 

death. Individuals transition between disease states as their modelled condition 

changes over time. Time is modelled as discrete in the form of cycles, which typically 

last for months or years. Movements from one state to another in each cycle are 

modelled as transition probabilities. Time spent in a disease state for a single model 

cycle is associated with costs and health outcomes, which can be aggregated for all 

simulated patients in order to provide a summary of the cohort experience. This 

aggregate sum of costs and health outcomes can then be compared with the 

aggregate experience of a similar cohort that received a different treatment, such as 

the comparator. This comparison can then result in an ICER, thus providing an 

estimate of cost-effectiveness of the relevant comparators.  
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Markov models typically operate under the Markovian assumption: the probability of 

moving to a subsequent disease state is independent of the time spent in previous 

states. Moreover, the usual formulation assumes that the transition probabilities are 

constant over time. To improve the generalizability of models, whenever the 

Markovian assumption might be at odds with the progression of a disease, there are 

several approaches available: for example, changing transition matrices as time 

progresses, or redefining states based on certain attributes. Models that adopt these 

modifications are referred to as semi-Markov. 

Discrete event simulation (DES) is a modelling technique in which individual patient 

experience is simulated over time, the simulation is driven by events occurring to the 

patient and the consequences of such events are tracked and summarised. Events 

occur at varying times, rather than during cycles of fixed length, and event 

likelihoods are determined by individual patient characteristics, which are recorded at 

baseline and may be updated as the patient experience accumulates. The state of 

the modelled system includes the current entities (patients), their attributes, and a list 

of events that can occur either at the current simulation time or that are scheduled to 

occur in the future. The aggregate results, which include the number and type of 

events, attributes, and initial/final characteristics, are then associated with costs and 

health outcomes. DES is likely to be useful for modelling complex pathways with 

many possible types of events, or situations where the patient’s history may impact 

on future events (for example, the long-term effects of neoadjuvant therapy on breast 

cancer patients).  
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2. A Review of Current Molecular Markers Predicting 
Response to Neoadjuvant Therapy 

 

2.1 Introduction and Review Criteria 
Several molecular-based predictive tests are available today for guiding post-

operative treatment decision in breast cancer. Yet, a gap undoubtedly exists for 

technologies predicting treatment response in the neoadjuvant setting: with the 

increased tendency to treat pre-operatively (29), clinicians are now facing the 

problem of identifying which patients will benefit the most from each type of 

treatment. The need of being able to predict response to neoadjuvant therapy 

becomes more pressing when considering that the benefits of treating patients 

preoperatively are not limited to the short-term only but are reflective of therapy 

response after surgery (30). With this consideration, the purpose of the review is to 

offer the current picture of the research landscape for breast cancer neoadjuvant 

predictive tests, and identify which technologies are the most likely to fill the clinical 

need in the near future. While the overarching objective of this thesis is to develop a 

simulation platform for the economic appraisal of a select few examples of 

biomarker-based predictive technology, it is necessary to explore the differences and 

similarities in the development process of other molecular markers as to observe in 

which direction the research is headed and what characteristics make a predictive 

test a potentially successful candidate for clinical use. The prognostic and predictive 

models described in this review make use of different strategies and molecular 

markers that are associated with pathological response to neoadjuvant treatment.  

The information for this review was compiled by searching the PubMed and 

MEDLINE databases for articles published between January 2013 and May 2019, as 

to identify the most recent molecular markers. The primary search terms used 

featured “breast cancer” in association with, but not limited to, “neoadjuvant”, 

“preoperative”, “molecular marker”, “gene-signature”. Only articles published in 

English and with full text available were considered. When possible, primary sources 

have been quoted. Full articles were obtained, and references were checked for 

additional material when appropriate. The predictive tests described in the articles 

were grouped together in categories based on the type of molecular signature used 

in the test. The technologies were grouped together as follows: Ki-67 measurement, 
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Immune Signatures, Established Adjuvant assays in neoadjuvant context, Pre- and 

on-treatment, Mutations, Other Signatures. The review concludes with a mention of 

the obstacles during the translational process of these technologies into clinical care 

and how early Health Technology Assessment could overcome them. 

 

2.2 Assessment of Proliferation 
Proliferation of cancer cells is a fundamental defining hallmark, closely associated 

with tumour grade. It can be measured by several markers, but the most widely used 

in breast cancer is Ki-67, a nuclear protein present in all active stages of the cell 

cycle except for G0(quiescent phase) (31). Proliferation is arguably the most 

important feature for classifying oestrogen receptor positive (ER+) early-stage breast 

cancer (32), which are now often classified into Luminal A and Luminal B subtypes, 

with the latter being more proliferative and associated with poorer prognosis (33). 

Although the Luminal A/B subtypes arose from gene-expression analysis, a 

threshold value for Ki-67 (14%) has been proposed as a surrogate for the distinction 

between the two (34). Moreover, measurements of Ki-67 Labelling Index have 

shown promising results with respect to the prediction of clinical response to 

chemotherapy and survival (35). The systematic clinical implementation of Ki-67 

scoring, both as a surrogate for Luminal status and as a predictive biomarker, has 

been slowed down due to the controversial lack of reproducibility in counting the 

percentage of cells staining positive in immunohistochemistry (36). Overall, 

proliferation is also higher in luminal than basal and ER- subtypes. 

The measurement of Ki-67 is performed by counting the percentage of stained 

positive (tumour) cells in immunohistochemistry (IHC) (37), and then a prediction is 

formulated based on cut-off values. On one hand, the method for counting the 

percentage of positive nuclei varies between averaging the value of the whole area 

of the IHC and choosing “hotspot” areas (where positive nuclei are clustered) then 

calculating the percentage of positive nuclei in the area of interest (37). On the other 

hand, the threshold values for predicting chemotherapy response can vary between 

1% and 29%, according to the literature (38). This variability in the methods makes it 

difficult to replicate and validate predictive tools based on Ki-67. 
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The study by Brown et al. (2013) (39) aimed at objectively measuring the level of Ki-

67 proliferation by removing the inherent subjectivity of a pathologist, by using 

quantitative immunofluorescent automated quantitative analysis (AQUA), and by 

using the scores of the average and maximum fields of view (FOVs) in the range 

from 5 to 115. The study showed a direct correlation between Ki-67 expression and 

pathological complete response (pCR) to neoadjuvant chemotherapy, using AQUA 

scores.  Analysis by means of AQUA eliminates the need for a cut-off value and 

removes the subjectivity of a pathologist’s judgement: it predicts the likelihood of 

achieving pCR using continuous variables. As such, the study did not recommend a 

cut-off value for guiding therapy decision.   However, this method and AQUA appear 

not to have been adopted by subsequent studies on Ki-67 as predictive marker for 

pCR: this could be potentially due to the wide availability of standard IHC performed 

by a pathologist and the fact that the discussion around cut-off values is far from 

settled. 

 

2.3 Relative or On-Treatment Assessment of Proliferation 
The analysis of Ki-67 expression has recently shifted its development focus from 

using a baseline measurement for prediction to measuring the absolute and relative 

differences in proliferation before and after neoadjuvant therapy. These differences 

appear to be an important predictor of pCR, of Overall Survival (OS) and of early 

metastasis (40). The results from Yoshioka et al. (2013) have shown that patients 

whose tumours contain high Ki67 expression effectively responded to neoadjuvant 

chemotherapy, but that high expression of Ki67 in residual tumours was strongly 

correlated with poor overall survival, regardless of subtype. The evaluation of 

changes in Ki-67 in response to neoadjuvant chemotherapy can also significantly 

predict early metastasis; the results from Tokuda et al. (2017) indicated that 

increased Ki-67 expression is related to the early development of metastasis (41). 

This may allow the identification of this category of patients early, so that more 

alternative treatments can be used earlier.  

While the expression of Ki-67 in Hormone-receptor positive (HR+) breast cancer 

patients has been extensively investigated, there is actually little evidence for the 

association between Ki-67 proliferation and clinical outcome within cohorts of HR 
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negative patients (42). According to the results from Tan et al. (2014), the pattern is 

similar to HR+ tumours: tumours that contained high Ki67 expression pre-treatment 

effectively responded to neoadjuvant chemotherapy, high Ki67 expression post-

treatment was associated with poor disease-free survival (DFS). The results suggest 

that Ki-67 level is a predictive marker for pCR, but the expression levels had no 

correlation with Overall Survival. The Ki-67 level of proliferation in HR-negative 

patients can improve the assessment of pCR after neoadjuvant chemotherapy, while 

also being and independent prognosticator of DFS in residual tumours. 

The proliferation index for Ki-67 can potentially be used to guide chemotherapy 

treatment decision if coupled with neoadjuvant endocrine therapy (43). In the recent 

ACOSOG Z1031 trial, specifically in cohort B, ER+ breast cancer patients were 

initially assigned to neoadjuvant aromatase inhibitors. Ki-67 LI was measured at 2 or 

4 weeks after commencement of treatment. If the Index was greater than 10%, the 

patient would be switched to neoadjuvant chemotherapy. The failure to suppress Ki-

67 proliferation by AI therapy would allow the identification of patients with AI-

resistant tumours. While previous studies highlighted a direct correlation between AI-

resistance and chemotherapy efficacy, Ellis et al. (2017) found that ER+ AI-resistant 

tumours were less responsive than expected to chemotherapy, given the low pCR 

rate of those who switched. 

Measurements of Ki-67 expression can also be used to compute the PEPI 

(Preoperative Endocrine Prognostic Index) score, along with tumour size, node 

status and ER status (44). The PEPI score of a patient is associated with the risk of 

relapse, specifically the three score groups (0, 1-3, ≥4) are respectively associated 

with 10%, 23% and 48% risk of relapse. Ellis et al (2017), using the data from 

Z1031B sought to validate the estimate for risk of relapse associated with PEPI=0 

and found that patients with PEPI=0 had relapse risk over 5 years of 3.6% without 

chemotherapy, supporting the idea of adjuvant endocrine monotherapy in these 

patients.  

The upper threshold of Ki-67 measurement for PEPI=0 is 2.7%, which was further 

confirmed and validated by Goncalves and al. (2017), using the data of Z1031 (45). 

The analysis led to the development of a clinical trial assay in the context of 

neoadjuvant endocrine therapy that uses an efficient and reproducible Ki-67 scoring 
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system. In contrast with previous threshold estimates, this assay uses a Ki67 LI 10% 

cut-off point for the genomic surrogate identification of Luminal B tumours. The 

methods described in the study may in the future allow for the identification of ER+ 

patients for whom adjuvant chemotherapy can be safely spared.  

While the overall findings of these studies show promising results, the variability of 

the methods for Ki67 measurements remain problematic. Recent efforts toward 

standardisation continue, including validation and reproducibility studies aimed at 

increasing the scoring concordance and reducing the analytical variability between 

laboratories (46, 47). Moreover, there exist potential alternatives to Ki67 as a 

proliferation marker. For example, PCNA (proliferating cell nuclear antigen) and 

MCM (minichromosome maintenance) proteins have become standard markers of 

proliferation, used to assess the growth cells (48), while the measurements of 

AURKA (aurora kinase A), coupled with ER and HER2 (thus a three-gene signature), 

can robustly classify Luminal-like breast cancers. 

Recent evidence from the POETIC trial highlighted the use of pre-operative 

aromatase inhibitors coupled with paired measurements of Ki67 (at baseline and two 

weeks on treatment) to predict response to adjuvant therapy, and therefore 

individually select the most appropriate post-operative course of treatment (49). 

While the trial has not shown any improvement in treatment outcomes due to 

neoadjuvant aromatase inhibitors, it has shown that this treatment can be safely 

utilized to aid in the selection of appropriate adjuvant therapy. In general, patients 

with low Ki67 at baseline or low Ki67 at two weeks on-treatment exhibit positive 

responses to adjuvant standard endocrine therapy, while individuals with persistently 

high levels of Ki67 at two-week on-treatment may benefit from supplementary 

adjuvant therapy. 

 

2.4 Immune Signatures and Tumour Infiltrating Lymphocytes 
Within the context of the development of molecular markers, Tumour Infiltrating 

Lymphocytes (TILs) and, more generally, Immune Signatures have been studied due 

to the association between cancer outcomes and immune activity in the patients 

(50). TILs are white blood cells that migrate to the tumour site from the bloodstream, 

and they are involved in the process of killing tumour cells (51); their presence and 
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activity within the tumour can change according to the cancer progression and 

according to the treatment applied (52). With the same principles, immune activity 

and immune-related gene-expression changes according to how cancer develops, 

and which therapy the patient undergoes. These changes can be monitored and 

measured to produce models that, coupled with neoadjuvant treatments, can predict 

the pathological response of patients to therapy. 

In the context of triple-negative breast cancer, the measurement of TILs levels and 

status are significantly associated with Relapse-free survival (RFS) and Breast 

Cancer Specific Survival (BCSS). In particular, CD8+ TILs and FOXP3+ TILs show 

the most prognostic significance when measured before and after neoadjuvant 

chemotherapy (53). In the study by Miyashita et al. (2015), triple-negative breast 

cancer patients with high CD8+ TIL levels or a high CD8+/FOXP3+ ratio in residual 

tumours after NACT had better RFS and BCSS, with the former measure being a 

highly significant predictor of BCSS. Greater rates of change in the TILs ratio were 

also associated with better RFS and BCSS. Moreover, the parameters accurately 

predict improved prognosis in TNBC patients with non-pCR following NACT.  

Yet, the evaluation of TILs levels is based on histopathological measurements, which 

intrinsically possess limited accuracy and reproducibility (54). Thus, an alternative 

proxy marker has been proposed, which would retain the prognostic value of TILs 

while increasing accuracy: the signature of TILs methylation (MeTILs). According to 

the results of Jeschke et al. (2017), MeTIL signature predict survival and response to 

chemotherapy in BC better than histopathological assessment of TILs markers (55). 

While the profiling of DNA methylation and lymphocyte methylation used in the study 

requires specialist equipment and prohibitive amounts of resources for a possible 

clinical application, MeTIL markers can be determined economically by bisulphite 

pyrosequencing of small amounts of DNA from FFPE samples, which would make 

clinical applications of this method more feasible. 

In addition to TILs, other immune signatures include those using immune-related 

gene expression data, which have been used to predict pCR to neoadjuvant 

chemotherapy (56). IRSN-23 is a 23-gene signature that can predict pathological 

complete response in patients treated with neoadjuvant chemotherapy. The assay is 

capable of classifying patients as either genomically predicted responders or non-
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responders, and it can predict pCR independently of intrinsic subtypes and 

chemotherapy regimens. Yet the clinical value of IRSN23 appears to be limited 

because its diagnostic accuracy is not sufficiently high: 79% and 75% in training and 

validation datasets, 70% in the external validation public datasets. Evidence around 

the clinical utility of IRSN-23 is still insufficient, and prospective studies are needed 

in this respect. 

In the case of Inflammatory Breast Cancer, no molecular marker has been identified 

as being able to predict response to neoadjuvant chemotherapy or predict survival, 

until the work of Bertucci et al. (2013) (57). This study managed to demonstrate that 

even in the case of inflammatory breast cancer, immune-related processes can be 

associated with response to neoadjuvant chemotherapy. By examining the 

correlation with predictive and prognostic gene expression signatures published in 

nIBC-GES the study found that three of the five nIBC-GES tested prognostic gene 

expression signatures and two tested nIBC-GES gene-expressed signatures 

discriminated between IBC with and without pCR. Moreover, the researchers were 

able to identify a 107-gene signature enriched for immunity-related genes that was 

able to separate IBC patients into responders and non-responders to neoadjuvant 

chemotherapy. The model for the 107-gene signature was validated internally, 

reaching 75% accuracy, and then externally validated, with 81% accuracy. 

Unfortunately, the study was not able to find a robust signature that would associate 

neoadjuvant chemotherapy response in Inflammatory Breast Cancer and distant 

metastasis-free survival. 

The review process highlighted a lack of pre-operative molecular markers in HER2-

positive breast cancer. Given the highly heterogeneous nature of this cancer 

subtype, reliable markers for therapy response have been elusive (58). 

Nevertheless, research efforts aimed at investigating the association between 

response to therapy and HER-2 positivity have continued, mainly focusing towards 

immune response and TILs. A secondary analysis of the neoALTTO trial highlighted 

that the presence of TILs at diagnosis is an independent prognostic marker for pCR 

and event-free survival in HER2-positive early breast cancer that has been treated 

with neoadjuvant anti-HER2 agents and chemotherapy (59). Furthermore, a meta-

analysis by Denkert et al. (2018) has shown that increased TIL concentration can 

predict response to neoadjuvant chemotherapy in all breast cancer molecular 
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subtypes, and was also associated with survival benefit in HER2-positive cancers 

and TNBC (60).The research by Varadan et al. (2016) (61) suggests that intrinsic 

subtype and immune cell infiltration may predict response for trastuzumab-based 

therapy (62). As a significant proportion of HER2-positive patients do not respond to 

this therapy, identifying responders and non-responders early on is vital to achieve 

better clinical outcomes. Moreover, from a health economics perspective the high 

costs of HER2 antigen-based therapy (compared to endocrine therapy and 

chemotherapy), create a compelling argument towards the development of 

technologies able to correctly identify patients benefitting the most from this type of 

treatment. Recent NICE guidance regarding pertuzumab in combination with 

trastuzumab and docetaxel reported a 0% probability that the treatment is cost-

effective at a threshold of 30,000£/QALY (63). 

A subsequent analysis by Varadan et al. (2016) (64) applies this method for the first 

time in vivo. Their study observed the changes in immune signatures after exposure 

to preoperative trastuzumab and the achievement of pCR following trastuzumab 

paired with chemotherapy in HER2 positive breast cancer. The results have shown 

that immune activity (summarised as Immune Index) had significantly increased after 

exposure to trastuzumab, and this increase was predictive of response in HER2 

positive tumours. This suggests that a brief dose of preoperative trastuzumab has 

the potential to uncover clinically useful immune signatures for predicting response 

to biological therapy. The early identification of responders and non-responders, and 

thus more appropriate treatment decisions, should help achieving better clinical 

outcomes. Although not within the scope of this review's initial timeframe, recent 

advancements in research have yielded promising methods to predict response in 

HER2-positive subtypes. The development and validation of HER2DX by Prat et al. 

(2022) demonstrates that by combining data on tumour features, pathology features, 

and immune features in a single assay, it is possible to predict both long-term 

survival and the likelihood of achieving pCR (65). Specifically, HER2DX incorporates 

tumour size, nodal staging, and 4 gene expression signatures tracking immune 

infiltration, tumour cell proliferation, luminal differentiation, and the expression of the 

HER2 amplicon, into a single score. On top of significantly predicting long-term 

outcomes, the study suggests that HER2DX risk score might be able to identify 

patients with early-stage, HER2-positive breast cancer who do not need additional 
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HER2-targeted therapies, such as pertuzumab, trastuzumab emtansine or neratinib, 

due to an already favourable survival outcomes with chemotherapy and 

trastuzumab. 

 

2.5 Moving Established Adjuvant Assays into the Neoadjuvant Setting? 
Established adjuvant assays have validated prognostic power, but their efficacy has 

rarely been tested in the less common neoadjuvant setting. Evidence for their ability 

to predict benefit from systemic therapies in the adjuvant setting is weak, but the 

neoadjuvant setting is an opportunity to do better. As noted in the technologies 

explained before, oestrogen receptor positive breast cancer shows heterogeneous 

characteristics that determine different sensitivities to treatment.  

Bertucci et al. (2014) used EndoPredict score classification to predict pathological 

complete response to neoadjuvant chemotherapy for ER+/HER2- cancer (66). 

Specifically, the scoring system classifies patients as either low or high-risk. 

EndoPredict low-risk patients can be potentially treated with post-operative 

endocrine therapy alone, while EndoPredict high-risk patients may necessitate 

adjuvant chemotherapy in addition to endocrine therapy. The objective of this study 

was to determine the predictive ability of EndoPredict for pathological complete 

response to neoadjuvant chemotherapy, while also determining whether EP high-risk 

patients are more or less sensitive to chemotherapy than low-risk patients.  

The findings indicate that the EndoPredict classification was associated with a pCR 

rate of 7% in the low-risk group and 17% in the high-risk group. In the high-risk 

group, many of the upregulated genes of the expression profile were involved in cell 

proliferation, whereas in the low-risk group other upregulated genes were involved in 

ER signalling. Despite the high chemosensitivity, the high-risk group was associated 

with worse disease-free survival. Consistent with previous findings, the study 

concluded that ER+ tumours in the high-risk group benefit the most from 

chemotherapy, corroborating the justification to avoid treating low-risk patients 

(which are also low chemo-sensitive) with chemotherapy. 
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Prat et al. (2016) derived a PAM50-based chemoendocrine score (CES) to predict 

the sensitivity to chemotherapy and endocrine therapy in HR+/HER2- breast cancer 

(67). The predictive ability of the score was assessed on 4 independent neoadjuvant 

datasets. Based on the results of the test, patients can be classified in three 

subgroups:  

 

• CES-E(endocrine sensitive), patients that benefit the most from endocrine 

therapy 

• CES-U(uncertain), for which it is unclear which treatment is likely to achieve 

pCR 

• CES-C(chemotherapy sensitive), patients that benefit the most from 

chemotherapy 

Thus, the results of the study were the first to confirm, in a randomized setting, an 

inverse relationship between endocrine and chemotherapy sensitivity, this is 

summarised in Figure 1: risk of recurrence is plotted against relative 

chemoendocrine sensitivity, displaying the intrinsic cancer subtypes (adapted from 

Prat et al. 2016). In terms of clinical application of the chemoendocrine score, while 

there is minimal benefit for HR+/HER2- in the low and high-risk categories, there is 

potential gain for patients in the intermediate score, as it would better guide 

treatment decisions. While this neoadjuvant application of a PAM-50 based score is 

capable of estimating chemoendocrine sensitivity beyond intrinsic subtype of cancer, 

there are several limitations to the study, including its retrospective nature, the use of 

the research version of PAM50, and the lack of association between CES and 

survival data in the adjuvant setting. 



29 
 

 

Figure 1: Summary of the relationship between intrinsic molecular subtype and gene 
signatures or other markers used for clinical decision-making 

 

2.6 Measurements of Pre- and On-Treatment Molecular Markers 
The early identification of patients not responding to neoadjuvant treatment would 

make it possible to switch to an alternative treatment strategy that could be more 

effective. Thus, identifying appropriate molecular markers and measuring their level 

at baseline and on-treatment could prove a successful strategy for the early 

prediction of response to neoadjuvant therapy.  

With regards to ER-positive breast cancers, a recent 4-gene signature is able to 

predict response to neoadjuvant endocrine therapy (68): the EER4 test measures 

the gene expression level in tumour samples from two matched biopsies, one pre-

treatment, the other 2-weeks on treatment. The model developed by Turnbull et al. 

(2015) predicts clinical response by measuring the level of 2 genes pre-treatment 

(IL6ST associated with immune signalling, NGFRAP1 with apoptosis), and the level 

of proliferation of 2 genes on-treatment (ASPM, MCM4).  
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Using the measurement from these gene-signatures, the model is able to predict 

clinical response in patients treated with Aromatase Inhibitors, by separating patients 

into three categories, defined by the change in tumour size: quick stable response, 

slow responders, non-responders. The 4-gene signature model used for this test has 

96% accuracy in correctly identifying responders and non-responders. An 

independent validation of the model on a dataset with a similar cohort was 91% 

accurate. More than 80% of tumours had changed in volume on-treatment. The 

molecular markers’ predictions are associated with long-term recurrence free 

survival and overall survival (68)  

Magbanua et al. (2015) observed changes in pre- and on- treatment biomarkers 

levels, showing the potential of on-treatment measurements (69). This study 

collected expression data at baseline, during treatment (between 24 and 96 hours 

from the start of neoadjuvant chemotherapy) and at surgery. Expression data was 

compared between baseline and treatment and between baseline and surgery. The 

subtypes were assigned using PAM50 gene signature and the differences in early 

gene expression changes between pre- and on-treatment between responders and 

non-responders were evaluated. According to the results of the study, significant 

differences of expression profiles were identified between baseline and on-treatment, 

and baseline and surgery. During treatment, there was a significant downregulation 

of genes associated with proliferation and immune-response; moreover, gene 

expression changes between baseline and on-treatment for cell cycle inhibitors were 

correlated with worse response. Furthermore, the positive change between baseline 

and surgery in interferon signalling and high expression of proliferation genes in 

residual tumours were associated with reduced relapse-free survival. The study 

concludes that the serial gene expression analysis identified pathways associated 

with immune-response and proliferation that can predict response to neoadjuvant 

chemotherapy and recurrence. 

Bownes et al. (2019) identified a novel single-gene on-treatment marker that predicts 

response to neoadjuvant chemotherapy (70). The predictive marker, AAGAB, 

showed a testing accuracy of 100% (data from Edinburgh NEO trial) by using a 

biopsy sample mid-chemo, and a validation accuracy of 78% (validated with data 

from the I-SPY 1 trial). AAGAB is also predictive of long-term survival in both 

datasets, as defined by treatment response. The single-gene marker outperforms, in 
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terms of predictive accuracy, established predictive assays (PAM50 and 

Mammaprint) tested on-treatment in the neoadjuvant setting. A recent study by Selli 

et al. (2019), focusing on extended neoadjuvant treatment to observe differences 

between acquired resistance and tumour dormancy, suggests that promising 

markers for response prediction may be evident relatively early on treatment (71). A 

possible timeline for the use of on-treatment biomarkers is shown in Figure 2.  

 

Figure 2: Timeline of a breast tumour from Diagnosis to Prognosis, for the four 
intrinsic subtypes 

 

2.7 Mutations Do Not Seem to Be the Answer for Now 
There have been attempts to analyse mutations as biomarkers to identify responders 

and non-responders in the neoadjuvant setting. Unfortunately, analysis of mutations 

does not seem to provide insights for the early identification of non-responders (72). 

In the study by Lips et al. (2015), deep sequencing of tumour DNA prior to 

neoadjuvant chemotherapy in triple-negative breast cancer patients did not highlight 

any mutation that can reliably predict response to treatment. The mutations observed 



32 
 

in the study were diverse, and few recurrent mutations were detected. Mutation rates 

were similar in responders and non-responders and no recurrent mutations were 

associated with chemotherapy response or relapse. Perhaps in the future, after 

having characterised rarer mutations, it might be possible to use this information to 

guide treatment decisions.  

Further efforts are being made to better understand the significance and the 

mechanisms behind mutations: a recent analysis by Bertucci et al. (2019) 

investigated the distribution of mutational signatures to identify which processes 

might be driving late tumour progression (73), as metastatic breast cancer is 

generally more genetically complex than early breast cancer. After comparing the 

mutational burden and clonal diversity between the two disease settings, the 

analysis identified genomic alterations that are enriched in advanced breast cancer, 

and the results suggest that activation of mutational processes could contribute to 

disease aggressiveness and genome evolution. 

A study by Jiang et al. (2019) regarding triple-negative breast cancer mutations 

shows that the copy number or the mutational cluster are not able to predict 

recurrence-free survival (74). The findings further confirm that using mutations is not 

viable for predicting response and guiding treatment, as of now and with current 

knowledge. 

 

2.8 Other Signatures 
This section of the review features a brief description of the predictive technologies 

using molecular markers that do not otherwise fit in the previous categories. 

A study by Whitworth et al. (2014) sought to validate the chemosensitivity prediction 

ability of BluePrint, when coupled with MammaPrint. BluePrint is an 80-gene panel 

that classifies breast cancer patients into four molecular subtypes (Luminal A, 

Luminal B, HER2 and Basal) (75). The study compared the accuracy of BluePrint, 

coupled with MammaPrint, with conventional IHC and FISH subtyping and measured 

the reassignment rate; that is, the number of patients that were reclassified by 

BluePrint from one subtype to another after being initially classified by IHC and 

FISH. In the study, chemosensitivity is defined by pCR, while endocrine sensitivity is 

defined by partial response. The results indicate that BluePrint reclassifies 22% of 
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tumours by assigning more responsive patients to HER2-positive and Basal 

subtypes. It also reassigns less responsive patients to the Luminal category. The 

findings suggest that compared to more conventional IHC and FISH, BluePrint is 

able to identify more accurately the molecular subtype and patients likely to respond 

to neoadjuvant chemotherapy.  

In the context of BRCA mutated breast cancers, and in sporadic cases, triple 

negative breast cancers, the tumours have DNA repairs defect and are sensitive to 

DNA-damaging therapeutics (76). The genomic instability of these tumours can be 

measured with three independent scores, defines as: loss of heterozygosity (LOH) 

(77), telomeric allelic imbalance (TAI) (78) and large-scale state transitions (LST) 

(79). The study by Telli et al. (2016) uses un unweighted sum of these three 

measures to compile a homologous recombination deficiency score (HRD) to predict 

response to neoadjuvant platinum-containing chemotherapy in triple negative breast 

cancer (80). The HRD score was able to predict residual cancer burden score and 

pathological complete response with high significance. The HRD score remained a 

significant predictor of residual cancer burden even when the model was adjusted for 

clinical variables, including in the multivariate model. The findings thus suggest that 

the HRD score is able to identify the triple negative breast cancers, including those in 

patients without germline BRCA mutations, more likely to respond to neoadjuvant 

chemotherapy that contains platinum. 

 

2.9 Clinical Utility and Health Technology Assessment 
As its primary objective, this review provided a snapshot of the landscape of 

potential future molecular markers that could play a role in clinical decision making in 

the neoadjuvant setting. When presenting the technologies, the available evidence of 

analytical and clinical validity was also discussed. Yet, even after the analytical and 

clinical validity of a biomarker have been demonstrated, there needs to be evidence 

of sufficient clinical utility before the technology can be used to guide decision-

making.  

Ultimately, the decision to adopt a new marker in clinical routine may rest on the 

outcomes of the Health Technology Assessment (HTA) process. As noted in 

Buchanan et al. (2013) (81), the main challenges of performing an economic 
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evaluation on genomic technologies lie in outcomes measurements and the 

differences in guideline standardization. While this analysis is focused on genomic 

technologies, the caveats surrounding the HTA process still remain valid for the 

molecular markers presented in this review. Furthermore, effective economic 

evaluation necessitates a great volume of data, which could prove difficult to collect, 

especially in the context of early technologies. Additionally, translating the 

development of a novel marker into a clinically available decision-making tool goes 

well beyond demonstrating a superior outcome relative to comparators: there are 

several organizational aspects that need to be resolved before a technology can be 

approved for routine use (mainly in the form of guidelines and standardised 

recommendations). Miquel-Cases et al. (2017) (82) suggested that these novel 

technologies should undergo HTA during the early stages of research and 

development, as performing an economic evaluation at those points may facilitate 

the translational process of potentially successful technologies, while screening out 

those that are unlikely to provide added value in a clinical context. Even in the case 

of established adjuvant assays, which are generally considered to be cost-effective 

(83), further analysis might be required for optimizing their use and role in clinical 

care. As underlined in Hall et al. (2017) (84) the value of information analysis shows 

the importance of HTA modelling as a guide for further trials for improving research 

efficiency, and thus better and faster implementation (or discarding) of a predictive 

technology.  

This study conducted the initial scoping work for a literature review aimed at 

identifying recent methodologies that are tailored to early CEA of medical tests, with 

the intention of collecting a limited number of case studies to present in a qualitative 

manner. To achieve this goal, existing economic models published between 2015 

and 2018 were examined, and the PubMed database was utilized to retrieve relevant 

articles. The search strategy incorporated MeSH terms for early health technology 

assessment, decision-analytic models, and medical tests. A total of 97 articles with 

full-text available in English were initially identified, and after filtering out articles that 

were not relevant, the total number of potentially eligible articles was fifteen (85-99). 

However, the review was stopped at this point due to two primary reasons. Firstly, 

the included articles exhibited heterogeneity in both methods and the reporting of 

methods, which would have shifted the review's focus towards the investigation of 
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methodological issues in early economic modelling. This deviation was not 

consistent with the study's overall aim, so further efforts towards the review ceased. 

Secondly, continuing the review would have resulted in replicating similar works, 

leading to the risk of redundancy, such as part of the work from IJzerman et al 

(2017) and the work from Frempong et al (2018) (100,101). The conclusion of their 

reviews, coupled with the commentary surrounding the topic of early economic 

modelling and its methodological/reporting issues (27, 102), shows an overall 

consensus: lack of standardised guidance on the methodology to be used for early 

modelling, lack of transparency and repeatability of the studies, lack of consistent 

reporting of methodology. 

2.10 Discussion 
In both the neoadjuvant and the adjuvant setting, clinical and pathological variables 

still remain the standard of care for guiding decisions on systemic therapy in breast 

cancer. In routine care, their use in deciding the course of treatment is inexpensive, 

but there are still many patients who fail to respond, or whose cancer recurs after 

treatment directed by these established factors.  Chemotherapy overtreatment or 

unnecessary/ineffective therapy for HR+ patients non-responsive to endocrine 

therapy currently presents a significant morbidity burden for patients. In recent years, 

adjuvant assays were introduced in a limited role in routine care; adoption has 

presented health authorities with difficult decisions in the face of uncertain evidence 

(85); a gap undoubtedly still exists for new predictive technologies that can guide 

therapy decisions. Given the increased tendency to treat breast cancer patients 

before surgery in recent years, this gap could be filled by novel predictive markers in 

the neoadjuvant setting.  

This review highlighted some of the advantages and flaws associated with each type 

of technology, and several potential issues still remain before any implementation in 

standard care can be considered. For example, while measurements of proliferation 

based on Ki-67 are routinely used and performed on IHC, this particular marker 

suffers from a lack of consensus on the optimal cut-off point in the literature. Even 

though established adjuvant assays used in the preoperative setting might be 

reliable, their cost might outweigh the clinical benefits of their predictions, rendering 

them unfit for filling the gap. Moreover, other gene panels aimed at predicting 
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therapy and immune response do not reach a level of accuracy suitable for clinical 

applications.  

Given a high performance in terms of predictive capability, the technologies most 

likely to be implemented in routine care are those that can be translated into simpler 

and cheaper techniques without loss of accuracy (such as IHC or bisulphite 

pyrosequencing). Most of the technologies outlined in this review are still in the early 

stages of development, and a recurrent theme across the studies is the need for 

prospective validation before clinical applications can be considered.  
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3. Using Real-World Data to Inform an Economic 
Evaluation 

 

3.1 Introduction 
To avoid causing more harm than good, economic evaluations of new healthcare 

technologies have to rely on a robust evidence base. Traditionally, health technology 

assessment is informed by Randomised Controlled Trial (RCT) data. Given their 

strong internal validity and minimisation of bias, RCTs are considered the gold-

standard for evidence aimed at demonstrating medical safety and efficacy. 

Additionally, in terms of economic evaluation, they can have the advantage of 

measuring benefits and costs within the same setting. However, the high-quality data 

from RCTs comes at the cost of reduced generalizability of results: strict selection 

criteria produce highly selected participants and environments, which, on top of high 

protocol adherence and monitoring, might not reflect current clinical practice. 

Moreover, the increasing administrative and operational costs of RCTs (86), 

combined with potentially low cross-country and external validity, have generated a 

growing interest for more representative data source alternatives (87). 

Real World Data (RWD), routinely collected patient records in particular, can offer a 

less expensive and more readily available data source, but with several caveats. 

Routinely collected clinical data possess the potential advantage of better reflecting 

the patient population and current clinical practices, thus potentially improving the 

generalisability of results (88). The administrative and operational costs are reduced, 

as the data is collected regardless, is readily accessible, and offers long follow-up 

times. Additionally, RWD can typically provide large study samples, and thus the 

opportunity to study less common adverse effects more easily (89).  When such data 

are analysed, the information produced can be referred to as real-world evidence 

(RWE). The NICE Decision Support Unit currently defines RWD and RWE as: 

“RWD is a commonly used term to describe data generated from sources that relate 

to everyday clinical practice, generally outside the artificial constraints of randomized 

controlled trials. In its broad definition, RWD can include data generated as part of 

pragmatic controlled trials, however most RWD does not produce randomized 

evidence of treatment effect. In the context of Health Technology Assessment (HTA), 
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RWD typically presents as observational data from registries, administrative 

databases, and surveys.” - Bell et al. 2016 (90) 

While all the advantages of RWD might make it a suitable, available, and 

inexpensive option compared to RCT data, there are several obstacles to consider. 

While RCT data can minimise bias by balancing observable and un-observable 

confounders through randomisation, the main limitation of using routinely collected 

clinical data is that interpretations and subsequent decisions are conditional on the 

amount of bias and uncertainty present in the data (91). If not addressed, the 

potential bias within RWD poses the risk of inadvertently informing healthcare 

decisions into allocating resources to technologies that might be detrimental to 

patient welfare.  

A review of 113 relevant single technology appraisals submitted to NICE using 

RWD/RWE from Bullement et al 2020 (92) found that while sources of RWE were 

routinely criticized as part of the appraisal process, only two cases were explicitly 

rejected. In the majority of cases, RWE was accepted in cancer drug submissions to 

NICE. Key criticisms of RWE in these submissions are rarely aimed at the use of 

RWE itself, but rather at specific data sources and the applicability of these to the 

decision problem. The review found that out of the 113 submissions, 71% used RWE 

to inform HRQoL estimates, 46% used it to inform costs, 40% to quantify healthcare 

resource utilization. Only a small number of submissions used RWE to inform 

efficacy, with 20 submissions using it for efficacy of both the intervention and the 

comparator, 17 for efficacy of the comparator, and 6 for the efficacy of the 

intervention. In all of these cases, RWE was used to supplement the estimate of 

efficacy from trials, rather than supplant it entirely. 

Ultimately, integrating RWD into health technology evaluation presents a trade-off 

between generalisability of results for a wider patient population, and the risk of 

introducing bias in cost-effectiveness estimates. Combined with established literature 

data, the use of RWD can inform prospective research questions and provide 

valuable evidence for decision-makers (93). In particular, its use as data source for 

early-CEA could be beneficial for deciding whether or not a new technology has the 

potential to justify seeking more robust evidence.  

 



39 
 

3.2  Data Sources of electronic patient records 
For the primary data source of breast cancer diagnoses, this study makes use of 

Scottish national records, in particular SMR06 and the SCAN Audit Data. 

The Scottish Cancer Registry (SMR06) began collecting personal, demographic, and 

cancer diagnosis information in 1958. From 1997, additional clinical information has 

been included (such as staging and treatment information). Public Health Scotland 

(PHS) is responsible for the data collection and maintenance of the registry. Data 

collection is performed annually, and it includes all new cases of cancer affecting 

Scottish residents. For breast cancer, the information contained in the registry 

includes, but is not limited to: clinical/pathological staging, morphology, grade, 

subtype, date of diagnosis, date of treatment, type of treatment etc. 

The Audit dataset is created for the purpose of looking at Health Board variation in 

Quality Performance Indicators. Maintained by the South East Scotland Cancer 

Network (SCAN), the Audit dataset has the purpose of supporting service 

improvements, ensure national standards are met and that clinical practice is 

delivered to an equitable standard. Similarly to the Cancer Registry with respect to 

breast cancer, the Audit Dataset contains all the diagnosis information mentioned 

previously, with the addition of more specific details regarding treatment and surgery.  

 

3.3 Extraction and Processing of NHS Lothian Patient Records  
The data for this study was obtained through the Scottish National Safe Haven, with 

the following specifications: all patients (NHS Lothian residents at date of diagnosis) 

diagnosed with early ER+ breast cancer (T1-4, N0-3, M0) within NHS Lothian from 

01/01/2001 to 31/12/2017, with data linkage using Scottish national datasets, in 

particular, SMR06 and SCAN Audit Data. 

The data linkage produced a total of 10,558 patients diagnosed between 2001 and 

2017 with varying degree of information available depending on the year of 

diagnosis, due to new record-keeping practices implemented in the time frame. After 

excluding for duplicate, missing, or incomplete records, the viable cohort resulted in 

a total of 8,733 observations. Based on the difference of data available across the 

time span between 2001 and 2017 due to new record-keeping practices, this cohort 

was divided in two groups: a primary cohort, with 3,264 patients diagnosed between 
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2013 and 2017, and a secondary cohort, with 5,469 patients diagnosed between 

2001 and 2012. 

 

 

Figure 3: Flow Diagram of Inclusions and Exclusions of Patient Records 

 

3.4 Risk Stratification 
The two cohorts are stratified by risk, using available clinical data. The main risk 

stratification tool used is PREDICT, version 2.1 (13). Through the input of routinely 

collected clinical variables, PREDICT generates the survival probability of breast 

cancer patients at ten years from diagnosis. Specifically, the algorithm uses age at 

diagnosis, mode of tumour detection, ER status, HER2 status, KI67 status, tumour 

size and grade, number of nodes involved, to generate a recurrence score, which in 

turn produces the annual risk of recurrence for that specific patient. From the annual 

risk, the algorithm derives the predicted annual event rates which are then 

transformed to cumulative event rates. The cumulative event rates are converted to 

the 10-year survival probability, on the basis of how patient with similar 

characteristics fared. The survival probability is conditional on surgery alone as 

treatment, but PREDICT also calculates the probability increments due to other 

treatment combinations, producing the treatment benefits for hormone therapy, 

chemotherapy, trastuzumab, and bisphosphonates. The PREDICT probabilities for 
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these cohorts were generated in R (14), using the package “nhs.predict” (15). 

Further details on PREDICT and nhs.predict package can be found in Chapter 1. 

To simulate the test scores of OncotypeDX, which this study considers as one of the 

comparators in the cost-effectiveness analysis, a proxy was used. As the patients in 

these cohorts were never administered OncotypeDX, a method using available 

clinical data to simulate the test results was implemented: GR-PR (94), which 

simulates OncotypeDX risk categories using tumour grade and PR status. 

Specifically, patients are assigned a score between 0 and 2, receiving one point if 

either the tumour grade is three or if PR-positivity is above 20%, two points for both. 

This simulation assumes an OncotypeDX low-risk cut-off of 18, which translates to a 

GR-PR score of 1 (94). This method is 73% accurate in assigning the correct 

OncotypeDX risk category in patients who were tested. 

 

3.5 Descriptive Statistics 
Table 1 reports the clinical characteristics and risk stratification of the primary and 

secondary cohort, respectively. The secondary cohort appears to have a larger 

share of high-risk patients, compared to the primary cohort, as it can be observed 

both from the PREDICT probabilities and chemotherapy benefits, and on the 

average tumour size, grade, and number of involved nodes. While relatively small in 

magnitude, the differences between the two cohorts are significant to a critical value 

of 0.1%, highlighting a change of the composition of the breast cancer patient 

population over time. The differences between the two cohorts could be explained by 

a combination of likely factors, including changes to treatment pathways and lower 

cancer discovery rates through screening. The primary cohort is used as the main 

data source for the cost-effectiveness analysis, as described in Chapter 5, as it is 

more reflective of current patient population and clinical practice. The secondary 

cohort is used to inform an alternative scenario analysis, to infer how the evaluated 

health technologies perform with a higher-risk patient population. 
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Table 1 Primary Cohort Secondary Cohort 
 2013 – 2017 2001 – 2012  
Number of Patients 3264 5469 

Age, mean (range), y 62 (24 – 96) 60 (21 – 94) 

Number of Involved Nodes, No. (%)   

None 2424 (74.3) 3505 (64.1) 

1-3 633 (19.4) 1288 (23.5) 

4-9 148 (4.5) 439 (8.0) 

>10 59 (1.8) 237 (4.4) 

Histological grade, No. (%)   

1 616 (18.9) 885 (16.2) 

2 1826 (55.9) 2772 (50.7) 

3 822 (25.2) 1812 (33.1) 

Largest tumour size, mean (range), mm 19 (1–90) 21 (0.5–90) 

≤30 No. (%) 2796 (85.7) 4588 (83.9) 

>30 No. (%) 468 (14.3) 881 (16.1) 

Relapse-free Survival, median(range), 10y 75 (0.3 – 96) 69 (0.1 – 97) 

Chemotherapy Benefit, No. (%), 10y   

Endocrine therapy only 2712 (83.1) 3923 (71.7) 

Endocrine and Chemotherapy 552 (16.9) 1546 (28.3) 

GRPR Score, No. (%)   

GRPR < 1 1511(45.4) 2073(37.9) 

GRPR ≥ 1 1753(54.6) 3396(62.1) 

Table 1. Clinical characteristics and risk stratification of the Primary and Secondary 
Cohorts. 

Figure 4 displays the density distributions of PREDICT estimates of survival at 10 

years from diagnosis for the two cohorts: within a 95% confidence interval, the 

recurrence-free survival at 10 years of a patient form the Primary Cohort is expected 

to be between 3% and 8% higher than the survival of a patient from the Secondary 

Cohort. 

In line with the characteristics of typical RWD, the dataset, contains a portion of 

missing data. A total of 1825 diagnoses was excluded on the basis of record 

duplicates or incomplete records (incomplete with respect to key variables needed 

for the calculation of PREDICT scores). The reason why certain variables might be 

missing from the records could be due to early mortality, or due to frailer patient 
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being unfit for diagnostic work-up. This group of patients might primarily contain 

older patients or patients affected by severe comorbidities. While the decision to 

exclude patients with missing records might skew the distribution towards the 

relatively healthier and younger breast cancer population, it can be reasonably 

discarded as a potential bias, as these patients, being unfit even for diagnostic work-

up, would be less likely to undergo surgery or anti-cancer therapy. 

 

 

Figure 4: Distribution density of 10-year Overall Survival for the Primary and 
Secondary Cohorts 

 

3.6 Demonstrating the Use of Real-World Data 
The following chapter (Chapter 4) presents a demonstration of the use of RWD for 

assessing the impact of introducing a new technology in a clinical setting. The 

analysis describes the decision and budget impact of the use of OncotypeDX within 

NHS Lothian in 2016, using the small number of patients that were administered the 

test and a representative cohort. The results show the likely impact that the test 

might have within the same decision parameters adopted for those who were tested. 

The analysis was performed in 2018 as part of an NHS Lothian business audit and 

makes use of a currently outdated version of PREDICT (v1.2) (13).  
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4. Decision Impact of OncotypeDX: a Natural Experiment Using 
Routine Data 

4.1 Introduction and Background 
OncotypeDX is a gene expression profiling test that can provide additional 

information on the biological features of an individual’s early breast cancer which can 

refine prognostication of the course of the disease and help guide decisions based 

on whether adjuvant chemotherapy is likely to be of sufficient benefit to justify the 

risks of treatment. Using a 21-gene expression panel, OncotypeDX produces a 

continuous recurrence score, ranging 0-100, indicating the 10-year risk of recurrence 

(assuming 5 years of Tamoxifen), and the prediction of adjuvant chemotherapy 

benefit. The higher the score, the higher the risk of recurrence and higher the benefit 

from chemotherapy. In January 2016, the Molecular Pathology Evaluation Panel 

assessed and evaluated this test and accepted OncotypeDX on grounds of 

effectiveness and cost-effectiveness for use in NHS Scotland, subject to a 

discounted price. The test was “recommended for patients with ER-positive, HER2-

negative, lymph-node-negative breast cancer with NPI ≥ 3.4 (8) in whom current risk 

stratification would lead to a recommendation for adjuvant chemotherapy but in 

whom the benefits of chemotherapy are considered uncertain by the MDT”. Before 

the adoption of OncotypeDX, a cost forecast model for the genomic test was drawn, 

based on audit of 2014 NHS Lothian patients (Table 2). A prospective audit is 

necessary to assess the use and impact of OncotypeDX in NHS Lothian, for the 

reappraisal of its role in routine care. 
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Table 2. Estimates for eligible population, chemotherapy use and Oncotype DX uptake. 
Extracted from NHS Lothian Internal Report for OncotypeDX 2014 audit 

4.2 Data and Methods 
The audit relies on national datasets available through the QPI audit, supplemented 

by national datasets curated by the NSS, the contents of which are described in 

Chapter 3. The dataset includes all the patients treated for Breast Cancer by NHS 

Lothian between 2010 and 2017, while OncotypeDX became available from 2016 

onwards. The first phase of the analysis features descriptive statistics regarding the 

patients that were tested with OncotypeDX, including the recurrence score from the 

test, their PREDICT scores and NPI. Moreover, statistics regarding chemotherapy 

use are presented for the patients within the same PREDICT v1.2 interval of the 

tested patients, for the same years and for the years before OncotypeDX availability. 

The second phase features a logistic regression model for the evaluation of 

probability of receiving chemotherapy before and after the availability of 

OncotypeDX. This allows the estimation of the relative reduction in the probability of 

receiving chemotherapy for those who are tested with OncotypeDX. The third phase 

shows a simulation of a representative Scottish cohort for the estimate of the budget 

impact of OncotypeDX, given the results of the second phase and the actual use of 

the test in NHS Lothian. 

  Cost forecast model for Oncotype DX
      Based on audit of 2014 NHS Lothian patients

Eligible population 38
Cost of Oncotype DX (per test) 2,500£       
Cost of Chemo (per course) 3,855£       

Pre-test N %
Not suitable for chemo 28 74%
Chemo given 6 16% `
Chemo discussed but not given 4 11%

Post-test
Number of tests 10
Chemo given 4
Chemo discussed but not given 6
Relative chemo use -2 33% reduction

Cost of testing 25,200£     
Chemo costs 7,710-£       
Net cost 17,490£     
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4.3 Summary of Assumptions 
The following list is a summary of the main assumptions used throughout the budget 
and decision impact of the analysis. 

• PREDICT chemotherapy benefit scores are a reflection of clinical decision-
making with respect to chemotherapy assignment and prognostication. 

• Holding other factors equal, patients with the same PREDICT chemotherapy 
benefit have the same probability of being prescribed chemotherapy. 

• The estimated costs associated with treatment, including toxicities, are on 
average an accurate reflection of the costs incurred by the NHS when treating 
a breast cancer patient with chemotherapy. 

• Cost neutrality of a decision-making tool is achieved when at the cohort level 
the sum of the cost of testing is equal to the sum of savings due to 
chemotherapies spared. 

 

4.4 Descriptive Statistics 
Between 2016 and 2017, a total of 36 patients were tested with OncotypeDX, the 

26% of which were treated with adjuvant chemotherapy. According to the guidelines, 

all patients tested were eligible for OncotypeDX, with the exception of two patients: 

one whose electronic records report ER-negativity, and another patient who was 

node positive. The tables below report the descriptive statistics for PREDICT v1.2 

chemotherapy benefit score, NPI score, and OncotypeDX score for the 36 patients 

tested with the genomic test.  

  

 Minimum Median Mean Maximum Std. Deviation 

PREDICT 1.2 0.81 3.13 3.22 6.17 1.35 

NPI 6.2 7.8 8.2 12.2 1.79 

OncotypeDX 6 20.5 22.5 52 10.5 

Table 3. Risk scores distributions of tested patients. Summary measures of 
dispersion for the distributions of PREDICT chemotherapy score, NPI, and 
OncotypeDX. 
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Figure 5: OncotypeDX Score Distribution 

Figure 5: OncotypeDX 
Score Distribution 

Score distribution of the 
36 patients that were 
tested with OncotypeDX 
between 2016 and 
2017. Mean score and 
density are displayed. 
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Figure 6: OncotypeDX against PREDICT v1.2 scores, stratified by tumour size and treatment 

Using the PREDICT v1.2 chemotherapy benefit score interval and the characteristics 

(including ER status and Node status) of the patients tested with OncotypeDX, a 

control group was identified. A total of 575 patients with similar characteristics to the 

OncotypeDX group was extracted from the 2016-2017 dataset. The table below 

reports the use of the test and of chemotherapy in the group of patients identified by 

the PREDICT v1.2 interval (both patients tested and controls). 

 

Table 4. No Test OncotypeDX Row sum 

No Chemotherapy 499 (81.6%) 26 (4.3%) 525 (85.9%) 
Chemotherapy 76 (12.5%) 10 (1.6%) 86 (14.1%) 
Column Sum 575 (94.1%) 36 (5.9%) 611 (100%) 

Table 4. Two-way table for OncotypeDX and chemotherapy. Two-way table reporting 
absolute numbers and proportions for patients that were tested and the control 
group. 

Figure 6: OncotypeDX 
against Predict Breast 
v1.2 scores, stratified by 
tumour size and 
treatment. 

Plot of Predict v1.2 against 
Oncotype-DX scores. The 
colour of the data-point 
identifies the treatment, 
while the size of each 
individual observation is 
proportional to the size of 
the tumour (in millimetres). 
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4.5 Decision Impact Analysis 
The difference in the probability of receiving chemotherapy between patients tested 

with OncotypeDX and the controls has been evaluated with a logistic regression, 

using a binary variable Test/No-Test and the PREDICT v1.2 score as regressors. 

Model :  P(chemotherapy) = OncotypeDX + Predict Breast v1.2 

 

Table 5.     

Coefficients Estimate Exponentials Std. Error P value 
Intercept -4.624 0.009 0.336 0.000*** 

OTDX -0.899 0.407 0.513 0.079 

PRED1.2 1.269 3.555 0.124 0.000*** 

Table 5. Logistic Regression Coefficients, for estimating the probability of receiving 
chemotherapy, conditional on the use of OncotypeDX and PREDICT v1.2 score. 
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Figure 7: Logistic Regression, visualised 
 

To assess whether the probability of receiving chemotherapy has changed across 

the years, independently of the introduction of OncotypeDX, a logistic regression 

using PREDICT v1.2 as regressor was run on a 2013-2015 group of patients, 

selected with the same criteria as the previous controls. The estimate for the 

PREDICT v1.2 coefficient was then compared to the coefficient of the 2016-2017 

group. The table below displays the comparison of the coefficients, including 95% 

confidence intervals. 

 

 

Figure 7: Logistic 
Regression, visualised.  

Plot of the fitted probability of 
receiving chemotherapy, 
against Predict 1.2, using the 
coefficients from the 
modelled logistic regression. 

 

 

 

 

The red curve follows the 
fitted probabilities of patients 
that were not tested with 
Oncotype-DX. The blue 
curve outlines the fitted 
probabilities of tested 
patients. 
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Coefficients Estimate 2.5% 97.5% 
Pred1.2 (2013-2015) 1.337 1.086 1.614 
Pred1.2 (2016-2017) 1.268 1.03 1.52 

Table 6. Estimated coefficients of PREDICT v1.2 scores as predictors of the 
probability of receiving chemotherapy. Comparison of the estimated coefficients of 
PREDICT as a regressor for the probability of receiving chemotherapy. 

 

The coefficients from the original logistic regression were then applied to the 

PREDICT v1.2 scores of the 2013-2015 group, and fitted probabilities were 

calculated. Figure 8 displays the plot of fitted probabilities using both the coefficients 

of 2016-2017 and of 2013-2015. 

 

 

Figure 8: Comparison of fitted probabilities 

Figure 8: Comparison of 
fitted probabilities 

Plot of fitted probabilities, 
using 2013-2015 data. In 
red, fitted probabilities using 
2016-2017 coefficients. In 
green, fitted probabilities 
using 2013-2015 
coefficients. 



52 
 

Given the results of the comparison, there is not enough evidence that the probability 

of receiving chemotherapy has changed across the years, independently of the 

availability of OncotypeDX in the 2016-2017 group. As such, it is possible to solely 

rely on the coefficients of the 2016-2017 group to calculate the relative difference in 

the probability of receiving chemotherapy between patients tested with OncotypeDX 

and patients not tested, using as baseline the group of patients that were actually 

tested with the 21-gene signature. 

Fitted probabilities for the 36 tested patients were calculated, with and without the 

effect of OncotypeDX; Figure 9 shows the plot of said fitted probabilities and the 

change in the difference as the PREDICT v1.2 score increases. 

 

 

Figure 9: Impact of OncotypeDX 

 

Figure 9: Impact of 
OncotypeDX 

The blue line shows the 
fitted probability of 
receiving chemotherapy, 
given the fact that the 
patients were tested. 
The red line outlines the 
fitted probability of 
receiving chemotherapy 
as if those patients were 
never tested. 

The grey line is the 
difference between the 
first two curves. 
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The average reduction in the probability of receiving chemotherapy as a 

consequence of being tested with OncotypeDX is 13%. Meaning that if there had 

been no test, there would have been 13% more patients treated with chemotherapy. 

Given that the actual use of OncotypeDX is ~6% of the patients within the same 

PREDICT v1.2 interval, a 13% reduction in chemotherapy use in the tested 

population means a global reduction of chemotherapy of 0.767% for the eligible 

population. 

 

4.6 Budget Impact Analysis of OncotypeDX 
Chemotherapy costs were calculated as the expected value of the cost of 

chemotherapy given the proportional use of 8 different drug regimens, each with 

associated supportive medication and toxicity costs. The prices for chemotherapy 

and supportive drugs, and the costs for toxicity events were drawn from the 

electronic Market Information Tool, the British National Formulary, and NHS 

reference costs 2015/2016. The average total cost of regimen per patient is £ 4,159, 

calculated using NHS Reference Costs, with the addition of “Patient Level 

Information and Costing System” (PLICS) cost for Cancer-related Febrile 

Neutropoenia. The non-confidential cost of OncotypeDX is £ 2500. The following 

calculations assumes a representative Scottish cohort of 600 breast cancer patients, 

with similar characteristics to the groups identified in the previous phase: ER+, N0 

breast cancer with PREDICT v1.2 between 0.81 and 6.17. The proportion of patients 

undergoing chemotherapy has been calculated as the probability of chemotherapy in 

absence of the test from the 2013-2017 data. The proportion of patients being tested 

is reflective of the actual use of OncotypeDX between 2016 and 2017. The overall 

reduction chemotherapy use due to the test is calculated using the difference in the 

probability of receiving chemotherapy as shown in the previous phase (13%), and 

the actual use of OncotypeDX (5.9% of the cohort). Cost-neutrality, given these 

parameters, is achieved at an illustrative price of £595. 
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Scottish Representative Cohort 
Total number of patients 600 P(chemo) without test 0.13 

Chemotherapy cost  £4,159 Proportional reduction in chemo 

use due to OncotypeDX 

0.00767 

OncotypeDX cost  £2,500 

Chemotherapy use in absence of test  Chemotherapy use with test  

  Number of tests: 35 

Patients given chemotherapy: 78 Patients given chemotherapy: 73 

Patients not given chemotherapy: 522 Patients not given chemotherapy: 527 

Relative chemotherapy use: 5 Cost of testing: £87,500 

Chemotherapy savings: £20,795 Net cost of testing: £66,705 

Table 7. Budget Impact of OncotypeDX on a Scottish Representative Cohort 
 

As the difference in probability of receiving chemotherapy due to the test is a 

function of PREDICT v1.2, the results have been broken down by chemotherapy 

benefit interval. 

For PREDICT v1.2 chemotherapy benefit between 3 and 5%, assuming a cohort of 

90 patients with those characteristics, the probability of receiving chemo 

independently of the test is 54%. With a test rate of 23.6%, the overall reduction in 

the probability of receiving chemotherapy is 4%, given an average reduction in 

probability of chemotherapy for tested patient at 18%. 

For chemotherapy benefit below 3%, assuming a cohort of 500 patients, the 

probability of receiving chemotherapy in absence of the test is 7%, while the rate of 

testing is ~2.5%. For this subgroup, the average reduction in probability of 

chemotherapy due to the test is 6%, meaning an overall reduction for the cohort of 

less than 0.2%. 

For patients with chemotherapy benefit above 5%, the rate of testing is 37%, while 

the baseline chemotherapy probability is 62%. The average reduction of 

chemotherapy probability for the tested patients is 9%. In a simulated cohort of 10 

patients, there would be 4 tested patients and 6 chemotherapies. Given that the 

overall reduction in chemotherapy probability is 3.3%, there would be no 

chemotherapy savings. The overall cost of testing would be £ 10,000. 
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4.7 Conclusion 
The budget impact analysis indicates that with the testing rates observed between 

2016 and 2017 within NHS Lothian, the commercial price of OncotypeDX is far 

above the cost-neutrality level, calculated as £595 in the representative Scottish 

cohort example. While the estimated chemotherapy use reduction due to 

OncotypeDX is not statistically significant in this sample, the overall trend is in line 

with results from other decision impact analysis informed by UK patient data (95, 96). 

This could be a further indication that the number of patients tested with the genomic 

assay is far below the number necessary to observe a chemotherapy use reduction 

comparable to what has been reported by Holt et al 2013 and Loncaster et al. 2017. 

Moreover, the budget impact analysis suggests that the net cost of testing is lowest 

when OncotypeDX is used in the PREDICT v1.2 interval between 3% and 5%, where 

the estimated benefits of chemotherapy are most uncertain. Due to the low number 

of patients tested with OncotypeDX, the significance of the results of the decision 

impact analysis is uncertain. Further evidence or higher testing rates are required for 

a more precise calculation of the impact that the 21-gene signature had on the 

probability that a patient receives chemotherapy. Further research would ideally use 

an updated version of PREDICT, and a larger cohort containing higher testing rates. 

Moreover, it would be beneficial to compare survival outcomes of the tested and 

non-tested groups, matched by patient-characteristics: since the evidence in clinical 

practice indicates that the current commercial price is not balanced against 

chemotherapy reduction, maybe long-term outcomes might justify the higher price. 
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5.  Cost-Effectiveness Modelling of a 4-gene signature for 
therapy response prediction in breast cancer 

5.1 Introduction 
As discussed in Chapter 1, the implementation of new biomarker-based predictive 

tests has the potential for better clinical outcomes and a more efficient resource 

allocation within the NHS. The evaluation of the cost-effectiveness of a new 

biomarker in a routine NHS setting is complex, relying on impact through clinical 

decision making and modifications of the clinical pathway followed by a patient. 

Moreover, as discussed in Chapter 3, while the use of routinely collected patient data 

may better reflect real-world practices, the analysis and the results might be biased 

because of it, due to the non-randomised design and the presence of confounding 

factors. 

The following economic evaluation will take as example a 4-gene signature 

developed within the Edinburgh Cancer Research Centre and the Institute of 

Genetics and Cancer. The signature, EER4 (68), has been developed into a 

promising method for accurately predicting response to pre-operative endocrine 

therapy in early breast cancer using patient-matched pre- and on-treatment 

biomarkers; further information is available in section 2.6. This method out-performs 

all established pre-treatment only assessment methods, but potentially modifies the 

patient’s clinical pathway. The cost-utility model will examine whether or not this new 

technology would be a cost-effective use of NHS resource, quantify the impact of its 

introduction clinical care, and under which conditions and assumptions the new 

technology can be chosen as a better alternative for the current standard of care. 

 

5.2 Data 
A full description of the data and patient cohort is covered in Chapter 3. The study 

population comprises all patients diagnosed with early ER-positive breast cancer 

between January 2001 and December 2017. The dataset was divided in two groups, 

based on the availability of additional linked datasets and local record-keeping 

practices. After excluding patients with missing observations or incomplete clinical 

records (with respect to several key variables), this resulted in two cohorts:  
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• The primary cohort, patients diagnosed between 2013 and 2017, for a total of 

3264 

• The secondary cohort, patients diagnosed between 2001 and 2012, for a total 

of 5469 

The primary cohort is the main data source informing the model, supplemented with 

literature sources for utility weights, costs and other parameters that could not be 

inferred from the patient cohort. The secondary cohort is used for providing 

estimates of cost-effectiveness in a higher-risk patient population. Details and 

descriptive statistics of the two cohorts are available in section 3.4. As previously 

noted in section 3.3, the decision to separate the dataset into two cohorts was driven 

by changes in record-keeping practices for the primary data sources, SMR06 and 

SCAN Audit data. This resulted in key risk stratifiers for the calculation of PREDICT 

being unavailable pre-2013, leading to greater uncertainty in risk stratification and 

recurrence-free survival estimation in the secondary cohort. As shown in Table 1 of 

section 3.5, the secondary cohort had a higher proportion of patients in higher-risk 

categories, based on factors such as positive lymph nodes, tumour size, and tumour 

grade, compared to the primary cohort. This trend is likely due to increased 

uncertainty and missing data in the secondary cohort, as well as increased earlier 

diagnosis rate and treatment rates in the primary cohort. 

 

5.3 Methods 
The cost-effectiveness model was developed in line with the Consolidated Health 

Economics Evaluation Reporting Standards (CHEERS) guidelines (97). A time-

dependent discrete-state transition model was used to assess the cost utility of four 

strategies for guiding treatment decision in a representative cohort of Scottish 

patients diagnosed with ER-positive early breast cancer. The model was developed 

using R Programming Language (14). The full code of the model is available in 

Appendix 1 of the thesis. The strategies considered were: 

 

1. Predict.breast (Baseline): After diagnosis, the patient undergoes surgery, and 

the PREDICT score for chemotherapy benefit is calculated. If the score is 
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below 3%, the patient receives endocrine therapy only; if the score is above 

3%, the patient receives endocrine and chemotherapy. 

2. Predict.breast and OncotypeDX: If the chemotherapy benefit score is below 

3%, patient receives endocrine therapy only. If the score is between 3% and 

5%, the patient is tested with OncotypeDX. If the patient tests low risk, 

endocrine therapy only; if high risk, endocrine and chemotherapy. If the 

chemotherapy benefit is above 5%, the patient receives endocrine and 

chemotherapy. 

3. EER4 Only: After diagnosis, the patient undergoes two weeks of neoadjuvant 

endocrine therapy and two biopsies, and then surgery. If the patient tests as 

responder, endocrine therapy only; if they test non-responder, endocrine and 

chemotherapy. Responders benefit from a mean hazard ratio of 0.35 in RFS 

against non-responders. 

4. EER4 and Predict.breast: After diagnosis, the patient undergoes two weeks of 

neoadjuvant endocrine therapy and two biopsies, and then surgery. If the 

patient’s chemotherapy benefit score is below 3%, patient receives endocrine 

therapy only. If the score is between 3% and 5%, the patient is assigned 

chemotherapy based on the test result of EER4. If the chemotherapy benefit 

is above 5%, the patient receives endocrine and chemotherapy. Responders 

benefit from a mean hazard ratio of 0.35 in RFS against non-responders. 

Figure 10 provides a visual breakdown of the four strategies. 
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Figure 10: Flow Diagram of the four testing strategies 

The model was developed from the payer perspective of the National Health Service, 

and assumes a life-time horizon with 1-year cycle length. Both costs and health 

states were discounted at a rate of 3.5% per year. All prices were captured in 2016-

pound sterling for health states costs and for treatment costs. 

 

5.3.1 Simulating Test Scores 

As OncotypeDX was not routinely administered to these cohorts, the test risk 

categories were simulated using clinically observable variables, according to the GR-

PR score: by assigning a score based on tumour grade and progesterone receptor 

status, this proxy simulates the risk categories of OncotypeDX with 73% accuracy, 

depending on the chosen cut-off point (94). For this analysis, the low cut-off of 18 for 

low-risk OncotypeDX was chosen (further details in section 3.3). 

EER4 is assumed to be an independent predictor of response with respect to clinical 

variables. As such, the simulated test outcome for response is assigned through a 

random distribution reflective of the proportion of responders and non-responders 

(0.7 vs 0.3) described in the study (68). Response status is used in the model as a 

proxy for risk categories, with responders assigned to the low-risk group and non-

responders assigned to the high-risk group. 
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The version of PREDICT used by this study is v2.1, which calculates individual 

overall survival plus treatment benefits of hormone therapy, chemotherapy, 

trastuzumab, and bisphosphonates. The chemotherapy benefit score is used as a 

decision rule to assign patients to risk categories, with patients scoring less than 3% 

belonging to the low-risk group, between 3% and 5% to medium-risk, and above 5% 

to the high-risk group. The evaluated baseline strategy (PREDICT only) combines 

the medium and high-risk groups into a single high-risk group. 

Moreover, this study assumes a constant relationship between overall survival and 

relapse-free survival; a hazard ratio was applied to the annual event rates calculated 

by PREDICT v2.1, thus producing individual relapse-free survival estimates plus 

treatment benefit scores. These estimates were subsequently used to generate the 

transition probabilities for the model. 

5.3.2 Model Structure 
The model features seven health states: 

1. Disease-free 

2. Local Recurrence 

3. Disease-free after Local Recurrence 

4. Distant Recurrence 

5. Congestive Heart Failure 

6. Acute Myeloid Leukaemia 

7. Death 

The model structure and the seven modelled health states are illustrated in Figure 

11. In each strategy, patients are allocated to either a high-risk or a low-risk group, 

where the high-risk group receives adjuvant chemotherapy. All patients are assumed 

to receive identical adjuvant endocrine therapy. The model development did not 

feature expert consultation, as the model structure is in line with previous studies in 

similar clinical settings (84, 98). 
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Figure 11: Visualisation of Health States and Markov Cycle 

The probability of a patient moving from one state to another during each cycle is 

used to predict the proportion of patients in each state at each cycle during and after 

treatment. The total Quality Adjusted Life Years (QALYs) associated with a given 

strategy is then calculated by combining the proportion of the cohort in each state 

per cycle with the utility associated with these states. Costs are calculated in the 

same fashion, with the addition of the test costs, chemotherapy costs (if 

administered), and terminal costs (if patient dies from breast cancer). 

The simulation differs from a standard Markov model in that the probability of staying 

in the disease-free state varies depending on how many cycles were spent in the 

disease-free state itself and on whether chemotherapy was administered. 

Patients enter the model at the start of adjuvant therapy and are assumed to be 

disease-free. Disease-free patients can either stay disease-free, or develop a 

recurrence (local or distant), or develop congestive heart failure, or acute myeloid 

leukaemia, or die. Patients that develop a local recurrence can be cured, but cannot 

reverse to “disease-free”, thus they can move to a separate “disease-free after local 

recurrence” state. Patients that develop a distant recurrence stay in the distant 

recurrence state until death. Patients that develop CHF stay in that state until death 

from CHF. Patients that develop AML stay in the AML state until death from other 
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causes or AML mortality. A half-cycle correction was applied to adjust for patients 

that do not transition at the end of each yearly cycle, thus providing a calculation of 

QALYs and costs reflecting an average transition in the middle of each cycle. 

Moreover, the QALYs and costs are weighed by a compliance parameter set at 95%, 

to better reflect a clinical setting: if chemotherapy is assigned, 95% of patients will 

follow the recommendation, while 5% will be prescribed endocrine therapy only; vice 

versa, if endocrine therapy only is assigned, 95% of patients comply, and 5% will 

also be prescribed chemotherapy. 

 

5.3.3 Model Input Parameters 

Assuming a constant relationship between Overall Survival and Recurrence-free 

Survival, cancer recurrence rates were estimated using the 10-year relapse-free 

survival estimate of PREDICT. The effect of chemotherapy on relapse-free survival 

is based on the hazard ratio used by the PREDICT algorithm: the specified hazard 

ratio is then applied to the annual event rate derived from the Recurrence-free 

Survival estimate. Moreover, the impact of EER4 was reflected in the chemotherapy 

effect by applying an additional hazard ratio to the event rate, in accordance with the 

estimates of Turnbull et al. (68). Chemotherapy procurement, delivery, and toxicity 

costs were taken from BNF (99) and NHS Reference costs (100), while 

chemotherapy assignment proportions were taken from the OPTIMA prelim trial 

(101). Chemo-related toxicities considered were: febrile neutropoenia, allergic 

reactions, nausea, diarrhoea, anaemia, thrombocytopaenia, and stomatitis. The 

costs associated with breast cancer-specific health states were taken from Hall et al. 

2017 (84), and adjusted for inflation after the distributions were generated (i.e. the 

distribution shape parameters are retained, then the inflation multiplier is applied to 

the output). Cost of testing with EER4 was determined with a log-normal distribution 

selecting for credible value based on the cost of testing of similar technologies. The 

cost of testing with OncotypeDX was fixed at half of the reported commercial price. 

The choice of using a lower cost for OncotypeDX is motivated by two reasons: the 

simulation is using a proxy for the test results, which might be inherently less 

accurate, and the simulation assumes that OncotypeDX might be offered at a 

discounted price to the NHS (as described in Section 4.1). Baseline utility values 

were taken from Kind et al. 1998 (102), and utility weights and decrements were 
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obtained from Campbell et al. 2011 (103). Utility values for congestive heart failure 

and acute myeloid leukaemia were taken respectively from Kirsch et al. 2000 (104) 

and Castejòn et al. 2018 (105). A comprehensive list of input parameters and 

sources can be found in tables 8, 9, and 10.  

Table 8. Model Input Parameters 

Parameter Base 
case 

Shape 
Parameters 

Distribution Description Source 

Effect of 

chemotherapy on 

risk of recurrence 

0.73 S1: 71.2115 

S2: 26.3385 

 

Beta Hazard ratio of the 

risk of recurrence 

for patients treated 

with adjuvant 

chemotherapy 

Wishart et al, 

2010 (13) 

Proportion of 

endocrine therapy 

responders 

0.7 S1: 209 

S2: 89 

 

Beta Proportion of 

patient that 

respond to 

neoadjuvant 

endocrine therapy 

Turnbull et al, 

2015 (68) 

Endocrine therapy 

effect on 

responders 

identified by EER4 

0.35 S1: 397 

S2: 738 

 

Beta Hazard ratio for 

recurrence rates of 

responders vs 

non-responders as 

identified by the 

test 

Turnbull et al 

2015 (68) 

Proportion 

locoregional vs 

distant recurrence 

0.31 S1: 292 

S2: 663 

 

Beta Proportion of 

recurrences that 

are local to the 

primary cancer 

Baum et al, 

2003 (106) 

Death after distant 

recurrence, with 

chemotherapy 

0.30 S1: 1.0 

S2: 2.35 

 

Beta Annual probability 

ER-positive 

tumours 

Walkington et 

al, 2012 (107) 

Death after 

recurrence, no 

chemotherapy 

0.14 S1: 0.42 

S2: 2.58 

 

Beta Annual probability 

ER-positive 

tumours 

Albain et al, 

2009 (108) 

Background 

mortality 

Age-

specific 

 fixed Life tables Office of 

National 

Statistics, 

2009 (109) 
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Chemotherapy 

excess mortality 

(first year) 

0.0024 S1: 1.6 

S2: 677.6 

 

Beta Excess mortality 

due to 

chemotherapy 

toxicities 

Albain et al, 

2012 (110) 

Background rate 

CHF 

Age-

specific 

 fixed Annual age-

specific female 

incidence of CHF  

Townsend et 

al, 2012 (111) 

Relative risk of CHF 

with anthracycline 

treatment 

1.61 S1: 0.458 

S2: 0.191 

 

Log-normal Applied as a 

constant lifetime 

risk 

Albain er al, 

2012 (110) 

Death after CHF 0.6 S1: 136 

S2: 84 

 

Beta   Cowie et al, 

2000 (112) 

Background annual 

rate AML  

0.0029 fixed fixed  Bhayat et al, 

2009 (113) 

Relative risk of AML 

after chemo 

7.6 S1: 1.71 

S2: 0.79 

 

Log-normal  Wolff et al. 

2014 (114) 

Relative 5-year 

survival for AML 

(female,age 65+) 

0.0383 S1: 1524 

S2: 60 

 

Beta Assumes constant 

relative survival, 

applied to 

background 

mortality rate 

Oliver et al, 

2013 (115) 

 

 

 

 

Table 9. Model Cost Parameters 

Cost Parameter Base Case 
(£) 

Shape 
Parameters 

Notes Source 

Disease free (annual cost 

excluding chemotherapy-

related costs) 

1,203.03 Log Normal 

S1: 6.91 

S2: 0.004 

Inflation 

multiplier: 1.2 

Hall et al 2017 

(84) 
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Disease free after local 

recurrence (annual) 

1,607.17 Log Normal 

S1: 7.2 

S2: 0.11 

Inflation 

multiplier: 1.2 

Hall et al, 2017 

(84) 

Local recurrence (first year) 7,371.97 Log Normal 

S1: 8.72 

S2: 0.08 

Inflation 

multiplier: 1.2 

Hall et al, 2017 

(84) 

Distant recurrence (annual) 2,022.85 Log Normal 

S1: 7.43 

S2: 0.019 

Inflation 

multiplier: 1.2 

Hall et al 2017 

(84) 

Terminal disease (final 3 

months) 

2,058.84 Log Normal 

S1: 7.63 

S2:0.003 

Inflation 

multiplier: 1.2 

Hall et al 2017 

(84) 

Cost of treating with 

chemotherapy 

3536.43  Weighted 

average of the 

six chemo 

regimens 

considered 

BNF (99) 

NHS Reference 

Costs (100) 

Optima trial (101) 

Cost associated with 

chemotherapy toxicities 

312.44  Weighted 

average based 

on the 6 chemo 

regimens 

considered 

BNF (99) 

NHS Reference 

Costs (100) 

Optima trial (101) 

Cost of testing with EER4 1,674.23 Log-normal 

S1: 7.42 

S2: 0.03 

Based on test 

costs of similar 

technologies 

 

Cost of testing with 

OncotypeDX 

1,250.00 fixed   
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Table 10. Model Utility Parameters 

Utility Parameter Base Case Shape  
Parameters 

Distribution Source 

Starting utility Age group specific 

60-64 = 0.81 

65-74 = 0.78 

75-100 = 0.71 

fixed  Kind et al 1998 (102)  

Disease free (no chemo) -0.003 S1: -8.117 

S2: 2.148 

lognormal Campbell, 2011 (103)  

Disease free (on chemo, 

first year) 

-0.099 S1: -2.365 

S1: 0.325 

lognormal Campbell, 2011 (103) 

Local recurrence -0.108 S1: -2.29 

S2: 0.359 

lognormal Campbell, 2011 (103) 

Distant recurrence -0.303 S1: -1.317 

S2: 0.496 

lognormal Campbell, 2011 (103) 

Congestive heart failure 0.528 S1: 103.29 

S2: 92.34 

beta Kirsch, 2000 (104) 

Acute Myeloid 

Leukaemia  

0.38 S1: 0.311 

S2: 0.507 

beta Castejòn et al, 2018 

(105) 

 

 

5.3.4 Sensitivity Analysis 
Probabilistic sensitivity analysis (PSA) was conducted using a Monte Carlo 

simulation to sample from distributions assigned to model input parameters (117). 

Probability distributions were fitted to each input parameter using mean values and 

shape parameters, according to the specific type of distribution. The beta distribution 

was used for binomial proportions, the Dirichlet distribution for multinomial 

proportions. The lognormal distribution was used for health state costs and test cost, 

while chemotherapy and toxicity costs are summarised as a weighted average of 

chemotherapy regimens, which include the use of normal and log normal 
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distributions. Baseline utility is dependent on the age group, while utility decrements 

use the lognormal distributions. Utility weights for CHF and AML states are fitted to 

beta distributions.  

 

5.3.5 Probabilistic One-Way Sensitivity Analysis 
While deterministic sensitivity analysis (DSA) remains an important method for 

characterising uncertainty and providing an easily accessible interpretation of CEA 

results, classic DSA methodologies may lead to wrong conclusions due to a lack of 

information regarding marginal effects, likelihood, and correlation between input 

parameters (117). Policy makers might be interested in specific values of a 

parameter, including whether these values are possible, their likelihood, and how 

they would affect a decision; this type of comprehensive information cannot be 

produced by DSA.  

Probabilistic One-way Sensitivity Analysis was recently proposed as a solution to 

bridge this information gap (118). This approach generalizes the concept of 

“conditional net benefit” for evaluations comparing more than two strategies. The 

method also proposes the “conditional net benefit frontier” as a way to identify the 

most cost-effective option, out of a set of strategies, conditional on a specific value of 

an input parameter of interest.  

In order to identify the values of key parameters that might change the decision 

regarding testing strategies, a probabilistic one-way sensitivity analysis (POSA) was 

carried out, according to the methods outlined in McCabe et al. 2020 (119).  

After selecting alternative distributions for the cost of EER4 and the HR of patients 

testing as Responders with EER4, the values of these key parameters were fixed to 

a range of centiles (0.01,0.99, and from 0.1 through 0.9), and a Monte Carlo 

simulation was run for each selected centile and the net monetary benefit for each 

strategy were recorded. The resulting data is then used to produce a Cost-

effectiveness Acceptability Frontier based on conditional net monetary benefits 

(conditional on the centile of the parameter cumulative distribution). The alternative 

distributions reflect higher uncertainty and include extreme/unlikely values, so that 

the analysis might identify the values for which a decision is likely to change. The 

alternative distribution for the cost of EER4 increases the baseline price to £1600, 
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with a minimum of £300 and a maximum of £8500. The alternative distribution for the 

Responders’ HR maintains a base value of 0.35, but extends the range to the 

extremes of the Beta distributions, thus including scenarios where Responders are 

virtually no different from Non-responders in terms of risk of recurrence, and 

scenarios where Responders’ risk of recurrence disappears. This range of values 

should reveal the minimum value of the ratio for which a testing strategy using EER4 

is cost-effective compared to alternatives. 

 

5.3.6 Value of Information Analysis 
To quantify the benefits of reducing uncertainty with respect to selecting the most 

cost-effective strategy, the sensitivity analysis includes an estimate of the population 

Expected Value of Perfect Information (EVPI). The population EVPI estimate for 

EER4 is based on a Scotland annual incidence of 3700 new cases of ER+ breast 

cancer in females and the lifetime of the technology is assumed to be ten years, with 

a 3.5% annual discount rate applied. 

 

5.3.7 Summary of Model Assumptions 
The following list is a summary of important assumptions and implications used 
throughout the economic model. 

• Using PREDICT survival estimates to derive recurrence rates is an accurate 
reflection of the recurrence rates that would be observed for this population. 

• Using PREDICT chemotherapy benefit scores is an accurate proxy for the set 
of clinical decisions leading to administering chemotherapy. 

• The modelled use of OncotypeDX, in conjunction with PREDICT, reflects the 
use of OncotypeDX in NHS routine practice (i.e. for cases where the 
chemotherapy benefit is uncertain). 

• The modelled use of EER4, especially when used in conjunction with 
PREDICT, is an accurate approximation of how the test would be used in 
NHS routine operations. 

• The estimated costs for treatment, and associated toxicities, reflect the true 
cost of treating a patient in NHS routine practice. 

• Responders treated with neoadjuvant Letrozole enjoy a survival benefit over 
non-responders 

• The health states used in the model accurately reflect the long-term patient 
pathway. 
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5.4 Results 

5.4.1 Base case 
The base case probabilistic analysis of the model produces an ICER of £6837 per 

QALY for therapy guided by OncotypeDX in conjunction with PREDICT (Strategy 2), 

over PREDICT alone. On the other hand, strategies that include EER4, both alone 

and in combination with PREDICT, produce negative ICERs: £-1109 per QALY and 

£-2078 per QALY, respectively. As it can be observed in the incremental cost-

effectiveness plane, the majority of simulations of strategies that include EER4 fall in 

the south-east quadrant, suggesting that testing with EER4 is likely to produce better 

clinical outcomes at a lower cost, compared to using PREDICT alone. The mean 

cost per patient on PREDICT alone is £13,948 compared with £14,050 of 

OncotypeDX with Predict, £13,634 with EER4 alone, £13,246 with EER4 with 

PREDICT. The mean QALYs per patient for PREDICT alone is 7.69, compared with 

7.71 with OncotypeDX, 7.98 with EER4 alone, 8.04 with EER4 and PREDICT. At a 

threshold of £20,000 and in terms of net monetary benefits, the probability of EER4 

in conjunction with PREDICT being cost-effective is 86%, while OncotypeDX with 

PREDICT is 10%. 

 

 

Figure 12: Incremental Cost-Effectiveness Plane 
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As it can be observed from the INMB density plot (Figure 13) in conjunction with the 

Incremental Cost-Effectiveness plane (Figure 12), the incremental benefits for 

OncotypeDX are heavily concentrated around the origin/zero-net benefit, while the 

two strategies featuring EER4 are distributed all along the scale (due to higher 

uncertainty surrounding costs and benefits) but show the highest density around the 

10,000 mark. 

 

 

Figure 13: Incremental Net Monetary Benefit Density over Predict Breast alone 

In the Cost-effectiveness Acceptability Curve (Figure 14), each strategy is 

individually evaluated against guiding therapy with PREDICT alone. Based on the 

proportion of simulations in which each alternative strategy’s Incremental Net 

Monetary Benefits are positive, the analysis produces the probability that each 

alternative is cost-effective given a range of relevant values of the threshold. 
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Figure 14: Cost-Effectiveness Acceptability Curve 

At any value of the threshold, guiding therapy through EER4 with PREDICT is the 

most likely cost-effective strategy. This is also reflected in the Cost-effectiveness 

Acceptability Frontier (Figure 15), where all strategies are jointly evaluated on the 

basis of Net Monetary Benefits (i.e. for any value of the threshold, the sum of all 

strategies’ probabilities of being cost-effective is equal to 1). EER4 in conjunction 

with PREDICT is the preferred alternative for any relevant value of the threshold. 
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Figure 15: Cost-Effectiveness Acceptability Frontier 

The simulated recurrence-free survival appears to be in line with the RFS estimated 

by PREDICT: a rule-out test performed on the distributions (simulated survival and 

estimated survival) resulted in a p-value of p=0.34, meaning that it cannot be 

excluded that the two sample are virtually drawn from an equivalent distribution. This 

effectively ensures the internal consistency of the simulation. Moreover, examining 

the simulated survival for each strategy (Figure 16) reveals that PREDICT alone 

displays the lowest survival, while EER4 alone and EER4 with PREDICT produce a 

virtually identical estimate. 
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Figure 16: Simulated Recurrence-free Survival, by Testing Strategy 

 

The individual Expected Value of Perfect Information is £238 at a threshold of 

£20,000 per QALY, and given the assumption of 3700 new cases of ER+ breast 

cancer case in Scotland every year, this translates to a 10-year population EVPI of 

£7,329,827. Figure 17 shows how the EVPI changes as the cost-effectiveness 

threshold is increased. 
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Figure 17: Expected Value of Perfect Information. 

5.4.2 Probabilistic One-Way Sensitivity Analysis 
 

 

Figure 18: Conditional Net Monetary Benefit, Cost of Test 
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The CEAF conditional on the value of EER4 cost (Figure 18) displays the expected 

Net Monetary Benefit for each strategy at each centile of the cumulative distribution, 

assuming a £20,000 per QALY threshold. As expected, the NMB of PREDICT alone 

and OncotypeDX with PREDICT do not vary with the change in EER4 costs. The 

POSA suggests that strategies featuring EER4 are likely to be cost-effective 

compared to alternatives, even when the costs of the test could be far above any of 

the commercially available predictive assays in similar clinical settings. 

Moreover, the POSA conditional on the value of Responders’ Hazard Ratio (Figure 

19) suggests that unless the HR in RFS between responders and non-responders is 

actually above 0.8, then any strategy featuring EER4 is likely to be cost-effective at a 

threshold of £20,000 per QALY. 

 

 

Figure 19: Conditional Net Monetary Benefit, Responder Hazard Ratio 

 

5.4.3 Alternative Scenario: Higher Risk Patients. 
As discussed in Chapter 3, the Secondary Cohort presents a larger share of higher 

risk patients, compared to the Primary Cohort. The simulation was run by populating 
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the model with the Secondary Cohort. The Incremental Cost-Effectiveness Plane 

(Fig. 20) presents a higher dispersion of values compared to Figure 12, while the 

density plot of net monetary benefits (Fig 21) indicates a similar pattern to its 

counterpart in the Primary Cohort (Fig 13), with the incremental net monetary 

benefits of OncotypeDX + PREDICT concentrating around 0, and the benefits of 

strategies with EER4 distributed across a wider interval and peaking around the 

10,000 mark. The Cost-Effectiveness Acceptability Curve reports the same ranking 

of alternatives as in the simulation informed by the Primary cohort (Figure 22). 

 

Figure 20: Incremental Cost-Effectiveness Plane, Secondary Cohort 
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Figure 21: Density Plot of Incremental Net Monetary Benefit, Secondary Cohort 

 

Figure 22: Cost-Effectiveness Acceptability Curve, Secondary Cohort 
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5.5 Discussion 
The results of the simulation strongly indicate that testing strategies utilising EER4 

have the potential for delivering better outcomes to early ER+ breast cancer patients 

than the current standard of care. While the estimates are conditional on the 

uncertainty surrounding the clinical performance of the 4-gene signature, they 

suggest that the introduction of EER4 into routine care could deliver marginally 

superior survival and quality of life at a lower cost, compared to PREDICT alone.  

The two main sources of uncertainty are the operational cost of the 4-gene 

signature, and the actual benefit (expressed as a hazard ratio) of identifying 

Endocrine therapy responders early. The results from the Probabilistic One-way 

Sensitivity Analysis point to positive net monetary benefits even in extreme values of 

the probabilistic distributions of the test cost and hazard ratio. Consequently, even if 

the current estimates for the test cost and hazard ratio are to be revised in view of 

new research, the predictions formulated by the simulation should nevertheless hold 

in terms of ranking of alternatives. 

The estimated benefits of OncotypeDX with PREDICT are limited both in magnitude 

and in variability: this appears to be a consequence of the relatively small role of the 

test in the simulation: only patients with a PREDICT chemotherapy score between 

3% and 5% are tested, thus limiting the number of tests administered to around 15% 

of the simulated cohort. The decision to simulate OncotypeDX in this manner might 

not fully reflect its actual clinical use and testing rates, although it is in line with the 

findings of Chapter 4. In addition, the simulation assumed a lower price for 

OncotypeDX compared to the listed commercial price. 

In line with expectations for economic evaluations of decision-making tools, the 

simulation estimates relatively small marginal benefits compared to the standard of 

care: treatment options are the main sources of potential health benefits, and since 

treatment options are shared among testing alternatives, the test benefits originate 

from patients switching treatment option under the recommendation of the test. 

Thus, it appears that the main factors driving the ICERs and net monetary benefits 

are the costs of testing, including costs net of treatment savings. 

Interestingly, even though PREDICT alone is assumed to be a costless testing 

strategy (net of treatment), the base case results of the simulation estimate EER4 to 
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be less expensive in absolute terms, reflecting the fact that fewer chemotherapies 

are administered compared to PREDICT alone. 

Molecular testing in breast cancer offers the opportunity to improve survival of 

patients by selecting the most appropriate course of treatment: sparing 

chemotherapy when unnecessary and identifying early those who might benefit from 

it the most. In turn, economic evaluation has the fundamental role of guiding 

potential decision-makers towards a more cost-effective use of resources through 

the examination of new technologies.  

The analysis suggests that new technologies based on the measurement of pre- and 

on-treatment markers can potentially deliver better clinical outcomes at a lower cost, 

but further research and data collection is needed to reduce the uncertainty of their 

benefits and costs, and to establish exactly their clinical guidelines. 

The results of this cost-effectiveness analysis hinge on specific assumptions for their 

general validity: in particular, that PREDICT is reflective of the current standard of 

care, and that the semi-Markov process used in the simulation is a sound 

approximation of the treatment pathway. Following guidelines, necessary steps have 

been taken to reduce potential weak spots in the simulation and bias in the data. 

Extensive sensitivity analysis has been carried out to ensure the proper 

characterization of uncertainty surrounding the input parameters, and appropriate 

confidence intervals were selected when dealing with cost parameters of EER4-

based strategies. 

This economic evaluation adds to the growing list of cost-effectiveness analyses that 

have shown the potential of using Real-World Data, in particular populating a model 

with routinely collected patient data. This relatively fast way of accessing large 

amounts of data, coupled with the potential for expanding this simulation, offers the 

possibility of generating an analytical platform capable of performing the early 

evaluation of decision-making tools for any breast cancer subtype. 
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6. Modelling Treatment before Surgery: the Impact of a 
Predictive Test on Breast-Conserving Surgery Rates 

 

6.1 Introduction 
The previous chapter explored the effects of introducing a predictive molecular 

marker to clinical care. In particular, it investigated the impact that EER4, which 

predicts response to neoadjuvant endocrine therapy and also long-term outcomes, 

can have on chemotherapy treatment rates. This chapter explores how a technology 

such as EER4 can affect patient in the pre-operative settings, and how it changes 

breast-conserving surgery rates. By combining the effects that this technology can 

have on a patient pathway before and after surgery, the analysis estimates the 

overall costs and benefits that a predictive molecular marker can have on routine 

NHS operations. 

Due to the experimental nature of the analysis, the simulation platform required has 

to be flexible and intuitive: a Discrete-Event Simulation (DES) model is able to fill this 

role due to its high customisability and the potential to model complex situations at 

an individual level, compared to Markov models or decision-tree models (120). 

Instead of health states, as seen in Chapter 5, a DES model makes use of 

trajectories: a simplification of patient pathways. On these trajectories, patients are 

seen as entities experiencing events, such as a recurrence, test decisions, or 

surgery. The simulation output takes the form of an event list, which details the type 

of events experienced, the simulated time they happened, and the path that the 

virtual patient or disease has taken (121). This event list can then be used to 

compute the resource utilisation and health outcomes, which in turn provide an 

estimate of cost-effectiveness.  

As mentioned, the analysis will be experimental and explorative, because of the 

limited data available pertaining this particular area, and the issue of simulating 

pathways which are not present in routine care. Therefore, the final cost-utility 

estimates are to be interpreted within this context and its assumptions. 
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6.2 Methods and Data 
A time-dependent, non-resource-constrained, individual discrete event simulation 

model was developed to estimate the resource utilisation and health outcomes of 

three alternative strategies for guiding treatment decision in a representative Scottish 

cohort of ER+ early breast cancer patients. The model was developed within R 

Programming Language (14) and the software package “simmer” (122). The full 

code for executing the model is available in Appendix 2. The three strategies are 

described as follows: 

1. Standard of Care: The patient is diagnosed and then scheduled for surgery. 

Depending on the size of the tumour, the type of surgery is assigned: if less 

than or equal to 2 cm, the patient undergoes breast-conserving surgery 

(lumpectomy), if the tumour is larger than 2 cm the patient undergoes radical 

mastectomy and immediate reconstructive surgery. In the adjuvant setting, 

the patient proceeds with the strategy “PREDICT only” as described in 

Chapter 5. 

2. Neoadjuvant Letrozole for All: The patient is diagnosed and then treated with 

Letrozole until surgery. At the end of treatment, the patient undergoes 

surgery, and the type of surgery is determined by the size of the tumour after 

treatment. In the adjuvant setting, the patient proceeds with strategy 

“PREDICT only” as described in Chapter 5. 

3. EER4 for all: The patient is diagnosed, treated with Letrozole for 14 days, and 

tested for response status. If the patient is a Predicted Responder, they 

continue treatment until scheduled for surgery, and the type of surgery is 

determined by the size of the tumour after surgery. If they test as Predicted 

Non-responder, the patient is scheduled for surgery and surgery is 

determined by initial tumour size. In the adjuvant setting, the patient proceeds 

with the EER4 only strategy as described in Chapter 5. 

Figure 23 provides a visual breakdown of the strategies and model structure.  
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Figure 23: Flow diagram of Strategies and Model Structure 

The model was developed from the payer perspective of the National Health Service 

and assumes a life-time horizon by calculating cost and outcomes of the 

neoadjuvant setting and surgery, and then integrating them with the results found 

with the CEA in Chapter 5. The model assumes that breast-conserving surgery 

(lumpectomy) provides a marginal increase in the quality of life of the patient, over 

the alternative of radical mastectomy. Once converted in QALY, the effect of 

lumpectomy is discounted yearly at 3.5% and added to the total number of QALYs 

calculated in Chapter 5, according to the appropriate strategy. The costs of 

neoadjuvant treatment and surgery are incurred immediately and are not discounted. 

The resulting costs are added to the sum estimated in Chapter 5, according to each 

strategy. The cost of testing with EER4 is consequently already included in the 

estimates from the Markov model. All prices were captured in 2016-pound sterling. 

As for the model input parameters, rates of decrease and increase in tumour volume 

based on therapy response were obtained from the Edinburgh Neoadjuvant Cohort 

used for developing EER4 (68). Tumour volume distribution was based on the NHS 

Lothian cohort described in Chapter 3. Waiting times from diagnosis to surgery were 

extracted from Redaniel et al. 2013 (123). There is no definitive consensus on the 

duration of neoadjuvant treatment, however most patients are treated preoperatively 

for 3 to 6 months (124, 125), and a probabilistic distribution was fitted to 
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appropriately reflect this uncertainty and variation. The cost of neoadjuvant 

endocrine therapy was obtained from the BNF (99), while the cost of surgery is 

extracted from Grant et al. 2018 (126) and NHS Reference Costs (100). The quality-

of-life difference between undergoing lumpectomy and mastectomy is taken from 

Norum et al. 1997 (127). The model assumes that 70% of this patient population 

responds to neoadjuvant Letrozole, and that EER4 operates with 96% sensitivity and 

94% specificity, as per Turnbull et al 2015 (68). 

To reflect the overall uncertainty of the model, probabilistic sensitivity analysis was 

conducted using a Monte Carlo simulation to sample from distributions assigned to 

model input parameters. Similarly to the input parameters of the Markov model in 

Chapter 5, probability distributions were fitted to each input parameter using mean 

values and shape parameters, according to the specific type of distribution. A list of 

the input parameters and associated distributions can be found in table 11. 

Table 11. Model Input Parameters 

Parameter Base 
case 

Shape 
Parameters 

Notes Source 

Tumour size at diagnosis 
in millimetres 

25.1 Log normal 
S1: 3.1 
S2: 0.49 
 

 Chapter 3 

Decrease in tumour size 
for endocrine therapy 
responders 

15.5 Log normal 
S1: 2.63 
S2: 0.54 
 

 Turnbull et al 
2015 (68) 

Increase in tumour size 
for endocrine therapy 
non-responders 

12.1 Log normal 
S1: 2.33 
S2: 0.58 
 

 Turnbull et al 
2015 (68) 

Waiting time from 
diagnosis to surgery 
(days) 

22.5 Log normal 
S1: 3.08 
S2: 0.3 
 

 Redaniel et al 
2013 (123) 

Time spent on 
neoadjuvant treatment 
(days) 

150 Normal 
S1: 150 
S2: 30 
 

 (124, 125) 

Cost of breast conserving 
surgery 

£ 6,157 Log normal 
S1: 8.699 
S2: 0.2 
 

 (99,100,126) 

Cost of mastectomy plus 
breast reconstruction 

£ 10,939 Log normal 
S1: 9.3 
S2: 0.03 
 

 (99,100,126) 

Cost of EER4-guided 
adjuvant therapy 

£ 13,634 Log normal Total cost of using 
EER4 to guide 
adjuvant therapy, as 

Chapter 5 
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S1: 9.52 
S2: 0.06 
 

derived in the semi-
Markov model 

Cost of SOC-guided 
adjuvant therapy 

£ 13,948 Log normal 
S1: 9.543 
S2: 0.05 
 

Total cost of SOC-
guided adjuvant 
therapy  

Chapter 5 

QALY difference between 
BCS and mastectomy 

0.03 Log normal 
S1:    -3.056 
S2: 0.5 
 

 Norum et al 
1997 (127) 

QALY of EER4-guided 
adjuvant therapy 

7.98 Log normal 
S1: 2.076 
S2: 0.04 
 

Total QALY of EER4-
guided adjuvant 
therapy 

Chapter 5 

QALY of SOC-guided 
adjuvant therapy 

7.69 Log normal 
S1: 2.039 
S2: 0.03 
 

Total QALY of SOC-
guided adjuvant 
therapy 

Chapter 5 

 

Given the small timeframe where the discrete event simulation operates, several 

simplifying assumptions were made regarding risks and procedures. The model 

assumes that patients undergoing lumpectomy have the same risk of recurrence of 

those undergoing mastectomy, all things being equal. Moreover, risk of death before 

surgery due to breast cancer or other competing risks were not considered. The 

model assumes that all surgeries, regardless of type, are always successful and the 

patient incurs no complications. Finally, the patients are assumed to have perfect 

compliance with respect to treatment decisions, and that breast reconstruction 

surgery takes place immediately after every mastectomy. 

6.3 Summary of Model Assumptions 
The following list is a summary of important assumptions and implications used 
throughout the economic model. 

• 70% of the population responds to Letrozole vs 30% non-responders 
• Treating responders with Letrozole will decrease tumour size, according to 

time spent on therapy and probabilistic rate of change 
• Non-responders’ tumour size will increase, according to time spent on therapy 

and probabilistic rate of change 
• Medical imaging or other means to measure changes in tumour volume after 

selecting treatment are not considered 
• Letrozole is the only neoadjuvant systemic therapy course  
• The threshold for selecting mastectomy or lumpectomy is 20mm 
• Surgery failures or re-excision are not considered, as well no sequential 

surgeries 
• Mastectomies are immediately followed by breast reconstruction 

Equivalent risk of recurrence between mastectomy and lumpectomy 
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6.4  Results 
The probabilistic base case yields 7.89 QALY per patient for the Standard of Care, 

7.93 for Neoadjuvant Endocrine for all, and 8.27 for EER4, at a respective average 

cost per patient of £24216, £24147, and £23755. The costs are inclusive of the cost 

of surgery, neoadjuvant therapy where appropriate, testing, and the cost of adjuvant 

therapy as estimated in Chapter 5. Similarly, the health outcomes are a combination 

of the QALY as calculated in Chapter 5 and the QALY estimated through the 

Discrete-Event Simulation. Strategy 2 (Neoadjuvant endocrine therapy for all) 

produces an ICER of -1079£/QALY over the Standard of Care, while EER4 an ICER 

of -1208£/QALY, as both strategies are more effective and less expensive than the 

Standard of Care.  Assuming EER4 is a perfectly accurate test (i.e. sensitivity and 

specificity both equal to one), the ICER decreases to -1240£/QALY. 

In terms of mastectomy displacement in favour of lumpectomy, Neoadjuvant 

endocrine therapy for all produces a delta of 8.7%, while EER4 a delta of 16.3%, 

with average savings per patient of £416 and £779, respectively. Using a cost-

effectiveness threshold of 20,000£/QALY, EER4 has a 79.7% probability of being 

cost-effective against the Standard of Care, while neoadjuvant endocrine therapy for 

all 28.3%. Figure 24 shows a sample of 1000 simulations plotted on the incremental 

cost-effectiveness plane (in red, Neoadjuvant Endocrine Therapy for All, in blue, 

EER4). 
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Figure 24: Incremental Cost-Effectiveness Plane 

 

The deterministic base case, which utilises the mean of the probabilistic distributions 

of the input parameters, yields an ICER of -1521£/QALY and -1856£/QALY for 

Neoadjuvant endocrine therapy for All and EER4, respectively. Figure 25 displays 

the results of the deterministic one-way sensitivity analysis on the EER4 ICER: the 

extent to which the ICER is affected by varying key input parameters one at a time. 

Input parameters are varied by adding or subtracting 10% of their mean value. The 

size of the bar displays the extent to which the ICER is affected. 
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Figure 25: One-way Sensitivity Analysis, EER4 

Tumour size and the cost of mastectomy are the input parameters that affect the 

deterministic base case ICER the most: by either reducing the size or the cost, the 

ICER moves towards the zero, making the potential advantages of EER4 over the 

Standard of Care less competitive.  

 

 

6.5 Discussion 
The results of the discrete-event simulation corroborate the results of the cost-

effectiveness analysis presented in Chapter 5. Introducing EER4 in routine care has 

the potential for better health outcomes and reduced costs compared to the standard 

of care. Under the model assumptions, testing with EER4 reduces the overall 

number of mastectomies, thus favouring breast-conserving surgery, which in turn 

exhibits lower costs and marginally better quality of life. Furthermore, assuming a 

perfect test changes the probabilistic ICER by less than 3%, indicating that further 
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research to improve the accuracy of the test would not likely be a cost-effective use 

of resources. 

The model assumes equivalent risk of recurrence between mastectomy and breast-

conserving surgery. Historically, women undergoing breast-conserving surgery likely 

had a higher risk of recurrence compared to radical mastectomy (128), but recent 

evidence shows equivalent risks or even superiority in terms of recurrence, survival, 

and quality of life (129, 130).  

Moreover, it appears that giving every patient neoadjuvant endocrine therapy might 

be a superior strategy compared to the Standard of Care. These results should be 

interpreted with caution, given the strong assumptions under which the DES model 

operates. Firstly, it should be noted that effectively there are virtually only two 

pathways that the patient can follow: either proceeding straight to surgery or being 

treated with Letrozole before surgery. Other types of treatment, such as neoadjuvant 

chemotherapy, or switching to other hormone medications have not been 

considered. Secondly, the model is mainly focused on the displacement of 

mastectomies in favour of breast conserving surgery, thus not taking into account 

other factors that might influence the cost-effectiveness of the testing strategies 

considered here; for example, some patients might achieve pCR with neoadjuvant 

therapy alone. Furthermore, the simulation has not examined strategies that include 

devices that can aide with treatment decision: in the case of neoadjuvant endocrine 

therapy for all, a non-responding patient might interrupt Letrozole earlier than 

expected because medical imaging might indicate that the tumour is not responding.  

As seen in Figure 25, tumour size has the largest effect of all parameters on the 

ICER and this is due to the combined effect of two assumptions: firstly, the way 

tumour size changes based on response status and therapy, and secondly, the 

assumption that mastectomies are followed by breast reconstruction, and are thus 

more costly than breast conserving surgeries. For the first assumption, as long as 

the starting tumour size is relatively close to the surgery threshold of 20mm, the 

simulation will output a greater lumpectomy rate overall due to the higher proportion 

of responders and the fact that the tumour size of a treated responder can only 

decrease. A higher proportion of lumpectomies affects the overall costs, due to the 

cost differential between breast conserving surgery and mastectomy, with the latter 
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being more expensive as the model assumes 100% rate of breast reconstruction 

following surgery. This assumed rate is higher than observed rates: in Scotland the 

rate of breast reconstruction surgery following mastectomy is 30%, as of 2017 (131). 

Yet, the model assumes a 100% surgery rate for simplicity and for the limitations of 

HRQoL difference estimates available in the literature. As it can be seen in the 

asymmetry of the effect of tumour size on the ICER, starting values for size that are 

above the threshold have a smaller impact (as there are more responders, and 

tumour size will decrease for responders), compared to values below the threshold, 

where a higher proportion of the non-responders is more likely to receive breast 

conserving surgery, even if the tumour increases in size. The results of this 

interaction between assumptions might create a competitive advantage for EER4-

guided therapy which is unlikely to be observed in reality.  

While the primary focus of the DES model is on surgery displacement, the analysis 

did not include the potential for unsuccessful surgeries or re-excisions. As of 2017, 

Scotland’s re-excision rate is on average across all health boards 14.5% (131). 

Moreover, the assumption of a fixed threshold for tumour size that determines 

whether a patient can be treated with breast conserving surgery or mastectomy is 

highly likely to oversimplify the reality of this kind of treatment decision. While breast 

conserving surgery for lesions greater than 40mm is unlikely, there is no clear and 

fixed cut-off value, as the decision depends on several factors, including size of the 

lesion relative to breast volume, position of the lesion, comorbidities and frailty of the 

patient. Given the experimental and explorative nature of this model, adding the 

effect of less-than-perfect surgeries might have concealed the pure effects from the 

testing strategies, but further and more detailed analysis on this type of biomarkers 

should reasonably include these effects. 

The difference between the estimates of the probabilistic base case and the 

deterministic base case, while small in magnitude and inconsequential to strategy 

ranking, still reveals the inaccuracy and potential bias of not including the full range 

of values that an input parameter might take on, which in this case causes an 

overestimation of the saving generated by the alternatives. Nevertheless, identifying 

which input parameters affect the ICER the most and in which direction can assist in 

defining the most cost-effective role for the technology when introduced to routine 

care. 
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The model could benefit from further improvements: as it is, the rate at which the 

tumour volume decreases or increases due to therapy response is only time-

dependant. Both tumour volume and tumour rate of change are drawn from 

probabilistic distributions, but the draws are independent; more realistically, the two 

distributions could be correlated, making the rate of volume change time-dependant 

and volume-dependant.  

Moreover, using the results from the Markov simulation and combining them with the 

estimates of the DES presents some issues. PREDICT is used by the Markov model 

to simulate the current standard of care, by approximating all of the investigative 

procedures and the decisions that the patient care team would undertake to 

determine which treatment is most appropriate for the patient condition. Yet, 

PREDICT is not currently validated for patients treated neoadjuvantly, which is the 

specific population that this study focuses on. Efforts in trying to validate PREDICT 

for patients treated neoadjuvantly using data from the Scottish Cancer Registry data 

are currently underway, but accuracy rates close to PREDICT in the post-operative 

setting have yet to be achieved (132). 

Overall, the simulation indicates that predictive tests of response to neoadjuvant 

therapy are likely to be a cost-effective alternative to either immediate surgery or 

unguided therapy for the treatment of ER+ early breast cancer. The results of the 

simulation, while robust, are to be viewed in the context of the assumptions 

described in the methods. Prospective data is needed to reduce uncertainty and 

accurately define the operational parameters of the molecular test, yet the early CEA 

indicates that potential savings and better health outcomes are likely to be expected 

from this kind of technology once introduced in routine operations.  
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7. Conclusion 

This thesis had three aims: firstly, to provide an overview of the current research 

landscape for predictive biomarkers within the neoadjuvant context of breast cancer; 

secondly, to estimate the likely impact on the NHS of introducing this type of 

technology to routine care; lastly, to generate cost-effectiveness evidence through 

the use of real-world data, in the form of patient records.  

7.1 Summary of Findings 
This section provides a summary of the findings for each chapter: 

• In Chapter 2, the literature review investigated the expanding research 

interest in novel biomarkers that can predict breast cancer response to 

neoadjuvant treatment. The review found a wide range of technologies and 

approaches, with varying degrees of accuracy and predictive capabilities. The 

review highlighted the need of conducting early cost-effectiveness analysis for 

this type of technologies to guide and select the most promising biomarkers 

as potential decision-making tools in clinical practice. 

• Chapter 3 provided the context surrounding the use of real-world data in 

economic evaluation. The chapter presented the dataset used by the 

modelling platform and how the dataset was derived, along with a description 

of the data sources. The chapter also offered an explanation of the reasons 

why the dataset was divided in two cohorts, based on risk stratification and 

historical clinical practices. Details on the risk stratification are provided, which 

include the use of PREDICT and of the proxy score of OncotypeDX, GR-PR. 

• In Chapter 4, the use of real-world data is demonstrated through a budget and 

decision impact analysis of OncotypeDX in NHS Lothian. The findings 

indicated that testing with OncotypeDX likely reduces the number of adjuvant 

chemotherapies given to breast cancer patients, but the current commercial 

cost of the 21-gene panel might be well above parity in terms of treatment 

displacement. While the results were in line with previous budget impact 

studies, the analysis was greatly affected by low-testing rates. 

• In Chapter 5, the semi-Markov model provided the early cost-effectiveness 

estimates of adopting a biomarker, which is predictive of neoadjuvant therapy 

response, in NHS routine operations. The probabilistic estimates of the ICER 
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indicated potential net savings compared to the standard of care. The 

probabilistic one-way sensitivity analysis strongly suggested that the 

estimates for incremental net monetary benefits are likely to be robust for an 

appropriately wide range of values with respect to the cost of the biomarker 

and the benefit of identifying early which patients will respond to therapy, and 

which patients do not. The findings also included the results of the analysis 

when run with a higher-risk cohort. 

• In Chapter 6, a Discrete Event Simulation compared the displacement of 

mastectomies in favour of breast conserving surgery under three different 

strategies: standard of care, neoadjuvant endocrine therapy for all, and 

neoadjuvant endocrine therapy guided by EER4; the results were then 

integrated with the cost-effectiveness estimates from the semi-Markov model. 

The findings corroborated the results of Chapter 5, by indicating the potential 

for net cost saving compared to the standard of care. 

The analytical framework of the semi-Markov model and of the Discrete-Event 

Simulation presented in this thesis both highlighted the potential benefits of 

introducing to NHS routine practices a novel biomarker that can predict therapy 

response for early-stage breast cancer patients. The cost-effectiveness estimates 

indicate that adopting a technology as the EER4 biomarker has the strong potential 

for improved health outcomes for ER-positive breast cancer patient, and for cost 

savings for the NHS. 

 

7.2 Strengths and Limitations 
The literature review of current molecular markers predicting neoadjuvant therapy 

response in early breast cancer has examined the extent of the research field of 

these technologies still under development. While the review was not fully 

comprehensive in its scope, narrowing the search to molecular markers was 

conducive to the overall purpose of this thesis. The markers examined used similar 

technologies (such gene-sequencing, IHC, FISH) as the one employed by EER4 and 

potentially occupy a similar clinical context. It could be argued that with the 

appropriate assumptions and adaptations, any one of the markers presented in the 

review could be evaluated by the models in Chapter 5 and 6. This would have not 
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been the case for markers that are not molecular, for example imaging markers. The 

review is arguably timely and novel with respect to the growing research interest in 

this topic; to the author’s knowledge, only one other literature review has examined 

the field: Tae et al. (2018) adopted a broader scope by including marker types other 

than molecular, and included commercially available adjuvant assays repurposed for 

the preoperative setting (133). Finally, even though this thesis mainly focuses on 

hormone-positive early breast cancer, the review also highlighted the research gap 

and clinical need with respect to other breast cancer subtypes. In particular, triple 

negative breast cancer, characterized by a worse prognosis in general compared to 

other subtypes, has still limited treatment options, and even fewer predictive 

markers. 

The use of routine patient data in a cost-effectiveness analysis places this study 

among the increasing number of economic evaluations that opt to integrate real-

world data in their estimates. The large number of patients, paired with the 

appropriate inclusion criteria, produced a study cohort that is representative of 

Scottish breast cancer patient population. In turn, this allowed to produce credible 

estimates of cost-effectiveness of a predictive test, which could potentially be more 

reflective of clinical practice, compared to the use of literature sources alone or using 

RCT data. Concerns remain regarding the risk of bias: either from the lack of 

randomization, or from the selection criteria.  

Moreover, access to patient data presented several challenges: due to disclosure 

risks, the breadth and depth of the data requested had to be scaled down from the 

original proposal of the study. Patient privacy and disclosure risk consideration are of 

the utmost importance in any data request application. This, paired with processing 

times, has limited the amount of information that could be used for this study. In 

particular, three key pieces of information were not present on the final dataset: 

information on recurrence (time to recurrence event, type of recurrence), information 

on chemotherapy assignment, and information on neoadjuvant treatment. 

Furthermore, other data sources of interest would have been beneficial to the 

analysis if linked to the cancer patient cohort. In particular, detailed information on 

chemotherapy prescriptions and administration, and the Prescribing Information 

System, which stores data on all community prescriptions in Scotland, including anti-

cancer hormone therapy. The consequences of the lack of this information is 
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discussed in the paragraph concerning the strength and limitations of the semi-

Markov model.  

The budget and decision impact analysis of OncotypeDX served as preliminary 

retrospective demonstration of the use of RWD. It revealed that the actual use of the 

21-gene assay differed from the guidelines, and that despite the analytic limitations 

due to low testing rates, the chemotherapy savings were not enough to achieve 

parity with the cost of testing with OncotypeDX. As mentioned in Chapter 4, the 

analysis would have benefitted from higher testing rates, and an investigation of 

health outcomes would have been possible with enough follow-up and data on 

recurrence rates. A potential revision to the analysis is discussed in section 7.3, 

Future Research.  

Throughout the study, the selection for intermediate values of OncotypeDX 

recurrence score do not reflect current clinical research practice. In section 3.4, 

which presents details surrounding risk stratification and the use of GR-PR as proxy 

for the OncotypeDX recurrence score, a value of 18 on the recurrence score was 

selected for separating low and high risk, and as a consequence the chemotherapy 

recommendation. At the time of the analysis, OncotypeDX recurrence score intervals 

of less than 18 for low-risk, between 18-30 for intermediate risk, and greater than 30 

for high risk was still commonly used (also called “commercial cut-offs”), but intervals 

of 11 to 25 were already being established as the new standard, as reflected by the 

specifications of the TAILORx trial and the RxPONDER trials (134, 135). The 

decision to use the cut-off value of 18 was made for consistency with the 

assumptions of the analysis performed in Chapter 4, and due to the performance of 

the GR-PR scoring system. Nonetheless, the results of these trials and different 

recurrence score cut-off values might affect the results presented in this study. 

The TAILORx study was a large, randomized, phase III clinical trial that aimed to 

determine the benefit of adjuvant chemotherapy for breast cancer patient fitting the 

eligibility criteria of OncotypeDX who had intermediate recurrence score values (with 

range 11-25). The study found that women with an intermediate recurrence score 

can be safely spared from chemotherapy and treated with endocrine therapy alone, 

while those with low or high recurrence scores should receive tailored treatment 

based on their individual risk profile.  
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The RxPONDER study was a large, randomized, phase III clinical trial that aimed to 

determine the benefit of adjuvant chemotherapy for women with hormone receptor-

positive, HER2-negative, node-positive breast cancer who had low OncotypeDX 

recurrence score values (≤25). The study found that women in this group who 

received endocrine therapy alone had similar rates of invasive disease-free survival 

at 5 years compared to those who received both endocrine therapy and 

chemotherapy. However, in women with a recurrence score of 26-100, the addition 

of chemotherapy to endocrine therapy was associated with improved invasive 

disease-free survival at 5 years. The RxPONDER study's findings have important 

implications for the treatment of node-positive breast cancer patients with low 

OncotypeDX recurrence scores. These patients can now be spared the toxicity and 

costs of chemotherapy and treated with endocrine therapy alone. However, in those 

with high recurrence scores, the addition of chemotherapy may still be necessary to 

reduce the risk of recurrence. 

The results and implications from these trials can potentially affect the output of the 

semi-Markov model: different OncotypeDX intermediate values affect the decision to 

treat with endocrine therapy alone or endocrine plus chemotherapy, thus affecting 

chemotherapy displacement, which in turn influences both the long-term recurrence 

rates and treatment costs. Given the evidence from the TAILORx and RxPONDER 

trials, and the performance of GR-PR for the 11-25 recurrence score interval, 

potential future analysis should incorporate new threshold values. Yet, given the 

overall small role that OncotypeDX plays in the economic model presented in this 

thesis, the change in threshold values would foreseeably have a negligible impact on 

the INMB produced by the strategy PREDICT + OncotypeDX, and thus would not 

change the ranking of the other strategies. 

The model presented in Chapter 5 displays a robust framework, informed by a 

consolidated model structure, that takes account of the different outcomes between 

local and distant recurrence, and it reflects the potential adverse effects of 

chemotherapy, in terms health effects (as congestive heart failure and acute myeloid 

leukaemia), and cost effects (as chemotherapy toxicity). The use of PREDICT as a 

driver for recurrence rates has the advantage of providing the possibility to replicate 

the analysis in other population contexts, needing only the key variables for the 

calculation of PREDICT. Furthermore, the inclusion of the Secondary Cohort in the 



96 
 

analysis shows how the cost-effectiveness estimates are robust with respect to a 

higher-risk population, where the chemotherapy treatment rates are supposedly 

higher, and thus the potential benefits of identifying responders early become 

comparatively smaller (reducing the estimated net cost-savings of the predictive 

markers).  

At the time of writing, this thesis is the first study to perform a practical application of 

the conditional net benefit frontier as described in section 5.3.5 with the POSA 

methods in McCabe et al. 2020 (119). This variation of POSA utilizes a two-stage 

Monte Carlo simulation that, while computationally demanding and often requiring 

coding the model around it, allows for examining the likelihood of extreme and 

decision-switching values and provides an intuitive visualization of the results. In this 

specific example, the conditional net benefit frontier strongly suggested that even at 

unlikely values of the probabilistic distribution of EER4 costs and effects (reflecting 

the uncertainty surrounding a developing technology), the strategy would still deliver 

the highest net monetary benefits.  

The literature sources used to inform the measures of Health-Related Quality of Life 

might present a point of weakness for the analytic model: the baseline utility values 

date back to a 1998 EQ-5D survey in the UK and these values might not reflect 

present baseline utility values anymore (102). The estimated utility decrements for 

breast cancer-related health states might suffer from the same problem: Campbell et 

al 2011 (103) derived the HRQoL from three trials, other economic evaluations, and 

patient preferences studies (106, 136-140); all dated pre-2006. In this timespan, 

clinical pathways and treatment practices have greatly changed for early breast 

cancer patients, and these utility values might not be an appropriate reflection of 

patient experience in the present anymore. There exists a large degree of 

heterogeneity (both in methods and results) among utility estimates for early breast 

cancer, making it difficult to select appropriate and up-to-date values in an economic 

evaluation (141). The rationale for choosing the values used in Campbell et al 2011 

in this study lies mainly in the population context and the focus on the consequences 

of chemotherapy and its displacement.  

As mentioned previously, the lack of access to recurrence data presented a 

challenge for the analysis: not being able to derive internal time-to-event estimates, 
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along with the type of recurrence, weakens the internal validity of the transition 

probabilities used in the semi-Markov model. The use of PREDICT mitigates this 

problem, given its established validity, but internally consistent event rates would 

have been preferable. On the subject of access to data, the analysis had no 

information on which patients were treated in the neoadjuvant setting, whether with 

endocrine or chemotherapy; this resulted in adopting several underlying assumptions 

that increase the uncertainty of the estimates: in particular, the model takes the 

PREDICT estimates at face value, regardless of the true neoadjuvant treatment 

status (which cannot be derived with the data available). PREDICT is currently not 

validated for patients treated with neoadjuvant therapy: holding other things equal, 

the algorithm assign the same risk profile for tumours of the same size at surgery, 

whether it was the original size or it was shrunk through neoadjuvant chemotherapy.  

Having access to individual-level data on neoadjuvant treatment would have 

improved costing estimates as well. The model currently uses the estimates from the 

OPTIMA trial to assign the type of chemotherapy that patients receive: access to 

individual-level chemotherapy data could have improved the estimation of costs and 

toxicity event rates, producing a more accurate estimate of cost-effectiveness.  

Access to all three sources of missing information would have meant that the model 

could have directly compared the difference in recurrence (and other events) rates 

between patients treated with neoadjuvant therapy versus patients treated in the 

adjuvant setting only, with or without adjuvant chemotherapy. Furthermore, given the 

lack of patient-level neoadjuvant treatment information, the semi-Markov model 

could not simulate accurately the preoperative setting and instead relies on either 

aggregate estimates or subsequent input from the DES model in Chapter 6.  

The semi-Markov model was developed in base R language, with the explicit 

intention of adding as few dependencies as possible and avoiding using a Markov 

modelling-specific software package. This decision was taken for two reasons: the 

code would be transparent and reproducible regardless of updated or deprecated 

dependencies, and the model would not need to rely on “black box” processes, 

where black box refers to the inability or difficulty for the user to understand how the 

inputs are transformed in the final outputs. Markov modelling-specific software 

packages certainly have their merits, but coding the model from the start in base 

language had great training and learning value.  
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A similar choice could not be made for the Discrete Event Simulation: running this 

type of simulations in R, while certainly possible, comes with its own specific issues. 

DES can be either event-oriented or trajectory-oriented: event-oriented simulations 

are optimized for simulating several different types of events and maintaining a time-

stamped event-list; trajectory-oriented simulations focus on a smaller pool of 

possible events and are optimized for measuring time-to-events accompanied by a 

known number of final branches (“arrivals”). Base R language is efficient at matrix 

multiplication, which can be leveraged for event-oriented simulations, but 

unfortunately the modelling of the neoadjuvant setting for early breast cancer is 

better represented by trajectory-oriented simulations (which base R language is not 

efficient at or practical for). For this reason, the “simmer” package was selected, 

which enables efficient trajectory-oriented simulations in R by integrating C++ code 

in the background. This meant a trade-off between accepting a black box process for 

the convenience of running code in a familiar and known programming language.  

Beyond software considerations, the simulation itself is presented as a novel proof-

of-concept aimed at modelling neoadjuvant treatment in early breast cancer: a 

conceptually intuitive platform that can be further adapted for the inclusion of other 

events and adverse effects associated with therapy. As covered in the discussion 

section of Chapter 6, several simplifying assumptions were made, and as such the 

model is not comprehensive of all the consequences of treating in the neoadjuvant 

setting. The presented modelling platform could have been improved by the 

seamless integration of a two-step modelling approach (between the DES and the 

semi-Markov model) that is fully internally consistent. However, the lack of access to 

patient-level data regarding treatment prevented the derivation of input parameters 

from RWD, which would have ensured consistency between the DES model and the 

concepts presented in the thesis. Furthermore, this would have enabled a smooth 

integration between the DES model and the semi-Markov model. 

To achieve a seamless two-step modelling platform, an early breast cancer patient 

cohort treated neoadjuvantly with aromatase inhibitors, along with the associated 

follow-up data, outcome data, and surgery information, would have been necessary 

to populate the models fully. With timely delivery of such data, several of the 

simplifying assumptions made in the DES model could have been avoided, such as 

the assumptions surrounding re-excision and breast reconstruction rates. Overall, 
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the output of the DES model would have been more representative of the current 

experience and outcomes of breast cancer patients being treated in Scotland.  

On the semi-Markov model side, the availability of outcome data (recurrence, death, 

and other relevant endpoints) would have eliminated the need for reliance on 

PREDICT, prevented potential spill-over effects between states, and ensured 

consistency with the DES model. The models could have been run in a more intuitive 

chronological order, with outcomes and events flowing from one model to the other 

seamlessly. 

Future iterations of the model should aim to use the appropriate type and quantity of 

data to achieve a seamless and fully internally consistent two-step modelling 

approach.  

Overall, the results of the two models are reflective of the assumptions under which 

the early cost-effectiveness analysis was carried out, and they characterize the 

uncertainty surrounding a technology under development and its likely impact on 

NHS routine practices. Whenever underlying assumptions were made, appropriate 

justification was provided. The choices related to these assumptions, along with the 

issues associated with structural uncertainty, remain a challenge in general for any 

research design that aims to accurately model any clinical pathway. Yet, these 

choices are of extreme importance for early CEA in particular: model structures for 

novel technologies have a near-infinite number of permutations, and thus the results 

of a simulation are always dependent on the analyst choices and open to bias. To 

mitigate this, extensive sensitivity analysis has been implemented to ensure a 

reasonable degree of confidence in the results, along with a pragmatic approach to 

interpretation. 

In conclusion, this thesis not only presents the results of an early cost-effectiveness 

analysis, but it is a reflection of a path of learning and training from the start of the 

study until thesis submission, represented in modelling decision, the use of data, and 

programming choices. 
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7.3 Future Research 
Work is underway to adapt EER4, which measures the level of expression of 4 

genes before and on-treatment, into a more clinically accessible biomarker: EA2Clin 

(142). This novel test is immunohistochemistry-based and integrates the 

measurement of two protein, before and on-treatment, with clinically observable 

variables. As EA2Clin is IHC-based, it would bypass the need of expensive gene-

level measurement equipment and allow for it to be performed in local pathology 

laboratories. In light of these developments, and once EA2Clin is clinically validated, 

the cost-effectiveness estimates from this thesis should be revaluated, and the 

model adapted for assessing EA2Clin. The comparison between the early cost-

effectiveness estimates of EER4 and those of EA2Clin would potentially serve as an 

example of the impact of a technology transitioning to a more accessible method, 

with the potential for maturing into a clinical decision-making tool. 

Patients that were initially tested in NHS Lothian with OncotypeDX since its 

introduction have now accumulated at least five years of follow-up. In conjunction 

with an updated version of PREDICT, this presents the potential for updating and 

refining the budget and decision impact analysis presented in Chapter 4. With the 

inclusion of health outcomes data, this potential future analysis could deliver better 

estimates of the chemotherapy displacement effect of the 21-gene signature. A 

comparison of recurrence rates of the tested patients against the rates of historical 

patients with similar clinical attributes would provide a more accurate and informative 

estimate of decision impact. 

The modelling platform in Chapter 5 was designed to be flexible and adaptable. 

While in its current state the model measures the impact of before- and on-treatment 

neoadjuvant biomarkers for ER-positive HER2-negative breast cancer, it can be 

modified for markers that use different timings and provide different benefits. 

Moreover, by using PREDICT as the main driver of the transition probabilities, 

including potential treatment benefits, the model can be further adapted for the other 

breast cancer subtypes, namely HER2-positive and Triple Negative breast cancer. 

Alternatively, acquiring patient-level data on recurrences and neoadjuvant treatment 

would allow for correcting the model’s shortcoming described in section 7.2. 
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Further developments of the modelling platform would include modifications to the 

Discrete Event Simulation in Chapter 6. These modifications would include 

integrating additional events in the trajectory, such as margin re-excisions, 

unsuccessful surgeries, and adverse events. The model could be further improved 

by adding additional strategies in the model structure: predicted non-responders are 

immediately assigned to surgery, but other options could reasonably be available. 

This could include a change in endocrine therapy (e.g. from Letrozole to tamoxifen), 

neoadjuvant chemotherapy, or even the introduction in a basket trial. Other changes 

would reasonably encompass the choice of software, with the intention of moving 

away from depending on third-party software packages, and coding the model 

directly in a base language without the black box processes described in section 7.2.  

The current standard method for reporting costings across the NHS is reference 

costs, which take financial data from the general ledger and generate an average 

cost per patient. This average costs per patient were used in this study to inform the 

cost associated with chemotherapy assignment, delivery, and toxicity. Patient Level 

Information and Costing System (PLICS) has been used in this study in the single 

instance of calculating per-episode costs of Febrile Neutropoenia. PLICS uses the 

same data sources as the reference costs, but it provides costs by individual patient 

using patient identifiers (Community Health Index in Scotland, NHS Number in 

England and Wales), and calculating the cost for each part of the care provided for 

each individual. Future analyses should make use of PLICS where available, 

granting a higher level of accuracy on the costing side of an economic evaluation. 

Wider use of this approach would contribute to the growing library of methods 

available for using Real-World Data and Evidence within economic evaluations. 
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Appendix 

Appendix 1:  
Code scripts for the semi-Markov model presented in Chapter 5. The scripts are 
organized as follows: the “master.R” script calls “SOCdraw.R” for generating the 
standard of care parameter draws, and “model.R” for generating the function 
producing the Markov traces. Then it calls for “OTDXdraw.R”, “RIGIDdraw.R”, and 
“FLEXdraw.R” to generate the parameter draw associated with OncotypeDX + 
PREDICT, EER4, and EER4 + PREDICT. Then, “master.R” uses the Markov traces 
to generate the appropriate ICERs, INMB, and CEAF. 

master.R: 

rm(list=ls(all=TRUE)) 

library(gtools) 
library(tidyverse) 

{ #Set Global variables 

seed <- 19062020       #set seed for random number generator 
S <- 7          #number of health states 
disc.b <- 0.035 #discount rate for benefits 
disc.c <- 0.035 #discount rate for costs 
Nsim <- 10000    #Number of simulations 
lambda <- 20000 #Threshold 
comp <- 0.95    #Compliance rate 

source("SOCdraw.R") 
source("model.R") 

#draw parameters Nsim times 

SOCdraw() 

#### Montecarlo simulation for therapy guided by Predict #### 

{ 

sim.Pred.high       <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.low        <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.high.chemo <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.low.chemo  <- array(c(NA,NA),c(Nsim,2)) 

} 

for (i in 1:Nsim) { 
  sim.Pred.high.chemo[i,] <- model(i,pRec.high.chemo,1,0,) 
  sim.Pred.low.chemo[i,]  <- model(i,pRec.low.chemo,1,0,) 
  sim.Pred.high[i,]       <- model(i,pRec.high,0,0,) 
  sim.Pred.low[i,]        <- model(i,pRec.low,0,0,) 

} 

costs.Pred <- sim.Pred.high.chemo[,2]*propHigh*comp + sim.Pred.high[,2]*propHigh*(1-comp)+ 
                        sim.Pred.low.chemo[,2]*propLow*(1-comp)+sim.Pred.low[,2]*propLow*(comp) 
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QALYs.Pred <- sim.Pred.high.chemo[,1]*propHigh*comp + sim.Pred.high[,1]*propHigh*(1-comp)+ 
                          sim.Pred.low.chemo[,1]*propLow*(1-comp)+sim.Pred.low[,1]*propLow*(comp) 

 

#### Montecarlo simulation for therapy guided by Predict and OncotypeDX (in uncertain cases) 

source("OTDXdraw.R") 

OTDXdraw() 

{ 

sim.Pred.highB       <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.lowB        <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.high.chemoB <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.low.chemoB  <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.med         <- array(c(NA,NA),c(Nsim,2)) 
sim.Pred.med.chemo   <- array(c(NA,NA),c(Nsim,2)) 

} 

for (i in 1:Nsim) { 
  sim.Pred.high.chemoB[i,] <- model(i,pRec.high.chemo,1,0,) 
  sim.Pred.low.chemoB[i,]  <- model(i,pRec.low.chemo,1,0,) 
  sim.Pred.highB[i,]       <- model(i,pRec.high,0,0,) 
  sim.Pred.lowB[i,]        <- model(i,pRec.low,0,0,) 
  sim.Pred.med.chemo[i,]   <- model(i,pRec.med.chemo,1,1,ctestDX) 
  sim.Pred.med[i,]         <- model(i,pRec.med.chemo,0,1,ctestDX)   

} 

costs.OTDX <- sim.Pred.high.chemoB[,2]*CTBdistro[,3]*comp +  
                          sim.Pred.highB[,2]*CTBdistro[,3]*(1-comp)+ 
                          sim.Pred.low.chemoB[,2]*CTBdistro[,1]*(1-comp)+ 
                          sim.Pred.lowB[,2]*CTBdistro[,1]*(comp)+ 
                          sim.Pred.med.chemo[,2]*CTBdistro[,2]*propHighDX + 
                          sim.Pred.med[,2]*CTBdistro[,2]*propLowDX 

QALYs.OTDX <- sim.Pred.high.chemoB[,1]*CTBdistro[,3]*comp +   
                            sim.Pred.highB[,1]*CTBdistro[,3]*(1-comp)+ 
                            sim.Pred.low.chemoB[,1]*CTBdistro[,1]*(1-comp)+ 
                            sim.Pred.lowB[,1]*CTBdistro[,1]*(comp)+ 
                            sim.Pred.med.chemo[,1]*CTBdistro[,2]*propHighDX + 
                            sim.Pred.med[,1]*CTBdistro[,2]*propLowDX 

##### Montecarlo simulation of therapy guided by EER4 

source("RIGIDdraw.R") 

RIGIDdraw() 

{ 
sim.Rigid.high       <- array(c(NA,NA),c(Nsim,2)) 
sim.Rigid.low        <- array(c(NA,NA),c(Nsim,2)) 
sim.Rigid.high.chemo <- array(c(NA,NA),c(Nsim,2)) 
sim.Rigid.low.chemo  <- array(c(NA,NA),c(Nsim,2)) 
} 
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for (i in 1:Nsim) { 
  sim.Rigid.high.chemo[i,] <- model(i,pRec.high.chemo,1,1,cEER4) 
  sim.Rigid.low.chemo[i,]  <- model(i,pRec.low.chemo,1,1,cEER4) 
  sim.Rigid.high[i,]       <- model(i,pRec.high,0,1,cEER4) 
  sim.Rigid.low[i,]        <- model(i,pRec.low,0,1,cEER4) 
} 

costs.Rigid <- sim.Rigid.high.chemo[,2]*nres.rate*comp + sim.Rigid.high[,2]*nres.rate*(1-comp)+ 
                         sim.Rigid.low.chemo[,2]*res.rate*(1-comp)+sim.Rigid.low[,2]*res.rate*(comp) 

QALYs.Rigid <- sim.Rigid.high.chemo[,1]*nres.rate*comp + sim.Rigid.high[,1]*nres.rate*(1-comp)+ 
                           sim.Rigid.low.chemo[,1]*res.rate*(1-comp)+sim.Rigid.low[,1]*res.rate*(comp) 

#### Montecralo simulation of therapy guided by Predict in with EER4 

source("FLEXdraw.R") 

FLEXdraw() 

{ 
sim.Flex.R.low         <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.R.low.chemo   <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.R.med         <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.R.med.chemo   <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.R.high        <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.R.high.chemo  <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.NR.low        <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.NR.low.chemo  <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.NR.med        <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.NR.med.chemo  <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.NR.high       <- array(c(NA,NA),c(Nsim,2)) 
sim.Flex.NR.high.chemo <- array(c(NA,NA),c(Nsim,2)) 

} 

for (i in 1:Nsim) { 
  sim.Flex.R.low[i,]         <- model(i,pRec.R.low,0,1,cEER4) 
  sim.Flex.R.low.chemo[i,]   <- model(i,pRec.R.low.chemo,1,1,cEER4) 
  sim.Flex.R.med[i,]         <- model(i,pRec.R.med,0,1,cEER4) 
  sim.Flex.R.med.chemo[i,]   <- model(i,pRec.R.med.chemo,1,1,cEER4) 
  sim.Flex.R.high[i,]        <- model(i,pRec.R.high,0,1,cEER4) 
  sim.Flex.R.high.chemo[i,]  <- model(i,pRec.R.high.chemo,1,1,cEER4) 
  sim.Flex.NR.low[i,]        <- model(i,pRec.NR.low,0,1,cEER4) 
  sim.Flex.NR.low.chemo[i,]  <- model(i,pRec.NR.low.chemo,1,1,cEER4) 
  sim.Flex.NR.med[i,]        <- model(i,pRec.NR.med,0,1,cEER4) 
  sim.Flex.NR.med.chemo[i,]  <- model(i,pRec.NR.med.chemo,1,1,cEER4) 
  sim.Flex.NR.high[i,]       <- model(i,pRec.NR.high,0,1,cEER4) 
  sim.Flex.NR.high.chemo[i,] <- model(i,pRec.NR.high.chemo,1,1,cEER4) 

  } 

costs.Flex <- sim.Flex.R.low[,2]*res.rate*CTBdistro[,1]*comp + 
                       sim.Flex.R.low.chemo[,2]*res.rate*CTBdistro[,1]*(1-comp) + 
                       sim.Flex.R.med[,2]*res.rate*CTBdistro[,2]*comp + 
                       sim.Flex.R.med.chemo[,2]*res.rate*CTBdistro[,2]*(1-comp) + 
                       sim.Flex.R.high[,2]*res.rate*CTBdistro[,3]*(1-comp) + 
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              sim.Flex.R.high.chemo[,2]*res.rate*CTBdistro[,3]*comp +  
              sim.Flex.NR.low[,2]*nres.rate*CTBdistro[,1]*comp + 
              sim.Flex.NR.low.chemo[,2]*nres.rate*CTBdistro[,1]*(1-comp) + 
              sim.Flex.NR.med[,2]*nres.rate*CTBdistro[,2]*(1-comp) + 
              sim.Flex.NR.med.chemo[,2]*nres.rate*CTBdistro[,2]*comp + 
              sim.Flex.NR.high[,2]*nres.rate*CTBdistro[,3]*(1-comp) + 
              sim.Flex.NR.high.chemo[,2]*nres.rate*CTBdistro[,3]*comp 

QALYs.Flex <- sim.Flex.R.low[,1]*res.rate*CTBdistro[,1]*comp + 
                         sim.Flex.R.low.chemo[,1]*res.rate*CTBdistro[,1]*(1-comp) + 
                         sim.Flex.R.med[,1]*res.rate*CTBdistro[,2]*comp + 
                         sim.Flex.R.med.chemo[,1]*res.rate*CTBdistro[,2]*(1-comp) + 
                         sim.Flex.R.high[,1]*res.rate*CTBdistro[,3]*(1-comp) + 
                         sim.Flex.R.high.chemo[,1]*res.rate*CTBdistro[,3]*comp + 
                         sim.Flex.NR.low[,1]*nres.rate*CTBdistro[,1]*comp + 
                         sim.Flex.NR.low.chemo[,1]*nres.rate*CTBdistro[,1]*(1-comp) + 
                         sim.Flex.NR.med[,1]*nres.rate*CTBdistro[,2]*(1-comp) + 
                         sim.Flex.NR.med.chemo[,1]*nres.rate*CTBdistro[,2]*comp + 
                         sim.Flex.NR.high[,1]*nres.rate*CTBdistro[,3]*(1-comp) + 
                         sim.Flex.NR.high.chemo[,1]*nres.rate*CTBdistro[,3]*comp 

} 

 

ICER.OTDX <- mean(costs.OTDX - costs.Pred) / mean(QALYs.OTDX - QALYs.Pred) 

ICER.Rigid<- mean(costs.Rigid - costs.Pred)/ mean(QALYs.Rigid - QALYs.Pred) 

ICER.Flex <- mean(costs.Flex - costs.Pred) / mean(QALYs.Flex - QALYs.Pred) 

 

#Net benefit analysis 

NB.Pred  <- QALYs.Pred*lambda - costs.Pred 
NB.OTDX  <- QALYs.OTDX*lambda - costs.OTDX 
NB.RIGID <- QALYs.Rigid*lambda - costs.Rigid 
NB.FLEX  <- QALYs.Flex*lambda - costs.Flex 

maxNB <- ifelse(NB.Pred >= NB.OTDX,NB.Pred,NB.OTDX) 
maxNB <- ifelse(maxNB >= NB.RIGID,maxNB,NB.RIGID) 
maxNB <- ifelse(maxNB >= NB.FLEX,maxNB,NB.FLEX) 

CE.Pred  <- ifelse(NB.Pred == maxNB,1,0) 
CE.OTDX  <- ifelse(NB.OTDX == maxNB,1,0) 
CE.RIGID <- ifelse(NB.RIGID == maxNB,1,0) 
CE.FLEX  <- ifelse(NB.FLEX == maxNB,1,0) 

prob.CE.Pred  <- mean(CE.Pred, na.rm = TRUE) 
prob.CE.OTDX  <- mean(CE.OTDX, na.rm = TRUE) 
prob.CE.RIGID <- mean(CE.RIGID, na.rm = TRUE) 
prob.CE.FLEX  <- mean(CE.FLEX, na.rm = TRUE) 
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##EVPI 

EVPI <- mean(maxNB, na.rm = TRUE) - max(mean(NB.Pred, na.rm = TRUE),mean(NB.OTDX, na.rm =  
              TRUE),mean(NB.RIGID, na.rm = TRUE),mean(NB.FLEX, na.rm = TRUE)) 

I <- NA 

for (t in 1:10){ 
  I[t] <- 3700/1.035^t 
} 

pop.EVPI <- EVPI*sum(I) 

## CEAC 

lamb <- seq(1000,100000,200) 

OUT <- array(NA,c(length(lamb),3)) 

 

for (i in 1:length(lamb)) { 
  NB.Pred       <- QALYs.Pred*lamb[i] - costs.Pred 
  NB.OTDX       <- QALYs.OTDX*lamb[i] - costs.OTDX 
  NB.RIGID      <- QALYs.Rigid*lamb[i] - costs.Rigid 
  NB.FLEX       <- QALYs.Flex*lamb[i] - costs.Flex 
  CE.OTDX       <- ifelse(NB.OTDX>NB.Pred,1,0) 
  CE.RIGID      <- ifelse(NB.RIGID>NB.Pred,1,0) 
  CE.FLEX       <- ifelse(NB.FLEX>NB.Pred,1,0) 
  prob.CE.OTDX  <- mean(CE.OTDX) 
  prob.CE.RIGID <- mean(CE.RIGID) 
  prob.CE.FLEX  <- mean(CE.FLEX) 

  OUT[i,] <- c(prob.CE.OTDX,prob.CE.RIGID,prob.CE.FLEX) 
} 

###CEAF 

OUT <- list() 

lamb <- seq(1000,200000,200) 

for (i in 1:length(lamb)){ 
  NB.Pred <- QALYs.Pred*lamb[i] - costs.Pred 
  NB.OTDX <- QALYs.OTDX*lamb[i] - costs.OTDX 
  NB.RIGID      <- QALYs.Rigid*lamb[i] - costs.Rigid 
  NB.FLEX       <- QALYs.Flex*lamb[i] - costs.Flex 
  maxNB <- ifelse(NB.Pred >= NB.OTDX,NB.Pred,NB.OTDX) 
  maxNB <- ifelse(maxNB >= NB.RIGID,maxNB,NB.RIGID) 
  maxNB <- ifelse(maxNB >= NB.FLEX,maxNB,NB.FLEX) 
  CE.Pred  <- ifelse(NB.Pred == maxNB,1,0) 
  CE.OTDX  <- ifelse(NB.OTDX == maxNB,1,0) 
  CE.RIGID <- ifelse(NB.RIGID == maxNB,1,0) 
  CE.FLEX  <- ifelse(NB.FLEX == maxNB,1,0) 
  prob.CE.Pred  <- mean(CE.Pred) 
  prob.CE.OTDX  <- mean(CE.OTDX) 
  prob.CE.RIGID <- mean(CE.RIGID) 
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  prob.CE.FLEX  <- mean(CE.FLEX) 
  EVPI <- mean(maxNB) - max(mean(NB.Pred),mean(NB.OTDX),mean(NB.RIGID),mean(NB.FLEX)) 

  mean.NB.Pred <- mean(NB.Pred) 
  mean.NB.OTDX <- mean(NB.OTDX) 
  mean.NB.RIGID <- mean(NB.RIGID) 
  mean.NB.FLEX <- mean(NB.FLEX) 
  mean.NB.max <- max(mean.NB.Pred,mean.NB.OTDX,mean.NB.RIGID,mean.NB.FLEX) 
  ceaf <- ifelse(mean.NB.max==mean.NB.Pred,prob.CE.Pred,0) 
  ceaf <- ifelse(mean.NB.max==mean.NB.OTDX,prob.CE.OTDX,ceaf) 
  ceaf <- ifelse(mean.NB.max==mean.NB.RIGID,prob.CE.RIGID,ceaf) 
  ceaf <- ifelse(mean.NB.max==mean.NB.FLEX,prob.CE.FLEX,ceaf) 
  ceaf.test <- ifelse(mean.NB.max==mean.NB.Pred,1,0) 
  ceaf.test <- ifelse(mean.NB.max==mean.NB.OTDX,2,ceaf) 
  ceaf.test <- ifelse(mean.NB.max==mean.NB.RIGID,3,ceaf) 
  ceaf.test <- ifelse(mean.NB.max==mean.NB.FLEX,4,ceaf) 

  OUT[[i]] <- 
            
list(NB.Pred=NB.Pred,NB.OTDX=NB.OTDX,NB.RIGID=NB.RIGID,NB.FLEX=NB.FLEX,maxNB=maxNB, 

               CE.Pred=CE.Pred,CE.OTDX=CE.OTDX,CE.RIGID=CE.RIGID,CE.FLEX=CE.FLEX,EVPI=EVPI, 

               prob.CE.Pred=prob.CE.Pred,prob.CE.OTDX=prob.CE.OTDX,prob.CE.RIGID=prob.CE.RIGID, 

               prob.CE.FLEX=prob.CE.FLEX,mean.NB.Pred=mean.NB.Pred,mean.NB.OTDX=mean.NB.OTDX, 

              mean.NB.RIGID=mean.NB.RIGID,mean.NB.FLEX=mean.NB.FLEX,ceaf=ceaf,ceaf.test=ceaf.test) 
} 

 

CEAF <- data.frame(lambda=lamb,Probability.CE = NA, test=NA) 

for (i in 1:length(lamb)){ 
  CEAF$Probability.CE[i] <- OUT[[i]]$ceaf 
  CEAF$CE.Pred[i] <- OUT[[i]]$prob.CE.Pred 
  CEAF$CE.OTDX[i] <- OUT[[i]]$prob.CE.OTDX 
  CEAF$CE.RIGID[i] <- OUT[[i]]$prob.CE.RIGID 
  CEAF$CE.FLEX[i] <- OUT[[i]]$prob.CE.FLEX 
  CEAF$test[i] <- OUT[[i]]$ceaf.test 
  CEAF$EVPI[i] <- OUT[[i]]$EVPI*sum(I) 
  CEAF$Probability.CE[i] <- OUT[[i]]$ceaf 

} 
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SOCdraw.R: 
 

resp1 <- runif(num.pat,0,1) 
resp <- NA 
resp[resp1<=0.7]<-1 
resp[resp1>0.7]<-0 
dat$Response <- resp 

startage <- round(mean(dat$Age,rm.na = TRUE)) 
H <- 100 - startage #set time horizon 
T <- H+2 #set length of Markov trace 

SOCdraw <- function() { 

  set.seed(seed) 

  propLow <<- rbeta(Nsim,sum(dat$Chemo.Benefit..10..years <= 3, na.rm = TRUE),  
                          sum(dat$Chemo.Benefit..10..years > 3, na.rm = TRUE)) 
  propHigh <<- 1 - propLow 

  RC <<- dat$GRPR 
  RSP <<- dat$Response 

  # Chemotherapy assignments (OPTIMA trial) 

  chemo.type <- rdirichlet(Nsim,c(0*num.pat, 
                             round(0.2*num.pat),  
                             round(0.1*num.pat),  
                             round(0.7*num.pat),  
                             0*num.pat,  
                             0*num.pat))          

  pFEC    <<- chemo.type[,1] 
  pFECT   <<- chemo.type[,2] 
  pTC     <<- chemo.type[,3] 
  pFEC75  <<- chemo.type[,4] 
  pEpiCMF <<- chemo.type[,5] 
  pFECpw  <<- chemo.type[,6] 

 #### Transition probabilities 
propLR <<- rbeta(Nsim,292,663) #proportion of recurrences that are local ## Disease recurrence 

rfs10  <<- (dat$Relapse.free..10..years+dat$Horm.Benefit..10..years.1)/100 

CTB    <<- dat$Chemo.Benefit..10..years #Chemotherpay benefit to OS 

   

  mu   <- mean(rfs10) #mean of rfs 
  vrnc <- var(rfs10) #variance of rfs 
  alpha.h <- ((1-mu)/vrnc-1/mu)*mu^2 #shape parameter for beta distribution 
  beta.h  <- alpha.h*(1/mu-1) #shape parameter for beta distribution 

  rfs.sim <- array(NA,c(Nsim,(length(rfs10)))) 

  for (z in 1:length(rfs10)) {rfs.sim[,z] <- rbeta(Nsim,alpha.h,beta.h)} 
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  rfs.sim <<- rfs.sim #array of estimated rfs under hormone therapy 

  h.horm.sim <<- -log(rfs.sim)/10 #annual hazard under horm therapy 

  #chemotherapy effect 

  alpha <- 71.2115 #shape paramater 1 
  beta  <- 26.3385 #shape parameter 2 

  HRchemo <- rbeta(Nsim,alpha,beta) # Hazard Ratio distribution for chemotherapy (mean 0.73) 

  h.chemo.sim <- array(NA,c(Nsim,length(rfs10))) 

  for (j in 1:Nsim) { 

    h.chemo.sim[j,] <- h.horm.sim[j,]*HRchemo[j] 

  } 

  h.chemo.sim <<- h.chemo.sim 

  predict.high.chemo <<- apply(h.chemo.sim[,CTB>3],1,mean) 

  predict.high       <<- apply(h.horm.sim[,CTB>3],1,mean) 

  predict.low        <<- apply(h.horm.sim[,CTB<=3],1,mean) 

  predict.low.chemo  <<- apply(h.chemo.sim[,CTB<=3],1,mean) 

   #Predict High Risk, Chemo 

  rRec.5  <- predict.high.chemo #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle (high risk with chemo) 

  pRec.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 

  for (cycle in 0:T){ 

pRec.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5) 
 else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 

  } 

  pRec.high.chemo <<- pRec.high.chemo 

  #Predict High Risk, NO Chemo 
  rRec.5  <- predict.high #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle (high risk with NO chemo) 

  pRec.high <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 

  for (cycle in 0:T){ 

    pRec.high[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
    else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 

  } 

  pRec.high <<- pRec.high 
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  #Predict Low Risk, NO Chemo 

  rRec.5  <- predict.low #annual event rate, to year 5 
  rRec.10 <- predict.low #annual event rate, from 5 to year 10 

   # Vector pRec for probability of recurrence by cycle (low risk with NO chemo) 

  pRec.low <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 

  for (cycle in 0:T){ 

    pRec.low[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
    else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 

  } 

  pRec.low <<- pRec.low 

  #Predict Low Risk, Chemo 

  rRec.5  <- predict.low.chemo #annual event rate, to year 5 
  rRec.10 <- predict.low #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle (low risk group with chemo) 

  pRec.low.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 

  for (cycle in 0:T){ 

    pRec.low.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
    else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 

  } 

  pRec.low.chemo <<- pRec.low.chemo 

  ## Constant post-recurrence survival 

  pDeath_DR <<- rbeta(Nsim,1.00,2.35) 

  pDeath_DR_low <<- rbeta(Nsim,0.4201557,2.580957) #SWOG 8814 no chemo 

   

  ## Congestive Heart Failure 

  pop_CHF <- rep(NA,102) 
  b1 <- -12.9273605  
  b2 <- 0.09409354 
  for (a in 1:102){ 
   pop_CHF[a] <- exp(b1 + b2*a) #annual probability of developing CHF 
  } 
  pdeath_CHF <<- rbeta(Nsim,136,84) #annual probability of death from CHF 

  hr_CHF_anthra <- exp(rnorm(Nsim,0.458,0.191)) #HR for CHF after anthracycline treatment 

  prob_CHF <<- array(c(0,0),c(102,Nsim))  

  r_CHF <- array(c(0,0),c(102,Nsim)) 
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  for (c in 1:102){ 
    r_CHF[c,] <- (-log(1-pop_CHF[c])*hr_CHF_anthra - (-log(1-pop_CHF[c])))*(pFEC+pFECT) 
    prob_CHF[c,] <- 1-exp(-r_CHF[c,]) 
    prob_CHF[c,] <- ifelse(prob_CHF[c,] >= 0, prob_CHF[c,],0) 
  } 
  prob_CHF <<- prob_CHF   

  ## AML 

  pop_AML <- rep(296/100000,Nsim) #annual rate of AML 
  rr_AML <- rlnorm(Nsim,1.71,0.79) #rate ratio AML with chemo 
  prob_AML <<- 1-exp(-pop_AML*rr_AML) #annual excess rate of AML with chemo 

  rmr_AML <<- -log(1-rbeta(Nsim,1524,60))/5 #excess annual hazard after AML 
 

  # lifetable, annual probability of death at given age (minus breast cancer specific mortality) 
  mr <<- c(0.000353, 0.000193, 0.000161, 0.000117, 0.000096, 0.000098, 0.000082, 0.000090, 
0.000078, 0.000093, 0.000097, 0.000100, 0.000118, 0.000119, 0.000158, 0.000173, 0.000245, 
0.000271, 0.000257, 0.000241, 0.000264, 0.000263, 0.000247, 0.000294, 0.000287, 0.000337, 
0.000311, 0.000358, 0.000381, 0.000416, 0.000406, 0.000487, 0.000539, 0.000575, 0.000598, 
0.000644, 0.000727, 0.000795, 0.000897, 0.000980, 0.001056, 0.001151, 0.001267, 0.001341, 
0.001530, 0.001648, 0.001828, 0.002067, 0.002151, 0.002559, 0.002692, 0.002861, 0.003158, 
0.003537, 0.003755, 0.004141, 0.004390, 0.004717, 0.005303, 0.005696, 0.006452, 0.006907, 
0.007798, 0.008516, 0.009178, 0.010084, 0.011251, 0.012330, 0.013535, 0.015072, 0.016561, 
0.018374, 0.020832, 0.023483, 0.025871, 0.029214, 0.032712, 0.036780, 0.041825, 0.047053, 
0.052661, 0.058476, 0.066223, 0.074507, 0.083203, 0.092440, 0.101085, 0.114035, 0.124557, 
0.140443, 0.160738, 0.179041, 0.197859, 0.215442, 0.234414, 0.255550, 0.271716, 0.300529, 
0.314942, 0.5,0.5,0.5) 
  #excess mortality during first year of chemo 

  mort_chemo <<- rbeta(Nsim,1.6,677.6) 

 #### Utility Parameters 

 # female age-group specific norms 

  U <<- NA 
  U[1:24] <<- 0.94 
  U[25:34] <<- 0.93 
  U[35:44] <<- 0.91 
  U[45:54] <<- 0.85 
  U[55:64] <<- 0.81 
  U[65:74] <<- 0.78 
  U[75:102] <<- 0.71   

  #utility decrements 

  uDFdec      <<- rlnorm(Nsim,-8.117,2.148) #disease-free 
  uDFdec.chemo<<- rlnorm(Nsim,-2.365,0.325) #disease-free first year of chemo 
  uLRdec      <<- rlnorm(Nsim,-2.290,0.359) #local recurrence 
  uDRdec      <<- rlnorm(Nsim,-1.317,0.496) #distant recurrence 
  uCHF <<- rbeta(Nsim,103.2988905,92.34294761) #CHF utility 
  uAML <<- rbeta(Nsim,2,2) #estimate of AML utility 
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  #### Cost parameters 

  # Recurrence states 

  cDF     <<- rlnorm(Nsim,6.91,0.004)*1.2 
  cLR     <<- rlnorm(Nsim,8.72,0.08)*1.2 
  cDFaLR  <<- rlnorm(Nsim,7.20,0.111)*1.2 
  cDR     <<- rlnorm(Nsim,7.43,0.019)*1.2 
  cTerm3  <<- rlnorm(Nsim,7.63,0.003)*1.2 
  cTerm   <<- cTerm3 - (cDR/4)   

  # Follow-up 

  cMedOnc1 <- 197 #first visit consultant-led medical oncology 
  cMedOnc2 <- 163 # follow-up visit consultant-led 
  cMammo   <- exp(rnorm(Nsim,3.695585469,0.192924247)) #mammogram 
  cSpN     <- rnorm(Nsim,100,17.8) #specialist nurse visit 

    # Drug treatment cost 

  cBloods <- 10.1 #cost of blood test 
  cDeliver <- exp(rnorm(1000,5.53,0.17)) #cost of chemo delivery 
  cLine <- 23.95 #cost of central line 

  cFEC <<- 6*(69.24 + 207.07 + cBloods + cDeliver + cSpN)+ cMedOnc1 + cMedOnc2 + cLine 
  cFEC75 <<- 6*(69.24 + 72.07 + cBloods + cDeliver + cSpN)+ cMedOnc1 + cMedOnc2 + cLine 
  cTC <<- 4*(75.89 + 150.16+ cBloods + cDeliver + cSpN)+ cMedOnc1 + cMedOnc2 + cLine 
  cFECT <<- 3*(69.24 + 207.07 + cBloods + cDeliver + cSpN) + 3*(112.2 + 150.16 + cBloods + cDeliver + 
cSpN)+ cMedOnc1 + cMedOnc2*2 + cLine 
  cFECpw <<- 3*(69.24 + 207.07 + cBloods + cDeliver + cSpN)+ 3*(37.87 + 0.14 + cBloods*3 + 
cDeliver*3 + cSpN)+ cMedOnc1 + cMedOnc2*2 + cLine 
  cEpiCMF <<- 4*(28.7 + 0.05 + cBloods + cDeliver + cSpN) + 4*(88.99+3.17 + cBloods*2 + cDeliver*2 
+ cSpN)+ cMedOnc1 + cMedOnc2*2 + cLine 
  cTreat <<- pFEC*cFEC + pFEC75*cFEC75 + pTC*cTC + pFECT*cFECT + pFECpw*cFECpw + 
cEpiCMF*pEpiCMF 

    #Heart Failure 

  cCHF <<- exp(rnorm(Nsim,log(2338.71)-(2.5^2)/2,2.5)) 

  #AML 

  cAML <<- exp(rnorm(Nsim,8.401479,0.85)) 

    #### Toxicity Parameters #### 
  # Febrile Neutropoenia 

  toxNeut.FEC    <- rbeta(Nsim,84,911) 

  toxNeut.FECT   <- rbeta(Nsim,112,889) 

  toxNeut.TC     <- rbeta(Nsim,23,483) 

  toxNeut.EpiCMF <- rbeta(Nsim,137,892) 

  ctoxNeut.short <- rlnorm(Nsim,6.67,0.46974) 

  ctoxNeut.long  <- rlnorm(Nsim,8.156,0.03800) 
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  ctoxNeut       <- ctoxNeut.short*0.5 + ctoxNeut.long*0.5 

   # Allergic reaction 

  toxAll <- rbeta(Nsim,1.46,363.54) 

  ctoxAll.short <- rlnorm(Nsim,6.19,0.055) 

  ctoxAll.long  <- rlnorm(Nsim,7.4951,0.0966) 

  ctoxAll       <- ctoxAll.short*0.5 + ctoxAll.long*0.5 

  #Nausea 

  toxNau.FEC    <- rbeta(Nsim,204,791) 

  toxNau.FECT   <- rbeta(Nsim, 112,889) 

  toxNau.TC     <- rbeta(Nsim,15,491) 

  toxNau.EpiCMF <- rbeta(Nsim,24,1005) 

  ctoxNau.short <- rlnorm(Nsim,5.83,0.018) 

  ctoxNau.long  <- rlnorm(Nsim,6.749,0.080) 

  ctoxNau       <- ctoxNau.short*0.5 + ctoxNau.long*0.5 

  #Diarrhoea 

  toxDiarr.FEC    <- rbeta(Nsim,1,996) 

  toxDiarr.FECT   <- rbeta(Nsim,1,1002) 

  toxDiarr.TC     <- rbeta(Nsim,12,494) 

  toxDiarr.EpiCMF <- rbeta(Nsim,46,983) 

  ctoxDiarr.short <- exp(rnorm(Nsim,5.87,0.018)) 

  ctoxDiarr.long  <- exp(rnorm(Nsim,7.009,0.039)) 

  ctoxDiarr       <- ctoxDiarr.short*0.5 + ctoxDiarr.long*0.5 

  #Anaemia 

  toxAn.FEC    <- rbeta(Nsim,14,981) 

  toxAn.FECT   <- rbeta(Nsim,7,994) 

  toxAn.TC     <- rbeta(Nsim,5,501) 

  toxAn.EpiCMF <- rbeta(Nsim,31,998) 

  ctoxAn.short <- rlnorm(Nsim,6.47,0.043) 

  ctoxAn.long  <- rlnorm(Nsim,6.994,0.129) 

  ctoxAn       <- ctoxAn.short*0.5 + ctoxAn.long*0.5 

  #Thrombocytopoenia 
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  toxThrom.FEC    <- rbeta(Nsim,3,992) 

  toxThrom.FECT   <- rbeta(Nsim,4,997) 

  toxThrom.TC     <- rbeta(Nsim,2,504) 

  toxThrom.EpiCMF <- rbeta(Nsim,10,1019) 

  ctoxThrom.short <- rlnorm(Nsim,6.29,0.0001) 

  ctoxThrom.long  <- rlnorm(Nsim,7.141,0.274) 

  ctoxThrom       <- ctoxThrom.short*0.5 + ctoxThrom.long*0.5 

  #Stomatitis   

  toxStom.FEC    <- rbeta(Nsim,40,995) 

  toxStom.FECT   <- rbeta(Nsim,59,942) 

  toxStom.TC     <- rbeta(Nsim,4,502) 

  toxStom.EpiCMF <- rbeta(Nsim,1,1030)  

  ctoxStom.short <- rlnorm(Nsim,5.95,0.144) 

  ctoxStom.long  <- rlnorm(Nsim,7.33,0.20116) 

  ctoxStom       <- ctoxStom.short*0.5 + ctoxStom.long*0.5 

  cTox.FEC <- toxNeut.FEC*ctoxNeut + toxNau.FEC*ctoxNau + toxDiarr.FEC*ctoxDiarr + 
toxAn.FEC*ctoxAn + toxThrom.FEC*ctoxThrom + toxStom.FEC*ctoxStom 

  cTox.FEC75 <- cTox.FEC*0.66666 

  cTox.FECT <- toxNeut.FECT*ctoxNeut + toxNau.FECT*ctoxNau + toxDiarr.FECT*ctoxDiarr + 
toxAn.FECT*ctoxAn + toxThrom.FECT*ctoxThrom + toxStom.FECT*ctoxStom 

  cTox.TC <- toxNeut.TC*ctoxNeut + toxNau.TC*ctoxNau + toxDiarr.TC*ctoxDiarr + toxAn.TC*ctoxAn 
+ toxThrom.TC*ctoxThrom + toxStom.TC*ctoxStom 

  cTox.FECpw <- cTox.FECT 

  cTox.EpiCMF <- toxNeut.EpiCMF*ctoxNeut + toxNau.EpiCMF*ctoxNau + toxDiarr.EpiCMF*ctoxDiarr 
+ toxAn.EpiCMF*ctoxAn + toxThrom.EpiCMF*ctoxThrom + toxStom.EpiCMF*ctoxStom  

  cTox <<- (cTox.FEC75*pFEC75 + cTox.FEC*pFEC + cTox.FECT*pFECT + cTox.TC*pTC + 
cTox.FECpw*pFECpw + cTox.EpiCMF*pEpiCMF)*1.2 

  } 
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model.R: 
#### Markov transition matrix and Trace #### 
tps <- array(NA,c(S,S,T)) 
trace <- matrix(nrow = T, ncol = S) 
qtime <- rep(NA,len=T) 
cost <- rep(NA,len=T) 

model <- function(i,pRec,chemo,test,ctest=0){ 

    T <- H+2   
## Transition Matrix 

  ## States: 1=Disease-free, 2=Local Recurrence, 3=Disease-free after lcoal recurrence 
  ##         4=Distant Recurrence, 5=Congestive Heart Failure, 6=AML, 7=Death 

  for (t in 1:T){ 
 tps[1,1,t] <- 1-(1-exp(- mr[startage + t]-ifelse(chemo==1 & t==1,log(1-mort_chemo[i]),0))) - pRec[t,i]   
                       - prob_CHF[startage + t,i] - prob_AML[i] 
 tps[1,2,t] <- pRec[t,i]*propLR[i] 
 tps[1,3,t] <- 0 
 tps[1,4,t] <- pRec[t,i]*(1-propLR[i]) 
 tps[1,5,t] <- prob_CHF[startage + t,i] 
 tps[1,6,t] <- prob_AML[i] 
 tps[1,7,t] <- 1-exp( - mr[startage+t]-(ifelse(chemo==1 & t==1,log(1-mort_chemo[i]),0))) 

 tps[2,1,t] <- 0 
 tps[2,2,t] <- 0 
 tps[2,3,t] <- 1-mr[startage + t]- pRec[t,i]*(1-propLR[i]) 
 tps[2,4,t] <- pRec[t,i]*(1-propLR[i]) 
 tps[2,5,t] <- 0 
 tps[2,6,t] <- 0 
 tps[2,7,t] <- mr[startage + t] 

 tps[3,1,t] <- 0 
 tps[3,2,t] <- 0 
 tps[3,3,t] <- 1-mr[startage + t] - pRec[t,i]*(1-propLR[i]) - ifelse(chemo==1,prob_CHF[startage+ t,i],0)  
                      - ifelse(chemo==1, prob_AML[i],0) 
 tps[3,4,t] <- pRec[t,i]*(1-propLR[i]) 
 tps[3,5,t] <- ifelse(chemo==1, prob_CHF[startage + t,i],0) 
 tps[3,6,t] <- ifelse(chemo==1, prob_AML[i],0) 
 tps[3,7,t] <- mr[startage + t] 

 tps[4,1,t] <- 0 
 tps[4,2,t] <- 0 
 tps[4,3,t] <- 0  
 tps[4,4,t] <- 1-ifelse(chemo==0,pDeath_DR_low[i],pDeath_DR[i]) 
 tps[4,5,t] <- 0 
 tps[4,6,t] <- 0 
 tps[4,7,t] <- ifelse(chemo==0,pDeath_DR_low[i], pDeath_DR[i]) 

 tps[5,1,t] <- 0 
 tps[5,2,t] <- 0 
 tps[5,3,t] <- 0 
 tps[5,4,t] <- 0 
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 tps[5,5,t] <- 1- pdeath_CHF[i] 
 tps[5,6,t] <- 0 
 tps[5,7,t] <- pdeath_CHF[i] 

 tps[6,1,t] <- 0 
 tps[6,2,t] <- 0 
 tps[6,3,t] <- 0 
 tps[6,4,t] <- 0 
 tps[6,5,t] <- 0 
 tps[6,6,t] <- 1-(1-exp(-(mr[startage+t]+rmr_AML[i]))) 
 tps[6,7,t] <- 1-exp(-(mr[startage+t]+rmr_AML[i])) 

 tps[7,1,t] <- 0  
 tps[7,2,t] <- 0 
 tps[7,3,t] <- 0 
 tps[7,4,t] <- 0 
 tps[7,5,t] <- 0 
 tps[7,6,t] <- 0 
 tps[7,7,t] <- 1    

  } 

 #### Markov Trace #### 

  # trace for t = 1 [all start in state 1] 
  trace[1,1] <- 1 
  trace[1,-1] <- 0  
  # trace for t=> 2 
  for (t in 2:T) { 
   trace[t,] <- trace[t-1,] %*% tps[,,t] 
  } 
  #### Output #### 

    # QALY  

  for (t in 2:T) { 

    qtime[t] <- ((if (t==2) trace[t,1]*(ifelse(chemo==1,U[startage+t]-uDFdec.chemo[i],U[startage+t]-
uDFdec[i])) else trace[t,1]*(U[startage+t]-uDFdec[i])) + trace[t,2]*(U[startage+t]-uLRdec[i]) + 
trace[t,3]*(U[startage + t]-uDFdec[i]) + trace[t,4]*(U[startage + t]-uDRdec[i]) + trace[t,5]*uCHF[i] + 
trace[t,6]*uAML[i])/((1+disc.b)^(t-1))  } 

  QALYs <- qtime[2]/2+sum(qtime[3:(T-1)])+qtime[T]/2 

   # Costs 

  for (t in 2:T) { 

    cost[t] <- (  ((if (t==2) trace[t,1]*ifelse(chemo==1,cTreat[i]+cTox[i]+cDF[i]/2,cDF[i]/2) else 
trace[t,1]*ifelse(t<=10,cDF[i],0))  + trace[t,2]*cLR[i] + trace[t,3]*cDF[i]  + trace[t,4]*cDR[i]  + 
trace[t,5]*cCHF[i] + trace[t,6]*cAML[i] + if(t==1) 0 else trace[t-1,4]*tps[4,6,t-1]*cTerm[i] ) 
/((1+disc.c)^(t-1)))  }   

  COSTs <- sum(cost[2:(T-1)])+cost[T]/2+ifelse(test==1,ctest,0)   
  #Model return: 
  return(c(QALYs,COSTs))   
} 
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OTDXdraw.R: 
#Therapy guided by Predict in combination with OncotypeDX in uncertain cases 

set.seed(seed) 

CTB1 <- NA 
CTB1[CTB<3]<-0 
CTB1[CTB>=3 & CTB<5]<-1 
CTB1[CTB>=5]<-2 
CTB1 <- as.integer(CTB1) 
RT <- table(CTB1,RC) 

CTBdistro <- rdirichlet(Nsim,c(sum(CTB1==0),sum(CTB1==1),sum(CTB1==2))) 
propLowDX <<- rbeta(Nsim, RT[2,1],RT[2,2]+RT[2,3]) #Proportion of low risk vs high risk 
propHighDX <<- 1-propLowDX 
ctestDX <<- rep(1250,Nsim) #cost of OncotypeDX 

OTDXdraw <- function() { 
  #Recurrence rates 
  predict.high.chemo <<- apply(h.chemo.sim[,CTB>=5],1,mean) 
  predict.high       <<- apply(h.horm.sim[,CTB>=5],1,mean) 
  predict.low.chemo  <<- apply(h.chemo.sim[,CTB<3],1,mean) 
  predict.low        <<- apply(h.horm.sim[,CTB<3],1,mean) 
  predict.med.chemo  <<- apply(h.chemo.sim[,CTB>3 & RC>=1],1,mean) 
  predict.med        <<- apply(h.horm.sim[,CTB>3 & RC<1],1,mean) 

  #Predict High Risk, Chemo 
  rRec.5  <- predict.high.chemo #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle (high risk with chemo) 
  pRec.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
  pRec.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                                       else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 

  } 

  pRec.high.chemo <<- pRec.high.chemo 

  #Predict High Risk, NO Chemo 
  rRec.5  <- predict.high #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 

   

  # Vector pRec for probability of recurrence by cycle (high risk with NO chemo) 
  pRec.high <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
   pRec.high[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                           else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.high <<- pRec.high 
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  #Predict Low Risk, NO Chemo 
  rRec.5  <- predict.low #annual event rate, to year 5 
  rRec.10 <- predict.low #annual event rate, from 5 to year 10 
 
  # Vector pRec for probability of recurrence by cycle (low risk with NO chemo) 
  pRec.low <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
   pRec.low[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                   else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.low <<- pRec.low 

  #Predict Low Risk, Chemo 
  rRec.5  <- predict.low.chemo #annual event rate, to year 5 
  rRec.10 <- predict.low #annual event rate, from 5 to year 10 
 

  # Vector pRec for probability of recurrence by cycle (low risk group with chemo) 
  pRec.low.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.low.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                                  else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.low.chemo <<- pRec.low.chemo 

  #Predict High Risk, Chemo 
  rRec.5  <- predict.high.chemo #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle (high risk with chemo) 
  pRec.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                                     else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.high.chemo <<- pRec.high.chemo 

  #Predict Uncertain Risk, OTDX low risk, no chemo 
  rRec.5  <- predict.med #annual event rate, to year 5 
  rRec.10 <- predict.med #annual event rate, from 5 to year 10 
 
  # Vector pRec for probability of recurrence by cycle (uncertain risk with NO chemo 
  pRec.med <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 

  for (cycle in 0:T){ 
    pRec.med[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                                else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 
  pRec.med <<- pRec.med 

  #Predict High Risk, Chemo 
  rRec.5  <- predict.high.chemo #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 
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  # Vector pRec for probability of recurrence by cycle (high risk with chemo) 
  pRec.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
              else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 
  pRec.high.chemo <<- pRec.high.chemo 

   
  #Predict Uncertain Risk, OTDX high, Chemo 
  rRec.5  <- predict.med.chemo #annual event rate, to year 5 
  rRec.10 <- predict.high #annual event rate, from 5 to year 10 

   # Vector pRec for probability of recurrence by cycle (high risk with NO chemo) 
  pRec.med.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.med.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                         else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.med.chemo <<- pRec.med.chemo 

 } 

 

RIGIDdraw.R: 
# EER4 Rigid 

res.rate  <<- rbeta(Nsim,209,89) #average response rate to endocrine therapy 
nres.rate <<- 1-res.rate 

cEER4 <<- (rlnorm(Nsim,7.422, 0.030)) #cost of test 

RIGIDdraw <- function() { 

  #endocrine effect on Responders 

  HR_resp <- rbeta(length(rfs10),397,738) 
  e.horm.sim <- array(NA,c(Nsim,length(rfs10))) 
  for (z in 1:length(rfs10)) { 
    e.horm.sim[,z] <- h.horm.sim[,z]*HR_resp[z] 
  } 

  e.horm.sim <<- e.horm.sim 

   
  #chemotherapy effect on Non-Responders 
  alpha <- 71.2115 #shape paramater 1 
  beta  <- 26.3385 #shape parameter 2 

  HRchemo <- rbeta(Nsim,alpha,beta) # Hazard Ratio distribution for chemotherapy (mean 0.73) 
  HRn_resp <- 1/HR_resp 

  e.chemo.sim <- array(NA,c(Nsim,length(rfs10))) 
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  for (j in 1:Nsim) { 
    e.chemo.sim[j,] <- e.horm.sim[j,]*HRn_resp[j]*HRchemo[j] 
  } 

  e.chemo.sim <<- e.chemo.sim 
 
  #Recurrence rates 

  Rigid.high.chemo <<- apply(e.chemo.sim[,RSP==0],1,mean) 
  Rigid.high       <<- apply(e.horm.sim[,RSP==0],1,mean) 
  Rigid.low.chemo  <<- apply(e.chemo.sim[,RSP==1],1,mean) 
  Rigid.low        <<- apply(e.horm.sim[,RSP==1],1,mean) 
 
  #EER4 High Risk, Chemo 
  rRec.5  <- Rigid.high.chemo #annual event rate, to year 5 
  rRec.10 <- Rigid.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle (high risk with chemo) 
  pRec.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                           else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.high.chemo <<- pRec.high.chemo 

  #EER4 High Risk, NO Chemo 
  rRec.5  <- Rigid.high #annual event rate, to year 5 
  rRec.10 <- Rigid.high #annual event rate, from 5 to year 10 

# Vector pRec for probability of recurrence by cycle (high risk with NO chemo) 
  pRec.high <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.high[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                         else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 
  pRec.high <<- pRec.high 

  #EER4 Low Risk, NO Chemo 
  rRec.5  <- Rigid.low #annual event rate, to year 5 
  rRec.10 <- Rigid.low #annual event rate, from 5 to year 10 
 
  # Vector pRec for probability of recurrence by cycle (low risk with NO chemo) 
  pRec.low <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.low[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                           else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.low <<- pRec.low 

  #EEr4 Low Risk, Chemo 
  rRec.5  <- Rigid.low.chemo #annual event rate, to year 5 
  rRec.10 <- Rigid.low #annual event rate, from 5 to year 10 
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  # Vector pRec for probability of recurrence by cycle (low risk group with chemo) 
  pRec.low.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.low.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                                 else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.low.chemo <<- pRec.low.chemo 

} 

 

FLEXdraw.R: 
#### EER4 Flexible #### 

FLEXdraw <- function() { 

    #Three Predict Risk Categories, Two EER4 risk categories, Chemo assigned based on Predict 

  FLEX.R.low   <<- apply(e.horm.sim[,RSP==1 & CTB<3],1,mean) 
  FLEX.R.med   <<- apply(e.horm.sim[,RSP==1 & CTB>=3 & CTB<5],1,mean) 
  FLEX.R.high  <<- apply(e.horm.sim[,RSP==1 & CTB>=5],1,mean) 
  FLEX.NR.low  <<- apply(e.horm.sim[,RSP==0 & CTB<3],1,mean) 
  FLEX.NR.med  <<- apply(e.horm.sim[,RSP==0 & CTB>=3 & CTB<5],1,mean) 
  FLEX.NR.high <<- apply(e.horm.sim[,RSP==0 & CTB>=5],1,mean) 

  FLEX.R.low.chemo   <<- apply(e.chemo.sim[,RSP==1 & CTB<3],1,mean) 
  FLEX.R.med.chemo   <<- apply(e.chemo.sim[,RSP==1 & CTB>=3 & CTB<5],1,mean) 
  FLEX.R.high.chemo  <<- apply(e.chemo.sim[,RSP==1 & CTB>=5],1,mean) 
  FLEX.NR.low.chemo  <<- apply(e.chemo.sim[,RSP==0 & CTB<3],1,mean) 
  FLEX.NR.med.chemo  <<- apply(e.chemo.sim[,RSP==0 & CTB>=3 & CTB<5],1,mean) 
  FLEX.NR.high.chemo <<- apply(e.chemo.sim[,RSP==0 & CTB>=5],1,mean) 

  #Predict low risk, EER4 low risk, NO chemo 
  rRec.5  <- FLEX.R.low #annual event rate, to year 5 
  rRec.10 <- FLEX.R.low #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.R.low <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.R.low[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
             else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.R.low <<- pRec.R.low 

  #Predict low risk, EER4 low risk, with chemo 
  rRec.5  <- FLEX.R.low.chemo #annual event rate, to year 5 
  rRec.10 <- FLEX.R.low #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.R.low.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.R.low.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
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                   else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.R.low.chemo <<- pRec.R.low.chemo 
 
  #Predict medium risk, EER4 low risk, NO chemo 
  rRec.5  <- FLEX.R.med #annual event rate, to year 5 
  rRec.10 <- FLEX.R.med #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.R.med <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.R.med[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                             else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.R.med <<- pRec.R.med 

  #Predict medium risk, EER4 low risk, with chemo 
  rRec.5  <- FLEX.R.med.chemo #annual event rate, to year 5 
  rRec.10 <- FLEX.R.med #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.R.med.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.R.med.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                             else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.R.med.chemo <<- pRec.R.med.chemo 

  #Predict high risk, EER4 low risk, NO chemo 
  rRec.5  <- FLEX.R.high #annual event rate, to year 5 
  rRec.10 <- FLEX.R.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.R.high <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.R.high[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                      else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.R.high <<- pRec.R.high 

 #Predict high risk, EER4 low risk, with chemo 
  rRec.5  <- FLEX.R.high.chemo #annual event rate, to year 5 
  rRec.10 <- FLEX.R.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.R.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.R.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                              else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.R.high.chemo <<- pRec.R.high.chemo 
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  ### #Predict low risk, EER4 high risk, NO chemo 
  rRec.5  <- FLEX.NR.low #annual event rate, to year 5 
  rRec.10 <- FLEX.NR.low #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.NR.low <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.NR.low[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                        else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.NR.low <<- pRec.NR.low 

  #Predict low risk, EER4 high risk, with chemo 
  rRec.5  <- FLEX.NR.low.chemo #annual event rate, to year 5 
  rRec.10 <- FLEX.NR.low #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.NR.low.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.NR.low.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                   else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.NR.low.chemo <<- pRec.NR.low.chemo 

  #Predict medium risk, EER4 high risk, NO chemo 
  rRec.5  <- FLEX.NR.med #annual event rate, to year 5 
  rRec.10 <- FLEX.NR.med #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
 pRec.NR.med <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.NR.med[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 
  pRec.NR.med <<- pRec.NR.med 

    #Predict medium risk, EER4 high risk, with chemo 
  rRec.5  <- FLEX.NR.med.chemo #annual event rate, to year 5 
  rRec.10 <- FLEX.NR.med #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.NR.med.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.NR.med.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                          else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
 } 

  pRec.NR.med.chemo <<- pRec.NR.med.chemo 

  #Predict high risk, EER4 high risk, NO chemo 
  rRec.5  <- FLEX.NR.high #annual event rate, to year 5 
  rRec.10 <- FLEX.NR.high #annual event rate, from 5 to year 10 
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  # Vector pRec for probability of recurrence by cycle 
  pRec.NR.high <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.NR.high[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                    else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.NR.high <<- pRec.NR.high 

  #Predict high risk, EER4 high risk, with chemo 
  rRec.5  <- FLEX.NR.high.chemo #annual event rate, to year 5 
  rRec.10 <- FLEX.NR.high #annual event rate, from 5 to year 10 

  # Vector pRec for probability of recurrence by cycle 
  pRec.NR.high.chemo <- array(c(c(0:T),rep(NA,Nsim)),c(T,Nsim)) 
  for (cycle in 0:T){ 
    pRec.NR.high.chemo[cycle,] <- if (cycle <=5) 1-exp(-rRec.5)  
                   else (if(cycle >5 & cycle <=10) 1-exp(-rRec.10) else 0) 
  } 

  pRec.NR.high.chemo <<- pRec.NR.high.chemo 

}  
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Appendix 2: 

Script for executing the Discrete Event Simulation model, using the “simmer” package. 

#### Discrete Event Simulation #### 

library(simmer) 
library(tidyverse) 
# set global variables 
{ 
  set.seed(413) 
  Nsim <- 1000 
  s.distro <- rlnorm(Nsim,3,0.5) #initial size distribution 
  s.neg.distro <- -rlnorm(Nsim,2.6317,0.5368) #decrease in tumour size for responders 
  s.pos.distro <- rlnorm(Nsim,2.33,0.5768) #increase in tumour size for non-responders 
  surg.wait <- rlnorm(Nsim,3.08,0.3) #diagnosis to surgery waiting time distribution 
  neo.time <- rnorm(Nsim,150,30) #time spent in neoadjuvant treatment 
  response <- 0.7 #share of patients responding to Letrozole 
  p.gen <- runif(Nsim,0,1) #probability generator for random draws 
  sensitivity <- 0.96 # of EER4 
  specificity <- 0.94 # of EER4 
  l.cost <- rlnorm(Nsim,8.699,0.2) #cost of lumpectomy 
  m.cost <- rlnorm(Nsim,9.30,0.03) # cost of mastectomy + recon surgery 
  QQ <- rlnorm(Nsim,-3.506,0.5) 
  l.qaly <- QQ/0.045244 
  cEER4M <- rlnorm(Nsim,9.52,0.05) #cost distro from Markov 
  qEER4M <- rlnorm(Nsim,2.076,0.03) #QALY distro from Markov 
  cSOCM <- rlnorm(Nsim,9.543,0.05) #cost distro from Markov 
  qSOCM <- rlnorm(Nsim,2.039,0.03) #QALY distro from markov   

} 

# set simulation environment 

clinic <- simmer() 

# set SOC trajectory 

SOC <- 
  trajectory("SOC") %>% 
  log_("Diagnosis") %>% 
  set_attribute("size", function(){sample(s.distro,1)}) %>% #randomise size    
  set_attribute("Treatment",0) %>% # no neoadjuvant treatment 
  set_attribute("Surgery",function()ifelse(get_attribute(clinic,"size")>20,1,2)) %>% # type of surgery   
  timeout(function(){sample(surg.wait,1)}) %>% # time from diagnosis to surgery 
  log_("Surgery completed") 

AllAI <- 
  trajectory("AllAI") %>% 
  log_("Diagnosis") %>% 
  set_attribute("size", function(){sample(s.distro,1)}) %>% #randomise size   
  set_attribute("Treatment",1) %>% # All receive neoadjuvant treatment  
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  set_attribute("Response",function()ifelse(sample(p.gen,1)<response,1,2)) %>% #randomise 
response status, responder=1, non-responder=2 
  log_("AI treatment") %>% 
  branch( 
   function() get_attribute(clinic,"Response"),continue=c(TRUE,TRUE), 
    trajectory("Responder") %>% 
     set_attribute("size",sample(s.neg.distro,1),mod="+") %>% #response to treatment      
     log_("Responder"),   trajectory("Non-responder") %>%    
     set_attribute("size",sample(s.pos.distro,1),mod="+") %>% #no response to treatment     
     log_("Non-responder")) %>% 
     set_attribute("Surgery",function()ifelse(get_attribute(clinic,"size")>20,1,2)) %>% # type of surgery   
     timeout(function(){sample(surg.wait,1)}) %>% # time from diagnosis to surgery 
     log_("Surgery completed") 

# set trajectory for EER4 

EER4 <- 
  trajectory("EER4") %>% 
  log_("Diagnosis") %>% 
  set_attribute("size", function(){sample(s.distro,1)}) %>% #randomise size   
  set_attribute("Response",function()ifelse(sample(p.gen,1)<response,1,2)) %>% #randomise 
response status, responder=1, non-responder=2 
  log_("AI treatment") %>% 
 timeout(14) %>% 
  branch(  
function() get_attribute(clinic,"Response"), continue=c(TRUE,TRUE), 
trajectory("Predicted_Responder") %>% 
 set_attribute("Treatment",1) %>% 
   log_("PR") %>% 
   branch( 
     function() ifelse(sample(p.gen,1)<sensitivity,1,2),continue=c(TRUE,TRUE),  
                   trajectory("True Responder") %>% 
      set_attribute("size",sample(s.neg.distro,1),mod="+") %>% 
    log_("True Responder"),  trajectory("False Responder") %>%     
    set_attribute("size",sample(s.pos.distro,1),mod="+") %>% 
   log_("False Responder") 
 ),  trajectory("Predicted_Non-responder") %>% 
    set_attribute("Treatment",0) %>%   
  log_("PnR") %>%   branch( 
      function() ifelse(sample(p.gen,1)<specificity,1,2),continue=c(TRUE,TRUE), 
 trajectory("True Non-responder") %>% 
  log_("True Non-responder"),   trajectory("False Non-responder") %>% 
    log_("False Non-responder")  )  ) %>%  
set_attribute("Surgery",function()ifelse(get_attribute(clinic,"size")>20,1,2)) %>% # type of surgery  
timeout(function(){sample(surg.wait,1)}) %>% # time from diagnosis to surgery 
  log_("Surgery completed") 
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clinic <- simmer("Clinic") %>% 
  add_generator("SOC ",SOC, from_to(0,1000, function(){1}),mon=2) %>% 
  add_generator("AllAI ",AllAI, from_to(0,1000, function(){1}),mon=2) %>%  
  add_generator("EER4 ",EER4, from_to(0,1000, function(){1}),mon=2) 

attributes <- run(clinic,until = 1500) %>% 
  get_mon_attributes() 

arrivals   <- run(clinic,until = 1500) %>% 
 get_mon_arrivals() 

Results <- attributes %>% 
  select(name,key,value) %>% 
  group_by(name) %>% 
  pivot_wider(names_from = key, values_from = value) %>% 
  full_join(arrivals) %>% 
  select(name,activity_time,size,Response,Treatment,Surgery) 

Results$Surgery <- ifelse(Results$Surgery==1,"Mastectomy","Lumpectomy") 

Results$Strategy <- 
ifelse(substring(Results$name,1,3)=="SOC","SOC",ifelse(substring(Results$name,1,3)=="EER","EER4"
,"AllAI")) 

ResultsSOC <- Results %>% 
  filter(Strategy=="SOC") %>% 
  mutate(cost.surg=ifelse(Surgery=="Mastectomy",m.cost,l.cost)) %>% 
  mutate(cost.treat = as.numeric(Treatment)*activity_time*(2.75/28)) %>% 
  mutate(extraQ = ifelse(Surgery=="Lumpectomy",l.qaly,0)) 

ResultsSOC$mkv.cost <- cSOCM 
ResultsSOC$mkv.qaly <- qSOCM 
ResultsSOC <- ResultsSOC %>% 
  mutate(TQALY = mkv.qaly + extraQ) %>% 
  mutate(Tcost = mkv.cost + cost.surg + cost.treat) 

ResultsAllAI <- Results %>% 
  filter(Strategy=="AllAI") %>% 
  mutate(cost.surg=ifelse(Surgery=="Mastectomy",m.cost,l.cost)) %>% 
  mutate(cost.treat = as.numeric(Treatment)*activity_time*(2.75/28)) %>% 
  mutate(extraQ = ifelse(Surgery=="Lumpectomy",l.qaly,0)) 

ResultsAllAI$mkv.cost <- cSOCM  
ResultsAllAI$mkv.qaly <- qSOCM 
ResultsAllAI <- ResultsAllAI %>% 
 mutate(TQALY = mkv.qaly + extraQ) %>% 
  mutate(Tcost = mkv.cost + cost.surg + cost.treat) 

ResultsEER4 <- Results %>% 
  filter(Strategy=="EER4") %>%  
  mutate(cost.surg=ifelse(Surgery=="Mastectomy",m.cost,l.cost)) %>% 
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  mutate(cost.treat = as.numeric(Treatment)*activity_time*(2.75/28)) %>% 
  mutate(extraQ = ifelse(Surgery=="Lumpectomy",l.qaly,0)) 

ResultsEER4$mkv.cost <- cEER4M 
ResultsEER4$mkv.qaly <- qEER4M 
ResultsEER4 <- ResultsEER4 %>% 
  mutate(TQALY = mkv.qaly + extraQ) %>% 
  mutate(Tcost = mkv.cost + cost.surg + cost.treat) 

{   

ICERtb <- ResultsSOC %>% 
  select(Strategy,TQALY,Tcost) 

ICERtb1 <- ResultsAllAI %>% 
  select(Strategy,TQALY,Tcost) 

ICERtb2 <- ResultsEER4 %>% 
  select(Strategy,TQALY,Tcost) 

ICERtb <- ICERtb %>% 
  rbind(ICERtb1,ICERtb2) 

} 

ICERtb$ICER <- (ICERtb$Tcost - ICERtb$Tcost[ICERtb$Strategy=="SOC"])/(ICERtb$TQALY - 
ICERtb$TQALY[ICERtb$Strategy=="SOC"]) 

ICERplot <- ICERtb %>% 
  filter(Strategy!="SOC") 

mean(ResultsSOC$TQALY) 
mean(ResultsAllAI$TQALY) 
mean(ResultsEER4$TQALY) 

mean(ResultsSOC$Tcost) 
mean(ResultsAllAI$Tcost) 
mean(ResultsEER4$Tcost) 

 

(mean(ICERtb1$Tcost - ICERtb$Tcost))/(mean(ICERtb1$TQALY - ICERtb$TQALY)) 
(mean(ICERtb2$Tcost - ICERtb$Tcost))/(mean(ICERtb2$TQALY - ICERtb$TQALY)) 

surgcount <- Results %>% 
  group_by(Strategy) %>% 
  count(Surgery) %>% 
  pivot_wider(names_from = Surgery, values_from = n) 
surgcount$displacement <- surgcount$Lumpectomy - surgcount$Lumpectomy[3] 
surgcount$savings <- surgcount$displacement*(mean(m.cost - l.cost)) 
surgcount$avgsavings <- surgcount$savings/1000 

lambda <- seq(1000,100000,200) 
CEAC <- array(NA,c(length(lambda),2)) 
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for (i in 1:length(lambda)) { 
  NB.SOC      <- ResultsSOC$TQALY*lambda[i]   - ResultsSOC$Tcost 
  NB.AllAI    <- ResultsAllAI$TQALY*lambda[i] - ResultsAllAI$Tcost 
  NB.EER4     <- ResultsEER4$TQALY*lambda[i]  - ResultsEER4$Tcost  
  CE.AllAI     <- ifelse(NB.AllAI > NB.SOC, 1, 0) 
  CE.EER4     <- ifelse(NB.EER4 > NB.SOC, 1,0) 
  prob.CE.AllAI    <- mean(CE.AllAI)  
  prob.CE.EER4      <- mean(CE.EER4) 

  CEAC[i,] <- c(prob.CE.AllAI,prob.CE.EER4) 
} 

ICERtb1$IQALY <- ICERtb1$TQALY -ICERtb$TQALY 
ICERtb2$IQALY <- ICERtb2$TQALY -ICERtb$TQALY 
ICERtb1$Icost <- ICERtb1$Tcost -ICERtb$Tcost 
ICERtb2$Icost <- ICERtb2$Tcost -ICERtb$Tcost 
ICERtb1$IQALY <- rnorm(Nsim,0.04,0.1492) 
ICERtb1$Icost <- rnorm(Nsim,69.4,300) 
ICERplot2 <- rbind(ICERtb1,ICERtb2) 
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