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Lay Summary

High-dimensional neuroimaging data are routinely collected to investigate different dis-
eases and conditions. For example, Alzheimer’s disease (AD) is the most prevalent cause
of dementia, which is one of the main causes of death for older people. There is currently
no treatment, and a brain tissue autopsy is the only way to get a definitive diagnosis,
which can only be made after the patient has passed away. Various data initiavtives are
taking place worldwide collecting neuroimaging, biological, and clinical data, with the
aim of improving in vivo diagnosis and prediction and monitoring disease progression.
Scalar-on-image regression (SIR) provides a formal statistical framework to analyse such
data, in order to improve understanding of the underlying condition, the effects on the
brain and improve prediction or diagnosis. This thesis builds a novel class of SIR mod-
els that employ spatial clustering to automatically extract relevant regions of interest
from the image for prediction of the response. As such we provide not only a thorough
overview of SIR models but also a detailed comparison of spatial clustering models, in-
cluding theoretical results, prior simulations and comparisons on image segmentation
tasks.
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Abstract

Scalar-on-image regression aims to investigate changes in a scalar response of interest
based on high-dimensional imaging data. These problems are increasingly prevalent in
numerous domains, particularly in biomedical studies. For instance, they aim to utilise
medical imaging data to capture and study the complex pattern of changes associated
with disease to improve diagnostic accuracy. Due to the massive dimension of the im-
ages, which can often be in millions, combined with modest sample sizes, typically in
the hundreds in most biomedical studies, pose serious challenges. Specifically, scalar-on-
image regression belongs to the “large p, small n” paradigm, and hence, many models
utilise shrinkage methods. However, neighbouring pixels in images are highly correlated,
making standard regression methods, even with shrinkage, problematic due to multi-
collinearity and the high number of nonzero coefficients. We propose a novel Bayesian
scalar-on-image regression model that utilises spatial coordinates of the pixels to group
them with similar effects on the response to have a common coefficient, thus, allowing for
automatic identification of regions of interest in the image for predicting the response of
interest. In this thesis, we explore two classes of priors for the spatially-dependent par-
tition process, namely, Potts-Gibbs random partition models (Potts-Gibbs) and Ewens-
Pitman attraction (EPA) distribution and provide a thorough comparison of the models.
In addition, Bayesian shrinkage priors are utilised to identify the covariates and regions
that are most relevant for the prediction. The proposed model is illustrated using the
simulated data sets and to identify brain regions of interest in Alzheimer’s disease.

Keywords: Bayesian; Gibbs-type priors; Potts model; Clustering; Generalised Swendsen-
Wang; High-dimensional imaging data
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Chapter 1

Introduction

Through advances in data acquisition, vast amounts of high-dimensional imaging data
are collected to study phenomena in many fields. Such data are common in biomedical
studies to understand a disease or condition of interest (Craddock et al., 2009; Fan
et al., 2008; Shi et al., 2014a; Van Walderveen et al., 1998), and in other fields such as
psychology (Davatzikos et al., 2005; Sun et al., 2009), social sciences (Ferwerda et al.,
2016; Hum et al., 2011; Kim and Kim, 2018; Samany, 2019), economics (Henderson
et al., 2009; Naik et al., 2016, 2017), climate sciences (O’Neill, 2013; O’Neill et al., 2013),
environmental sciences (Debois et al., 2013; Gundlach-Graham et al., 2015; Maloof et al.,
2020) and more. While extracting features from the images based on predefined regions
of interest favours interpretation and eases computational and statistical issues, changes
may occur in only part of a region or span multiple structures. In order to capture
the complex spatial pattern of changes and improve accuracy and understanding of the
underlying phenomenon, sophisticated approaches are required that utilise the entire
high-dimensional imaging data. However, the massive dimension of the images, which
is often in the millions, combined with the relatively small sample size, which at best is
usually in the hundreds, poses serious challenges.

In the statistical literature, this is framed as a scalar-on-image regression (SIR) problem
(Reiss et al., 2011), so-called as the responses are scalars as in a typical regression,
but the covariate is the entire image. SIR belongs to the “large p, small n” paradigm
(Bernardo et al., 2003); indeed, the dimension of the image can be massive, particularly
for brain images, and thus, many SIR models utilise shrinkage methods that additionally
incorporate the spatial information in the image (Goldsmith et al., 2014). In the SIR
problem, the covariates represent the image value at a single pixel/voxel, i.e. a very
tiny part of the brain, and the effect on the response is most often weak, unreliable and
uninterpretable. Moreover, neighbouring pixels/voxels are highly correlated, making
standard regression methods, even with shrinkage, problematic due to multicollinearity.

To overcome these difficulties, we develop novel SIR models that group pixels/voxels
with similar effects on the response to have a common coefficient within the SIR model,

7



through the use of spatial random partition models. As opposed to the Ising-DP model
proposed by Li et al. (2015) (refer to Section 2.1.3 for more details), the proposed model
employs spatial random partition models for clustering voxels by utilising the spatial co-
ordinates of the voxels to encourage that groups represent spatially contiguous regions.
Importantly, this allows for the automatic identification of regions of interest and in-
tegrates regression/classification and identification of regions into a single model-based
framework. Thus, the clusters represent brain regions which are inherently defined to be
the most discriminative based on the chosen regression/classification model. This not
only improves the signal and eases interpretability, but also reduces the computational
burden by drastically decreasing the image dimension and addressing the multicollinear-
ity problem.

In particular, the novel models are developed using Bayesian nonparametric (BNP)
spatial random partition models; BNP is an exciting and expanding field characterised
by flexible models that adapt to the complexity of the model to the data (Gershman
and Blei, 2012). Advantages of the proposed BNP approach include allowing the data
to determine the number of regions; quantification of uncertainty in the diagnosis and
other unknowns, such as the number of regions; and incorporation of prior knowledge
from previous studies or expertise of doctors and clinicians. We focus on and provide a
thorough comparison of two BNP spatial random partition models: the Ewens-Pitman
attraction (EPA) distribution (Dahl et al., 2017) and the Potts-Gibbs random partition
(Potts-Gibbs) models, leading to the development of two novel SIR models, namely SIR
EPA and SIR Potts-Gibbs models.

Deep learning models such as fully connected neural networks (FNNs) (Amoroso et al.,
2018; Zhou et al., 2019), deep polynomial network (DPN) (Shi et al., 2017), convolu-
tional neural networks (CNNs) (Islam and Zhang, 2017; Lin et al., 2018), auto-encoders
(Ju et al., 2017), deep belief networks (DBNs) (Shen et al., 2019) and recurrent neural
networks (RNNs) (Liu et al., 2018) have been utilised to detect or predict diseases or
conditions based on imaging data. Despite remarkable success in medical diagnosis in
various applications, deep learning with imaging data still has a number of limitations.
Compared to deep learning, our approach provides a number of advantages, namely
interpretability (offers various graphics and tools to summarize and interpret results,
such as coefficient maps, automatically defined regions of interests, posterior inclusion
maps) and uncertainty quantification as well as the possibility to include knowledge
from previous studies or expertise of doctors and clinicians. These advantages are par-
ticularly important in biomedical settings and other safety-critical applications, where
interpretability and well-calibrated uncertainty quantification are crucial.

1.1 Motivating application

Alzheimer’s disease (AD) is a damaging brain disease and an increasing burden on
society. In 2019, 50 million people worldwide were living with dementia, which is set
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to reach 152 million by 2050 (International, 2019). The number of people forecasted to
develop dementia is increasing at a fast rate worldwide. In the UK, over half a million
people have been diagnosed with dementia in 2019 and the female-to-male ratio is 1.67
([1.52–1.85]) (Nichols et al., 2022). By 2025, the number of individuals with dementia
will reach 1 million, and by 2050, it will increase to 2 million. The cost of dementia to
governments, social services and individuals has reached staggering figures, with £34.7
billion reported in the UK in 2019 (Wittenberg et al., 2019). According to World Health
Organization (WHO), AD is the most prevalent form of dementia. It is estimated that
AD accounts for around 60% to 70% of all dementia cases.

Unfortunately, a definite diagnosis of the disease is typically unknown until an autopsy,
as it requires histopathologic examination of brain tissue, an invasive procedure. In
practice, clinical diagnosis is based on a patient’s history and symptoms, behavioural
and cognitive tests, and visual examination of neuroimages, if available. Several stud-
ies have followed patients to autopsy to estimate the accuracy of a clinical diagnosis;
the National Institute of Neurological and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) criteria,
which are widely used for clinical diagnosis, have an average sensitivity of 81% and an
average specificity of 70% for the diagnosis of “probable” AD and an average sensitivity
of 93% and an average specificity of 48% for the diagnosis of “possible” AD (Knopman
et al., 2001). It is now widely recognised that AD biomarkers based on neuroimaging or
biological data can improve diagnosis, particularly in the early stages of the disease when
treatments are most likely to be effective. Indeed, new diagnostic criteria based on a
revision of NINCDS-ADRDA criteria to include positivity to imaging or fluid biomarkers
have been recently proposed for earlier diagnosis of AD (Dubois et al., 2007). Prestia
et al. (2015) investigate the revised criteria based on different combinations of well es-
tablished biomarkers, including biomarkers extracted from amyloid positron emission
tomography (Aβ-PET), fluorodeoxyglucose-positron emission tomography (FDG-PET)
and structural magnetic resonance images (sMRI). However, many studies investigating
the diagnostic accuracy of disease-based neuroimaging data focus on biomarkers from
predefined regions of interest (ROIs); this approach has had some successful results,
depending on the ROIs used and the severity of the disease for the observed subjects
(Convit et al., 2000; Wolf et al., 2001). However, the changes due to the disease or con-
ditions in the brain associated with the disease may occur in only part of the specified
brain structure or span multiple structures.

Vast amounts of clinical, biological and neuroimaging data to study AD are being col-
lected through projects such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
and the UK Biobank. The overall goal of this thesis is to utilise this vast and diverse
data to improve diagnosis and understanding of the disease, particularly in the early
stages of the disease when a diagnosis is most critical and any proposed drugs or ther-
apies are most likely to be most effective. However, several key challenges need to be
addressed for the analysis of neuroimaging data. First, the complex spatial dependence
in brain imaging data makes it difficult to comprehend the structure and understand
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which regions are important. Second, neuroimaging data is inherently noisy and has low
signal-to-noise ratios, thus making it harder to accurately detect a difference between
groups or to identify subtle changes. The third challenge to highlight is the limited num-
ber of subjects. Coupled with the high-dimension of the feature and comparatively small
sample sizes, it can be difficult to obtain a reliable analysis and generalise the research
findings. We develop scalable Bayesian SIR models for the automatic identification of
brain regions to diagnose AD that aim to capture the complex pattern of spatial patterns
associated with AD, with the goal of improving diagnostic accuracy, particularly in the
early stages, when changes can be very subtle.

1.2 Contributions

In this thesis, we make the following contributions:

1. We develop novel Bayesian scalar-on-image regression models, SIR EPA and SIR
Potts-Gibbs models, which exhibit spatial dependence by leveraging the spatial co-
ordinates of the pixels, and demonstrate their application to neuroimaging studies.
The SIR model is extended based on a generalized linear model framework to ac-
count for different types of outcomes (e.g. continuous, binary, ordinal and counts)
and a state-of-the-art inference scheme is developed and implemented based on
the generalized Swendsen-Wang (GSW) algorithm, that takes advantages of the
spatial coordinates for efficient split-merge moves.

2. We provide a thorough review and comparison of a number of SIR models, followed
by a review of dependent random partition models. These form the two main
components of our proposed models.

3. We give a detailed discussion of the random image partition models: the EPA
distribution and the Potts-Gibbs models, including prior simulations to study the
main properties of the partition structure implied by each random image partition
model chosen, particularly the number of clusters, the sizes of the clusters, and the
number of connected neighbours (reflecting spatial connectivity). In addition, we
derive properties, such as the predictive distribution and prior expected number of
clusters, of a particular model of interest within the class of Potts-Gibbs models,
namely the Potts-mixture of finite mixtures (Potts-MFM).

4. We include a number of simulated experiments to compare the proposed SIR mod-
els with existing ones, along with an application for the diagnosis of AD based on
hippocampus surface statistics extracted from sMRI.
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1.3 Outline of thesis

The organisation of the thesis is as follows. Chapter 2 reviews related literature, in-
cluding SIR and random image partition models with covariates. Chapter 3 provides
a detailed discussion of the random partition image partition models, namely the EPA
distribution and the Potts-Gibbs models, which we incorporate in the proposed models.
Chapter 4 outlines the development of the proposed models: EPA SIR and Potts-Gibbs
SIR models, as well as the proposed inference schemes. Chapter 5 illustrates the proposed
models through simulation studies as well as real data from a neuroimaging application.
We finish in Chapter 6 with some discussion and thoughts on future research directions.

Throughout the thesis, bold uppercase characters and bold lowercase characters are
used to denote matrices and vectors, respectively. On the other hand, lowercase letters
represent scalars.
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Chapter 2

Literature Review

In this chapter, we lay the groundwork for our proposed models: EPA SIR and Potts-
Gibbs SIR models by providing a thorough review of the important processes and dis-
tributions that form the basis of our proposed models: SIR and random image partition
models. First, we review the SIR models, followed by a review of dependent random
partition models.

2.1 Scalar-on-image regression (SIR)

Scalar-on-image regression (SIR) is an example of high-dimensional regression that aims
to derive a more complete picture of the association between a high-dimensional imaging
predictor and a scalar outcome measure. It has been applied to study issues in, for
example, disease diagnosis (Feng et al., 2020; Goldsmith et al., 2014; Huang et al., 2013;
Palma et al., 2020; Wang et al., 2017), psychiatry (Reiss et al., 2015), social science
(Kang et al., 2018), and more.

Formally, SIR is a statistical linear method used to study and analyse the relationship
between a scalar outcome measure and two or three-dimensional predictor images under
a single regression model (Goldsmith et al., 2014; Huang et al., 2013; Kang et al., 2018;
Li et al., 2015). For each data point, i = 1, . . . , n, we have

yi = wT
i µ+ xTi β + εi, εi

i.i.d∼ N
(
0, σ2

)
, (2.1)

where yi is a scalar continuous outcome measure, wi = (wi1, . . . , wiq)
T ∈ Rq is a q-

dimensional vector of covariates, and xi = (xi1, . . . , xip)
T ∈ Rp is a p-dimensional image

predictor. Each xij indicates the value of the image at a single unit (pixel or voxel) with
spatial location sj = (sj1, sj2)T ∈ R2 for j = 1, . . . , p. We define µ = (µ1, . . . , µq)

T ∈ Rq

as a q-dimensional fixed effects vector and β = (β1, . . . , βp)
T (with βj := β(sj)) as the

spatially varying coefficient image described on the same lattice as xi. The {εi} are
independent and identically distributed (i.i.d.) errors with mean zero and variance σ2,
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representing the variation within the experiment.

In contrast to SIR, the most classical approach to investigate the association between an
imaging predictor and outcome of interest is the voxel-wise or mass-univariate regression
method (Ashburner and Friston, 2000; Smith et al., 2006), which fits a general linear
model (GLM) to imaging data on the individual level and then statistical parametric
maps of test statistics and p-values are produced to identify the regions of the coefficient
image that are significant. This approach is parallelizable across voxels but unrealisti-
cally assumes voxels are mutually independent. While corrections are applied to account
for multiple testing, there is no sharing of information across neighbouring voxels.

Alternatively, low-rank models can be employed as statistical models to induce spatial
smoothing in a single spatial surface. In spatial statistics, low-rank models approximate
the spatial dependence structure by representing the spatial surface in terms of a set
of chosen spatial basis functions. For instance, motivated by neuroimaging studies,
Reiss and Ogden (2010) develop functional principal components regression (FPCR)
which relies on the principal components decomposition for the dimension reduction
and uses the penalized spline basis expansions to model the coefficient function for the
two-dimensional image predictor. Reiss et al. (2015) propose an FPCR in the wavelet
domain by replacing the roughness penalty with the wavelet thresholding method for
regression with image predictors, thus the model can be more sensitive to spikes or
discontinuities, which is commonly encountered in neuroimaging data. Wang et al.
(2014) describe another wavelet-based method as well.

Instead, the SIR models that we focus on are high-dimensional linear regression models
and have the advantage of interpretability. Due to the high-dimensional nature and
strong spatial correlation of the imaging predictors, shrinkage or penalization meth-
ods must be employed. For instance, in the non-Bayesian setting, Wang et al. (2017)
introduces a class of generalised SIR models via total variation penalty. Alternatively,
Bayesian approaches implicitly induce shrinkage through the choice of a prior distribution
and have been shown to dominate frequentist methods, particularly in low-information
settings (Celeux et al., 2012). In the Bayesian setting, two classes of priors maybe used:
shrinkage priors or spike-and-slab priors. For example in the case of Bayesian SIR based
on shrinkage priors, Kang et al. (2018) develop a novel model that imposes shrinkage by
modelling the coefficients through a soft-thresholding transformation of latent Gaussian
processes (STGP). Most of the literature in Bayesian SIR employs spike-and-slab priors
based on Markov random fields (MRFs).

MRFs are commonly used in Bayesian image analysis and spatial statistics to characterise
the spatial correlation structure in the data based on a predefined neighbourhood struc-
ture and a smoothing parameter. MRFs are spatial processes associated with grid-like
structures, where the conditional probability at each node of the grid is defined in terms
of the neighbourhood relations, as per the Markov property (Besag, 1986; Li, 2009). This
property ensures a simple expression for conditional probabilities as each term depends
only on the values in the neighbourhood, making computing the normalising constant of
each full conditional straightforward. As a result of the Markov property, this approach
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is particularly well suited to scalable computations. The Ising model is an example of a
binary spatial MRF which is commonly utilised as a prior distribution in imaging data.
For example, Smith et al. (2003) and Smith and Fahrmeir (2007) use an Ising prior
for the detection of the active region in functional magnetic resonance imaging (fMRI).
Huang et al. (2013) develop a hierarchical Bayesian SIR framework which employs an
Ising prior distribution as a sparsity-inducing prior to induce both sparsity and spatial
smoothness on the coefficient image. Goldsmith et al. (2014) proposes the Ising-Gaussian
Markov random field (Ising-GMRF) model adopting two spatial process priors, that is
a combination of an Ising and Gaussian Markov random field (GMRF) prior distribu-
tions to account for the sparsity and spatial dependence. The Ising-Dirichlet process
(Ising-DP) model by Li et al. (2015) uses an Ising prior distribution to spatially smooth
latent binary indicator variables but the model does not consider explicitly the spatial
variations in the nonzero model coefficients.

More recently, Lee et al. (2021) propose a different approach, a tree-based approach to
work in a high-dimensional linear regression context and use a graph to establish rela-
tionships between the regression coefficients. In order to deal with the parameters that
are assumed to be structured sparse and smooth, they introduce a Bayesian tree-based
low-rank Horseshoe (T-LoHo) model, which consists of a spanning tree partition model
to model contiguous partitions of graphs and a low-rank multivariate Horseshoe prior
to impose sparse homogeneity assumption. They simplify the challenging combinatorial
graph partition problem by representing partitions as connected components resulting
from edge cuts from a graph’s spanning tree.

In the following, we review in detail four SIR models which have different proposals for
spike-and-slab or shrinkage priors for the coefficients: the Ising (Huang et al., 2013),
Ising-GMRF (Goldsmith et al., 2014), Ising-DP (Li et al., 2015) and STGP (Kang et al.,
2018) models. We note that these will form the main competitors in the experiments of
Chapter 5.

2.1.1 Ising model

The Ising model (Huang et al., 2013) includes a binary latent indicator image, γ, to
indicate which locations in the coefficient image have an impact on the scalar outcome,
where γ(sj) = 1 denotes the presence of βj , and γ(sj) = 0 denotes the absence of βj . The
indicator variables are spatially smoothed by employing an Ising prior, a binary MRF, for
γ. This enables a more credible selection of the variables in the regression model, notably
in the event of poor information by borrowing strength from neighbouring units. By
employing the Ising prior, it triggers the formation of clusters of like-valued neighbouring
binary variables (Smith and Fahrmeir, 2007), which leads to spatial smoothing of γ.
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Formally, the Ising prior for γ = (γ1, . . . , γp)
T
(
with γj := γ(sj)

)
is denoted by:

p(γ) = c(a,b) exp

aTγ +
∑
j

∑
k∈∆j

bjk1γj=γk

, (2.2)

where c(a,b) indicates the normalisation constant, (a, b) are the parameters of the Ising
distribution, ∆j is the collection of neighbouring locations of location sj , and 1γj=γk

equals 1 if γj and γk are the same and 0 otherwise. We concentrate on the first-order
neighbours, which will consist of four for most nodes, but less for the nodes at edges
and corners. The overall sparsity and neighbour interactions are manipulated by the
parameters a and b, respectively. While in full generality the parameters of the Ising
distribution, a and b, may vary over the entire image locations, we follow Huang et al.
(2013) and set these parameters to be constants (a, b). Lower a enforces more sparsity
whereas higher b encourages more spatial smoothness.

The full Ising model (Huang et al., 2013) is shown below:

yi ∼ N(wT
i µ+ xTi β, σ

2
ε ),

βj | γj ∼

{
δ0 if γj=0

N(0, σ2
β) if γj=1,

γ ∼ Ising(a, b),

where δ0 denotes a point-mass at zero and σβ is the variance for β. In Huang et al.
(2013), the parameters (a, b, σ2

β, σ
2
ε ) are model tuning parameters. Huang et al. (2013)

propose to use the residual sum of squares for the five-fold cross-validation procedure to
obtain the optimal model tuning parameters with extremely short MCMC chains, i.e.
250 or 500 iterations. As previously mentioned a and b determine the level of sparsity
and neighbourhood interactions. It is important to note that the selection of ∆j is also
crucial. The choice of the parameter σ2

β critically influences the posterior mean and

variance of β. The parameter σ2
ε has a significant impact on the model predictions and

inferred coefficient image and activation probabilities. If the value is too low, the effect
of each unit is overemphasized, resulting in overfitting and little sparsity. If the value is
too big, the influence of each unit on predicting the response is underestimated, causing
regression coefficients to be uniformly zero.

2.1.2 Ising-Gaussian Markov random field (Ising-GMRF) model

In most SIR applications, while a large number of locations will exhibit no significant
relationship with the response, there will also be a high proportion of units with non-
negligible associations. In this case, the non-zero coefficients should also be spatially
smoothed. The Ising model in Section 2.1.1 is extended to the Ising-GMRF model
(Goldsmith et al., 2014) by including a prior on the non-zero coefficients that encourage
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spatial smoothness. The spatial dependence between units is given by way of the GMRF
prior for β (Rue, 2005). The GMRF prior can result in smoothness, and it is conjugate
to the linear regression likelihood.

Mathematically, the GMRF prior for the β is:

βj |β−j ∼ N

(
β̄∆j ,

σ2
β

Nj

)
, (2.3)

where β−j denotes the coefficient image with the jth location removed and β̄∆j =
1/Nj

∑
k∈∆j

βk with Nj is the number of elements in ∆j . The neighborhood structure
for the GMRF prior is defined in the same way as for the Ising prior. The Ising-GMRF
model is a composite of an Ising prior (Equation (2.2)) for γ and a GMRF prior (Equa-
tion (2.3)) for the regression coefficients, β. The Ising prior imposes a comparatively
small quantity of non-zero regression coefficients while ensuring that they are spatially
grouped. Meanwhile, the GMRF prior aims to ensure that the non-zero coefficients
change seamlessly in the space. The goal is to enforce that the signal in β is both spa-
tially sparse and smooth in the nonzero units. The full Ising-GMRF model (Goldsmith
et al., 2014) is:

yi ∼ N(wT
i µ+ xTi β, σ

2
ε ),

βj | β−j , γj ∼

δ0 if γj=0

N

(
β̄∆j ,

σ2
β

Nj

)
if γj=1,

γ ∼ Ising(a, b).

Again, the parameters (a, b, σ2
β, σ

2
ε ) are model tuning parameters and crucially affect the

model’s performance. When employing the model in the context of neuroimaging data,
the model’s assumptions can be interpreted as presuming that most of the image loca-
tions are not significantly meaningful in estimating and predicting the scalar response,
while for those in the relevant areas of the brain, the adjacent units (pixels or voxels)
must be homogeneous concerning their effects.

2.1.3 Ising-Dirichlet process (Ising-DP) model

In a similar vein to the Ising model (Section 2.1.1) and Ising-GMRF model (Section
2.1.2), the Ising-DP model (Li et al., 2015) employs the Ising component of the prior
(Equation (2.2)) for γ to smooth the binary selection indicators.

The probability distribution of the non-zero coefficients is unknown and denoted as F .
To avoid any possibly restrictive parametric assumptions on the unknown distribution
F , a BNP prior is imposed on F , namely, a Dirichlet process (DP) prior, denoted by
F ∼ DP(α, F0), with concentration parameter α and base measure F0 (Ferguson, 1973,
1974). The DP prior produces discrete realisations, with probability one, and thus
induces clustering of the regression coefficients. This pools the great number of non-
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zero coefficients to a tiny set of values, greatly reducing the effective dimension of the
feature space. Moreover, this also helps to improve the strength of the signal, as the
unique, cluster-specific coefficient values reflect the cumulative effect of all units within
each cluster. It should be noted that the number of active clusters is controlled by the
concentration parameter α.

The full Ising-DP model (Li et al., 2015) is:

yi ∼ N(wT
i µ+ xTi β, σ

2
ε ),

βj | γj , F ∼

{
δ0 if γj=0

F if γj=1,

F ∼ DP(α, F0),

γ ∼ Ising(a, b).

To avoid and minimize sensitivity to the grid search performed in Ising and Ising-GMRF
models, Li et al. (2015) assign a hyperprior to the noise variance. Specifically, an im-
proper prior is placed on the unknown noise variance, resulting in an inverse-gamma full
conditional distribution for σ2

ε , i.e. σ2
ε ∼ IG(n/2, uσε), where uσε =

∑
i yi−wT

i µ−xTi β.
Following the stick-breaking representation of Sethuraman (1994), it is possible to refor-
mulate the random probability measure F as a weighted sum of infinitely many point
masses:

F (·) =
∞∑
h=1

ωhδβ∗h(·),

β∗h
i.i.d∼ F0,

ωh = ω′h
∏
k<h

(1− ω′k),

ω′h
i.i.d∼ Beta(1, α).

(2.4)

Through this representation (Equation (2.4)), we can rewrite the spike-and-slab prior
for each βj as:

βj |(γj ,ω,β∗) ∼ (1− γj)δ0 + γj

∞∑
h=1

ωhδβ∗h(·),

where ω = (w1, . . . , ωh, . . .) and β∗ = (β∗1 , . . . , β
∗
h, . . .)

T . In practice, a truncated stick-
breaking approximation to the DP is considered (Ishwaran and James, 2001), where
F '

∑H
h=1 ωhδβ∗h , with H < ∞ representing a conservative maximum limit on the

number of clusters and ω′H = 1, such that ωH is equal to the remaining length of the
stick. Additionally, the base measure is F0 = N(0, v2), and (a, b, α, v2) represent model
tuning parameters. For the Ising prior, Li et al. (2015) sets a and b according to their
proposed method which yields constraints for a and b in order to remedy the phase
transition issue of the Ising prior whereas for the DP prior, Li et al. (2015) chooses
H = 20 and v = 10 so that F0 is flat over a large domain.
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2.1.4 Soft-thresholded Gaussian process (STGP) model

An alternative model is proposed in Kang et al. (2018), where the image coefficient is
modelled through a soft-thresholded transformation of latent Gaussian processes, which
is referred to as soft-thresholded Gaussian processes (STGP). This prior ensures that the
image coefficient is sparse, spatially smooth and continuous. The objective is to establish
a smooth transition from the zero to non-zero effects of the adjacent regions. The sites
with non-zero coefficients group spatially, and in regions of non-zero coefficients, those
values change seamlessly.

The full STGP model (Kang et al., 2018) is shown below:

yi ∼ N(wT
i µ+ xTi β, σ

2
ε ),

β ∼ STGP(κ,K),

where the STGP prior is defined as:

βj = gκ(β̃j),

gκ(β̃j) =

{
0 |β̃j | ≤ κ
sgn(β̃j)

(
|β̃j | − κ

)
|β̃j | > κ,

β̃ ∼ GP(0,K).

The notation β̃ ∼ GP(0,K) with β̃j := β̃(sj) denotes the Gaussian process prior on the
latent dense image β̃, with zero mean function and stationary covariance function K.
The function gκ is the soft-thresholding function with parameter κ, where sgn(β̃j) takes
value 1 if β̃j is positive and sgn(β̃j) takes value -1 if β̃j is non-positive. The parameter
κ governs the prior extent of sparsity.

Higdon et al. (1999) describe the kernel convolution technique for generating both sta-
tionary and non-stationary spatial processes. As detailed in Higdon et al. (1999), any
stationary Gaussian process V(s) can be defined by the convolution of a kernel func-
tion, K(·), that is V(s) =

∫
K(s − t)W(t) dt, where W is a Gaussian white-noise. The

covariance function K(·) is then related to the kernel function K(·) as follows:

cov(s, s+ h) = K(h) =

∫
K(s− t)K(s+ h− t) dt.

The kernel representation is then approximated by restricting the process (i.e. the latent
Gaussian process, β̃) to be a finite grid of locations {tl : l = 1, · · · , L}, which is given by

β̃j =

L∑
l=1

L(sj − tl)al, (2.5)

where t1, . . . , tL ∈ Rd (for any integer d ≥ 1 and note that our case is d = 2) are a grid of
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spatial knots with L ≤ p and the knots are assumed to be located within a rectangular
spatial domain. The al ∼ N(0, σ2

a) is the kernel coefficient associated with knot l and L
is a local kernel function. Tapered Gaussian kernels with bandwidth σl are used:

L(sj − tl) = exp

(
−‖sj − tl‖

2
2

2σ2
l

)
1‖s−tl‖2<3σl ,

where ‖ · ‖2 denotes L2 norm. Additionally, a conditionally autoregressive (CAR) prior
(Gelfand et al., 2010) is imposed on the al:

al|a−l ∼ N

(
ϑ

nl

∑
k∼l

ak,
σ2
a

nl

)
, (2.6)

where a−l denotes the kernel coefficients with the lth element removed, l ∼ k indicates
knots tl and tk are neighbouring on the array, nl is the sum of knots adjoining to knot
l and (ϑ, σ2

a) are the parameters for the CAR prior. The parameter ϑ, defined on the
interval (0, 1), governs the spatial relationships between regions of an image, whereas
the σ2

a governs the range of the non-zero coefficients.

Combining Equation (2.5) and Equation (2.6), the prior distribution for β̃ is defined as:

β̃ ∼ N
(
0, σ2

aK(M − ϑA)−1KT
)
,

with the matrices M = diag(n1, . . . nL), adjacency matrix A with A(k,l) = 1 if k ∼ l and

zero otherwise, kernel matrixK ∈ Rp×L withK(j,l) = K(sj−tl). In this case, the model
tuning parameters include (σ2

ε , σ
2
a, ϑ,κ), controlling the noise variation, range of the

nonzero coefficients, spatial dependency, and sparsity, respectively. Kang et al. (2018)
use hyperpriors on those model tuning parameters, which are σ2

ε ∼ IG(0.1, 0.1), σ2
a ∼

HN(0, 1), ϑ ∼ Beta(10, 1) and κ ∼ Unif(κl,κu), where IG(), HN(), Beta() and Unif()
denote inverse-gamma, half normal, beta and uniform distributions respectively. Addi-
tionally, one must select the number of knot points L and bandwidth σl.

2.1.5 Summary

We have provided a review of SIR regression and covered four SIR models in detail: the
Ising, Ising-GMRF, Ising-DP and STGP models here. The first three employ spatial
spike-and-slab priors for the coefficient image and use an Ising prior to incorporate the
spatial information in the spike component and sparsity structure. However, the Ising
model does not consider spatial information in the slab component and nonzero coeffi-
cients. The Ising-GMRF model is proposed to circumvent the problem by integrating
the spatial information in the nonzero units through a GMRF. Both the Ising model
and the Ising-GMRF model have a relatively restrictive assumption on the probability
distribution of the non-zero coefficients. On the other hand, the Ising-DP model does
not impose any restrictive parametric assumptions on the probability distribution of the
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non-zero coefficients. The Ising-DP model works by combining an Ising prior to incor-
porate the spatial information in the sparsity structure with a DP prior to group the
non-zero coefficients. Still, the spatial information is only incorporated in the sparsity
structure and not in the BNP clustering model, which could result in regions that are
dispersed throughout the image. Lastly, the STGP model works differently by using soft-
thresholded Gaussian processes to induce sparsity and achieves both spatially smooth
and continuous in the coefficient image. These four models form the main competitors
for our experiments in Chapter 5, and more results and discussions are provided therein.

2.2 Dependent random partition models

Bayesian nonparametrics (BNP) (Ghosal and Van der Vaart, 2017) is an expanding
field, characterised by flexible models that are able to recover a wide range of data-
generating mechanisms. In fact, BNP models arise from natural assumptions. For
example, exchangeability assumes that a sequence of observable random variables is
invariant to a permutation or reordering of the indices, and the celebrated de Finetti’s
Representation Theorem states that a sequence of random variables is exchangeable if
and only if

yi | F
i.i.d∼ F,

F ∼ Q.
(2.7)

In this case, Q is called the de Finetti measure and represents the prior over the unknown
random probability measure, F . The Dirichlet process (DP) (Ferguson, 1973, 1974) is
a cornerstone in BNP and is a popular choice for the prior Q. However, from the stick-
breaking representation of DP (Sethuraman, 1994), it is clear that draws are discrete with
probability one. Under the stick-breaking representation, it is possible to reformulate
the random probability measure F as a weighted sum of infinitely many point masses:

F (·) =
∞∑
m=1

ωmδβ∗m(·),

ωm = ω′m
∏
k<m

(1− ω′k),
∞∑
m=1

ωm = 1,

ω′m
i.i.d∼ Beta(1, α),

(2.8)

where the β∗m’s are drawn independently from F0, which is the prior expectation F and
is also called the base measure, and α is called the concentration parameter, controlling
the variability around F0. In this thesis, we assume base measure F0 is non-atomic.

To overcome the discrete nature, DP mixture models are commonly employed which
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assume the hierarchical model (Lo, 1984):

yi | βi
ind.∼ pr(yi | βi),

βi | F
i.i.d∼ F,

F ∼ Q.

(2.9)

The discrete nature of F implies the existence of ties among β1, β2 . . . with positive
probability. For any finite n, we can reparameterise β1, . . . , βn in terms of the unique
values β∗ = (β∗1 , . . . , β

∗
M )T with M ≤ n and a partition πn = {C1, . . . , CM}, a set

denoting a partition of n units into M nonempty, mutually exclusive, and exhaustive
clusters C1, . . . , CM such that ∪C∈πnC = {1, . . . n}. Each unit has its own cluster label
zi ∈ {1, . . . ,M}, i.e zi = m if and only if i ∈ Cm. The model (2.9) can be marginalized
by integrating out F and shown to be of the form:

yi | zi = m,β∗m
ind.∼ pr(yi | β∗m),

β∗m | F0
i.i.d∼ F0,

πn ∼ pr(πn).

(2.10)

In the case of the DP, the random partition model is given by

pr(πp) =
αM

α(p)

M∏
m=1

Γ(| Cm |), (2.11)

where the notation x(a) = x(x + 1) . . . (x + a − 1) denotes the rising factorial. How-
ever, other priors beyond the DP (Lijoi and Prünster, 2009) may be employed leading
to different random partition models. For instance, the DP is related to the Ewens
distribution whereas the Pitman Yor process (PY) is associated with the Ewens-Pitman
distribution. If we choose Q as DP in Equation (2.9), the partition distribution pr(πp)
is the Ewens distribution whereas if we choose Q as PY in Equation (2.9), the partition
distribution pr(πp) becomes the Ewens-Pitman distribution, defined as

pr(πp) = (δ + α)
(M−1)
(δ)

M∏
m=1

Γ(| Cm | −δ)
Γ(1− δ)

, (2.12)

where δ ∈ (0, 1) denotes the discount parameter and α > −δ denotes the concentration

parameter as for DP. The notation x
(a)
(b) = x(x + b) . . . (x + (a − 1)b) represents the

Pochhammer symbol with increment b.

The development of BNP models that incorporate general covariate information is a
growing research area in the literature to accommodate the growing complexity of data.
Many proposals in the direction focus on the stick-breaking representation in Equation
(2.8) and extending the weights or atoms to depend on covariates, examples include
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the dependent Dirichlet processes (DDP) (MacEachern, 1999), order-based dependent
Dirichlet processes (Griffin and Steel, 2006) and weighted mixtures of Dirichlet processes
(Dunson et al., 2007)), to name a few (see also Quintana et al. (2022) for a review of
other dependent Dirichlet processes). Instead, in the following, we focus on proposals
that extend the random partition models in Equation (2.10). We relax the exchange-
ability assumption in the prior for the partitions and mainly focus on and review the
case when the covariate represents spatial coordinates. Specifically, our review includes
the product partition model (PPM) with covariates (PPMx) (Müller et al., 2011), spa-
tial PPM (sPPM) (Page and Quintana, 2016), distance-dependent Chinese restaurant
process (CRP) (ddCRP) (Blei and Frazier, 2011; Ghosh et al., 2011), spatial ddCRP
(Ghosh et al., 2011) and restricted CRP (rCRP) (Wehrhahn et al., 2020). In Chapter
3, we provide a thorough discussion and overview of two other classes of spatial random
partition models, namely the Ewens-Pitman attraction (EPA) distribution and Potts-
Gibbs random partition (Potts-Gibbs) models which will form one of the major building
blocks of the novel models proposed in this thesis.

2.2.1 Product partition model with covariates (PPMx)

The formulation of models starting from a partition distribution has been a fruitful
approach, exemplified by the development of product partition models (PPM). The
PPM by Barry and Hartigan (1993), construct the random partition πp by utilising
cohesion functions that depend on only one cluster at a time. The probability of the
partition is given by the product of cluster-dependent functions as shown below:

pr(πp) =
M∏
m=1

C(Cm),

for some cohesion functions C(Cm) that measure how tightly the units in cluster Cm are
clustered. A popular option for the cohesion function is C(Cm) ∝ (| Cm | −1)!, which
equivalently results in the random partition model implied by the DP prior. It is widely
known that the corresponding posterior distribution of pr(πp) is again in the same form.

To allocate the units into clusters that are more homogeneous in covariates, denoted
by wi for i, · · · , n, Müller et al. (2011) introduce an additional factor in the traditional
PPM to achieve the desired clustering which is known as the covariate-dependent PPM
(PPMx). The PPMx is of the form:

pr(πp) ∝
M∏
m=1

F(w∗m)C(Cm),

where w∗m = (wj , j ∈ Cm) denotes covariates in cluster Cm and F(·) a non-negative
similarity function. Draws from the PPMx result in partitions with clusters that have
more similar covariates values.
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2.2.2 Spatial product partition model (sPPM)

From a spatial modelling perspective, Page and Quintana (2016) propose the spatial
PPM (sPPM), which extends PPMs and places a prior on the partitions according to
the spatial locations of units by making the cohesion function depend on the spatial
location:

pr(πp) ∝
M∏
m=1

C(Cm, s∗m),

where s∗m = (sj , j ∈ Cm) denotes the locations in cluster Cm. The cohesion function of
the sPPM provides the flexibility to incorporate and consider spatial information in the
prior on partitions. Page and Quintana (2016) provide advice on the cohesion function,
resulting in various types of spatial structures. For instance, the cohesion function

C(C, s∗m) =

{
α× Γ(| C |) if C is spatially connected

0 otherwise,

may be used to encourage a small number of large clusters, with α controlling the
number of clusters. However, a cohesion function defined in this way only assigns prior
mass to partitions that are spatially connected, which is intuitive but computationally
challenging to implement for a large number of locations. Instead, the authors suggest
four reasonable cohesion functions that can be used. These cohesion functions partition
the locations into disjoint dependence neighborhoods based on the defined spatial setting.

Regarding both the PPMx and sPPM, it is pointed out by Page and Quintana (2018)
that as the number of covariates grows (but not necessarily the number of observations),
their influence on clustering tends to overwhelm information from the response and has
been shown to have a significant impact on the resulting clustering structure. It often
leads to a high posterior probability of getting partitions with either a large number of
singleton clusters or one large cluster. As expected, this negatively impacts inference
and predictions.

2.2.3 Distance-dependent Chinese restaurant process (ddCRP) and
spatial ddCRP

The popular Chinese restaurant process (CRP) is a distribution over infinite partitions
of positive integers. The assignment of customers to tables is an intuitive metaphor
to illustrate the CRP, which defines a random partition: customers enter a restaurant
sequentially, and the customer (unit) picks an existing table (cluster) with probability
proportional to the number of customers sitting there, or a new table with probability
proportional to the concentration parameter, α. Let zj ∈ {1, · · · ,M} be the cluster label
of unit j and z1:j−1 represents the vector of cluster labels of units 1, . . . , j−1 which were
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previously assigned, then, mathematically,

pr(zj = m|z1:j−1, α) =

{ |Cm,1:j−1|
α+j−1 m ≤M1:j−1

α
α+j−1 m = M1:j−1 + 1,

where |Cm,1:j−1| denotes the number of units in cluster m before unit j (i.e. based only
units 1, · · · , j− 1) and M1:j−1 denotes the number of unique clusters before unit j. The
CRP defines a sequence of predictive distributions for the allocation of units into groups.

The CRP yields an exchangeable partition distribution, i.e. the distribution of cluster
structure is invariant of the order of allocation of units, and is called the Ewens distribu-
tion. The pmf for the Ewens distribution, pr(πp) exists and in fact is equivalent to the
random partition model induced by the DP in Equation (2.11). A potential downside of
using the CRP is the so-called “rich-get-richer” property, that is large clusters tend to
get larger, while small clusters stay small.

Blei and Frazier (2011) generalise the conventional CRP to provide a flexible framework
for clustering by taking into account the temporal, spatial and other structured depen-
dencies between the units. They propose the distance-dependent CRP (ddCRP) with a
modification on the CRP to incorporate pairwise distances based on covariate informa-
tion via a distance-dependent decay function, F . For each individual, Ij ∈ {1, · · · , p}
denotes the index of the individual that customer j decides to sit with. Let D be the
distance matrix with djk denoting the distance measurement between unit j and k and
the conditionals are given as follows:

pr(Ij = k |D, α) ∝

{
F(djk) j 6= k

α j = k.

Now the metaphor describes how each customer (unit) chooses with whom they prefer to
sit, with probability proportional to how close they are. The ddCRP corresponds to the
customer to table assignments (zj ∈ {1, · · · ,M}) which is implicitly induced from the
customer to customer assignments (Ij ∈ {1, · · · , p}). However, certain properties of the
CRP are lost after taking into account the distance information. This process relaxes
the exchangeable property of conventional CRP. Furthermore, we can no longer express
its pmf over partitions explicitly. The pmf can only be computed implicitly by summing
up all possible assignments that map to a particular partition, consequently, when the
ddCRP is used, MCMC algorithms like Metropolis-Hastings cannot be implemented to
estimate the posterior distribution. Nevertheless, it is pointed out by Blei and Frazier
(2011) that efficient approximate inference with ddCRP is possible with Gibbs sampling.

In the spatial setting, the ddCRP was restricted to enforce homogeneous regions through
appropriately defined distances and used to study image segmentation for computer
vision (Ghosh et al., 2011) and to model geometric variability in spinal images (Seiler
et al., 2013). The spatial ddCRP incorporates the spatial distance between units in the
clustering process; thus, it is more biased towards creating spatially contiguous clusters.
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2.2.4 Restricted Chinese restaurant process (rCRP)

The restricted CRP, a spatially restricted prior distribution for random partitions has
been recently introduced by Wehrhahn et al. (2020) with the purpose of identifying
disease clusters in areal units that are most at risk compared with neighbouring areas.
The key feature of the restricted CRP is enforcing every cluster to be fully connected.
It is pointed out by Page and Quintana (2016) that computational challenges arise in
PPMs with a restricted cohesion function to allocate non-zero probability only to those
cluster configurations which results in spatially connected clusters. The restricted CRP
resolves these difficulties. The process constrains clusters to be made of the adjacent
areal unit by using an adjacency matrix A, in which each component ajk = 1 if regions
j and k share a common boundary, otherwise 0. The corresponding full conditionals are
given as follows:

pr(zj = m | z1:j−1, α,A) ∝


|Cm,1:j−1| m ≤M1:j−1 and Q(z1:j ,A) = 1

α m = M1:j−1 + 1 and Q(z1:j ,A) = 1

0 Q(z1:j ,A) = 0,

where Q(·) is a function which is equal to 1 whenever z1:j is an admissible cluster
configuration under A.

2.2.5 Summary

We have discussed a few variations of product partition models (PPM) and Chinese
restaurant processes (CRP) which take into account relevant covariate information in
the model. The covariate-dependent PPM (PPMx) incorporates another similarity mea-
sure to quantify how alike the units are. The spatial PPM (sPPM) works by putting the
location of the units into the cohesion function to handle and enforce spatially contigu-
ous regions in the random partition. For the CRP, we consider distance-dependent CRP
(ddCRP), spatial ddCRP, and restricted CRP (rCRP). The ddCRP generalises the tradi-
tional CRP with a distance-dependent decay function to handle the dependence structure
in the data. The spatial ddCRP modifies ddCRP slightly to focus the attention more on
the information about spatial distance. Lastly, the development of rCRP is motivated by
ensuring partitions consist of clusters that are spatially connected. While these propos-
als all provide interesting constructions to incorporate spatial dependence in the random
partition model, in the remaining chapters we instead focus on two alternative classes of
random partition models. First, we consider the Ewens-Pitman attraction distribution,
motivated by its analytical expressions, allowing for example posterior inference of key
hyperparameters. Second, we focus on the class of the Potts-Gibbs random partition
models motivated by their scalability.
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Chapter 3

Random Image Partition Models

In this chapter, we describe in detail the Ewens-Pitman attraction (EPA, Section 3.2)
distribution (Dahl et al., 2017) and the Potts-Gibbs random partition (Potts-Gibbs,
Section 3.3) models and lay out the reasons why we choose them instead of the de-
pendent random partition models reviewed in Section 2.2. For the Potts-Gibbs models,
we cover the Potts-Dirichlet process random partition (Potts-DP, Section 3.3.4) model,
Potts-Pitman Yor process random partition (Potts-PY, Section 3.3.5) model and Potts-
mixture of finite mixtures random partition (Potts-MFM, Section 3.3.6) model. We
study the main properties of the implied partition structure by each random image par-
tition model chosen, particularly the number of clusters, the size of the clusters and the
number of connected neighbours. The predictive distribution of the Potts-MFM model is
formulated, and the prior expected number of clusters for the Potts-MFM model is also
derived. The proofs are provided. Moreover, we present in-depth comparisons between
each random image partition model via the prior simulations.

Note: We are planning to submit a review paper on Bayesian spatial clustering providing
comparisons among different Bayesian spatial clustering methods (Potts-DP, Potts-PY,
Potts-MFM, EPA distribution, sPPM and ddCRP) to Statistical Science.

3.1 Introduction

In clustering applications, the assumption of exchangeability may not be suitable in
some settings such as spatial data and time series data. It is appealing to combine
the information underlying data such as the proximity of units to influence the partition
structure, which leads to a feature-dependent partition. Random spatial partition models
have been widely applied to application domains such as image segmentation (Ghosh
et al., 2011), disease mapping (Denison and Holmes, 2001; Wehrhahn et al., 2020), traffic
modelling (Durand et al., 2021), spatial crime modelling (Balocchi and Jensen, 2019);
and others.
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Exchangeability is indeed no longer an appropriate assumption in spatial clustering since
covariate information is included in the spatial data or images, which we want to use
to enhance model performance and interpretability. For our proposed SIR framework,
we also assume certain structural assumptions on the spatial partition. In particular,
we incorporate spatial random image partitions within a SIR framework to address
limitations of existing SIR models which we fully detail in Chapter 4.

The remainder of this chapter is organised as follows. First, in Section 3.2, we present the
EPA distribution and discuss its main properties. In Section 3.3, a detailed description
of the general Potts-Gibbs models is given along with full details on three models of
interest within the Potts-Gibbs framework, namely, the Potts-DP, Potts-PY and Potts-
MFM models. Novel properties are presented for the Potts-MFM model including the
predictive distribution and the prior expected number of clusters. In Section 3.4, we
provide a discussion on why we focus on the EPA distribution and the Potts-Gibbs
models instead of the dependent random partition models reviewed in Section 2.2. In
Section 3.5, we present prior simulations to study and compare the results under the
prediction rule from the EPA distribution and the Potts-Gibbs models. We finish in
Section 3.6 with an image segmentation study to show the clustering performance of the
EPA distribution and the Potts-Gibbs models. Conclusions are provided in Section 3.7.

Before delving into the random image partition models in this chapter, we first layout

some general notation used throughout this thesis. The notation x
(a)
(b) = x(x+ b) . . . (x+

(a − 1)b) represents the Pochhammer symbol with increment b, where x
(a)
(0) = xa and

x
(a)
(1) := x(a). The notation x(a) = x(x + 1) . . . (x + a − 1) denotes the rising factorial

while the notation x(a) = x(x − 1) . . . (x − a + 1) denotes falling factorial. Note that

the expressions x(a) and x(a) may be rewritten in terms of gamma function, i.e. x(a) =
Γ(x + a)/Γ(x) and x(a) = Γ(x + 1)/Γ(x − a + 1), where Γ(x) stands for the gamma
function. The notation ap & bp indicates lim sup ap/bp ≥ 1. The notation j ∼ k means
that j and k are neighbours. Let Sm =

∑
j∼k 1zj=zk=m be the number of connected

neighbour pairs in cluster m, Sm,j =
∑

k:j∼k 1zk=m be the number of neighbours of j in

cluster m and S =
∑M

m=1 Sm be the total number of connected neighbour pairs.

3.2 Ewens-Pitman attraction (EPA) distribution
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Definition 2.1: Ewens-Pitman attraction distribution

The pmf for a partition πp associated with the Ewens-Pitman attraction (EPA) dis-
tribution is constructed sequentially from the product of conditional probabilities:

pr(πp|α, δ,S,Ψ) =

p∏
j=1

prj {α, δ,S, π(ψ1, . . . , ψj−1)} , (3.1)

with prj{α, δ,S, π (ψ1, . . . , ψj−1)} = 1 for j = 1 and is otherwise defined as

prj{α, δ,S, π(ψ1, . . . , ψj−1)}
= pr{ψj ∈ Cm,j |α, δ,S, π(ψ1, . . . , ψj−1)}

=


j−1−δMj−1

α+j−1 ·
∑
ψk∈Cm,j

S(ψj ,ψk)∑j−1
k=1 S(ψj ,ψk)

for Cm,j ∈ π (ψ1, . . . , ψj−1)

α+δMj−1

α+j−1 for Cm,j being a new cluster,

(3.2)

where Ψ = (ψ1, . . . , ψp) denotes the permutation to indicate the sequence in which
the p units are allocated, S(·) represents the similarity function with S(ψj , ψk)
denoting the similarity of units ψj and ψk, π(ψ1, . . . , ψj−1) is the partition of
{ψ1, . . . , ψj−1} up to j − 1 steps with Mj−1 number of unique clusters up to j − 1
steps and Cm,j indicates the subset of indices contained in the mth cluster after j
steps. Without loss of generality, we drop the subscript j from Cm,j and Mj when
clear from the context. The α and δ represent the concentration and discount
parameters respectively.

Dahl et al. (2017) presents another type of random partition model, the Ewens-Pitman
attraction (EPA) distribution which incorporates covariate information via the pairwise
distance. The EPA distribution sequentially assigns the units to subsets according to the
attractiveness between the units, which are based on the pairwise distances. One impor-
tant feature of the EPA distribution is the existence of the closed-form pmf (Definition
2.1).

The EPA distribution is parameterized by a concentration parameter α, a discount
parameter δ, and a similarity function S(·). Both α and δ play a pivotal role in inferring
the distribution of the number of clusters and the cluster sizes. The EPA distribution
incorporates covariate information via pairwise distances and the similarity function.
The similarity function S(·) is defined based on a decay function F(·) and a distance
matrixD with elements djk denoting the distance measure between observations j and k.
The decay function F(·) is non-increasing and the similarity function S(·) is specifically
defined as:

S(j, k) = F(djk).

In the case of spatial covariate information, the pairwise distances djk represent the
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distance between the spatial coordinates of sj and sk. The decay function, F(·), controls
how distances influence the distribution over the clustering structure. One of the possible
ways to measure the homogeneity of j and k is an exponential decay function, F(djk) =
exp (−τdjk), with τ acting as a temperature parameter of the function, e.g. for the
Euclidean pairwise distances:

F(djk) = exp

{
−τ
√

(sj1 − sk1)2 + (sj2 − sk2)2

}
. (3.3)

The function produces larger values for units that are similar. Dahl et al. (2017) use
the same τ for the Euclidean distance, however, we can potentially use different τ in
each spatial direction, i.e. τ1 and τ2 to encourage apriori more flexible elliptically-
shaped spatial clusters. In addition to location-specific information, there may be other
information that we can include in the pairwise distance.

The number of clusters

The EPA distribution allocates units based on their attraction to existing clusters, where
the attraction to a particular cluster is a function of the pairwise similarities between
the current unit and the units in that cluster. There is an existence of the closed-
form distribution of the number of clusters (and their moments). It is invariant to
the similarity information, which allows for standard MCMC algorithms to be easily
applied for posterior inference on the partition πp and any parameters that influence the
partition, e.g. concentration parameter α and discount parameter δ.

Dahl et al. (2017) proved that the distribution of the number of clusters is unchanged
from the usual Ewens and Ewens-Pitman distributions, and one’s intuition about the
concentration parameter α and discount parameter δ from these familiar distributions
carry over. As highlighted in previous Section 2.2, there is a connection between Ewens
and DP (Equation (2.11)), as well as Ewens-Pitman and PY (Equation (2.12)).

Proposition 2.1: Number of clusters (Buntine and Hutter, 2010)

A random partition induced by a Pitman–Yor process (PY) which is characterised
by a concentration parameter α and discount parameter δ, exhibits the expected
prior number of clusters, E[M ] for a sample size of p:

E[M ] =
α

δ

(α+ δ)(p)

α(p)
− α

δ

' α

δ

(
1 +

p

α

)δ
exp

{
δp

2α(α+ p)

}
− α

δ
, forp, α� δ.

(3.4)

And the prior variance of the number of clusters, Var[M ] for a sample size of p,
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when δ > 0 can be written as:

Var[M ] =
α(δ + α)

δ2

(α+ 2δ)(p)

α(p)
− α

δ

(α+ δ)(p)

α(p)
−

{
α

δ

(α+ δ)(p)

α(p)

}2

' α

δ

(
1 +

p

α

)2δ
exp

{
δp

α(α+ p)

}
, forp, α� δ.

(3.5)

Note that the approximations in Equation (3.4) and Equation (3.5), represented by
the symbol ', are asymptotic expressions. They hold when the sample size, p, and
the concentration parameter, α, are much larger than the discount parameter, δ.

The Dirichlet process (DP) is a special case where discount δ = 0:

E[M ] = α {ψ0(α+ p)− ψ0(α)}

' α log
(

1 +
p

α

)
, for p, α� 0,

Var[M ] = α {ψ0(α+ p)− ψ0(α)}+ α2 {ψ1(α+ p)− ψ1(α)}

' α log
(

1 +
p

α

)
, for p, α� 0,

(3.6)

where ψ0(·) represents the digamma function and ψ1(·) represents the first derivative
of the digamma function, also known as the polygamma function of order one.

For the PY, as seen in Equation (3.4)–(3.5) in Proposition 2.1, if δ > 0 and p� α� δ,
then the prior standard deviation is approximately E[M ]/

√
α/δ, which is smaller than

the expected number of clusters, E[M ]. For the DP case, the prior standard deviation
is approximately the square root of the expected number of clusters,

√
(E[M ]). In

both cases, the expected number of clusters, E[M ] is roughly linear in concentration
parameter α. The information is useful to set bounds for the hyperparameters, which
can be used to set the hyperprior or for a grid search to find optimised values of each
hyperparameter.

3.3 Potts-Gibbs models

The class of Potts-Gibbs random partition (Potts-Gibbs) models provides another frame-
work to include spatial information within the random partition model. As the name
suggests, the Potts-Gibbs class combines two components: the Gibbs-type random par-
tition model and the Potts model. The theoretical properties of the Potts-Gibbs models
are examined, including both components.
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DP PY MFM

φ (α) (α, δ) (ψ, γ)

Vp(M) Γ(α)αM

Γ(α+p)
Γ(α+1)

∏M−1
m=1 (α+mδ)

Γ(α+p)

∑∞
l=1

Γ(γl)l!
Γ(γl+p)(l−m)!pL(l|ψ)

W|Cm|(φ) Γ(|Cm|) Γ(|Cm|−δ)
Γ(1−δ)

Γ(|Cm|+γ)
Γ(γ)

Table 3.1: Formulas of Vp(M), W|Cm|(φ) and parameters φ for DP, PY and MFM.

3.3.1 Gibbs-type random partition models

Gibbs-type priors were first introduced in Pitman (2003) and then extensively studied
in Gnedin and Pitman (2006), including their relation to Bayesian nonparametrics. Fur-
ther references also include Cerquetti (2008); Lijoi and Prünster (2009); Pitman (2006).
Gibbs-type random partitions define a general family of exchangeable random partitions.
An exchangeable random partition πp of the first p positive integers is said to be of Gibbs
form if the exchangeable partition probability function (EPPF) of πp can be expressed
in the product form:

pr(πp) = pr(|C1|, . . . , |CM |) = Vp(M)
M∏
m=1

W|Cm|(φ), (3.7)

for all 1 ≤ M ≤ p, and all compositions |C1|, . . . , |CM | of p, where we use the general
notation φ to denote the parameters of the Gibbs-type partition models. Gnedin and
Pitman (2006) show that to define an exchangeable partition the set of non-negative
weighing {W|C|(φ) : 1 ≤ |C| ≤ p} must have the form

W|C|(φ) =
Γ(|C| − δ)
Γ(1− δ)

,

where the parameter δ satisfies δ ∈ [−∞, 1). Moreover, the set of weights {Vp(M) : p ≥
1, 1 ≤M ≤ p} must satisfy the recursive relation

Vp(M) = (p− δM)Vp+1(M) + Vp+1(M + 1),

with V1(1) = 1.

The parameters φ and weights Vp(M) are the main components for defining the Gibbs-
type random partitions and the associated Gibbs-type priors. Hence, the choice of φ and
weights Vp(M) are important, especially φ since it determines the clustering structure
as well as the asymptotic behaviour of the Gibbs-type model.

We focus our study on three cases within the Gibbs-type family:
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1. Dirichlet process (DP) with concentration parameter α > 0;

2. Pitman Yor process (PY) with discount parameter δ ∈ [0, 1) and concentration
parameter α > −δ; and

3. mixture of finite mixtures (MFM) with parameter γ > 0 (larger values encouraging
more equally sized clusters) and a distribution pL(·|ψ) with parameter ψ related
to the prior on the number of clusters, where L denotes the number of components
(Miller and Harrison, 2018).

Table 3.1 summarises the Vp(M) and W|Cm|(φ) for DP, PY and MFM.

3.3.2 Markov random field

Potts models belong to the general class of Markov random field (MRF) models, as such,
we begin with a brief review of MRFs. For a more in-depth treatment, the reader may
refer to Besag (1974); Geman and Geman (1984); Li (2009); Winkler (2003). The MRF
is a spatial process related to grid-like structures, which is frequently used in spatial
statistics and in image segmentation applications to incorporate the spatial interactions
between adjacent neighbours. A random field is called an MRF with respect to the
predefined neighbourhood structure {j ∼ k} when

pr(zj |zk, j 6= k) = pr(zj |zk, j ∼ k).

Each node of the grid only interacts with its neighbours. These nodes are also referred to
as sites. For a regular grid with size r×c ( r rows and c columns), the nearest first-order
neighbours are at locations (r+ 1, c), (r− 1, c), (r, c+ 1), (r, c− 1), if applicable. For the
rest of the article, we will assume that the nearest first-order neighbours are considered
as the neighborhood system.

The model is referred to as the Ising model when the zj ’s are discrete with only M = 2
categories, i.e. the realised values of zj ∈ {−1, 1} (Ising, 1924). The Potts model is a
generalisation of the Ising model, where the number of categories M ≥ 2 (Potts and
Domb, 1952). It allows for spatial correlation between neighbouring labels in the form
of an MRF. A M -state Potts model can be defined in term of site-wise term A(z1, · · · zp)
and interaction term B(z1, · · · zp):

pr(z1, · · · , zp) ∝ A(z1, · · · zp)B(z1, · · · zp), with

A(z1, · · · zp) :=
1

cA
exp

 p∑
j=1

hzj

,
B(z1, · · · zp) :=

1

cB
exp

∑
j∼k

υjk1zj=zk

,
(3.8)
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where 1zj=zk equals 1 if j and k share the same cluster label and 0 otherwise. Both
cA and cB represent the normalising constant. The h = (h1, · · · , hM ) is an additional
external field parameter, where each hm is a scalar. The interaction term B(z1, · · · zp)
models spatial correlation. Often, the external field parameter is constant, i.e.
h1 = · · · = hM so that only the interaction term remains. The υjk > 0 is called the
smoothing parameter where larger υjk encourages more spatial smoothing. Often one
simplifies and uses a single smoothing parameter υ, with υjk = υ for all j, k. If zj is
distinct from all neighbours, exp(

∑
j∼k υjk1zj=zk) = 1, whereas exp(

∑
j∼k υjk1zj=zk) >

1 if at least one neighbour is assigned to the same category.

For a square grid (r = c), the total number of connected neighbours pairs, S ≤ 2(r2− r)
while for a rectangular grid, S ≤ 2r × c − r − c. When υjk equals to 0, the zj ’s are
independent and distributed on {0, · · · ,M} according to site-wise term. For a sufficiently
large υ, the asymptotic value of the expectation of S approaches the total number of
edges, while the variance is close to zero. This is because all units/sites tend to be
attracted to a single category when υ increases above a certain threshold. This is known
as the phase transition of the Potts model.

The predictive probability of the Potts model for m ≤ M (within constant site-wise
term):

prPotts(zj = m|z1:j−1, υ) ∝ exp

∑
j∼k

υ1zj=zk=m

 .

During the phase transition, the critical value of υ marks the transitions of the Potts
model from a disordered (υ < υcrit) to an ordered (υ > υcrit) state. For a regular 2D
grid, Potts and Domb (1952) shows that the critical value can be exactly computed using
the following formula:

υcrit = log(1 +
√
M).

This is the point at which a phase transition occurs for a grid with r rows and an infinite
number of columns. However, as the size of the system, represented by p, increases, the
error caused by a finite boundary decrease, as a result of the finite-dimensional scaling
property of the Potts model.

Detecting the phase transition of the Potts model in a graph with a dimension higher than
one can be quite difficult and challenging due to the intractability of the normalising
constant. This is because the Potts model tends to undergo an abrupt and drastic
change in phase transition as coupling υ increases. There are certain combinations of
hyperparameters that lead to the allocation of all units to a single category. Therefore, a
proper specification of the hyperparameters for the Potts model is very much dependent
upon finding the bounds of the phase transition.
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3.3.3 Markov random field constrained Gibbs-type priors

Here we describe the Potts-Gibbs models with further details provided for three specific
cases: the Potts-Dirichlet process random partition (Potts-DP) model, the Potts-Pitman
Yor process random partition (Potts-PY) model and Potts-mixture of finite mixtures
random partition (Potts-MFM) model. The Potts-Gibbs models combine BNP random
partition models, which avoid the need to prespecify the number of clusters, allowing it to
be determined and grow with the data, with a Potts-like spatial smoothness component
(Potts and Domb, 1952). Spatial random partition models in this direction are a growing
research area, including MRFs with the PPM (Pan et al., 2020), with DP (Da Xu et al.,
2016; Orbanz and Buhmann, 2008), with PY (Lü et al., 2020) and with MFM (Hu
et al., 2022; Zhao et al., 2020). Precisely, within the BNP framework, we focus on
the class of Gibbs-type random partitions (Cerquetti, 2008; Gnedin and Pitman, 2006;
Lijoi and Prünster, 2009; Pitman, 2006), motivated by their comprise between tractable
predictive rules and richness of the predictive structure, including important cases, such
as the DP (Ferguson, 1973), PY (Perman et al., 1992; Pitman, 1996), and MFM (Miller
and Harrison, 2018).

Definition 3.1: Potts-Gibbs random partition models

The Potts-Gibbs random partition (Potts-Gibbs) models are defined as:

pr(πp) ∝ B(z1, · · · zp)pr(|C1|, . . . , |CM |),
B(z1, · · · zp) ∝ Potts model(υ),

pr(|C1|, . . . , |CM |) ∝ Gibbs-type random partition models(φ),

where the first term is defined by the interaction term B(z1, · · · zp) from the Potts
model in Equation (3.8) to capture spatial interaction among vertices and the sec-
ond term pr(|C1|, . . . , |CM |) is a Gibbs-type random partition model with φ denot-
ing the parameters of the Gibbs-type random partition model. The normalising
constant is defined as

c(υ,φ) =
∑
πp

B(z1, · · · zp)pr(|C1|, . . . , |CM |).

The Potts-Gibbs models can be summarised as:

pr(πp) ∝ exp

∑
j∼k

υ1zj=zk


︸ ︷︷ ︸

Potts model

(
Vp(M)

M∏
m=1

W|Cm|(φ)

)
︸ ︷︷ ︸

Gibbs-type random partition models

.

Spatial smoothness is introduced through the Potts model as indicated by the equa-
tion. Under the smoothness constraints on cluster assignments, the Potts term prefers
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to allocate two adjacent units to the same cluster. However, note that the constrained
model exhibits a key property that Potts model constraints only change the finite com-
ponents of the Potts-Gibbs models (Proposition 3.1). The finite components represent
the clusters that the model has created. In other words, unless the base measure F0 has
discrete atoms, a draw from the base measure F0 always defines a new cluster, and the
corresponding unit will not be affected by the smoothness constraint, the Potts model.
In the following, we assume the spatial locations lie on a rectangular grid with first-order
neighbours and all neighbour pairs have a common coupling parameter υjk = υ. The
higher the value of υ, the model encourages more spatially smooth partitioning.

Proposition 3.1: Predictive distribution

The predictive distribution of the Potts-Gibbs random partition model is:

prPotts-Gibbs(zj+1 = m|z1:j , φ, υ) =

{ Vj+1(Mj)
Vj(Mj)+Vj+1(Mj)ηj+1

λj+1,m m ≤Mj

Vj+1(Mj+1)
Vj(Mj)+Vj+1(Mj)ηj+1

m = Mj + 1,

where λj+1,m = (|Cm,j | − φ) exp(υSm,j+1) with and ηj+1 =
∑

m:Sm,j+1>0(|Cm,j | −
φ){exp(υSm,j+1)− 1}.

3.3.4 Potts-Dirichlet process (Potts-DP) model

Definition 3.2: Potts-Dirichlet process random partition model

Potts-Dirichlet process random partition (Potts-DP) model is defined as the random
partitions πp induced by a combination of the Potts model and Dirichlet process
(DP):

prPotts-DP(πp) ∝ exp

∑
j∼k

υ1zj=zk

 αM

α(p)

M∏
m=1

Γ(|Cm|), (3.9)

with

Vp(M) =
Γ(α)αM

Γ(α+ p)
=
αM

α(p)
,

where α is the concentration parameter for DP.

Equation (3.9) arises as a product of three factors: the first one is the Potts interaction
term depends only on S, the total number of connected neighbours, the second depends
only on (p,M) and the third one depends on the frequencies (|C1|, . . . , |CM |) via the
product

∏M
m=1 Γ(|Cm|).
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Polya urn scheme/Restaurant process

Proposition 3.2: Predictive distribution

The predictive distribution of the Potts-DP model is:

prPotts-DP(zj+1 = m|z1:j , α, υ) ∝

{ |Cm,1:j |
α+j+ηj+1

exp(υSm,j+1) m ≤Mj

α
α+j+ηj+1

m = Mj + 1,
(3.10)

where the parameter α acts as a prior weight on the formation of a new cluster.

A fundamental feature of partitions generated by the DP is a “rich-getting-richer” prop-
erty resulting in partitions containing a few large clusters and many small clusters. The
prediction rule from Equation (3.10) suggests that the use of a DP prior will lead to
partitions that are dominated by a few large clusters since larger clusters will tend to
attract new observations during the sequential creation of a partition.

From Equation (3.10), we see that a new cluster is generated with probability propor-
tional to the concentration parameter α. In other words, a large value of α increases the
expected number of clusters. There is another parameter, the smoothing parameter, υ
from the Potts component which a large value of υ encourages spatial smoothness. We
would expect a larger value of υ from the Potts component for the Potts-DP model to
compete with the DP component and essentially eliminate the small clusters. Thus, par-
titions tend to be composed of the large connected component and many small/singleton
clusters, and care needs to be taken to avoid and not exacerbate the phase transition of
the Potts model.

The number of clusters

As p→∞, the expected number of unique clusters M for a DP model is

E[M ] ' α log(p). (3.11)

Moreover, Korwar and Hollander (1973) show that the number of cluster for size p,
Mp ' α log(p), almost surely as p→∞.

Proposition 3.3: Number of clusters (Lü et al., 2020)

Assume that the graph has a maximal degree D. For a Potts-DP model, the lower
bound on the expected number of unique clusters M is:

E[M ] &
α

exp(Dυ)
log(p). (3.12)
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It is worth mentioning that the MRF component of a Potts-DP model will only cause
the reduction in the prior expected number of clusters, thus Equation (3.11) provides
an asymptotic upper bound on the expected number of clusters.

Cluster sizes

The asymptotic behaviour of the expected number of clusters of a given size under the
DP prior alone when p tends to infinity is defined as below:

lim
p→∞

E[N|Cm|] =
α

|Cm|
,

where N|Cm| denotes the number of clusters of size |Cm|(Wallach et al., 2010).

This well-known result (Arratia et al., 2003) means that when p→∞, regardless of the
value of α, the expected number of clusters of size |Cm| is inversely proportional to |Cm|.
In other words, in expectation, there will be a small number of large clusters and vice
versa. We can write the equation on a log-log scale as for sufficiently large p, it yields:

log
{
E[N|Cm|]

}
' c− log(|Cm|),

where c is a constant.

With the addition of the Potts model, two opposing effects emerge in the Potts-DP
model. They are the concentration parameter α from the DP component and the smooth-
ing parameter υ from the Potts component. These two opposing forces compete with
each other and influence the prior distribution of the cluster sizes. The greater value of
υ results in producing partitions encompassing larger clusters with the largest sizes, and
fewer clusters of medium size. One possible explanation is that for a sufficiently large υ,
beyond a specific size, almost surely most of the units are attracted to the same cluster
and ultimately they get to a size approaching the maximum size limit.

3.3.5 Potts-Pitman Yor process (Potts-PY) model

From a purely conceptual point of view, having the sampling probability of a new unit
not depend on the number of distinct units present in the current partition seems too
restrictive. Some argue that it would be preferable to also explicitly include in the
probability the number of distinct units present in the partition currently under consid-
eration as it helps to generalise the heterogeneity in the partition. Thereby, in certain
applications, one might prefer the Potts-PY model, which we describe in more detail
here.
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Definition 3.3: Potts-Pitman Yor process random partition model

The probability for a partition πp having the Potts-Pitman Yor process random
partition (Potts-PY) model is a combination of the Potts model and Pitman Yor
process (PY) as shown below:

prPotts-PY(πp) ∝ exp

∑
j∼k

υ1zj=zk

 (δ + α)
(M−1)
(δ)

M∏
m=1

Γ(|Cm| − δ)
Γ(1− δ)

, (3.13)

with discount parameter δ ∈ (0, 1), concentration parameter α > −δ, and

Vp(M) =
Γ(α+ 1)

∏M−1
m=1 (α+mδ)

Γ(α+ p)
=

∏M−1
m=1 (α+mδ)

(α+ 1)(p−1)
∝ (δ + α)

(M−1)
(δ) .

When δ = 0, Equation (3.13) reduces to Equation (3.9) therefore leading to the Potts-DP
model. If υ = 0, we obtain the partitions induced by the PY.

Polya urn scheme/Restaurant process

Proposition 3.4: Predictive distribution

The predictive distribution of the Potts-PY model:

prPotts-PY(zj+1 = m|z1:j , α, δ, υ) ∝

{ |Cm,1:j |−δ
α+j+ηj+1

exp(υSm,j+1) m ≤Mj

α+δMj

α+j+ηj+1
m = Mj + 1.

(3.14)

The frequencies of each cluster, as well as the number of distinct clusters present in the
partition, determine the allocation in Equation (3.14). The discount parameter δ plays a
significant role in controlling the combined effect of the reinforcement mechanism and the
rate at which new clusters are generated. Among the observed clusters, δ mitigates the
“rich-get-richer” properties. The δ can be used to adjust how strongly the probability
of acquiring a new unit depends on M since the probability of acquiring a new unit
increases monotonically in M .

The number of clusters

Pitman (2006) showed that as p → ∞, the expected number of unique clusters for PY
is:

E[M ] ' Γ(α+ 1)

δΓ(α+ δ)
pδ. (3.15)
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Pitman (2003) shows that the number of cluster for size p, Mp ' Sδ,αpδ as p→∞ where
Sδ,α is a positive random variable with density depending on δ and α.

A power law governs the expected number of clusters of a given size and the number of
clusters increases at a faster rate compared with the DP.

Proposition 3.5: Number of clusters (Lü et al., 2020)

Assume that the graph has a maximal degree D. For the Potts-PY model, the
expected number of unique clusters is:

E[M ] & cpδ exp(−Dυ), (3.16)

where c is for some positive constants.

Similar to the Potts-DP model, the Potts component can only reduce the prior expected
number of clusters and thus Equation (3.15) provides an asymptotic upper bound on
the prior expected number of clusters under the Potts-PY model.

Cluster sizes

Pitman’s result can also be used to derive the expected number of clusters of size |Cm|
in a partition:

E[N|Cm|] '
Γ(1 + α)

∏|Cm|−1
l=1 (l − δ)

Γ(α+ δ)|Cm|!
pδ.

This equation is best illustrated in a log-log scale as it yields, for p large enough:

log
(
E[N|Cm|]

)
' c− (1 + δ) log(|CM |),

where c is a constant. Hence in a log-log scale plot, the cluster size distribution for large
p in the DP case has a slope equal to -1, while a PY features a steeper slope of −(1 + δ).

For the Potts-PY model, the effect of υ on the size of clusters is similar to the Potts-DP
model.

3.3.6 Potts-mixture of finite mixtures (Potts-MFM) model

Another interesting random partition model within the class of Gibbs-type priors that we
want to consider apart from the DP or PY is that arising from MFM (Miller and Harrison,
2018). In the Potts-MFM model, the MFM random partition model is combined with
the Potts model. The motivation for choosing to include the MFM is twofold. First,
we will have more control over the prior on number of clusters, which in turn can also
be used for studying the critical value of the coupling υ. Second, given the number of
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clusters, through the appropriate specification of the hyperparameters, most of the prior
mass is on clusters of similar size. This will help mitigate the phase transition of the
Potts model and a strong preference for one large connected cluster.

Mixture of finite mixtures (MFM) random partition model

While the CRP has a very attractive feature of simultaneously estimating the number
of clusters and the cluster configuration, limitations exist. Specifically, Miller and Har-
rison (2018) proved that the CRP allocates large probabilities to clusters with relatively
smaller sizes, which leads to producing extraneous clusters in the posterior leading to
inconsistent estimation of the number of clusters, when the true number is finite, even
when the sample size grows to infinity. A modification of the CRP called a mixture of
finite mixtures (MFM) model is proposed to circumvent this issue (Miller and Harrison,
2018).

The MFM random partition model is:

pr(|C1|, . . . , |CM |) =

∞∑
l=1

l(M)

(γl)(p)
pL(l|ψ)

M∏
m=1

Γ(|Cm|+ γ)

Γ(γ)
, (3.17)

where γ > 0 is a parameter of the MFM with larger values encouraging more homoge-
neous cluster sizes;

Vp(M) =
∞∑
l=1

Γ(γl)l!

Γ(γl + p)(l −M)!
pL(l|ψ)

=
∞∑
l=1

l(M)

(γl)(p)
pL(l|ψ),

with pL(·|ψ) a pmf on {0, 1, . . .} reflecting prior belief on the number of clusters with
parameter ψ related to the prior on the number of clusters. Examples of pL(·|ψ) studied
include (1) Pois(L− 1|λ) where ψ = λ > 0 and E[L] = λ+ 1; (2) Geom(L|p), where ψ =
p ∈ (0, 1) E[L] = 1/p; and (3) Unif(1, . . . , Lmax) where ψ = Lmax. Note that Equation
(3.17) is a member of the family of Gibbs partition distributions. Normalisation Ṽp(M) =
γMVp(M) is used to represent Equation (3.17) as the standard form in Equation (3.7):

pr(|C1|, . . . , |CM |) = Ṽp(M)

M∏
m=1

Γ(|Cm|+ γ)

Γ(1 + γ)
.

And the recursive relation for the MFM is

Vp(M) = (p+ γM)Vp+1(M) + γVp+1(M + 1).

Alternatively, in standard form with normalisation Ṽp(M) = γMVp(M), the recursive
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relation is the same format as used to define Gibbs-type priors:

Ṽp(M) = (p+ γM)Ṽp+1(M) + Ṽp+1(M + 1).

The restaurant process associated with the MFM prior is:

prMFM(zj+1 = m|z1:j , γ, ψ) =

{Vj+1(Mj)
Vj+1(Mj)

(γ + |Cm,j |) m ≤Mj

Vj+1(Mj+1)
Vj+1(Mj)

γ m = Mj + 1

∝

{
γ + |Cm,j | m ≤Mj
Vj+1(Mj+1)
Vj+1(Mj)

γ m = Mj + 1.

This is similar to the CRP of the DP but notes that γ > 0 helps to mitigate the “rich-
getting-richer” property. Compared to the CRP, the introduction of new clusters is

slowed down by the factor
Vj+1(Mj+1)
Vj+1(Mj)

, which allows a model-based pruning of the tiny

extraneous clusters.

Potts-mixture of finite mixtures (Potts-MFM) random partition model

Definition 3.4: Potts-mixture of finite mixtures random partition model

The Potts-mixture of finite mixtures random partition (Potts-MFM) model:

prPotts-MFM(πp) ∝ exp

 ∑
j∼k,j<k

υ1zj=zk

Vp(M)
M∏
m=1

Γ(|Cm|+ γ)

Γ(γ)

∝ Vp(M)
M∏
m=1

exp (υSm)
Γ(|Cm|+ γ)

Γ(γ)

∝ Vp(M) exp (υS)
M∏
m=1

Γ(|Cm|+ γ)

Γ(γ)
.

(3.18)

The normalising constant is:

cPotts-MFM =
∑
πp

Vp(M) exp (υS)
M∏
m=1

Γ(|Cm|+ γ)

Γ(γ)

=

p∑
M=1

Vp(M) exp (υS)
∑

(C1,...,CM )

M∏
m=1

Γ(|Cm|+ γ)

Γ(γ)
.

Note that Potts-MFM model was recently proposed in Pan et al. (2020) (Definition 3.4).
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While they study posterior consistency for the true partition under spatial panel data, i.e.
the number of locations/items to a cluster is fixed but the number of observations/time
points for each location tends to infinity, they do not study prior properties, such as
the prior expected number of clusters. In fact, they fix γ = 1 and pL(l|ψ = 10) =
10l−1 exp(10)/(l − 1)!, i.e. Pois(10) truncated to the positive integers and select υ ∈
{0, 0.1, . . . , 1} that maximizes a prior-based approximation of the marginal likelihood.
In the following, we provide novel contributions to enrich the understanding of the Potts-
MFM model and the role of the hyperparameters.

Polya urn scheme/Restaurant process

Proposition 3.6: Predictive distribution

The predictive distribution of the Potts-MFM model is:

prPotts-MFM(zj+1 = m|z1:j , γ, ψ, υ) =

{ Vj+1(Mj)
Vj(Mj)+Vj+1(Mj)ηj+1

λj+1,m m ≤Mj

Vj+1(Mj+1)
Vj(Mj)+Vj+1(Mj)ηj+1

γ m = Mj + 1,

where λj+1,m = (γ + |Cm,j |) exp(υSm,j+1) and ηj+1 =
∑

m:Sm,j+1>0(γ + |Cm,j |)
{exp(υSm,j+1)− 1}.

Proof of Proposition 3.6. This is a simple extension of Lü et al. (2020). First notice
that:

prPotts-MFM(zj+1 = m|z1:j , γ, ψ, υ) ∝ Vj+1(Mj+1) exp
{
υS(z1:(j+1))

}Mj+1∏
m=1

γ(|Cm,j+1|)

∝
Vj+1(Mj+1) exp

{
υS(z1:(j+1))

}∏Mj+1

m=1 γ(|Cm,j+1|)

Vj(Mj) exp {υS(z1:j)}
∏Mj

m=1 γ
(|Cm,j |)

∝

{
Vj+1(Mj)(γ + |Cm,j |) exp(υSm,j+1) m ≤Mj

Vj+1(Mj + 1)γ m = Mj + 1.

Thus, we have that:

prPotts-MFM(zj+1 = m|z1:j , γ, ψ, υ) =


Vj+1(Mj)

Vj+1(Mj)
∑Mj
m=1 λj+1,m+Vj+1(Mj+1)γ

λj+1,m m ≤Mj

Vj+1(Mj+1)

Vj+1(Mj)
∑Mj
m=1 λj+1,m+Vj+1(Mj+1)γ

γ m = Mj + 1.
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The proof is complete by noting that

Vj+1(Mj)

Mj∑
m=1

λj+1,m + Vj+1(Mj + 1)γ

= Vj+1(Mj)

 Mj∑
m=1

(γ + |Cm,j |) +
∑

m:Sm,j+1>0

(γ + |Cm,j |) {exp(υSm,j+1)− 1}

+ Vj+1(Mj + 1)γ

= Vj+1(Mj) {(γMj + j) + ηj+1}+ Vj+1(Mj + 1)γ

= Vj+1(Mj)ηj+1 + {Vj+1(Mj)(γMj + j) + Vj+1(Mj + 1)γ}
= Vj+1(Mj)ηj+1 + Vj(Mj).

Notice that the MRF has the effect of reducing the probability of a new cluster, as

Vj+1(Mj + 1)

Vj(Mj)
≥ Vj+1(Mj + 1)

Vj(Mj) + Vj+1(Mj)ηj+1
.

Note we can also write:

prPotts-MFM(zj+1 = m|z1:j , γ, ψ, υ) ∝

{
(γ + |Cm,j |) exp(υSm,j+1) m ≤Mj
Vj+1(Mj+1)
Vj+1(Mj)

γ m = Mj + 1.

(3.19)

The number of clusters

We study how the Potts component affects the random partition model. First, we
consider the number of clusters.

Proposition 3.7: Number of clusters

Assume that the graph has a maximal degree D. Then, the prior expected number
of clusters for the Potts-MFM model has the following bounds:

EpL [L] exp(−Dυ) . E[Mp] . EpL [L], (3.20)

where EpL [L] is the expectation of L with respect to pL(·).

Proof of Proposition 3.7. Since Mp =
∑p−1

j=0 Dj , where Dj = 1(zj+1 = Mj + 1) given
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z1:j .

E[Mp] =

p−1∑
j=0

E[Dj ] =

p−1∑
j=0

E
[

Vj+1(Mj + 1)γ

Vj(Mj) + Vj+1(Mj)ηj+1

]

=

p−1∑
j=0

E

Vj+1(Mj + 1)γ

Vj(Mj)

 1

1 +
Vj+1(Mj)
Vj(Mj)

ηj+1

 ,
where the last equations follows from Proposition 3.6. Note that the first term Vj+1(Mj+
1)γ/Vj(Mj) represents the probability of allocation to a new cluster under the standard
MFM. Focusing on the second term, we first note that:

Vj+1(Mj)

Vj(Mj)
=

1− Vj+1(Mj+1)γ
Vj(Mj)

j + γMj
,

following the recursive relation of the coefficients Vp+1(Mp + 1)γ = Vp(Mp) − (p +
γMp)Vp+1(Mp). Furthermore:

ηj+1 =
∑

m:Sm,j+1>0

(γ + |Cm,j |){exp(υSm,j+1)− 1}

≤ [exp{υmin(D, j)} − 1]
∑

m:Sm,j+1>0

(γ + |Cm,j |).

Thus, we have:

Vj+1(Mj)

Vj(Mj)
ηj+1 ≤ [exp{υmin(D, j)} − 1]

(
1− Vj+1(Mj + 1)γ

Vj(Mj)

) ∑
m:Sm,j+1>0(γ + |Cm,j |)

j + γMj

≤ [exp{υmin(D, j)} − 1],

and

1

1 +
Vj+1(Mj)
Vj(Mj)

ηj+1

≥ exp{−υmin(D, j)}.

Therefore,

E[Mp] =

p−1∑
j=0

E

Vj+1(Mj + 1)γ

Vj(Mj)

 1

1 +
Vj+1(Mj)
Vj(Mj)

ηj+1


≥

p−1∑
j=0

E
[
Vj+1(Mj + 1)γ

Vj(Mj)

]
exp{−υmin(D, j)}

& EpL [L] exp(−Dυ),
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where the last line follows from (Miller and Harrison, 2018, Theorem 5.2), i.e. asymptot-
ically the distribution of the number of clusters behaves like the number of components.
Similarly, the upper bound follows from

Vj+1(Mj + 1)

Vj(Mj)
≥ Vj+1(Mj + 1)

Vj(Mj) + Vj+1(Mj)ηj+1
.

For a given value of the coupling parameter υ, we can choose the prior pL accordingly
based on these bounds to reflect our prior information on the number of clusters.

Cluster sizes

The distribution of the cluster sizes under MFM is:

prMFM(|C1|, . . . , |CM |) ∝
M∏
m=1

|Cm|γ−1.

From the equation, we see that smaller probabilities are assigned to highly imbalanced
cluster sizes. The parameter γ controls the relative size of the resulting clusters.

The distribution of the cluster sizes under Potts-MFM model is:

prPotts-MFM(|C1| = N1, . . . , |CM | = NM ) ∝ Vp(M)

M !

M∏
m=1

Γ(γ +Nm)

Γ(γ)

∑
πp:|Cm|=Nm

M∏
m=1

exp(υSm).

Given M , a larger value of γ should encourage more equal-size clusters, however, this
needs to balance with the Potts part, which will encourage more connected neighbours.
In Section 3.5, we will examine the prior on S and the prior on the cluster sizes for the
Potts-MFM model.

The computation of the coefficients Vp(M)

See Section 3.2 of Miller and Harrison (2018) for details on the computation of Vp(M);
they note that convergence of Vp(M) is at least as rapid as

∑∞
l=1 pL(l|ψ), thus if we choose

the prior on the number of components to not have a heavy tail, we can approximate
Vp(M) well numerically with a finite number of terms. In particular, Theorem 5.1 states:

Vp(M) '
M(M)

(γM)(p)
pL(M |ψ) ' M !

p!

Γ(γM)

pγM−1
pL(M |ψ),

as p→∞.
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3.4 Comparison to other partition distributions

We now compare the EPA distribution and the Potts-Gibbs models with the dependent
random partition models reviewed in Section 2.2. Each dependent random partition
differs on the underlying mechanism to generate partitions. The ddCRP by Blei and
Frazier (2011) and Ghosh et al. (2011) defines the random partition indirectly through
a probability distribution over graphs and incorporates the spatial information in the
model using the distance matrix and decay function. The PPMx by Müller et al. (2011)
uses both the cohesion function and similarity function to define the random partition
directly rather than through some underlying discrete random probability measure.

Similarly to the ddCRP, the EPA distribution incorporates covariate information via
the pairwise distance but also explicitly defines a probability distribution over partitions
by sequentially allocating the units into clusters in a partition. It serves as a flexible
prior, allowing us to incorporate a spatial constraint. In contrast to PPMx, the EPA
distribution can accommodate a broader class of information to influence partitioning as
one can always define pairwise similarity information from unit-specific covariates, but
not all pairwise similarity information can be encoded as a similarity function G(·) of
unit-specific covariates, as required. For the Potts-Gibbs models, the MRF component
which is responsible for the spatial dependence is imposed internally in the Gibbs-type
priors, either DP, PY or MFM.

As mentioned in Chapter 2.2, the ddCRP and PPMx do not have an explicit pmf,
and marginal properties are lost, such as the prior on the number of clusters. The
EPA-distributed approach addresses these issues, easing prior specifications and MCMC
developments. It has both an explicit formula for the distribution of the number of clus-
ters and a known, tractable pmf. The Potts-Gibbs models also involve an intractable
normalising constant, thus there is no closed-form solution for sampling from the pos-
terior distribution directly. However, the Potts-Gibbs models have their advantages.
The Potts-Gibbs models are above the EPA distribution in terms of computational effi-
ciency. The computational cost of the Potts-Gibbs cluster assignment is O(pM) whereas
the computational cost of the EPA sequential cluster assignment is O(p2M), which can
result in significant computational savings, for example in imaging applications where
the number of pixels is large.

3.5 Prior simulation comparisons in finite samples

In the following, we study and compare the prior for the EPA distribution, Potts-DP,
Potts-PY and Potts-MFM models. We empirically show how the combination of Potts
and BNP components influence each other and how each component affects the prior
on the number of clusters, the number of connected neighbours and cluster sizes. The
random partition model involves a prior over the number of clusters of size 1 to p, i.e.
over the random variables. We refer to this as prior distribution over N1, · · · , Np as the
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prior over cluster sizes.

In order to draw samples from the prior model, we run an MCMC algorithms for T =
10, 000 iterations with the first 40% draws removed a burn-in. For the Potts-MFM model,
as mentioned in Section 3.3.6, we need to specify pL(·|ψ) which reflects the prior belief
on the number of clusters. We employ the Poisson distribution for pL(·|ψ) following the
set-up in (Miller and Harrison, 2018).

3.5.1 Comparison of the prior on the number of clusters

We begin by empirically studying the prior on the number of clusters under the models
studied in this chapter. As shown in Figure 3.1, both the concentration α and discount
parameter δ parameters influence the expected number of clusters in a partition that
adopts either EPA distribution or Potts-DP and Potts-PY priors. The higher the con-
centration parameter α and discount parameter δ, the higher the expected total number
of clusters.

As discussed in Section 3.2, the prior on number of clusters for the EPA is available
analytically and coincides with that of PY (or DP when δ = 0). Indeed, we observe an
approximately linear relationship between α and the expected number of clusters, and
a non-linear relationship within δ, related to the power law behaviour.

By incorporating the Potts model in the random partition model (either MFM, DP or
PY), which acts in opposition to the concentration parameter α and discount parameter
δ, we observe that the coupling υ always reduces the expected total number of clusters.
For the Potts-DP model, one can see that a large value of the concentration parameter α
is required to avoid phase transition. Looking at the Potts-PY model, with the discount
parameter δ, we can use smaller values of the concentration parameter α to avoid phase
transition. Looking at the Potts-MFM model, we see that when the coupling υ equals
zero, the expected number of prior clusters is roughly equal to λ. As the coupling υ
increases, we need a larger value of γ to avoid phase transition. However, with the help
of a larger value of λ, we can replace it with a smaller value of γ instead. For example,
when the coupling υ = 0.5 and λ = 50, we need γ ≥ 10 to get away from phase transition.
When we increase the λ to 100, we can use a smaller value of γ ≥ 5.0.

Figure 3.2 shows the expected total number of clusters (black solid line) for the Potts-PY
and Potts-MFM models with the lower bound (red dashed line) and the upper bound
(blue dashed line) estimated from Equation (3.16) or Equation (3.20) respectively for
increasing values of the α or λ respectively. We observe that the expected total number
of clusters is between the estimated lower bound and the upper bounds from the defined
equations.
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3.5.2 Comparison of prior cluster sizes

Next, we empirically study the prior on cluster sizes under the different models. For
the Potts-DP and Potts-PY models, the variability in the sizes of the cluster is large,
varying widely from a lot of very small clusters to a very few large clusters as displayed
in Figure 3.3. These clusters exhibit the “rich-getting-richer” and the “poor-getting-
poorer” property. For the Potts-PY model, the introduction of the parameter δ helps to
weaken the “rich-getting-richer” property by putting more prior weight on the probability
of generating new clusters, thereby reducing the probability of adding a new unit to an
existing cluster. However, PY still has some limitations. We see that increasing the
discount parameter δ causes more new clusters to be created. The discount parameter
δ does not alter the linear dependence on previous observations for cluster allocations
- “rich-getting-richer” property, it still leads to apriori partitions containing a small
number of large clusters. By including the Potts model in the random partition model
(either MFM, DP or PY), we find that increasing the coupling υ helps those large clusters
to grow even larger and form a partition with very few small components and one giant
component.

We see that the Potts-MFM model offsets those limitations. It gets rid of the “rich-
getting-richer” property. MFM tends to generate clustering with similar cluster sizes.
We will not have the clustering that has clusters consisting of only a few units. Increasing
the coupling υ will form a giant cluster, but with appropriate values of γ and λ, we can
avoid the phase transition. A larger value of γ reduces the variability and decreases the
uncertainty in the expected size of each cluster. However, one should be aware that a
large value of γ might cause poor mixing and slower convergence as it might be stuck
easily around the local maximum. We suggest using a larger value of λ instead of γ.

For the EPA model, we observe that when discount parameter δ is increased from 0.0
(Figure 3.3 (a)) to 0.25 (Figure 3.3 (b)) or 0.35 (Figure 3.3 (c)), the curves go upwards as
the distribution of the size of small or medium clusters increases, consequently reducing
the possibility of producing one giant cluster. When the concentration parameter α
increases, the distribution of the size of small clusters increases, while the distribution
of the size of large clusters drops.

3.5.3 Comparison of prior spatial connectivity

Lastly, we compare the prior on spatial connectivity under the different models. Specif-
ically, we study the prior on the number of connected neighbours, along with a visual-
isation of the pairwise probability matrix that two units are clustered together and a
draw from the prior. Specifically Figure 3.4 shows the expected number of connected
neighbours as a function of the model hyperparameters under the different models, and
Figures 3.5 - 3.8 plot the pairwise probabilities that two units are clustered together
(right) along with a sampled partition (left) for the EPA distribution, Potts-DP, Potts-
PY and Potts-MFM models respectively.
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From Figure 3.4, it is apparent that increasing the temperature τ and coupling υ in-
crease the expected number of like neighbour pairs in the partition. For the EPA, the
temperature τ governs the degree to which the prior distance information influences the
partition distribution. As shown in Figure 3.5, when τ increases, it increases the effect
of the spatial distance information on the clustering structure, encouraging nearby units
to cluster together; consequently only those units that have relatively small distance will
have a higher probability to be clustered together.

For the Potts-Gibbs models, the behaviour is quite different compared to the EPA. The
relationship in Figure 3.4 between the expected number of connected neighbours and
the coupling υ is steeper. For the Potts-DP and Potts-PY models, the phase transition
is evident if the value of the coupling υ is set too high, this results in a high number
of like neighbour pairs and causes almost all units to be clustered in one giant cluster.
For the Potts-MFM model, when γ is small (γ = 1.0), λ does not have any effect on
the expected number of neighbour pairs. When γ starts increasing, λ starts to play a
different role in the expected number of neighbour pairs, and the phase transition is
not as steep when increasing γ or λ and in comparison to the Potts-DP and Potts-PY
models. From Figures 3.6 - 3.8 as expected we observe that increasing υ helps to improve
spatial smoothing.

3.6 Image segmentation

The previous section focused on a prior comparison of the models, which is useful to
gain intuition on the prior over the spatial clustering structure and the role of the
hyperparameters. In the following, we compare and study the models aposteriori for
image segmentation tasks. The data used is obtained from the well-known Berkeley
Segmentation Data Set 500 (BSDS500) benchmark (Arbelaez et al., 2010). This include
200 images for training, 100 images for validation, and 200 images for testing. Each
image is labelled manually by at least 4 annotators. We focus on the 154 images from
the BSDS500 dataset considered in Chatzis (2013); Chatzis and Tsechpenakis (2010)
and Lü et al. (2020).

Before analysing, we carry out necessary preprocessing steps. Specifically, for each im-
age, we assume the feature vector xj at each spatial location sj , for j = 1, · · · , p is
d-dimensional, i.e. xj ∈ Rd. Each image is first segmented into approximately 1000 su-
perpixels (i.e. p ≈ 1000) (Mori, 2005). Figure 3.9 illustrates the superpixel grid obtained
using the method of Mori (2005) on one image from the BSDS500. Feature vectors are
computed at the superpixel level, comprising hue saturation value (HSV) colour informa-
tion (3-dimensional) along with the values of the maximum response (MR) filter banks
(8-dimensional) (i.e. d = 11).

We consider Gaussian likelihoods for each feature vector xj :

xj |βzj , zj ∼ N(µzj ,Σzj ), for j = 1, · · · , p,
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where βzj = (µzj ,Σzj ). And we assume a joint normal-inverse-Wishart distribution over
the mean vector µ and covariance matrix Σ of the Gaussian likelihoods:

Σ ∼ IWν0(Ψ0),

µ|Σ ∼ N(m0,Σ/κ0),

pr(µ,Σ) = NIW(m0, κ0,Ψ0, ν0),

where IWν0(Ψ0) denotes inverse Wishart distribution with scale matrix Ψ0 and degrees
of freedom ν0 and NIW(m0, κ0,Ψ0, ν0) denotes normal-inverse-Wishart distribution with
mean m0, real parameter κ0 (> 0), scale matrix Ψ0 and degrees of freedom ν0. The
normal-inverse-Wishart priors are set empirically based on the data as m0 = the mean
across the image, κ0 < 1 (i.e. κ0 = 0.01), Ψ0 = Var[data])/M2/d, ν0 = d+2 = 13 (Fraley
and Raftery, 2007).

For each image, MCMC is performed to obtain the posterior distribution over the seg-
mentation of the image. The cluster assignment is initialised by the k-means algorithm
with the number of clusters equal to 10 (i.e. M = 10). The MCMC algorithm proceeds
as follows, for t = 1, · · · , T :

1. The partition is sampled according to the full conditional over the clustering:

pr(πp| . . .) ∝
p∏
j=1

f(xj |πp,µzj ,Σzj ) · pr(πp|Θ), (3.21)

where Θ represents all the parameters of the random image partition models em-
ployed, either the EPA distribution or Potts-Gibbs image partition model. And
the likelihood part can be simplified as follows:

log


p∏
j=1

f(xj |πp,µzj ,Σzj )

 =

p∑
j=1

log
{
f(xj |πp,µzj ,Σzj )

}
= −pd

2
log(2π)− 1

2

p∑
j=1

log
{

det
(
Σzj

)}
− 1

2

p∑
j=1

(xj − µzj )TΣ−1
zj (xj − µzj ).

In order to sample from this full conditional, which iterates through each super-
pixel, updating its allocation conditioned on all others (further details are provided
in Chapter 4).

2. For m = 1, · · · ,M , the full conditional of the cluster specific parameters, β∗m =
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(µm,Σm), is available in closed form and given by:

Σm ∼ IWνm(Ψm),

µm|Σm ∼ N(mm,Σm/κm),
(3.22)

with parameters:

κm = κ0 + nm,

mm =
κ0m0 + nmxm

κm
,

νm = ν0 + nm,

Ψm = Ψ0 +
∑
j∈Cm

(xj − xm)(xj − xm)T +
κ0nm
κ0 + nm

(xm −m0)(xm −m0)T

= Ψ0 +
∑
j∈Cm

xjx
T
j − nmxmxTm +

κ0nm
κ0 + nm

(xm −m0)(xm −m0)T ,

where nm =
∑p

j=1 1zj=m and xm = 1/nm
∑p

j=1 xj1zj=m.

The MCMC algorithm provides approximate posterior draws of the segmentation of the
image describing posterior uncertainty in the segmentation given the imaging data. To
obtain a single point estimate of the segmentation, we report the partition π̂p which
minimise the posterior variation of information. For the evaluation, the probabilistic
adjusted rand index (PARI) and probabilistic rand index (PRI) are employed. Let
{π0,1

p , · · · , π0,g
p } denote the set of ground truth images and π̂p denotes the estimated

segmentation map, the PARI is defined as

PARI =
1

g

g∑
i=1

ARI(π̂p, π
0,i
p ),

and the PRI is defined as

PRI =
1

g

g∑
i=1

RI(π̂p, π
0,i
p ).

3.6.1 Results on image segmentation

In this study, we compared the performance of four different random image partition
models on the BSDS500 dataset: the EPA distribution and three Potts-Gibbs models
(Potts-DP, Potts-PY and Potts-MFM models). Our results, shown in Table 3.2 and
Figure 3.10, indicate that all four models have similar PARI scores, ranging from 0.292
to 0.296, and PRI scores, ranging from 0.755 to 0.772. The EPA distribution achieved
the highest PRI score, while the Potts-MFM model had the highest PARI score.

When examining the estimated segmentations in Figure 3.10, we see that the models are
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PARI PRI

Mean Median SD Mean Median SD

EPA 0.293 0.284 0.123 0.772 0.784 0.070
Potts-DP 0.292 0.270 0.129 0.756 0.760 0.072
Potts-PY 0.292 0.273 0.132 0.755 0.762 0.073

Potts-MFM 0.296 0.295 0.123 0.767 0.781 0.072

Table 3.2: Results on the BSDS500 dataset. Summary statistics of the PARI and PRI
score over the selected 154 images from BSDS500 studies by Chatzis (2013); Chatzis and
Tsechpenakis (2010) and Lü et al. (2020).

generally effective at identifying the main components of the images. However, there is
still room for improvement in terms of fine segmentation. By comparing the prior simu-
lations in Figures 3.6 - 3.8 with the posterior estimates in Figure 3.10, we can appreciate
small differences due to the influence of the prior. Overall, these results demonstrate the
potential of using spatial random image partitions for image segmentation tasks.

3.7 Conclusions

In this chapter, we have detailed the two random image partition models, namely
the Ewens-Pitman attraction (EPA) distribution and the Potts-Gibbs random parti-
tion (Potts-Gibbs) models. We have provided a thorough comparison including both
theoretical properties and empirical comparisons. We focus mainly on the expected
number of clusters, the size of clusters and the number of connected neighbour pairs
induced from the underlying partition structure in these models. From the prior simula-
tions conducted, we observe that the EPA distribution is well-behaved compared to the
Potts-Gibbs models. Moreover, a closed-form prior is available for the random partition
model, allowing full Bayesian inference for the key hyperparameters influencing the spa-
tial clustering structure. For the Potts-Gibbs models, if we do not specify the values of
the parameters wisely, we are likely to get undesirable clustering structures. The Potts-
Gibbs models are sensitive to the chosen coupling υ due to the phase transition that
occurs. The Potts-DP and Potts-PY models are sensitive to the concentration param-
eter α because of the “rich-getting-rich” property. Among the Potts-Gibbs models, the
phase transition of the Potts-MFM model is less extreme and easier to control. However,
the main advantage of Potts-Gibbs models over the EPA is the reduced computational
complexity resulting from the Markov property. In the next chapter, we construct novel
scalar-on-image regression models which use the spatial random partition models studied
in this chapter as the main building block.
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Figure 3.1: Grid size = 50x50: Expected number of clusters as a function of parameter
α for the EPA distribution, Potts-DP and Potts-PY models or λ for the Potts-MFM
model. Note the y-axis is normalised by the total number of units, p.
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Figure 3.2: Grid size = 50x50: Expected total number of clusters (black solid line)
for the Potts-PY and Potts-MFM model with the lower bound (red dashed line) and
the upper bound (blue dashed line) estimated from Equation (3.16) or Equation (3.20)
respectively for increasing values of the α or λ respectively. Note the y-axis is normalised
by the total number of units, p.
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(c) EPA (δ = 0.35)
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(d) Potts-DP
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(e) Potts-PY (δ = 0.25)
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(f) Potts-PY (δ = 0.35)
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(h) Potts-MFM (λ = 50.0)
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Figure 3.3: Grid size = 50x50: Expected number of clusters as a function of empirical
cluster size for the EPA distribution, Potts-DP, Potts-PY models and Potts-MFM model.
Note that both axes are normalised by the total number of units, p. Axes are plotted
on the log scale.
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(f) Potts-PY (δ = 0.35)
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Figure 3.4: Grid size = 50x50: Expected number of neighbour pairs as a function
of parameter α in proportion for the EPA distribution, Potts-DP and Potts-PY models
or γ for the Potts-MFM model. Note the y-axis is normalised by the total number of
neighbour pairs, S.
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Figure 3.5: Pairwise probabilities that two units are clustered together (right) along
with a sampled partition (left) for the EPA distribution with α = 5.0 and δ = 0.0 on
a 10× 10 regular grids. The top figure corresponds with τ = 1, while the bottom τ = 10
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Figure 3.6: Pairwise probabilities that two units are clustered together (right) along
with a sampled partition (left) for the Potts-DP model with α = 10.0 and δ = 0.0
on a 10 × 10 regular grids. The top figure corresponds with υ = 0.0, while the bottom
υ = 0.1.
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Figure 3.7: Pairwise probabilities that two units are clustered together (right) along
with a sampled partition (left) for the Potts-PY model with α = 10.0 and δ = 0.25
on a 10 × 10 regular grids. The top figure corresponds with υ = 0.0, while the bottom
υ = 0.1.
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Figure 3.8: Pairwise probabilities that two units are clustered together (right) along
with a sampled partition (left) for the Potts-MFM model with λ = 1.0 and γ = 10.0
on a 10 × 10 regular grids. The top figure corresponds with υ = 0.0, while the bottom
υ = 0.1.
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(a) Original image (b) Image with superpixel grid

Figure 3.9: An illustration of the superpixel grid obtained using the method by Mori
(2005) for one image from the BSDS500 dataset. Superpixel boundaries are depicted in
red.
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(a) True (b) EPA (c) Potts-DP (d) Potts-PY (e) Potts-MFM

(f) True (g) EPA (h) Potts-DP (i) Potts-PY (j) Potts-MFM

(k) True (l) EPA (m) Potts-DP (n) Potts-PY (o) Potts-MFM

Figure 3.10: Qualitative results on the BSDS500 dataset. Some visual image segmen-
tation results obtained by the EPA distribution and Potts-Gibbs models (Potts-DP,
Potts-PY and Potts-MFM models.)
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Chapter 4

SIR with Random Image
Partition Models

Under the SIR framework, we develop a novel class of priors combining sparsity-promoting
priors on the coefficient image with spatial random partition models. We organise the
description of our proposed models into two parts: the spatially-dependent partition pro-
cess and the shrinkage priors. We utilise the random image partition models described
in Chapter 3, specifically the Potts-Gibbs random partition models and Ewens-Pitman
attraction distribution to spatially cluster the coefficients, in order to improve the signal
and interpretability as well as ease computations and multicollinearity. Each cluster has
a unique coefficient and we employ heavy-tailed shrinkage to penalize and identify rele-
vant regions, specifically using t-shrinkage priors. For posterior inference, we develop a
Gibbs sampler to simulate from the posterior using a generalized Swendsen-Wang (GSW)
algorithm (Da Xu et al., 2016) to draw samples from the Potts-Gibbs SIR models and
a Metropolis-Hastings within Gibbs for the EPA SIR model.

Note: An article on Potts-Gibbs SIR models has been accepted and will shortly appear
in the book of proceedings of the Bayesian Young Statisticians Meeting 2021 (BAYSM) in
the series Springer Proceedings in Mathematics & Statistics. We are also preparing an
extended version of this paper, including some empirical and theoretical results studying
the properties of the priors included to be submitted to Biometrics. Furthermore, we plan
to open-source the code of our proposed models.

4.1 Introduction

Scalar-on-image regression (SIR) inherently faces non-identifiability problems (Palma
et al., 2020) because of the large p small n setting and potentially strong spatial connec-
tion across the imaging predictor. A variety of different methods have been proposed
by the SIR community to attenuate the issue of non-identifiability by making structural
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assumptions on the coefficient image, β, for instance, imposing combinations of spa-
tial, smoothness, sparsity or projections onto a subspace (Goldsmith et al., 2014; Huang
et al., 2013; Li et al., 2015; Smith and Fahrmeir, 2007; Wang et al., 2017).

In neuroimaging applications, the effect size of each predictor on the outcome measure is
typically anticipated as too small to be reliably informative about brain function, if not
zero, but the cumulative effect size of predictors belonging to the same cluster can be
substantial. On top of that, the image predictors are observed on a spatially structured
coordinate system, thus neighbouring pixels tend to exhibit some spatial dependencies.
In spatial clustering, exchangeability is indeed no longer the proper assumption as the
spatial data or images contain covariate information, that we wish to leverage to improve
model performance in this high-dimensional setting. It is therefore natural to assume
certain structural assumptions on the spatial partition for our proposed SIR framework.
In particular, we consider clustering the coefficient image to form several spatially con-
tiguous regions to efficiently reduce the dimension of the parameter space. In this thesis,
we extend the Ewens-Pitman attraction (EPA) distribution and the Potts-Gibbs random
partition (Potts-Gibbs) models as the prior of the random partition distribution for our
proposed models: EPA SIR and Potts-Gibbs SIR models respectively to enforce spa-
tially dependent clustering on the coefficient image, thereby producing groups represent
spatially contiguous regions and derive marginal properties in this setting.

Many modern applications involve high-dimensional datasets, in some cases, with p �
n, including magnetic resonance imaging (MRI) and gene expression data. Therefore,
sparsity plays a crucial role in a high-dimensional linear regression problem. To make
inference in this context, it has commonly been assumed many of the covariates are small
enough to be insignificant and irrelevant, intending to remove those covariates that have
very little or non-existent effects on the response from the regression model or shrink
them towards zero. Thus, in high-dimensional settings, it is frequently assumed that the
coefficients are likely to be sparse to narrow the solution space.

Variable selection is one of the key tasks to identify the small subset of significant regres-
sion coefficients that influence a response so that a significant portion of the variation
in the response can be inferred from these predictors. There have been many meth-
ods proposed from the Bayesian perspective. They commonly encourage the sparsity of
the regression coefficients by choosing an appropriate prior distribution. These priors
including spike-and-slab priors with point masses at zero (Castillo et al., 2015; Martin
et al., 2017; Yang et al., 2016), continuous spike-and-slab priors (George and McCulloch,
1993; Ročková and George, 2018), scale-mixture shrinkage priors (Song and Liang, 2017;
Van Der Pas et al., 2016) and non-local priors (Rossell and Telesca, 2017; Shin et al.,
2018). In this thesis, with the theoretical support from Song and Liang (2017), we use
a class of heavy-tailed priors to identify relevant regions, specifically using t-shrinkage
prior which will be explained in Section 4.2.3.

The rest of this chapter is structured as follows. In Section 4.2 we provide a clear descrip-
tion of the design of the construction of the proposed models including the generalized
linear model (GLM) in Section 4.2.1, image partition models in Section 4.2.2, shrink-
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age priors in Section 4.2.3 and priors for additional parameters in Section 4.2.4. It is
then followed by Section 4.3 which gives suitable computational strategies for posterior
inference. Section 4.4 includes various posterior summaries to describe the posterior
quantities of interest. Section 4.5 provides concluding remarks.

4.2 Model

Our proposed models: the EPA SIR model and Potts-Gibbs SIR models are motivated
by applications in brain imaging data: automatic identifying of brain regions to diagnose
Alzheimer’s disease (AD). In the statistical literature, diagnosing AD based on neuroim-
ages can be framed as a SIR problem (Reiss et al., 2011), so-called as the responses are
scalars as in a typical regression but the covariate is the entire image. In the following,
we construct our proposed models under the SIR framework which we have discussed
in Section 2.1. In particular, the proposed models aim to group together pixels with
similar effects on the response to have a common coefficient. Moreover, they directly
account for the spatial location within the cluster allocation to incorporate and provide
interpretable feature extraction. We outline the proposed models with the three main
components: the generalized linear model (GLM), the random image partition models
(Chapter 3) and the shrinkage priors which are explained in the subsequent subsections.

4.2.1 Generalized linear model

The SIR model in Equation (2.1) can be extended for other types of responses through a
generalized linear model (GLM) (McCullagh and Nelder, 2019). A GLM introduced by
Nelder and Wedderburn (1972) generalises linear regression allowing the response to have
a non-normal distribution. A GLM has three main components: a specified distribution
belonging to the exponential family, a linear predictor and a link function. Each response
yi assumed to follow the specified distribution belonging to the exponential family with
probability mass function (pmf) for discrete variables or probability density function
(pdf) for continuous variables:

f(y; θ) = exp

{
yA(θ)− B(θ)

C(ϕ)
+D(y, ϕ)

}
,

where θ is the parameter of the exponential family and ϕ is the scale parameter. The
distribution is said to be in canonical form (or natural form) if A(θ) is the identity func-
tion, and θ is commonly referred to as the canonical parameter (or natural parameter).
The B, C and D are known functions specific to the distribution within the exponential
family. A linear predictor is used to determine the canonical parameter θ through a
series of transformations. A link function G(·) connects together the mean

ui = E[yi|xi,wi],
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and the linear component wT
i µ+xTi β. Often, the natural parameter θ is used to relate

the mean ui to the linear component wT
i µ+ xTi β:

G(ui) = A(θ) = θ = wT
i µ+ xTi β.

In the following, we provide three examples of GLMs to account for three different forms
of the outcomes y (continuous, categorical and ordinal). These will form the cases
studied in Chapter 5 but the framework can of course be extended for other types of
responses.

Gaussian. We model the continuous outcomes y by considering a GLM with normal
distribution and identity link function, which gives us the linear regression model. For
each data point, y1, . . . , yn, we have

yi|xi,wi,µ,β, σ
2 ∼ N(ui, σ

2), (4.1)

where we define ui = wT
i µ+ xTi β.

Binary. We model the binary outcomes y (yi ∈ {0, 1}) using a Bernoulli distribution
and either logistic or probit link function where the link function maps (0, 1) to the real
line. For each data point, y1, . . . , yn, we have

yi|xi,wi,µ,β ∼ Bern
(
G−1(ui)

)
,

where pr(yi = 1|xi,wi,µ,β) = E[yi|xi,wi,µ,β] = G−1(ui) and Bern(a) denotes a
Bernoulli distribution with probability a. For the logistic link function,

pr(yi = 1|xi,wi,µ,β) =
1

1 + exp(ui)
.

For the probit link function,

pr(yi = 1|xi,wi,µ,β) = Φ (ui) ,

where Φ(·) is s a cumulative distribution function. In this case, the model can be
equivalently formulated through a latent response ỹi that is Gaussian distributed with
mean ui and unit variance. In particular, ỹi|ui ∼ N(ui, 1) and

yi =

{
0 if ỹi ≤ 0
1 if ỹi > 0.

The probit model is recovered by marginalising the latent ỹi.

Ordinal. We model the ordinal outcomes y taking ordered values c = 0, . . . , C through
a categorical distribution and with either an ordered logistic or probit link function, that
is,

pr(yi ≤ c|xi,wi,µ,β, bc) = G−1(bc − ui),
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where 0 = b0 < b1 < . . . < bC−1 represent the cutoffs and the link function maps (0, 1)
to the real line. For the logistic link function,

pr(yi ≤ c|xi,wi,µ,β, bc) =
exp(bc − ui)

1 + exp(bc − ui)
.

For the probit link function,

pr(yi ≤ c|xi,wi,µ,β, bc) = Φ (bc − ui) . (4.2)

In this case, the model can be equivalently formulated through a latent response ỹi that
is Gaussian distributed with mean ui and unit variance. In particular, ỹi|ui ∼ N(ui, 1)
and

y =


0 if ỹ ≤ 0
c if bc−1 < ỹ ≤ bc
C if ỹ > bC−1.

The ordered probit model is recovered by marginalising the latent ỹ.

4.2.2 Image partition models

We model the high-dimensional coefficient image, β, by spatially clustering the units into
M regions and assuming common coefficients β∗ = (β∗1 , . . . , β

∗
M )T within in each cluster,

i.e. βj = β∗m given the cluster label zj = m. Thus, the prior on the coefficient image is
decomposed into two parts: the random image partition model for spatially clustering
the units and shrinkage prior for the cluster-specific coefficients β∗. Following from
Chapter 3, we consider two different random image partition models: EPA distribution
and Potts-Gibbs models. The nonparametric approach avoids prespecifing the number of
regions and incorporates the spatial information directly into the clustering (as opposed
to the Ising-DP model which may result in scattered clusters throughout the image). The
clustering procedure helps to improve signal and interpretability and ease computations
and multicollinearity. By doing this, it allows automatic detection of regions, along with
uncertainty; and we use the notation x∗i = (x∗i1, · · · x∗im) to denote the extracted features
from the ith image for each of the regions m = 1, · · · ,M defined by πp. Moreover, it
allows for sharp discontinuities in the coefficient image across regions, which may be
relevant in medical applications to capture irregularities (Wang et al., 2017).

4.2.3 Shrinkage priors

Song and Liang (2017) presented the asymptotic behaviour of a general class of con-
tinuous shrinkage priors in an ordinary high-dimensional linear regression model. The
theoretical discovery found that the continuous shrinkage priors can achieve nearly the
same posterior contraction rate and variable selection consistency as the widely used
spike-and-slab priors for recovering the model parameters and the valid subset of co-
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variates in the model. On top of that, the shrinkage priors are computationally more
efficient than the spike-and-slab priors, especially when conjugacy exists. It is worth
mentioning that the developed theory is mostly dependent upon the concentration and
tail properties of the density of the continuous shrinkage prior.

For each unique value of β = (β1, . . . , βp)
T of each cluster, which is reparameterised as

β∗ = (β∗1 , . . . , β
∗
M )T , we apply a class of heavy-tailed priors (with the theoretical support

from Song and Liang (2017)) to identify relevant regions. Specifically, a t-shrinkage prior
is used for the base measure F0 to specify a prior for the unique value β∗ of each cluster:

(β∗m) |σ2 i.i.d∼ tdf (sσ), for all m = 1, . . . ,M, (4.3)

where tdf (s) denotes t-distribution with degree of freedom df and scale parameter s.

For posterior inference, the t distribution (Equation (4.3)) can be rewritten as a hierar-
chical inverse-gamma scaled Gaussian mixture:

η∗m ∼ IG (aη, bη) ,

(β∗m) |σ2, η∗m ∼ N(0, η∗mσ
2), for all m = 1, . . . ,M,

(4.4)

where aη > 0 and bη > 0, respectively are the shape and scaling parameter of the
mixing distribution for each η∗m corresponds to degrees of freedom df = 2aη and scale
s =

√
bη/aη for the t-shrinkage prior. This representation can also be viewed as a global-

local shrinkage prior, where bη controls the overall shrinkage towards the origin, whereas
η∗m are the local shrinkage parameters, allowing each β∗m deviate with different levels
of shrinkage. The representation of the t-shrinkage prior in Equation (4.4) provides a
convenient way to implement posterior sampling.

The selection of scale parameter, s or bη, is critical for the performance of Bayesian
variable selection to avoid not over-shrinking or under-shrinking. Choosing an excessively
large scale parameter weakens the shrinkage effects; thus, it might fail to shrink some η∗m
towards 0. On the other hand, choosing a scale parameter that is too small may cause
many ηm to be aggressively shrunk to 0, which might accidentally wipe out the effects of
important predictors. Theorem 3.1 in Song and Liang (2017) shows that one could set the
scale parameters s2 ' bη ' 1/{n log (p)p−2c}, for a sufficiently large value of c, where
p denotes the number of features, i.e. p = p in the standard high-dimensional linear
regression framework studied in Song and Liang (2017) and p = M in our proposed
SIR model. For the student-t distribution, we set the degree of freedom to be 3, i.e.
aη = 1.5. Additionally, due to the important role of bη, we put a hyperprior on bη, i.e.
bη ∼ G(ao, bo), where G(ao, bo) denotes a gamma distribution with shape ao and rate
bo. We specify the ao and bo to achieve the expected value roughly equivalent to the
recommended scale parameter s2 ≈ bη ≈ 1/{n log (M)M−2c}, where c ranges from -0.25
to 1.10.

Thus, the prior for β∗ is specified hierarchically as follows to penalize and identify the
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relevant regions:
β∗|η∗, σ2 ∼ N(0M , σ

2Σβ∗),

η∗m|bη ∼ IG(aη, bη),

bη ∼ G(ao, bo),

(4.5)

where Σβ∗ = diag(η∗1, . . . , η
∗
M

).

4.2.4 Additional parameters

For the parameter µ involved in Equation (4.1), we assign the prior distribution as
follows:

µ|σ2 ∼ N(mµ, σ
2Σµ), (4.6)

where mµ = (mµ1 , . . . ,mµq), cµ = (cµ1 , . . . , cµq), and Σµ = diag(cµ1 , . . . , cµq).

For the Gaussian case, we have σ2 and assign the prior distribution:

σ2 ∼ IG (aσ, bσ) . (4.7)

In the case of ordinal outcomes, for identifiability we fix b0 = 0 and consider the improper
uniform prior:

pr(b1, · · · , bc−1) ∝ 1(0<b1<···<bc−1<∞). (4.8)

In the case of the EPA model, priors may also be considered for the concentration α and
discount δ parameters.

4.2.5 Full model

In summary, the two proposed BNP SIR models: the EPA SIR and Potts-Gibbs SIR
models can be formulated in the following hierarchical order,

yi|µ,β∗, πp, ϕ ∼ GLM(wT
i µ+ x∗Ti β

∗, ϕ), ∀i = 1, . . . , n,

SIR

πp ∼

{
EPA(Θ) for EPA SIR,

Potts-Gibbs(Θ) for Potts-Gibbs SIR,

Random image partition model
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Figure 4.1: The DAG represents the proposed models’ structure (Gaussian case).
Squares denote data; red nodes denote parameters, blue nodes denote hyperparame-
ters and edges denote dependencies.

β∗|η∗, σ2 ∼ N(0M , σ
2Σβ∗),

η∗m|bη ∼ IG (aη, bη) , ∀m = 1, . . . ,M,

bη ∼ G(ao, bo),

t-shrinkage prior

µ|σ2 ∼ N(mµ, σ
2Σµ),

σ2 ∼ IG(aσ, bσ), for Gaussian case,

Other parameters

(4.9)

where x∗im =
∑p

j=1 xij1(j ∈ Cm) represents the total value, e.g. volume in the mth
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Figure 4.2: The flow chart of MCMC for the proposed models.

region of the image. Note that we initially rescale the image predictor by dividing by√
p; this ensures that the total effects of the image predictors are bounded away from zero

(Kang et al., 2018). The Θ represents all the parameters defined by the random image
partition models employed. The relationship between observed data, model parameters,
and hyperparameters for the proposed models is illustrated in a directed acyclic graph
(DAG) in Figure 4.1 for the Gaussian case.

4.3 Posterior inference

For posterior inference, we devise an MCMC algorithm that provides asymptotically
exact samples from the posterior of interest. Figure 4.2 shows the flow chart of MCMC
for the proposed models. We define β̃ = (µ,β∗) and X̃ as the matrix of size n× (q+M)
with rows (wi,x

∗
i ). The posterior inference proceeds through the following steps:

Starting MCMC loop

Step 1. Image partition, πp. Sample the πp given η∗ and the data with β̃, σ2

marginalised:
pr(πp| . . .) ∝ f(y|πp,η∗) · pr(πp|Θ),
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where for the Gaussian case:

f (y|πp,η∗) ∝
|Σ−1

β̃
|1/2

|Σ−1

β̃
+ X̃T X̃|1/2

(
bσ + S2/2

)−(aσ+n/2)
,

S2 = (y − X̃mβ̃)T (y − X̃mβ̃)− (y − X̃mβ̃)T X̃(Σ−1

β̃
+ X̃T X̃)−1X̃T (y − X̃mβ̃),

and for the binary and ordinal case:

f (y|πp,η∗) ∝
|Σ−1

β̃
|1/2

|Σ−1

β̃
+ X̃T X̃|1/2

exp

(
−1

2
yTy − 1

2
mT

β̃
Σ−1

β̃
mβ̃ +

1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃

)
.

The pr(πp|Θ) represents either the EPA or Potts-Gibbs image partition model. Full
details on how the image partition is sampled are provided in Section 4.3.1.

Step 2. Coefficients and noise variance, β̃ and σ2. Sample β̃ and σ2 jointly given
the partition πp, η

∗ and the data from the corresponding full conditional distribution:

β̃|η∗, σ2, · · · ∼ N
(
m̂β̃, σ

2Σ̂β̃

)
,

σ2| · · · ∼ IG
(
âσ, b̂σ

)
,

where Σ̂β̃ =
(

Σ−1

β̃
+ X̃T X̃

)−1
, m̂β̃ = Σ̂β̃

(
Σ−1

β̃
mβ̃ + X̃Ty

)
, and IG(âσ, b̂σ) denotes

the inverse-gamma distribution with updated shape âσ = aσ + n/2 and scale b̂σ =
bσ + 1/2mT

β̃
Σ−1

β̃
mβ̃ + 1/2yTy − 1/2m̂T

β̃
Σ̂−1

β̃
m̂β̃.

The computational complexity is linear with respect to the number of unique clusters,
M , i.e. the cost is O(M).

Step 3. Local shrinkage parameters, η∗. Sample η∗ given β∗, σ2 and bη. The
corresponding full conditional distribution for each η∗m is an inverse-gamma distribution
with updated shape âη = aη + 1/2 and scale b̂η = bη + (β∗m)2/(2σ2), as follows,

η∗m| · · · ∼ IG
(
âη, b̂η

)
,

for all m = 1, . . . ,M .

The computational complexity is linear with respect to the number of unique clusters,
M , i.e. the cost is O(M).

Step 4. Global shrinkage parameter, bη. Sample bη from the gamma distribution

with updated shape âo = ao +Maη and rate b̂o = bo +
∑M

m=1 1/η∗m, as follows,

bη| · · · ∼ G
(
âo, b̂o

)
.
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4.3.1 The update of the partition πp

Gibbs sampling (Geman and Geman, 1984) was originally designed for drawing updates
from the Gibbs distribution. However, poor mixing can be seen in single-site Gibbs
sampling, which in our case sequentially updates the allocation of a single-pixel given
all others due to the posterior correlation between the unit labels. Therefore, when the
correlation is high, it takes a long time to converge. The Swendsen–Wang algorithm
(Swendsen and Wang, 1987) addresses this problem by constructing efficient split and
merge moves that form nested clusters of neighbouring units and then update all of
the labels within a nested cluster to the same value. The generalized Swendsen-Wang
(GSW) generalises SW to include additional algorithmic tuning parameters (i.e. κ and
τ) to improve mixing (Adrian and Zhu, 2005; Barbu and Zhu, 2007). Classical SW
algorithm is when κ = 1 and τ = 0.

The GSW sampler updates simultaneously the cluster allocation of groups of units and
hence improves the exploration of the posterior. The algorithm relies on the introduction
of auxiliary binary bond variables,

rjk =

{
1 if j and k are bonded

0 otherwise,

for sites 1 ≤ j < k ≤ p. The bond variables rjk induce nested groups of sites which
have the same cluster label. This defines a partition of the units into nested clusters
A1, . . . , AO, where O ≥M denotes the number of nested clusters. For each 1 ≤ j < k ≤ p
such that j ∼ k, we sample the bond variables as follows,

rjk ∼ Ber
(
1− exp(−υζjk1zj=zk)

)
, (4.10)

where 1zj=zk is an indicator variable equals 1 when both units j and k are assigned the
same cluster label and ζjk are the tuning parameters of the GSW sampler. Note that
units j and k may be bounded, i.e. rjk may be non-zero only for those units which are
neighbours and are in the same cluster (zj = zk).

The design of ζjk is application specific. A good choice will inform the nested clustering
step and achieve faster convergence. Importantly, it has to be symmetric, i.e. satisfy
ζjk = ζkj to ensure symmetry of the edge weights. For simplicity, we define ζjk based on
the data,

ζjk(τ, κ) = κ exp{−τd(β̂j , β̂k)},

where d(·, ·) is some distance measure, β̂j is the estimated coefficient from univariate
regression on the jth unit, and κ, τ are some positive tuning parameters. Notice that the
algorithm reduces to single-site Gibbs when κ = 0, i.e. all nested clusters are singletons,
and recovers classical SW when κ = 1 and τ = 0.
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(a) Initial partition (b) Update bonds (c) Form nested cluster (d) Update label

Figure 4.3: Illustration of the steps of the GSW sampler. (a) An example of an initial
partition with three different colours corresponding to three clusters. (b) Cross-marks
are used to indicate sites that have no chance to be bonded while colour lines are used
to represent sites that are bonded together according to Equation (4.10). (c) A nested
cluster is created by sites that are bound together. (d) All of the labels (colours) for a
given nested cluster are updated simultaneously.

Overall generalized Swendsen-Wang (GSW) sampler:

Figure 4.3 illustrates the overall GSW sampler. The overall GSW sampler proceeds
through the following steps:

1. We create the nested clusters A1, . . . , AO, where O is the number of nested clusters.
For each neighbour pair j ∼ k for 1 ≤ j < k ≤ p, we sample the bond variables
from Equation (4.10).

2. We update successively the cluster assignment of each nested cluster Ao given the
cluster assignments of the other nested clusters. For o = 1, . . . , O, each nested clus-
ter, Ao is removed from its current cluster in turn because a new cluster assignment
for Ao will be sampled in the current iteration.

We denote C−Ao1 , . . . , C−Ao
M−Ao

as the clusters without nested cluster Ao with M−Ao

be the number of distinct clusters excluding Ao. The π−Aop = {C−Ao1 , . . . , C−Ao
M−Ao

}
represents the partition obtained by removing all the sites j ∈ Ao from πp and
πAo→mp represents the partition obtained by adding nested cluster Ao to cluster m

in partition π−Aop . For each nested cluster Ao, it is assigned to an existing cluster

(m = 1, . . . ,M−Ao) or a new cluster (m = M−Ao + 1 . . . ,M−Ao + h) according to
the predictive probabilities of the chosen random image partition models and the
likelihood:

pr(Ao ∈ C−Aom |π−Aop , · · · ) ∝ f
(
y|πAo→mp ,η∗

)
pr(Ao ∈ C−Aom |π−Aop ,Θ). (4.11)

Refer to Table 4.1 for the predictive probabilities of each model (second term on
the right-hand side of Equation (4.11)).
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Component Θ Existing cluster New cluster

EPA α, δ, τ p−1−δM−j
α+p−1 ·

∑
ψk∈Cm

S(ψj ,ψk)∑j−1
k=1 S(ψj ,ψk)

α+δM−j

α+p−1

Potts-DP Gibbs α Γ(|C−Aom |+|Ao|)
Γ(|C−Aom |)

αΓ(|Ao|)
Potts υ

∏
{(j,k)|j∈Ao,k∈C−Aom ,rjk=0}

exp {υ(1− ζjk)}

Potts-PY Gibbs α, δ Γ(|C−Aom |+|Ao|−δ)
Γ(|C−Aom |−δ)

(α+ δM−Ao)Γ(|Ao|−δ)
Γ(1−δ)

Potts υ
∏

{(j,k)|j∈Ao,k∈C−Aom ,rjk=0}
exp {υ(1− ζjk)}

Potts-MFM Gibbs λ, γ Γ(|C−Aom |+|Ao|+γ)

Γ(|C−Aom |+γ)

Vp(M−Ao+1)
Vp(M−Ao )

Γ(|Ao|+γ)
Γ(γ)

Potts υ
∏

{(j,k)|j∈Ao,k∈C−Aom ,rjk=0}
exp {υ(1− ζjk)}

Table 4.1: Parameters Θ and terms of the predictive probability for assigning current
cluster to either existing cluster or new cluster for EPA, Potts-DP, Potts-PY and Potts-
MFM. Note that the predictive probabilities are stated up to a proportionality constant.

Sampling for non-conjugate priors:

Since we are dealing with a model with non-conjugate priors, we update the new clus-
ter assignment by extending Gibbs sampling with the addition of auxiliary parameters,
which is widely known as Neal 8 Algorithm (Neal, 2000). We define h temporary aux-

iliary variables
{
η∗
M−Ao+1

, . . . , η∗
M−Ao+h

}
that represent possible values for the local

shrinkage parameters of new clusters. If the action of removing Ao from its current
cluster causes the cluster to become empty (i.e. Ao is its own outer cluster), we set
its local shrinkage parameter as the first of these auxiliary parameters. That is, sup-
pose zj = m for all j ∈ Ao, then we set η∗

m−Ao+1
be equal to η∗m. The others auxil-

iary parameter
{
η∗
M−Ao+2

, . . . , η∗
M−Ao+h

}
will be sampled independently from the prior

distribution. The order of other clusters is reordered to be consecutive 1, . . . ,M−Ao .
Otherwise if zj = zk for some j 6= k and k /∈ Ao, h temporary auxiliary variables
(η∗
M−Ao+1

, . . . , η∗
M−Ao+h

) are again drawn independently from the prior distribution.

Computational complexity:

We apply the GSW sampler to draw samples from the Potts-Gibbs models. Before
updating the cluster assignments, we sample the nested clusters and compute the volume
of each nested cluster for all images, with computational cost O(np). When updating
the cluster assignments, the marginal likelihood dominates the computational cost, as
it involves inversion and determinants of (M + q)× (M + q) matrices and updating the
sufficient statistics for every nested cluster and every outer cluster allocation, i.e. the
cost is O([[M + q]3 + n[M + q]]OM).
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On the other hand, for the EPA SIR model, we use the Metropolis-Hastings within Gibbs
to sample a new partition, i.e. each nested cluster is a singleton. The computational
cost for the marginal likelihood part is similar to the Potts-Gibbs SIR, i.e. the cost is
O([[M + q]3 + n[M + q]]pM). However, the EPA sequential cluster assignment poses
an additional computational burden, namely, the computational cost of EPA sequential
cluster assignment isO(p2M). As the number of pixels p is typically much larger than the
sample size n and the number of clusters M , the EPA predictive probability dominates.

4.3.2 Prior and tuning parameter specification

The prior and tuning parameter specification for posterior inference described in Section
4.3 includes:

Step 1. Set the fixed parameter values for (aσ, bσ), (aη, ao, bo) and (mµ,Σµ).

Step 2. Define the model architecture. Set the values for the parameters Θ for the
random image partition models chosen. If EPA distribution is chosen, Θ = (α, δ, τ,Ψ)
whereas if Potts-Gibbs models are chosen, Θ = (υ, φ) depending on which Gibbs-type
partition models are selected. Refer to Table 4.1 for more details of parameters for each
chosen model.

Step 3. Define the tuning parameters for the GSW sampler, which is explained in
Section 4.3.1. The GSW sampler is implemented to draw πp for Potts-Gibbs SIR. Thus,
if Potts-Gibbs SIR is selected, set the values of the tuning parameters for the GSW
sampler, which are κ and τ . For the EPA SIR model, no action is required for this step
as the Metropolis-Hastings within Gibbs are used to sample the new partition.

4.3.3 Auxiliary variable model for binary and ordinal data

There is extensive research for the analysis of binary and categorical data in the context
of Bayesian ordinal probit regression. The well-known data augmentation algorithm by
Albert and Chib (1993) involves augmenting with auxiliary Gaussian random variables,
ỹ. Holmes and Held (2006) have proposed a technique to improve the performance of
the auxiliary variable Gibbs sampler in probit regression simulation by updating the
regression coefficients, β̃, and the auxiliary variable, ỹ, jointly to reduce autocorrelation
and subsequently improve the mixing. Alternatively, we could avoid data augmentation
and compute the marginal likelihood and posterior for the Bayesian probit regression as
Durante (2019); specifically, Durante (2019) has proved that under Gaussian priors for
the regression coefficients, the posterior distribution of the Bayesian probit regression
can be derived in closed-form and belongs to the class of unified skew-normal random
variables. We implemented and compared the three approaches, but focus on the simple
approach of Albert and Chib (1993), as the other two which have added computational
complexity did not substantially improve mixing.

We consider an ordinal probit likelihood to generalise the model for an ordinal response.
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Specifically, for categories c = 0, 1, 2:

pr(yi ≤ c) = Φ

{
bc − (wT

i µ+ xTi β)

σ

}
, (4.12)

where bc are the cutoff points for c = 0, 1, 2 with b0 = 0 and b2 =∞. For identifiability,
we typically fix σ = 1 and infer the free cutoff points.

Note that the model can be equivalently formulated through a latent Gaussian response
(McCullagh, 1980):

ỹi = wT
i µ+ xTi β + εi, εi ∼ N(0, σ2),

where the latent responses are linked to the ordinal response through:

yi =


0 ỹi ≤ 0
1 0 < ỹi ≤ b1
2 b1 < ỹi.

The ordinal probit model in Equation (4.12) is recovered after marginalisation of the
latent response ỹi. As in the binary case, we extend the MCMC algorithms with an ad-
ditional Gibbs step to sample the latent ỹi from a truncated normal using CDF inversion
(Albert and Chib, 1993). To infer the cutoff value b1, we sample as follows:

b1| · · · ∼ Unif (max {ỹi : yi = 1} ,min {ỹi : yi = 2}) ,

where Unif(a, b) denotes a uniform distribution with a the minimum and b the maximum
values.

4.3.4 Consensus clustering

Recently Coleman et al. (2021) have proposed an ensemble approach for the Bayesian
mixture models. The proposed approach addresses the problem of multimodality in the
likelihood surface. Mixing problems are highly likely to happen in multimodal, high-
dimension posterior distributions. The simulation studies show promising results that
the proposed approach is capable of producing more stable clusterings compared to
individual long chains that are prone to becoming trapped in individual modes in high
dimensional problems. On top of that, the runtime is reduced. Therefore, the proposed
ensemble approach can be a viable alternative when we have mixing problems or poor
scalability which make the algorithm infeasible to run large numbers of iterations.

They have provided a heuristic way to determine the ensemble width, W and ensemble
depth, T . First, we define the terms needed:
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• Co-clustering matrix, C1 is a binary matrix with its element defined as follows:

c1
jk = 1zj=zk .

• Consensus matrix, C2 with its element is defined as follows:

c2
jk =

1

W

W∑
w=1

1zwj=zwk ,

where Z is the cluster membership matrix with each row being the cluster mem-
bership vector zw = (zw1, · · · , zwp) at chain w.

At each chain, they compute a co-clustering matrix, C1, using the final sample. After
running W chains, they combine the W co-clustering matrices, C1, to form the consensus
matrix, C2. And finally, they compute the mean absolute difference of the consensus
matrix, C2, as an early stopping criterion. Motivated by the use of the scree plot
in principal component analysis (PCA), they recommend plotting the mean absolute
difference between the sequential consensus matrices, C2 for (T,W ) and (T −1,W ) as a
function of ensemble depth, T , for different values of ensemble width, W , to determine
the values of the ensemble parameters.

4.4 Posterior summary and prediction

Based on the proposed models, we can produce various summaries to describe the pos-
terior quantities of interest. The expectation for quantities of interest can be computed
based on Monte Carlo approximations using the MCMC samples. We define T as the
number of iterations and any variable with a “̂” accent as an estimate for the variable.
For example, β̂j denotes the posterior mean estimate for βj .

First, we summarise the posterior of the clustering structure by considering the posterior
similarity matrix, which represents the posterior probabilities that two units belong to
the same cluster, i.e.

pr(zj = zk|data) ' 1

T

p∑
j=1

1ztj=z
t
k
.

In the case of consensus clustering, the consensus matrix is similar in nature to the pos-
terior similarity matrix and can be reported to summarize uncertainty in the clustering
structure. Based on this posterior similarity matrix (or consensus matrix), we can also
obtain a point estimate of the clustering by minimising the posterior expected variation
of information (VI) (Wade and Ghahramani, 2018). We can also compute an estimate
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of the posterior expectation of βj (j = 1, · · · , p):

E[βj |data] ' β̂j =
1

T

T∑
t=1

βtj .

We are also interested in understanding which coefficients, βj (j = 1, · · · , p) are more
likely to be included in the model. To do so, we plot the posterior inclusion map which
has a value of 0 or 1. First, we define posterior probabilities of βj for being less than 0
and greater than 0:

pr(βj < 0|data) ' 1

T

T∑
t=1

1βtj<0,

pr(βj > 0|data) ' 1

T

T∑
t=1

1βtj>0.

Then we get the posterior inclusion probability (PIP) as follows:

PIP = max {pr (βj < 0|data) ,pr (βj > 0|data)} .

To identify which parts of the image are relevant for predicting the response, we plot
the binary posterior inclusion map by thresholding PIP at a specified significance level.

For the outcome measure, yi (i = 1, · · ·n), we separate into two cases: regression and
classification. For the regression, we compute the posterior expectation:

E[yi|data] ' ŷi =
1

T

T∑
t=1

x̃Ti β̃
t.

Note one can also compute other quantities such as the posterior density or credible
intervals. For the classification problem, we compute the posterior probability of class
membership for being classified as 0 (negative) or 1 (positive):

pr(yi = 1|data) ' p̂i(1) =
1

T

T∑
t=1

pr(yi = 1|β̃t, x̃i)

=
1

T

T∑
t=1

Φ(β̃tx̃i),

pr(yi = 0|data) ' p̂i(0) = 1− p̂i(1).

In addition, we can predict the respnse for a new individual, and perform posterior
predictive checking to assess the goodness of fit for some predictive summaries of interest.
Posterior predictive checking is employed as a tool for model checking to assess whether
the assumed model is reasonable for the data. Let yrep denote a replicated dataset
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sampled from the posterior predictive distribution given by:

pr(yrep|data) =

∫
pr(yrep|µ,β∗, πp, ϕ)pr(µ,β∗, πp, ϕ|y)d(µ,β∗, πp, ϕ),

which can be approximated by:

pr(yrep|data) ' 1

T

T∑
t=1

pr
(
yrep|µt,β∗t, πtp, ϕt

)
.

4.5 Conclusions

In this chapter, we have developed novel SIR models that combine random image parti-
tion models with sparsity promoting priors to automatically extract regions of interest
from the image predictors. We have described the building blocks of our proposed
models and the proposed posterior inference schemes, along with a discussion on com-
putational complexity. In particular, the EPA SIR model can be expensive compared
to the Potts-Gibbs SIR models because of (1) the sequential calculation of the EPA
predictive distribution inside the EPA SIR model resulting in a cost which is quadratic
in the number of pixels; (2) the intrinsic nested clusters formed via the GSW algorithm
help to reduce the computational time of sampling the new partition for the Potts-Gibbs
SIR models. However, due to the high-dimensional nature of SIR, the choice of random
image partition model plays an important role, as discussed in Chapter 3, the EPA and
choices within the Potts-Gibbs class induce different properties and behaviour in the
image partition apriori. In the next chapter, we provide a thorough comparison based
on simulations and an application to predict dementia.
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Chapter 5

Experiments

In this chapter, we demonstrate the potential of the proposed models, EPA SIR and
Potts-Gibbs SIR models, on both simulated datasets and real datasets. We have designed
four different scenarios for simulated datasets to test the proposed models. We also apply
our proposed models to real data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). Our proposed models are compared with competing SIR models namely the
Ising model (Huang et al., 2013), Ising-GMRF model (Goldsmith et al., 2014) and Ising-
DP model (Li et al., 2015). The results highlight the utility of the proposed models in
extracting interpretable features, while also providing improved performance.

5.1 Introduction

This chapter explains the approaches adopted in the simulation of the datasets and
outlines the experiments conducted to show the potential of our proposed models with a
detailed comparison of the proposed models with the competitors. Specifically, we focus
on the competing SIR models described in Section 2.1, namely the Ising model (Huang
et al., 2013), Ising-GMRF model (Goldsmith et al., 2014) and Ising-DP model (Li et al.,
2015). We do not include the STGP model by Kang et al. (2018) because from our
preliminary experiments on the real dataset, we observe that the STGP model produces
a coefficient map that is quite different from the other models which we cannot interpret
well.

The remainder of this chapter is organised as follows. In Section 5.2 and 5.3, we give a
description of simulated datasets and real datasets. In Section 5.4, we explain the use of
the Watanabe-Akaike information criterion (WAIC) proposed by Watanabe and Opper
(2010) for the selection of key hyperparameters. Also, we have given a clear indication
of the hyperparameter specification for the proposed models as well as the competing
models. On top of that, we include the guidance for choosing the tuning parameters of
the GSW algorithm. In Section 5.5, we detail the evaluation metrics we apply to assess
the quality of the clustering, the estimation of the coefficient image, β, and the prediction
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for the outcome measures, y, to compare the performance of the proposed models with
all competing models. Furthermore, we also provide a heuristic way to specify other
hyperparameters for the proposed models and competing models. In Section 5.6 and
5.7, we illustrate the proposed models with the analysis of the designed simulated data
and real data from ADNI. Finally, we conclude in Section 5.8.

5.2 Data simulation

We have designed four different scenarios to illustrate the proposed models. In all cases,
we consider a two-dimensional image.

For Scenarios 1 and 2, the n = 300 images are simulated on a two-dimensional grid
size of 10 × 10, with spatial locations sj = (sj1, sj2) ∈ R2 for 1 ≤ sj1, sj2 ≤ 10. For
simplicity’s sake, we include an intercept but do not consider other covariates, wi. We
concentrate on two simulation scenarios with M = 2 and M = 5. The images are drawn
from a multivariate Gaussian distribution with a mean vector whose elements have a
uniform distribution on the interval (3, 4) and a covariance matrix constructed from a
squared exponential covariance function (Rasmussen and Williams, 2005):

xi = (xi1, . . . , xip)
i.i.d∼ MVNp(u,Σ),

uj
i.i.d∼ Unif(3, 4), for j = 1, · · · , p,

Σjk = exp

{
−
∑2

i=1(sji − ski)2

10

}
, for j, k = 1, · · · , p,

where MVNp(u,Σ) stands for the p-dimensional multivariate normal distribution with
u = (u1, · · · , up) as the mean vector and Σ as the covariance matrix.

To assess the real-world performance of our proposed models, we prepare Scenarios 3
and 4, in which the true data generating distribution is chosen to closely resemble the
real image predictors which we describe in Section 5.3. The images are simulated on a
grid size of 50×50 with two different clusters. Here the covariance matrix is constructed
using the Matérn covariance function with smoothness parameter equal to 5/2. The
images are simulated as follows:

xi ∼ MVNp(v,Σ),

Σjk = σjσk

(
1 +

√
5djk
ρ

+
5d2

jk

3ρ2

)
exp

(
−
√

5djk
ρ

)
,

where σj is estimated standard deviation from the real dataset for the jth pixel, djk is

defined as
√∑2

i=1(sji − ski)2 and ρ is the positive parameter of the covariance matrix

(set to
√
p/10). The mean vector v is the empirical mean of the images based on the

data described in Section 5.3.
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Figure 5.1: The true coefficient maps of the simulated datasets for each scenario.

In the following, we specify the true coefficient image and describe how the outcome
measures, y, are generated for all four scenarios. A visualisation of the true coefficient
image in all cases is produced in Figure 5.1.

Scenario 1: The true coefficient map contains one cluster of similar values, which are
fixed at 3.5. For each spatial location sj , we cluster as below:

zj =

{
1 if 4 ≤ sj1, sj2 ≤ 8

2 otherwise.
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The true values of β∗m for each cluster are fixed to:

β∗m =

{
0 if 4 ≤ sj1, sj2 ≤ 8

3.5 otherwise,

and the outcome measures, y, are sampled as follows:

yi =
M∑
m=1

vimβ
∗
m + εi, with εi ∼ N(0, σ2),

where vi =
(∑

j∈C1
xij , . . . ,

∑
j∈CM xij

)
with M equal to the number of clusters (i.e.

M = 2 for Scenario 1 and M = 5 for Scenario 2).

Scenario 2: The true coefficient map contains four regions: a square, triangle, rectangle
and cross. For each spatial location sj , we cluster as below:

zj =



1 if sj belongs to the square

2 if sj belongs to the triangle

3 if sj belongs to the rectangle

4 if sj belongs to the cross

5 otherwise.

The true values of β∗m for each cluster are fixed to:

β∗m =



1.0 if m = 1

−2.0 if m = 2

2.0 if m = 3

−1.0 if m = 4

0 otherwise.

Thus, we have two regions with strong signals (clusters 2 and 3) and the two with weaker
signals. The outcome measures, y, are sampled as follows:

yi =
M∑
m=1

vimβ
∗
m + εi, with εi ∼ N(0, σ2).

Scenario 3: The true coefficient map contains two regions, which is obtained via the
hierarchical clustering based on spatial proximity, i.e. the image coordinates, as well as
non-spatial parameter, i.e. the difference of the empirical mean of the images within
the two classes (cognitively normal (CN) and Alzheimer’s disease (AD)). Then, the true
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values of β∗m for each cluster are fixed to:

c1 =

p∑
j=1

(u1j − u0j)1zj==1,

c2 =

p∑
j=1

(u1j − u0j)1zj==2,

β∗m =


c1

1
n

∑n
i=1(vi1−c1)2

if m = 1

c2
1
n

∑n
i=1(vi2−c2)2

if m = 2,

where c1 and c2 represent the total difference between the empirical mean of the images
for CN and AD, for pixels which belong to the first cluster and second cluster, respec-
tively. The mean vectors u0 = (u01, · · · , u0p) and u1 = (u11, · · · , u1p) are defined as
the empirical mean of the images within the two classes, CN and AD, respectively. To
obtain sparsity in the coefficient image, the difference, u1 − u0, is thresholded and set
to 0 if the absolute value is smaller than a specified threshold.

The continuous outcome measures, y, are sampled as follows:

w1 = − 1

n

n∑
i=1

vTi β
∗,

yi = w1 +
M∑
m=1

vimβ
∗
m + εi, with εi ∼ N(0, σ2),

where w1 denotes the intercept.

Scenario 4: The true coefficient image is derived as Scenario 3, but the values are
multiplied by 100. The binary outcome measures, y, are sampled as follows:

w1 = − 1

n

n∑
i=1

vTi β
∗,

ỹi = w1 +
M∑
m=1

vimβ
∗
m + εi, with εi ∼ N(0, 1),

yi =

{
0 if 1ỹi<0

1 if 1ỹi≥0.

5.3 Real data application

Various Alzheimer’s disease (AD) initiatives are taking place across the globe to collect
and share a variety of AD-related data including neuroimaging, clinical, and biological
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CN MCI AD

Total Total 224 392 182
Gender Male 116 250 96

Female 108 142 86
Age (years) Range 62-90 55-89 55-91

76.1 ±4.9 74.8 ±7.3 75.3 ±7.5
APOE e4 carriers 0 (e2/e3) 164 180 60

1 (e3/e4) 55 165 86
2 (e4/e4) 5 47 36

Table 5.1: Subject demographics in cognitively normal (CN), mild cognitive impairment
(MCI) and Alzheimer’s disease (AD).

information. To illustrate the usefulness of the proposed model, we also use real data
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database: http:
//adni.loni.usc.edu/about/1.

Our study focuses on diagnosis based on structural magnetic resonance images (sMRI).
The MRI scans in ADNI have been acquired from 1.5T and 3.0T scanners Magnetom
(Siemens, Erlangen). In this study, we focus on ADNI baseline data, that is the data
available at the subject’s first baseline visit. Data is available for a total of 798 subjects.
Out of the 798 subjects, 224 (28.0 %) are cognitively normal (CN), 392 (49.1 %) have
mild cognitive impairment (MCI) and 182 (22.8 %) have Alzheimer’s disease (AD). Table
5.1 gives information about the demographics of the subjects.

We focus our imaging analysis on the hippocampus. The hippocampus plays a vital role
in memory formation (Squire and Zola-Morgan, 1991). There is increasing evidence that
it is among the primary areas seen to be more prominently affected by AD (Braak and
Braak, 1991; Hyman et al., 1984). The radial distance is a measurement of hippocampus
size which primarily explains morphometric changes along the surface normal direction.

1The ADNI was launched in 2003 by the National Institute of Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organisations, as a $ 60 million, 5-year public-private partner-
ship. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early AD progression
is intended to aid researchers and clinicians to develop new treatments and monitoring their effective-
ness, as well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and the University of California-San Francisco. ADNI is
the result of the efforts of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the US and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, approximately 200
cognitively normal older individuals to be followed for three years, 400 people with MCI to be followed
for three years and 200 people with early AD to be followed for two years. For up-to-date information,
see www.adni-info.org.
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Figure 5.2: The surface statistics (radial distance) of the left hippocampus.

AD patients tend to have smaller hippocampus volumes and a reduced radial distance
compared to healthy older adults (Apostolova et al., 2006). We have obtained the
processed data from Dr Yalin Wang (Arizona State University). Refer to Shi et al. (2013,
2014b) for more details of the image preprocessing. Thus, we have the hippocampus
surface statistics of each subject with the dimension 100× 150.

On top of that, we also include additional covariates to help with the analysis: age,
gender and presence of the apolipoprotein E (APOE) e4 allele. For the presence of the
APOE e4 allele, it can be either 0 indicates there is no copy of the APOE e4 allele, 1
indicates the person is carrying one copy of the APOE e4 allele, and 2 indicates the
person is carrying two copies of APOE e4 allele. We exclude the behaviour score from
the analysis because the score is used as criteria to define each subject group (CN,
MCI and AD). Note that we normalise all the variables between -1 and 1 to reduce the
correlation between the intercept and the variables. Refer to Table 5.1 for the info on
each covariate.

For each experiment, we run the MCMC algorithm described in Section 4.3 for T =
10, 000 (for small p) or T = 100, 000 (for large p) iterations with the first 40% draws
removed a “burn-in”. Or else, if the computation is too expensive, we choose to combine
many short chains (W = 100−200 with T = 5, 000) instead of one long chain, motivated
by Coleman et al. (2021) as described in Section 4.3.4. For ease of notation, we combine
the different chains and denote the total number of iterations as T .

5.4 Hyperparameters selection

The hyperparameters Θ of the random partition model play an important role in the
spatial clustering of the image (see Chapter 3). As such we propose to an empirical
Bayes approach to select Θ based on Watanabe-Akaike information criterion (WAIC)
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Model Hyperparameters

EPA α, δ, τ
Potts-DP υ, α
Potts-PY υ, α, δ
Potts-MFM υ, λ, γ
Ising a, b, σ2

β, σ
2
ε

Ising-GMRF a, b, σ2
β, σ

2
ε

Ising-DP a, b,H, α, v2

Table 5.2: Hyperparameters for each model.

which is proposed by Watanabe and Opper (2010).

We define pWAIC as the sum of the posterior variance of the log predictive density for
each data point yi (LPPDi). Each LPPDi can be estimated using the log-likelihood at
the MCMC samples, and thereby the LPPD of the fitted model can be computed as:

LPPD =
n∑
i=1

log

{
1

T

T∑
t=1

pr (yi|x̃i,µ,β∗, πp, ϕ)

}
.

And the pWAIC can be evaluated as follows:

Vi =
1

T − 1

T∑
t=1

{
log pr (yi|x̃i,µ,β∗, πp, ϕ)− 1

T

T∑
t=1

log pr (yi|x̃i,µ,β∗, πp, ϕ)

}2

,

pWAIC =

n∑
i=1

Vi,

where 1/T
∑T

t=1 log pr(yi|x̃i,µ,β∗, πp, ϕ) is the posterior expected value of the log pre-
dictive density for each data point yi. The pWAIC can be viewed as the estimated effective
number of parameters in a model and acts as a measure of the complexity of the model.
Then we can estimate the expected log pointwise predictive density (ELPPD) using both
the computed LPPD and pWAIC:

ELPPD = LPPD− pWAIC.

And finally, we get the information criterion WAIC, which is equal to −2 × ELPPD.
The WAIC is fully Bayesian as the WAIC uses the posterior predictive distribution.
The smaller the WAIC, the better the model fits the data. Watanabe and Opper (2010)
also proved that the WAIC is asymptotically equivalent to leave-one-out cross-validation
(LOOCV). According to the survey by Gelman et al. (2014) and Vehtari et al. (2017),
the WAIC which is fast and convenient to compute can be a good alternative to LOOCV.
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For the reasons explained above, we use WAIC as a criterion to choose which combination
of the hyperparameters is best for each model. Table 5.2 displays the hyperparameters
for each model. A grid search is executed to locate the best combination of the hyperpa-
rameters. The grid search is carried out based on a small number of MCMC iterations,
with chains of length 1,000 where the first 40% are discarded as burn-in. After identify-
ing the optimal hyperparameters, each algorithm is run with the longer chains, as stated
in Section 5.5.

5.4.1 Grid search range and other recommendations

To effectively carry out the grid search, careful specification of the range of hyper-
paramter values is important. In the following, we provide guidance for choosing the
range of possible values.

For the random image partition models, to specify a range for the hyperparameters, we
consider a prior guess of the number of clusters, M̂ . For the EPA distribution, we then set
α and δ according to M̂ based on Equation (3.11) if δ equals to zero, otherwise Equation
(3.15), and for the τ , from the experiments we have conducted and prior simulations in
Section 3.5, we found that τ ∈ (3, 5) are generally good values.

For the Potts-Gibbs models, we select the range of the hyperparameters following the
procedure stated below:

1. Coupling, υ. Motivated by Equations (3.10) and (3.14), we see that the spatial
part, which is the Potts component will be at most exp (4υ). On the other hand, the
Gibbs component, which depends on cluster size, will be at most p. As we mention
in Chapter 3, there is a trade-off between the Gibbs and the Potts components. In
particular, we may need to choose a fairly large value of υ in order for the spatial
part to have a larger influence than the cluster size, i.e. exp (4υ) ≥ p.
We consider the range:

υ = cυ log(p),

for cυ ∈ [1/8, 1/6], where cυ is a constant helping to control the trade-off between
the Gibbs and the Potts parts. We want to choose υ to have a high proportion
of neighbours connected but also avoid the phase transition and a large value of υ
that will induce one large cluster.

2. Gibbs parameters. Based on the D = 4, υ and M̂ ,

• for the Potts-DP model, following Proposition 3.3, we set the range of the
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concentration α based on:

E[M ] '
α

exp(Dυ)
log(p),

M̂ '
α

exp(4υ)
log(p),

α /
M̂ exp(4υ)

log(p)
.

• for the Potts-PY model, following Proposition 3.5, we set the range of the
discount δ based on:

E[M ] ' cpδ exp(−Dυ),

M̂ ' cpδ exp(−4υ),

δ /
log
(
M̂
)

exp(4υ)

log(p)
.

• for the Potts-MFM model, following Proposition 3.7, we set the range of λ
based on:

E[M ] '
λ

exp(Dυ)
,

M̂ '
λ

exp(4υ)
,

λ / M̂ exp(4υ).

For the student-t prior, we set the degree of freedom to be 3, that is aη = 1.5, and we set
a prior for the hyperparameter bη, that is bη ∼ G(ao, bo). We fix the aσ = 2 and choose
bσ according to the estimated variance from the dataset.

Competing models:

For all competing models, we also employ WAIC to select the hyperparamters among a
grid of values. All three competing models employ an Ising prior. We set the range of the
hyperparameters for the Ising prior as suggested by Goldsmith et al. (2014): a ∈ (−4, 0)
and b ∈ (0, 2). The σ2

β from the Ising model and Ising-GMRF model and the v2 from
the Ising-DP model determine the scale of the coefficients. If the data is very noisy, it
is recommended to use a low value of σ2

β and v2. And σ2
ε is generally within the range

(0.01, 0.1, 1.0) after first standardising the outcomes y (Gaussian case). Finally, H and
α from the Ising-DP model can be set roughly accordingly to a prior guess of the number
of clusters in the data.
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Figure 5.3: Trace plots of ARI for Gibbs sampling (grey), classical SW (black), GSW
with κ varies from 3 (green), 5 (yellow), 10 (orange) and 20 (blue), with (a) v = 0.6, τ = 3
and (b) v = 0.3, τ = 5.

5.4.2 Tuning parameters of the GSW algorithm

In the following, we provide guidance for choosing the range of possible values for the
tuning parameters of the GSW algorithm, κ and τ . Figure 5.3 presents the trace plots
of the ARI for Gibbs sampling (grey), classical SW (black), GSW with κ varies from 3
(green), 5 (yellow), 10 (orange) and 20 (blue) for τ equal to 3 (Figure 5.3(a)) and τ equal
to 5 (Figure 5.3(b)). We observe that the ARI converges faster to one when employing
GSW comparing to Gibbs sampling and classical SW. Thus, GSW allows for efficient
split-merge moves that help to improve mixing in this setting.

1. Tuning parameter, κ. Recall from Equation (4.10), the auxiliary bond variables,
rjk, are sampled accordingly to a Bernoulli distribution with probability equal to
1− exp(−υζjk1zj=zk). Thus, the expected value for rjk is:

E[S] = pr(rjk)

= 1− exp(−υζjk1zj=zk).
(5.1)
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Rearranging Equation (5.1), we obtain:

E[S] = 1− exp(−υζjk1zj=zk),

ζjk = − log (1− E[S])

υ
× 1zj=zk ,

κ exp{−τd(β̂j , β̂k)} = − log (1− E[S])

υ
× 1zj=zk ,

κ ≤ − log (1− E[S])

υ
× 1zj=zk .

(5.2)

From Equation (5.2), we see that κ should be chosen depending υ. It is probably
reasonable to choose κ = cκ/υ, where cκ is a constant which can be computed as
cκ = − log (1− E[S]).

2. Tuning parameter, τ . The tuning parameter τ is chosen based on the scale
of the distance. We use the square root of the mean of the squared distances,

1/τ =

√∑
d(β̂j , β̂k)2/E[S].

5.5 Evaluation metrics

We compute a variety of quantities of interest and evaluation metrics to assess clustering
accuracy and the robustness of predictions.

For clustering, we consider the adjusted Rand index (ARI) and variation of information
(VI) between the real and estimated clustering. The ARI has a range of [0,1], with zero
indicating that the two clusterings do not agree on any pair of observations, whereas one
indicates that the two clusterings are the same. The VI has a value of zero when the
two clusterings are equivalent and a maximum value of log(p) (Meilă, 2007).

To assess the estimation of the coefficient image, β, we compute the mean squared error
(MSE)

MSE =
1

p

p∑
j=1

(
β0
j − β̂j

)2
,

where β0
j denotes the true coefficient image for j = 1, · · · , p. In addition, to describe

uncertainty in the estimates, we compute credible intervals based on the highest posterior
density interval for each predictor βj , denoted by HDIj . The empirical coverage (EC),
defined as:

EC(β) =
1

p

p∑
j=1

1β0
j∈HDIj

,

assesses the uncertainty provided by the credible intervals.

To assess the prediction for the outcome measures, y, two cases are considered, for
regression and classification. We define xnew

i as new images for i = n+ 1, · · · , n+ nnew
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with nnew denotes the size of new data. First, for regression, we consider the mean
squared prediction error (MSPE):

MSPE =
1

nnew

nnew∑
i=1

(
y0
n+i − ŷn+i,

)2
,

where y0
i denotes the true outcome measure for i = 1, · · · , nnew. We also assess uncer-

tainty through the empirical coverage (EC):

EC(y) =
1

nnew

nnew∑
i=1

1y0n+i∈HDIi
,

where credible intervals based on the high posterior density interval for each outcome
measure yi, denoted by HDIi. Furthermore, we employ the negative log likelihood which
is defined as:

NLL =
nnew

2
log(2π) +

nnew

2
log(σ̂2) +

1

2σ̂2

nnew∑
i=1

{
y0
n+i − (wT

n+iµ̂+ xTn+iβ̂)
}2
.

For classification, we first define the true positives (TP), false negatives (FN), true
negatives (TN) and false positives (FP):

TP =

nnew∑
i=1

1(p̂n+i(1)≥0.5)∪(y0n+i==1),

FN =

nnew∑
i=1

1(p̂n+i(0)≥0.5)∪(y0n+i==1),

TN =

nnew∑
i=1

1(p̂n+i(0)≥0.5)∪(y0n+i==0),

FP =

nnew∑
i=1

1(p̂n+i(1)≥0.5)∪(y0n+i==0).

These quantities are then used in the following evaluation metrics: the sensitivity, speci-
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ficity, classification accuracy (CA) and cross entropy (CE), as follows:

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

CA =
TP + TN

TP + TN + FP + FN
,

CE =

nnew∑
i=1

−
{
y0
n+i log p̂n+i(1) + (1− y0

n+i) log p̂n+i(0)
}
.

5.6 Results on simulated datasets

In this section, the performance of the proposed models: EPA SIR and Potts-Gibbs SIR
models are evaluated and compared to three competitors: Ising model (Huang et al.,
2013), Ising-GMRF model (Goldsmith et al., 2014) and Ising-DP model (Li et al., 2015),
using four scenarios of simulated datasets.
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Figure 5.4: Figures showing the true and estimated mean coefficient maps for Scenario
1 under each model.

Table 5.3 and 5.4 present the numerical results for Scenarios 1 to 4. As shown in Figure
5.4, the proposed models can detect perfectly the cluster structure under Scenario 1
while the Ising and Ising-GMRF models deviate slightly from the true cluster structure.
The lowest ARI is observed for the Ising-DP model which is 0.589, as the model cannot
learn the cluster structure well. Regarding other summary statistics, overall the proposed
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Scenario 1
MSE EC(β) MSPE EC(y) NLL ARI VI M

EPA SIR 8.05e-5 1.0 4.189 0.923 643.517 1.0 2.22e-16 2.592
Potts-DP SIR 1.18e-4 1.0 4.188 0.926 643.625 1.0 2.22e-16 2.098
Potts-PY SIR 1.29e-4 1.0 4.190 0.926 643.800 1.0 2.22e-16 2.127
Potts-MFM SIR 8.25e-4 0.750 4.177 0.920 642.972 1.0 2.22e-16 2.0
Ising 0.279 0.970 6.024 0.913 722.267 0.764 0.521 2.0
Ising-GMRF 0.037 0.980 4.674 0.930 664.172 1.0 2.22e-16 2.0
Ising-DP 1.022 0.650 120.566 0.940 1144.521 0.589 0.929 4.725

Scenario 2
MSE EC(β) MSPE EC(y) NLL ARI VI M

EPA SIR 0.076 1.0 0.894 0.900 423.155 0.890 0.258 8.867
Potts-DP SIR 0.187 0.880 1.328 0.893 529.076 0.725 0.734 7.261
Potts-PY SIR 0.113 0.840 0.775 0.923 466.866 0.805 0.715 4.954
Potts-MFM SIR 0.087 0.260 1.000 0.876 534.353 0.835 0.554 5.195
Ising 0.140 0.790 0.930 0.966 432.696 0.0 1.560 1.996
Ising-GMRF 0.107 0.810 0.898 0.976 424.617 0.0 1.560 2.0
Ising-DP 0.621 0.500 11.251 0.966 788.934 0.262 2.238 5.0

Scenario 3
MSE EC(β) MSPE EC(y) NLL ARI VI M

EPA SIR 3.49e-6 0.994 4.04e-4 0.916 -609.307 0.922 0.268 11.614
Potts-DP SIR 1.76e-7 1.0 3.33e-4 0.924 -644.584 0.993 0.031 3.593
Potts-PY SIR 4.65e-7 1.0 3.39e-4 0.924 -642.541 0.993 0.031 2.994
Potts-MFM SIR 1.31e-6 0.995 3.49e-4 0.924 -637.069 0.976 0.105 2.0
Ising 3.63e-5 1.0 0.070 1.0 238.582 0.0 0.963 2.0
Ising-GMRF 3.52e-5 1.0 0.068 1.0 238.330 0.0 0.963 2.0
Ising-DP 6.25e-4 0.631 0.001 0.768 -280.106 0.0 0.963 9.646

Table 5.3: Mean squared error (MSE), empirical coverage for β (EC(β)), mean squared
prediction error (MSPE), empirical coverage for y (EC(y)), negative log-likelihood
(NLL), adjusted Rand index (ARI), variation information (VI) and the number of clus-
ters (M) for Scenario 1-3 under each model.

models achieve better results compared to the competing models, especially the Ising-DP
model.

When we increase the number of clusters to 5 for Scenario 2, the proposed models are
still capable of capturing and identifying the more complex cluster structure underlying
the data with a posterior ARI around 0.725 - 0.890. On the contrary, the competing
models: Ising, Ising-GMRF and Ising-DP models perform worse than the proposed
models. Their ARIs drop to 0.0 for the Ising and Ising-GMRF models and 0.262 for
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Scenario 4
MSE EC (β) ARI VI M

EPA SIR 0.188 0.611 0.472 1.498 8.528
Potts-DP SIR 0.287 0.816 0.550 1.423 7.422
Potts-PY SIR 0.188 0.831 0.601 1.280 8.296
Potts-MFM SIR 0.258 0.579 0.546 1.343 4.596
Ising 0.875 0.612 0.0 0.963 2.0
Ising-GMRF 0.890 0.612 0.0 0.963 2.0
Ising-DP 0.875 0.588 0.0 0.963 9.975

CA CE Sensitivity Specificity

EPA SIR 97.92 84.754 0.978 0.980
Potts-DP SIR 97.76 108.7813 0.972 0.978
Potts-PY SIR 97.60 173.767 0.973 0.983
Potts-MFM SIR 97.28 183.275 0.967 0.978
Ising 87.84 453.759 0.889 0.866
Ising-GMRF 80.96 644.366 0.815 0.803
Ising-DP 94.40 400.253 0.944 0.943

Table 5.4: Mean squared error (MSE), empirical coverage (EC) for β, adjusted Rand
index (ARI), variation of information (VI), the number of clusters, M , classification
accuracy (CA), cross-entropy (CE), sensitivity and specificity for Scenario 4 under each
model.

the Ising-DP model. The coefficient map under the Ising-DP model looks messy. We
can certainly pick up some clusters by looking at the coefficient maps, although the
competing models generally fail to determine the exact boundaries of those predefined
clusters.

Next, we evaluate the clustering ability of the proposed models when increasing the
dimension of the data to a larger value. Figure 5.6 illustrates how the Potts-MFM
SIR model performs when dealing with increasing p for the dimension of data varying
from 10 × 10 to 90 × 90, exploring a range of n/p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. When the
dimension is small, the norm coefficient and norm predicted are still acceptable. When
the model becomes too complex, the performance of model deteriorates rapidly. From the
experiments conducted, we observe that generally, the results are still good enough when
n/p ≥ 0.5. Thus, for the large p, we group pixels into regions that have characteristics
in common, known as superpixels to reach a desirable n/p ratio. For instance, if we have
n = 0.1 × p, then the number of superpixels that we use is roughly 0.2 × p to achieve
n/p = (0.1 × p)/(0.2 × p) = 0.5. Each image is pre-segmented into the desired number
of superpixels using the build-in function in Matlab (Mori, 2005).

Next, we fix the dimension to 50 × 50 to investigate the performance of the proposed
models on a larger dimension (Scenario 3). In this case, we have used the superpixels
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Figure 5.5: Figures showing the true and estimated mean coefficient maps for Scenario
2 under each model.
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Figure 5.6: Analysis on large p small n for Scenario 3 (continuous case with n = 0.1p)
with using Potts-MFM SIR model without using superpixels.

equal to 0.2× p. Figure 5.7 suggests that the proposed models are still capable to learn
the cluster structure in the coefficients. It can be seen that under the proposed model,
most of the resulting clusters are spatially proximal. Compared to the proposed models,
the ARI of the competing models drops from 0.922 - 0.993 to zero. The coefficient maps
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Figure 5.7: Figures showing the true and estimated mean coefficient maps for Scenario
3 (continuous case with n = 0.1p) under each model.

for the Ising and Ising-GMRF models appear to be able to detect the correct location,
however, the clusters formed are quite dispersed throughout the image, causing the low
values of the ARI. For the Ising-DP model, the units that are far away are grouped
into one cluster. The proposed models also perform better in prediction as we observe
that they achieve a smaller posterior mean of MSPE (3.33e-4 - 4.04e-4) compared to
competitors (0.001 - 0.070).

When considering the binary case, the proposed models perform slightly poorly com-
pared to the continuous case yet are still acceptable, with the ARI reduced to 0.472 to
0.601. This is not surprising since we will lose information when analysing the binary
data. On the other hand, the performance of the competing models is not satisfactory,
as illustrated in Figure 5.8. We observe that both Ising and Ising-GMRF produce a set
of small and fragmented segments while a few scattered points are observed in the centre
for the Ising-DP. The Ising-DP suffers from lower sensitivity and specificity compared
with all other models. The proposed models have only a subtle difference in most of
the evaluation metrics used as displayed in Table 5.4. Much greater differences are seen
in the posterior mean of MSE when compared to the competing models, which suffer
from higher error. Still, both the proposed models and competitors can achieve high
sensitivity and specificity, generally higher than 0.900.

Figure 5.9 shows the estimated mean coefficient maps for Scenario 4 using a larger
number of superpixels, increasing from 0.2 × p to 0.5 × p under the Potts-Gibbs SIR
models. The proposed models are still able to learn the underlying cluster structure,
but we will stick to a smaller number of superpixels as the computational cost is cheaper.
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Figure 5.8: Figures showing the true and estimated mean coefficient maps for Scenario
4 (Binary case with n = 0.5p) under each model.
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Figure 5.9: Figures showing estimated mean coefficient maps for Scenario 4 (Binary
case with n = 0.5p) under Potts-DP using a larger number of superpixels, 0.5× p.

We also investigate the usage of the consensus clustering detailed in Section 4.3.4. For
this illustrative purpose, we consider only the simulated dataset under Scenario 4. Figure
5.10 shows the mean absolute difference between the sequential consensus matrices for
Scenario 4 under each model for an ensemble chain up to 200 and ensemble depth up
to 10,000. As mentioned in Section 4.3.4, the mean absolute difference between the
sequential consensus matrices is used as a criterion to obtain the optimum value of
ensemble depth and ensemble chain. For the Ising, Ising-GMRF and Ising-DP models,
the optimum ensemble chain is around 100 whereas for the EPA SIR, Potts-DP SIR and
Potts-PY SIR models, the optimum ensemble chain is around 150 as we observe there
is not much variation in the mean absolute difference between the sequential consensus
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(b) S4: Ising-GMRF
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(c) S4: Ising-DP
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(d) S4: EPA SIR
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(e) S4: Potts-DP SIR
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(f) S4: Potts-PY SIR
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Figure 5.10: Figures showing the mean absolute difference between the sequential con-
sensus matrices for Scenario 4 (Binary case with n = 0.5p) under each model.
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Figure 5.11: Figures showing the coefficient maps for Scenario 4 (Binary case with
n = 0.5p) under EPA SIR model obtained from running one chain with 10,000 iterations
(a)-(c) and the average coefficient map obtained from consensus clustering (d).

matrices after the 100/150 ensemble chains as shown in Figure 5.10. For the Potts-
MFM SIR, we would say that it is probably unnecessary to run for consensus clustering
as there is little difference in the graph across different ensemble chains. We also plot
the coefficient maps under the EPA SIR model to compare the coefficient maps obtained
from running for one chain with 10,000 iterations (Figure 5.11 (a) - (c)) and the average
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coefficient map obtained from consensus clustering (Figure 5.11 (d)). We observe that the
estimated mean coefficient map is more stable when using consensus clustering especially
when the model does not converge to a good optimum and remains stuck around local
maxima as depicted in Figure 5.11 (b). Besides, consensus clustering is helpful, especially
when dealing with the Ising-DP model due to its computation time. It takes roughly
24 hours to run 5,000 iterations for Scenario 4, thus we can save computation time by
running shorter iterations in parallel instead of one long chain.

5.7 Results on the ADNI dataset

In the following section, the performance of the proposed models are evaluated and com-
pared to three competitors using ADNI datasets. We present the results from analysing
the ordinal outcome measures (CN vs MCI vs AD). On top of that, we analyse the dif-
ferent combinations of binary responses which are obtained by transforming the ordinal
outcome measures into three different binary pairs: CN vs AD, CN vs MCI and MCI vs
AD.

Table 5.5 reports the posterior mean of the estimated coefficient for each covariate (age,
gender and APOE e4 carriers) for both the binary and ordinal responses of the ADNI
dataset under each model. As depicted in Table 5.5, we find that age has a negative
effect on the outcome measures whereas gender and APOE e4 carriers have a positive
effect on the outcome measures, except for the binary response with CN vs MCI which
gender has a negative effect on the outcome measures. There is not much difference
among the models regarding the estimated coefficient for the covariates for each different
combination of outcome measures. For instance, for the binary response with CN vs AD,
we observe the posterior mean for age ranges from -1.008 to -0.134, gender ranges from
0.137 to 0.441, APOE e4 carriers (e3/e4) range from 0.264 to 0.966, and APOE e4
carriers (e4/e4) ranges from 0.412 to 1.971.

The numerical results, including the posterior mean of classification accuracy (CA),
cross-entropy (CE), sensitivity, specificity and the number of clusters, M , are tabulated
in Table 5.6. The posterior mean number of clusters, M , varies differently between the
models. For the Ising and Ising-GMRF models, the maximum number of clusters is
two because of the underlying property of the Ising prior while for other models, the
number of clusters ranges from 6.655 to 17.984. From the numerical results, we observe
that there is no clear winner in the comparison between the proposed models and the
competitors.

For the binary response with CN vs AD, we see that in general, the results are better
for each model compared to the probit regression, with classification accuracy increasing
greatly from 65.822 to 78.481 - 82.278. For the binary response with CN vs MCI and
MCI vs AD, the classification accuracy for the probit regression is almost similar to the
proposed models and competitors but we observe that the probit regression produces a
very low specificity (0.340) for CN vs MCI and a very low sensitivity (0.0) for MCI vs
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ADNI (CN vs AD)

Intercept Age Gender
APOE e4 carriers

(e3/e4)
APOE e4 carriers

(e4/e4)

EPA SIR -7.767 (4.115) -1.008 (0.300) 0.432 (0.191) 0.846 (0.197) 1.422 (0.403)
Potts-DP SIR -9.173 (4.115) -0.991 (0.296) 0.441 (0.196) 0.833 (0.198) 1.416 (0.416)
Potts-PY SIR -8.834 (3.634) -0.969 (0.290) 0.430 (0.190) 0.833 (0.194) 1.407 (0.408)

Potts-MFM SIR -9.257 (3.659) -1.002 (0.293) 0.435 (0.190) 0.854 (0.195) 1.408 (0.402)
Probit regression -0.672 -0.134 0.137 0.966 1.971

Ising -0.361 (0.163) -0.785 (0.254) 0.302 (0.168) 0.748 (0.183) 1.212 (0.362)
Ising-GMRF -0.370 (0.170) -0.771 (0.246) 0.295 (0.167) 0.748 (0.177) 1.232 (0.349)

Ising-DP -4.338 (0.493) -0.369 (0.130) 0.157 (0.075) 0.264 (0.115) 0.412 (0.190)

ADNI (CN vs MCI)

Intercept Age Gender
APOE e4 carriers

(e3/e4)
APOE e4 carriers

(e4/e4)

EPA SIR -2.716 (2.178) -0.748 (0.196) -0.109 (0.132) 0.495 (0.140) 1.127 (0.320)
Potts-DP SIR -3.628 (1.936) -0.733 (0.194) -0.109 (0.133) 0.502 (0.133) 1.112 (0.315)
Potts-PY SIR -3.650 (1.858) -0.729 (0.192) -0.109 (0.132) 0.502 (0.141) 1.116 (0.317)

Potts-MFM SIR -3.941 (1.793) -0.741 (0.193) -0.106 (0.132) 0.504 (0.140) 1.121 (0.315)
Probit regression 0.216 -0.265 -0.245 0.596 1.371

Ising -0.147 (0.104) -0.649 (0.176) -0.123 (0.127) 0.498 (0.138) 1.024 (0.296)
Ising-GMRF -0.154 (0.105) -0.639 (0.105) -0.121 (0.126) 0.501 (0.137) 1.029 (0.295)

Ising-DP -1.260 (0.596) -0.867 (0.205) -0.131 (0.139) 0.498 (0.147) 1.052 (0.314)

ADNI (MCI vs AD)

Intercept Age Gender
APOE e4 carriers

(e3/e4)
APOE e4 carriers

(e4/e4)

EPA SIR -1.658 (1.679) -0.101 (0.173) 0.384 (0.130) 0.308 (0.138) 0.340 (0.191)
Potts-DP SIR -2.951 (1.510) -0.075 (0.173) 0.396 (0.130) 0.321 (0.138) 0.343 (0.191)
Potts-PY SIR -2.929 (1.419) -0.070 (0.172) 0.395 (0.130) 0.320 (0.137) 0.345 (0.189)

Potts-MFM SIR -2.878 (1.416) -0.073 (0.172) 0.386 (0.130) 0.316 (0.139) 0.337 (0.191)
Probit regression -0.865 0.169 0.344 0.347 0.453

Ising -0.263 (0.127) 0.044 (0.161) 0.328 (0.125) 0.294 (0.135) 0.353 (0.135)
Ising-GMRF -0.259 (0.122) 0.040 (0.161) 0.327 (0.124) 0.296 (0.135) 0.362 (0.184)

Ising-DP -3.981 (1.029) -0.071 (0.183) 0.393 (0.133) 0.288 (0.147) 0.282 (0.196)

ADNI (Ordinal)

Intercept Age Gender
APOE e4 carriers

(e3/e4)
APOE e4 carriers

(e4/e4)

EPA SIR -2.552 (1.726) -0.506 (0.136) 0.148 (0.096) 0.524 (0.102) 0.668 (0.160)
Potts-DP SIR -3.479 (1.725) -0.498 (0.137) 0.145 (0.095) 0.522 (0.102) 0.661 (0.158)
Potts-PY SIR -3.396 (1.629) -0.500 (0.136) 0.147 (0.096) 0.524 (0.102) 0.664 (0.161)

Potts-MFM SIR -3.518 (1.575) -0.503 (0.137) 0.149 (0.096) 0.524 (0.101) 0.667 (0.160)
Ordinal logistic regression 0.4315 -0.10783 0.04694 1.08326 1.60946

Ising -0.051 (0.097) -0.879 (0.163) 0.159 (0.099) 0.435 (0.107) 0.282 (0.171)
Ising-GMRF -0.305 (0.119) -0.271(0.131) 0.085 (0.091) 0.568 (0.098) 0.815 (0.154)

Ising-DP -131.492 (34.461) -0.249 (0.979) 0.269 (1.009) 0.369 (1.002) 0.285 (1.004)

Table 5.5: The posterior mean and standard deviation (in parentheses) of the estimated
coefficient for the covariates for both the binary and ordinal responses of ADNI datasets
under each model.

AD. For the ordinal response, the ordinal logistic regression classifies all the test data
into one class, MCI.

For both the proposed models and the competitors, the performance when considering
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the binary response with CN vs MCI is slightly better than the binary response with
MCI vs AD as shown in Table 5.6. When considering binary response with MCI vs
AD, the sensitivity drops abundantly for all the models (0.085 - 0.285) but still has
high specificity (0.896 - 1.0). All the models are better at identifying AD from CN than
identifying AD from MCI. The results are not surprising as MCI is an intermediate state
between CN and AD, thereby causing difficulty in distinguishing AD from CN and MCI.
Lastly, the lowest classification accuracy is observed when applying the models to the
ordinal responses (49.358 - 54.487).

Figure 5.12 - 5.15 plots the estimated mean coefficient maps of each model for both the
binary and ordinal responses of ADNI datasets. The coefficient values for all the models
are roughly similar for each case. However, the coefficient maps might look slightly
different among the models as the underlying assumptions among the models differ.
Still, we can see that the coefficient maps share some characteristics as the regions that
are predicted to have positive (negative) effects under one model also are likely observed
to have positive (negative) effects under another model. We notice that the number
of coefficients with negative coefficient estimates is larger than the number of positive
estimates. This matches the scientific hypothesis that AD will induce hippocampal
shrinkage.
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Figure 5.12: The estimated mean coefficient maps of each model for the binary response
of ADNI datasets (CN vs AD).

5.8 Conclusions

We have demonstrated the good performance of our proposed models on the simulated
datasets. The proposed models are able to learn the underlying cluster structure in
the data, leading to higher ARI than the competitors. For the study on AD based on
neuroimaging data from the ADNI database, our proposed models still perform well but
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Figure 5.13: The estimated mean coefficient maps of each model for the binary response
of ADNI datasets (CN vs MCI).
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Figure 5.14: The estimated mean coefficient maps of each model for the binary response
of ADNI datasets (MCI vs AD).

we would say that there is no single model that stands out from others. Most of the
models do well in differentiating CN and AD, but not doing great in differentiating MCI
and AD or differentiating CN and MCI.
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Figure 5.15: The estimated mean coefficient maps of each model for the ordinal response
of ADNI datasets. (CN vs MCI vs AD)
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ADNI (CN vs AD)
CA CE Sensitivity Specificity M

EPA SIR 78.481 37.084 0.685 0.863 6.655
Potts-DP SIR 81.012 36.582 0.714 0.886 13.536
Potts-PY SIR 81.012 36.355 0.714 0.886 17.984
Potts-MFM SIR 79.746 37.450 0.685 0.886 6.596
Probit regression 65.822 - 0.636 0.685 -
Ising 82.278 35.924 0.714 0.909 2.0
Ising-GMRF 81.012 36.224 0.685 0.909 2.0
Ising-DP 81.012 42.567 0.714 0.886 10.0

ADNI (CN vs MCI)
CA CE Sensitivity Specificity M

EPA SIR 70.247 69.878 0.740 0.636 5.814
Potts-DP SIR 71.074 69.789 0.753 0.636 16.533
Potts-PY SIR 71.900 69.744 0.766 0.636 16.533
Potts-MFM SIR 71.074 69.803 0.753 0.636 5.999
Probit regression 70.247 - 0.909 0.340 -
Ising 69.421 69.421 0.779 0.545 2.0
Ising-GMRF 66.942 66.942 0.766 0.500 2.0
Ising-DP 69.421 68.541 0.753 0.590 10.695

ADNI (MCI vs AD)
CA CE Sensitivity Specificity M

EPA SIR 67.857 66.996 0.114 0.935 5.455
Potts-DP SIR 67.857 67.857 0.114 0.935 12.060
Potts-PY SIR 68.750 67.016 0.114 0.948 15.108
Potts-MFM SIR 66.964 66.974 0.114 0.922 6.613
Probit regression 68.750 - 0.0 1.0 -
Ising 66.071 67.537 0.085 0.922 2.0
Ising-GMRF 68.750 67.561 0.085 0.961 2.0
Ising-DP 70.535 67.272 0.285 0.896 11.757

ADNI (Ordinal)
CA CE Sensitivity Specificity M

EPA SIR 54.487 143.509 - - 6.001
Potts-DP SIR 53.846 143.764 - - 12.738
Potts-PY SIR 53.846 143.626 - - 16.738
Potts-MFM SIR 54.487 143.833 - - 6.500
Ordinal logistic regression 49.358 - - - -
Ising 49.358 161.031 - - 2.0
Ising-GMRF 52.564 147.775 - - 2.0
Ising-DP 53.205 177.232 - - 12.412

Table 5.6: The posterior mean of classification accuracy (CA), cross-entropy (CE), sen-
sitivity, specificity and the number of clusters (M) for both the binary and ordinal
responses of ADNI datasets under each model.
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Chapter 6

Discussion and Future Work

We have developed novel Bayesian scalar-on-image regression models, that employ clus-
tering and exhibit spatial dependence by leveraging the spatial coordinates of the pixels.
Specifically, the models group pixels with similar effects on the response have a com-
mon coefficient within the model. To encourage groups representing spatially contiguous
regions, we incorporate the spatial information directly in the prior for the random par-
tition by utilising the Ewens-Pitman attraction distribution and the Gibbs-type random
partition models. On top of that, the Bayesian shrinkage priors are utilised to identify
the covariates and regions that are most relevant for the prediction. The procedure yields
a coefficient image that is both sparse and spatially smooth. Also, we have derived an
MCMC sampler based on this representation.

We have shown the potential of the proposed models in detecting the cluster structure on
the simulated and real datasets and allows for automatic extraction of regions of interest
from the image. By taking into consideration spatial dependence in the random partition
model via either the EPA distribution or the Potts-Gibbs models, the proposed models
produce spatially aware clustering and thus improve the predictions. The results have
shown the proposed models have great potential in recovering the underlying cluster
structure under a variety of configurations. Overall, our studies indicate that there is
no clear winner between EPA SIR and Potts-Gibbs SIR models. The EPA SIR models
allow for learning of key hyperparameters of the random partition model, which have a
strong influence of the number and spatial connectivity of the clusters. However, from a
computational constraint standpoint, the Potts-Gibbs SIR models are preferred as the
computational cost is only linear in the number of pixels compared with the quadratic
complexity of the EPA SIR model.

Finally, this thesis paves the way for a number of exciting extensions for further research.
Firstly, anatomical changes in the brain associated with the disease may differ across
patients due to various factors such as undiscovered genes, comorbidities or lifestyle
choices. This heterogeneity can be incorporated through hierarchical extensions that
allow for a latent clustering of patients with cluster-specific image partitions. Next, the
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model has focused on a single tissue density map per patient (based on grey matter), and
extensions for tissue density maps of grey matter, white matter, and cerebrospinal fluid
are of interest; in particular, this would involve developing dependent image partition
models across the three maps. On a related note, it would be desirable to combine data
from other imaging modalities, such as amyloid positron emission tomography (PET)
imaging, fluorodeoxyglucose uptake on PET (FDG-PET) imaging and functional MRI,
and allow for dependence in the random image partitions for different imaging modalities;
this would make use of the variety of imaging data available for improved diagnosis.
Developments in this direction could combine the random image partition model with
multiple partition models for partially exchangeable data (Camerlenghi et al., 2017).
A further extension of interest is the inclusion of longitudinal, as well as cross-sectional
data, for dynamic modelling of disease status and prediction of conversion to the disease.
Finally, for more flexible modelling of the relationship between disease status and imaging
data, non-linear models may be utilised, such as Gaussian processes.

Due to the high resolution of the image, more computationally efficient approaches are
essential for the application of full imaging data. Optimising the implementation of the
proposed models to improve the performance and scalability should be possible based on
parallel MCMC algorithms, such as the recent work of Ni et al. (2019). Fast approximate
Bayesian inference specifically is another interesting direction, for example, developing
novel maximum aposteriori (MAP) algorithms, based on iterated conditional modes for
Dirichlet process mixtures (Raykov et al., 2016) and Bayesian hierarchical clustering
algorithms (Heller and Ghahramani, 2005).
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Chapter 7

Appendix

7.1 Posterior inference

The mathematical derivation of the posterior marginal densities and posterior joint den-
sities of the random variables for the proposed models described in Section 4.3 are
provided here.

7.1.1 The update of the parameters µ, β∗ and σ2 given the data y and
other parameters

The derivation for the posterior distribution of the parameters µ,β∗ and σ2 are given
here. From the prior distributions specified in Equation (4.5), we know the corresponding
joint prior density is given by:

pr(β̃, σ2) = pr(β̃|σ2)pr(σ2)

= N(β̃|mβ̃, σ
2Σβ̃)IG(σ2|aσ, bσ)

∝ (σ2)−
M+q

2 exp

{
− 1

2σ2
(β̃ −mβ̃)TΣβ̃(β̃ −mβ̃)

}
(σ2)−(aσ+1) exp

(
− 1

σ2
bσ

)
.
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The posterior distribution is given by:

pr(β̃, σ2| . . .) ∝f(y|β̃, σ2)pr(β̃, σ2)

=

n∏
i=1

N(yi|x̃Ti β̃, σ2)N(β̃|mβ̃, σ
2Σβ̃)IG(σ2|aσ, bσ)

∝(σ2)−
n
2 exp

{
− 1

2σ2
(y− X̃β̃)T (y− X̃β̃)

}
×

(σ2)−
M+q

2 exp

{
− 1

2σ2
(β̃ −mβ̃)TΣ−1

β̃
(β̃ −mβ̃)

}
×

(σ2)−(aσ+1) exp

(
− 1

σ2
bσ

)
∝(σ2)−(aσ+n

2
+1) exp

{
− 1

σ2
(bσ +

1

2
mT

β̃
Σ−1

β̃
mβ̃ +

1

2
yTy)

}
×

(σ2)−
M+q

2 exp

[
− 1

2σ2

{
β̃T (Σ−1

β̃
+ X̃T X̃)β̃ − 2β̃T (Σ−1

β̃
mβ̃ + X̃Ty)

}]
.

We define Σ̂β̃ = (Σ−1

β̃
+ X̃T X̃)−1 and m̂β̃ = Σ̂β̃(Σ−1

β̃
mβ̃ + X̃Ty). Thus we have

pr(β̃, σ2| . . .) ∝(σ2)−(aσ+n
2

+1) exp

{
− 1

σ2
(bσ +

1

2
mT

β̃
Σ−1

β̃
mβ̃ +

1

2
yTy− 1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃)

}
×

(σ2)−
M+q

2 exp

{
− 1

2σ2
(β̃ − m̂β̃)T Σ̂−1

β̃
(β̃ − m̂β̃)

}
.

We obtain two parts of the exponential. The first term is proportional to the marginal
posterior density for σ2 whereas the second term is the conditional posterior for β̃. We
recognise the posterior distribution for σ2 to be inverse-gamma with

σ2| · · · ∼ IG(âσ, b̂σ),

where IG(âσ, b̂σ) denotes the inverse-gamma distribution with updated shape âσ = aσ+n
2

and scale b̂σ = bσ + 1
2m

T
β̃

Σ−1

β̃
mβ̃ + 1

2yTy − 1
2m̂

T
β̃

Σ̂−1

β̃
m̂β̃. The conditional posterior

distribution for the parameters is as follows:

β̃|η∗, σ2, · · · ∼N(m̂β̃, σ
2Σ̂β̃),

σ2| · · · ∼IG(âσ, b̂σ).

7.1.2 The update of the parameter η∗ given the other parameters

The derivation for the posterior distribution of the parameter η∗ is given here. From
the prior distributions specified in Equation (4.5), we obtain the posterior distribution
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for each η∗m as follows,

pr(η∗1, . . . , η
∗
M | . . .) =

M∏
m=1

IG(η∗m|aη, bη)
M∏
m=1

N(β∗m|0, η∗mσ2)

=
M∏
m=1

b
aη
η

Γ(aη)

(
1

η∗m

)aη+1

exp

(
− bη
η∗m

) M∏
m=1

1√
2πη∗mσ

2
exp

(
− β∗2m

2η∗mσ
2

)

∝
M∏
m=1

(
1

η∗m

)aη+1

exp

(
− bη
η∗m

)(
1

η∗m

) 1
2

exp

(
− β∗2m

2η∗mσ
2

)

∝
M∏
m=1

(
1

η∗m

)aη+ 1
2

+1

exp

(
−
bη + β∗2m

2b2

η∗m

)
.

We identify this as an inverse-gamma distribution with updated shape âη = aη + 1/2

and scale b̂η = bη + β∗2m /2σ
2. And the posterior distribution for bη is given by:

pr(bη| · · · ) = G(bη|ao, bo)
M∏
m=1

IG(η∗m|aη, bη)

=
bao−1
η exp (−bobη)baoo

Γ(ao)

M∏
m=1

b
aη
η

Γ(aη)

(
1

η∗m

)aη+1

exp

(
− bη
η∗m

)

∝ bao−1
η exp (−bobη)

M∏
m=1

b
aη
η exp

(
− bη
η∗m

)

∝ bao+Maη−1
η exp

{
−bη

(
bo +

M∑
m=1

1

η∗m

)}
.

We identify this as an gamma distribution with updated shape âo = ao +Maη and rate

b̂o = bo+
∑M

m=1
1
η∗m

. The marginal posterior distribution for the parameters is as follows:

η∗m| · · · ∼ IG(âη, b̂η), for all m = 1, . . . ,M,

bη| · · · ∼ G
(
âo, b̂o

)
.

7.1.3 The update of the bond variables rjk given the partition πp

The derivation for the posterior distribution of the bond variables, rjk, for 1 ≤ j < k ≤
pis given here. To sample from the Potts-Gibbs models, we use the GSW sampler. As
previously mentioned in Section 4.3.1, the GSW involves introducing auxiliary binary
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bond variables, rjk. Based on this, the augmented model can be defined as follows:

pr(πp, r) = pr(πp)pr(r|πp),

pr(r|πp) =
∏

1≤j<k≤p
pr(rjk|πp),

pr(rjk|πp) =

{
exp(−υζjk1zj=zk) = qjk rjk = 0

1− exp(−υζjk) rjk = 1,

(7.1)

where r = (rjk)1≤j<k≤p.

Since the bonds are independent of the data given the partition πp, we have pr(r|πp,y) =
pr(r|πp). Thus, the bond variables can be updated independently using Equation 7.1.

7.1.4 The update of the partition πp given the data y and other pa-
rameters

The derivation for the posterior distribution of the partition πp is given here. The
posterior distribution of pr(πp) is given by:

pr(πp| . . .) ∝ f(y|πp,η∗, β̃, σ2)pr(πp|Θ).

For o = 1, . . . , O, each nested cluster Ao is removed in turn and assigned to cluster
(m = 1, . . . ,M−Ao ,M−Ao + 1) with probability as follows:

pr(Ao ∈ C−Aom | . . .) ∝ f(y|πAo→mp ,η∗, β̃, σ2)pr(Ao ∈ C−Aom |π−Aop ,Θ),

for all m = 1, . . . ,M−Ao ,M−Ao + 1. If the EPA distribution is selected, the pr(πAo→mp |Θ)
can be evaluated using Equation (3.1) and (3.2). This probability is evaluated at the
partition πAo→mp , where each nested cluster is a singleton for the EPA distribution. For
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the Potts-Gibbs models, the conditional distribution pr(πp|r,y) can be expressed as:

pr(πp|r,y) ∝ pr(πp)pr(r|πp)f(y|πp)

= B(z1, · · · zp)pr(|C1|, . . . , |CM |)
∏

1≤j<k≤p
pr(rjk|πp)× f(y|πp)

=
∏

1≤j<k≤p
exp

(
υ1zj=zk

)
pr(|C1|, . . . , |CM |)×∏

1≤j<k≤p
(1− qjk)rjk exp(−υζjk1zj=zk)1−rjkf(y|πp)

=
∏

1≤j<k≤p
exp

(
υ1zj=zk

)
pr(|C1|, . . . , |CM |)×∏

1≤j<k≤p

{
1− exp(−υζjk1zj=zk)

}rjk exp(−υζjk1zj=zk)1−rjkf(y|πp)

=
∏

1≤j<k≤p
exp

(
υ1zj=zk

)
pr(|C1|, . . . , |CM |)×∏

1≤j<k≤p
(1− {exp(υζjk1zj=zk)}−1)rjk exp(−υζjk1zj=zk)1−rjkf(y|πp)

=
∏

1≤j<k≤p
exp

(
υ1zj=zk

)
pr(|C1|, . . . , |CM |)×

∏
1≤j<k≤p

{
exp(υζjk1zj=zk)− 1

exp(υζjk1zj=zk)

}rjk
exp(−υζjk1zj=zk)1−rjkf(y|πp)

= f(y|πp)pr(|C1|, . . . , |CM |)×∏
1≤j<k≤p

{
exp

(
υ1zj=zk

)}1−ζjk(1−rjk)−ζjkrjk {exp
(
υζjk1zj=zk

)
− 1
}rjk

= f(y|πp)pr(|C1|, . . . , |CM |)×∏
1≤j<k≤p

[
exp

{
υ(1− ζjk)1zj=zk

}] {
exp(υζjk1zj=zk)− 1

}rjk .
Thus, the nested cluster Ao is assigned to an existing cluster m = 1, · · · ,M−Ao with
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probability proportional to

∝
f(y|πAo→mp )

f(y|π−Aop )
pr
(
|C−Ao1 |, . . . , |C−Aom +Ao|, . . . , |C−AoM−Ao

|
)
×∏

{(j,k)|j∈Ao,k∈C−Aom ,rjk=0}

[
exp

{
υ(1− ζjk)1zj=zk

}] {
exp(υζjk1zj=zk)− 1

}rjk
∝
f(y|πAo→mp )

f(y|π−Aop )
pr
(
|C−Ao1 |, . . . , |C−Aom +Ao|, . . . , |C−AoM−Ao

|
)
×∏

{(j,k)|j∈Ao,k∈C−Aom ,rjk=0}

exp {υ(1− ζjk)} .

Note that the final term represents the predictive probability for the Potts component
of the Potts-Gibbs models, as detailed in Table 4.1. Or else, the nested cluster Ao is
assigned to a new cluster m = M−Ao + 1 with probability proportional to

∝
f(y|πAo→mp )

f(y|π−Aop )
pr
(
|C−Ao1 |, . . . , |C−Ao

M−Ao
|, |Ao|

)

Marginal likelihood

To sample the new image partition πp given the latent variables η∗ and the data, we
marginalise out the parameters β̃ and σ2. The marginal likelihood for the continuous
case is obtained as follows:

f
(
y|πAo→mp ,η∗

)
∝

|Σ−1

β̃
|
1
2

|Σ−1

β̃
+ X̃T X̃|

1
2

(
bσ + S2/2

)−(aσ+n
2

)

log
{
f
(
y|πAo→mp ,η∗

)}
∝ 1

2
log
(
|Σ−1

β̃
|
)
− 1

2
log
(
|Σ−1

β̃
+ X̃T X̃|

)
−
(
aσ +

n

2

)
log

{(
bσ +

S2

2

)}
,

where

S2 = (y − X̃mβ̃)T (y − X̃mβ̃)− (y − X̃mβ̃)T X̃(Σ−1

β̃
+ X̃T X̃)−1X̃T (y − X̃mβ̃)

= (y −Wmµ)T (y −Wmµ)− (y −Wmµ)T X̃(Σ−1

β̃
+ X̃T X̃)−1X̃T (y −Wmµ).

Note that bσ +S2/2 = b̂σ. On the other hand, for the binary case, we fix σ2 = 1, result-
ing in a multivariate normal distribution for f

(
y|πAo→mp ,η∗

)
instead of a multivariate

student-t distribution:

f
(
y|πAo→mp , β̃

)
= exp

{
−1

2

n∑
i=1

(yi − x̃Ti β̃)2

}
,
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with f
(
y|πAo→mp ,η∗

)
:

=

∫
f
(
y|πAo→mp , β̃,η∗

)
pr(β̃) dβ̃

=

∫ n∏
i=1

N(yi|x̃Ti β̃)N(β̃|mβ̃,Σβ̃) dβ̃

=

∫
1√
2π

n exp

{
−1

2
(y− X̃β̃)T (y− X̃β̃)

} |Σβ̃|
− 1

2

√
2π

M+q
exp

{
−1

2
(β̃ −mβ̃)TΣ−1

β̃
(β̃ −mβ̃)

}
dβ̃

=
|Σβ̃|

− 1
2 exp

(
−1

2yTy− 1
2m

T
β̃

Σ−1

β̃
mβ̃

)
(2π)

n
2

+M+q
2

∫
exp

[
−1

2

{
β̃T (Σ−1

β̃
+ X̃T X̃)β̃ − 2β̃T (Σ−1

β̃
mβ̃ + X̃Ty)

}]
dβ̃.

We use the defined terms Σ̂β̃ = (Σ−1

β̃
+ X̃T X̃)−1 and m̂β̃ = Σ̂β̃(Σ−1

β̃
mβ̃ + X̃Ty) to

simplify further the formula, so f
(
y|πAo→mp ,η∗

)
:

=
|Σβ̃|

− 1
2 exp

(
−1

2yTy− 1
2m

T
β̃

Σ−1

β̃
mβ̃

)
(2π)

n
2

+M+q
2

∫
exp

{
−1

2

(
β̃T Σ̂β̃β̃ − 2β̃T Σ̂−1

β̃
m̂β̃

)}
dβ̃

=
|Σβ̃|

− 1
2 exp

(
−1

2yTy− 1
2m

T
β̃

Σ−1

β̃
mβ̃

)
(2π)

n
2

+M+q
2

∫
exp

{
−1

2
(β̃ − m̂β̃)T Σ̂−1

β̃
(β̃ − m̂β̃) +

1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃

}
dβ̃

=
|Σβ̃|

− 1
2 exp

(
−1

2y
Ty − 1

2m
T
β̃

Σ−1

β̃
mβ̃

)
(2π)

n
2

+M+q
2

exp

(
1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃

)∫
exp

{
−1

2
(β̃ − m̂β̃)T Σ̂−1

β̃
(β̃ − m̂β̃)

}
dβ̃

=
|Σβ̃|

− 1
2 exp

(
−1

2yTy− 1
2m

T
β̃

Σ−1

β̃
mβ̃

)
(2π)

n
2

+M+q
2

exp

(
1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃

)
(2π)

M+q
2 |Σ̂β̃|

1
2

=
|Σβ̃|

− 1
2 |Σ̂β̃|

− 1
2

(2π)n/2
exp

(
−1

2
yTy− 1

2
mT

β̃
Σ−1

β̃
mβ̃ +

1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃

)
∝ |Σβ̃|

− 1
2 |Σ̂β̃|

1
2 exp

(
−1

2
yTy− 1

2
mT

β̃
Σ−1

β̃
mβ̃ +

1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃

)
.

Thus, the log marginal likelihood for the binary case is:

log
{
f
(
y|πAo→mp ,η∗

)}
∝ −1

2
log(|Σβ̃|) +

1

2
log(|Σ̂β̃|)−

1

2
yTy− 1

2
mT

β̃
Σ−1

β̃
mβ̃ +

1

2
m̂T

β̃
Σ̂−1

β̃
m̂β̃.

Note that the term that we can cancel when we normalise the unnormalised log marginal
likelihood is yTy.
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7.2 The computation of the coefficients Vp(M) for the Potts-
MFM model

The computation of the coefficients Vp(M) for the Potts-MFM model is described in this
section. The coefficients can be approximated as:

Vp(M) ∼
M(M)

(γM)(p)
pL(M |ψ) ∼ M !

p!

Γ(γM)

pγM−1
pL(M |ψ),

when p→∞ (see Section 3.3.6).

To compute the conditional distribution pr(πAo→mp |π−Aop ,Θ) for the Potts-MFM model,

we need to evaluate the ratio of the coefficients Vp(M
−Ao + 1) and Vp(M

−Ao):

Vp(M
−Ao + 1)

Vp(M−Ao)
=

(M−Ao+1)!
p!

Γ(γ(M−Ao+1))

pγ(M
−Ao+1)−1

pL(M−Ao + 1)

M−Ao !
p!

Γ(γM−Ao )

pγM−Ao−1
pL(M−Ao)

=
(M−Ao + 1)!

M−Ao !

Γ(γ(M−Ao + 1))

Γ(γM−Ao)

pγM
−Ao−1

pγ(M−Ao+1)−1

pL(M−Ao + 1)

pL(M−Ao)

= (M−Ao + 1)
Γ(γ(M−Ao + 1))

Γ(γM−Ao)

1

pγ
pL(M−Ao + 1)

pL(M−Ao)
.

If we choose the zero-truncated Poisson (ZTP) distribution for pL(l):

pL(l) =
λl

(expλ− 1)l!
,

where λ is the parameter, then we have:

pL(M−Ao + 1)

pL(M−Ao)
=

λ(M
−Ao+1)

(expλ−1)(M−Ao+1)!

λM−Ao

(expλ−1)M−Ao !

=
λ

M−Ao + 1
.

Substituting the ratio of the coefficients pL(M−Ao + 1) and pL(M−Ao) into the original
expression, we obtain:

Vp(M
−Ao + 1)

Vp(M−Ao)
= (M−Ao + 1)

Γ(γ(M−Ao + 1))

Γ(γM−Ao)

1

pγ
λ

M−Ao + 1

=
λ

pγ
Γ(γ(M−Ao + 1))

Γ(γM−Ao)
.
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7.3 Algorithm pseudocode

Here we list the pseudocode to describe how different algorithms and procedures work
for our implementation of the proposed models: EPA SIR and Potts-Gibbs SIR mod-
els, which are the EPA sampling algorithm (Algorithm 1), GSW sampling algorithm
(Algorithm 2) and the full algorithm (Algorithm 3).

117



Algorithm 1: EPA Sampling Algorithm
Input: α, δ, τ, h
Output: A MCMC chain of simulated values of πp

1 for t← 1 to T do
2 for j ← 1 to p do
3 Remove j from Czj .
4 if zj 6= zk∀k 6= j then

5 Relabel zj = M−jt + 1.
6 Set β∗

M
−j
t +1

= β∗zj .

7 Sample η
M

−j
t +2

, . . . , η
M

−j
t +h

independently from the prior distribution (Equation

(4.5)).
8 Sample β∗

M
−j
t +2

, . . . , β∗
M

−j
t +h

independently from its prior distribution (Equation

(4.5)).
9 else

10 Sample η
M

−j
t +1

, . . . , η
M

−j
t +h

independently from the prior distribution (Equation

(4.5)).
11 Sample β∗

M
−j
t +1

, . . . , β∗
M

−j
t +h

independently from its prior distribution (Equation

(4.5)).
12 end

13 Draw a sample of which cluster the unit j should belong to, C−jm :

14 for m← 1 to M−jt + h do
15 Calculate the log probability of zj = m as described in Section 4.3 using Equation

(3.1)–(3.2) (with the second condition in the corresponding probabilities divided
by h) at the partition πAo→m

p .

16 end
17 Transform unnormalised log probabilities into probabilities.

18 if m ≤M−jt then
19 Update zj according to zj = m.
20 else
21 A new cluster has been created.
22 Append this new cluster to the vector of non-empty clusters.

23 end

24 end
25 A new partition is created.

26 end
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Algorithm 2: GSW Sampling Algorithm
Input: υ, φ, κ, τ, h
Output: A MCMC chain of simulated values of πp

1 for t← 1 to T do
2 Create nested clusters A1, . . . , AOt :
3 for m← 1 to Mt do
4 for j ← 1 to |Cm| do
5 for k in Cm and j ∼ k and j < k do
6

rjk ∼ Ber
(
1− exp(−υζjk1zj=zk )

)
.

7 end

8 end

9 end
10 for o← 1 to Ot do
11 Remove Ao from πp.
12 if zAo 6= zAl∀l 6= o then

13 Relabel zAo = M−Ao
t + 1.

14 Set β∗
M

−Ao
t +1

= β∗zAo
.

15 Sample η∗
M

−Ao
t +2

, . . . , η∗
M

−Ao
t +h

independently from the prior distribution

(Equation (4.5)).
16 Sample β∗

M
−Ao
t +2

, . . . , β∗
M

−Ao
t +h

independently from its prior distribution

(Equation (4.5)).
17 else
18 Sample η∗

M
−Ao
t +1

, . . . , η∗
M

−Ao
t +h

independently from the prior distribution

(Equation (4.5)).
19 Sample β∗

M
−Ao
t +1

, . . . , β∗
M

−Ao
t +h

independently from its prior distribution

(Equation (4.5)).
20 end

21 Draw a sample of which cluster this Ao should belong to, C−Ao
m :

22 for m← 1 to M−Ao
t + h do

23 Calculate the log probability using pr(Ao ∈ C−Ao
m | . . .) from Table 4.1.

24 end
25 Transform unnormalised log probabilities into probabilities.

26 if m ≤M−Ao
t then

27 Update zAo according to zAo = m.
28 else
29 A new cluster has been created.
30 Append this new cluster to the vector of non-empty clusters.

31 end

32 end
33 A new partition is created.

34 end
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Algorithm 3: Full Algorithm
Input: (aσ, bσ), (aη, ao, bo), (mµ, cµ),Θ
Output: A MCMC chain of simulated values of πp, σ

2, β̃,η

1 Initialisation: π0
p,
(
σ2

)0
,η0, β̃0

2 for t← 1 to T do
3 Image partition, πp: First enters either EPA sampling (Algorithm 1) or GSW sampling

(Algorithm 2).
4 Noise variance, σ2: Generate a new value for σ2 from the marginal posterior

distribution: (
σ2)t ∼ IG

(
âσ, b̂

t
σ

)
.

5 Coefficients, β̃: Conditional on the newly updated parameter value σ2, generate a new

value for β̃ from the posterior conditional distribution:

β̃t|
(
σ2)t, · · · ∼ N

(
m̂t
β̃ , (σ

2)tΣ̂tβ̃

)
.

6 Local shrinkage parameters, η∗: Conditional on the newly updated parameter values

β̃ and σ2, generate a new value for η∗ from the posterior conditional distribution:

η∗tm |β̃t,
(
σ2)t , · · · ∼ IG(âη, b̂

t
η), for all m = 1, . . . ,Mt.

7 Global shrinkage parameter, bη: Conditional on the newly updated parameter value
η∗, generate a new value for bη from the marginal posterior distribution:

btη|η∗, · · · ∼ G
(
âo, b̂

t
o

)
.

8 end

7.4 Experiments

Traceplot, posterior inclusion probability (PIP) and posterior predictive check (PPC) of
the experiments are provided here.

7.4.1 Traceplot

The following are the traceplots of the intercept from the posterior distribution of both
the simulated and real data sets. As can be observed, the Ising-DP model has a relatively
poor mixing rate in most of the scenarios compared to the other models. For the Ising-
DP model, we have also tried to run for longer iterations (100k) for the simulated data
set for Scenario 3 and Scenario 4. However, the traceplots of the intercept for both
scenarios as displayed in Figure 7.5 still do not show any sign of convergence, due to the
computation budget, we do not proceed to run it further.
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Figure 7.1: Figures showing the traceplots of the intercept of the simulated data sets for
Scenario 1 under each model.
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Figure 7.2: Figures showing the traceplots of the intercept of the simulated data sets for
Scenario 2 under each model.
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Figure 7.3: Figures showing the traceplots of the intercept of the simulated data sets for
Scenario 3 under each model.
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Figure 7.4: Figures showing the traceplots of the intercept of the simulated data sets for
Scenario 4 under each model.
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Figure 7.5: Figures showing the traceplots of the intercept of the simulated data sets for
Scenario 3 and Scenario 4 for the IsingDP with longer iteration (100k).
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Figure 7.6: Figures showing the traceplots of the intercept of the real data sets for
ordinal response under each model.

7.4.2 Binary posterior inclusion map

The binary posterior inclusion map as explained in Section 4.4 of both the simulated
and real data sets is shown below.
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Figure 7.7: Figures showing the binary posterior inclusion maps of the simulated data
sets for Scenario 1 under each model.
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Figure 7.8: Figures showing the binary posterior inclusion maps of the simulated data
sets for Scenario 2 under each model.
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Figure 7.9: Figures showing the binary posterior inclusion maps of the simulated data
sets for Scenario 3 under each model.
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Figure 7.10: Figures showing the posterior inclusion probability (PIP) plots of the sim-
ulated data sets for Scenario 3 under the Ising and Ising-GMRF models as the binary
posterior inclusion maps do not show much information for both models.
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Figure 7.11: Figures showing the binary posterior inclusion maps of the simulated data
sets for Scenario 4 under each model.
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Figure 7.12: Figures showing the posterior inclusion probability (PIP) plots of the sim-
ulated data sets for Scenario 4 under the Ising and Ising-GMRF models as the binary
posterior inclusion maps do not show much information for both models.
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Figure 7.13: Figures showing the posterior inclusion probability (PIP) plots of the real
data sets for ordinal response under each model.

7.4.3 Posterior predictive checking

The posterior predictive check (PPC) plots as explained in Section 4.4 of both the
simulated and real data sets are shown below.
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Figure 7.14: Figures showing the posterior predictive check (PPC) plots of the simulated
data sets for Scenario 1 under each model.
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Figure 7.15: Figures showing the posterior predictive check (PPC) plots of the simulated
data sets for Scenario 2 under each model.
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Figure 7.16: Figures showing the posterior predictive check (PPC) plots of the simulated
data sets for Scenario 3 under each model.
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Stéphanie Van Der Pas, Jean-Bernard Salomond, and Johannes Schmidt-Hieber. Conditions for
posterior contraction in the sparse normal means problem. Electron. J. Stat., 10(1), 2016.
ISSN 1935-7524. URL https://hal.archives-ouvertes.fr/hal-01316155.

Marianne AA Van Walderveen, Wouter Kamphorst, Philip Scheltens, Jan-Hein TM Van Waes-
berghe, Rivka Ravid, Jacob Valk, Chris H Polman, and Frederik Barkhof. Histopathologic
correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology,
50(5):1282–1288, 1998. ISSN 0028-3878.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Stat. Comput., 27(5):1413–1432, 2017.

Sara Wade and Zoubin Ghahramani. Bayesian cluster analysis: Point estimation and credible
balls (with discussion). Bayesian Anal., 13(2):559–626, Jun 2018. ISSN 1936-0975. doi:
10.1214/17-ba1073. URL http://dx.doi.org/10.1214/17-BA1073.

Hanna Wallach, Shane Jensen, Lee Dicker, and Katherine Heller. An alternative prior process
for nonparametric Bayesian clustering. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statis-
tics, volume 9 of Proceedings of Machine Learning Research, pages 892–899, Chia Laguna
Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/

wallach10a.html.

Xiao Wang, Hongtu Zhu, and Alzheimer’s Disease Neuroimaging Initiative. Generalized scalar-
on-image regression models via total variation. J. Am. Stat. Assoc., 112(519):1156–1168, 2017.

Xuejing Wang, Bin Nan, Ji Zhu, and Robert Koeppe. Regularized 3D functional regression for
brain image data via Haar wavelets. Ann. Appl. Stat., 8(2):1045, 2014.

Sumio Watanabe and Manfred Opper. Asymptotic equivalence of Bayes cross validation and
widely applicable information criterion in singular learning theory. J. Mach. Learn. Res., 11
(12), 2010.

Claudia Wehrhahn, Samuel Leonard, Abel Rodriguez, and Tatiana Xifara. A Bayesian approach
to disease clustering using restricted Chinese restaurant processes. Electron. J. Statist., 14(1):
1449–1478, 2020. ISSN 1935-7524.

Gerhard Winkler. Image analysis, random fields and Markov chain Monte Carlo methods: A
mathematical introduction, volume 27. Springer Science & Business Media, 2003.

Raphael Wittenberg, Bo Hu, Luis Barraza-Araiza, and Amritpal Rehill. Projections of older
people with dementia and costs of dementia care in the United Kingdom, 2019–2040. London:
London School of Economics, 2019.

Henrike Wolf, Martin Grunwald, Frithjof Kruggel, Steffi G Riedel-Heller, S. Angerho, Ali Hoj-
jatoleslami, Anke Hensel, Thomas Arendt, and Hermann-Josef Gertz. Hippocampal volume
discriminates between normal cognition; questionable and mild dementia in the elderly. Neu-
robiol. Aging, 22:177–186, 2001.

141

https://hal.archives-ouvertes.fr/hal-01316155
http://dx.doi.org/10.1214/17-BA1073
http://proceedings.mlr.press/v9/wallach10a.html
http://proceedings.mlr.press/v9/wallach10a.html


Yun Yang, Martin Wainwright, and Michael Jordan. On the computational complexity of high-
dimensional Bayesian variable selection. Ann. Stat., 44(6):2497, 2016. ISSN 00905364. URL
http://search.proquest.com/docview/1845703715/.

Peng Zhao, Hou-Cheng Yang, Dipak K Dey, and Guanyu Hu. Bayesian spatial homogeneity
pursuit regression for count value data. arXiv preprint arXiv:2002.06678, 2020.

Tao Zhou, Kim-Han Thung, Xiaofeng Zhu, and Dinggang Shen. Effective feature learning and
fusion of multimodality data using stage-wise deep neural network for dementia diagnosis.
Hum. Brain Mapp., 40(3):1001–1016, 2019.

142

http://search.proquest.com/docview/1845703715/

	Cover Sheet.pdf
	Mica_Teo_Thesis.pdf
	Abstract
	Introduction
	Motivating application
	Contributions
	Outline of thesis

	Literature Review
	Scalar-on-image regression (SIR)
	Ising model
	Ising-Gaussian Markov random field (Ising-GMRF) model
	Ising-Dirichlet process (Ising-DP) model
	Soft-thresholded Gaussian process (STGP) model
	Summary

	Dependent random partition models
	Product partition model with covariates (PPMx)
	Spatial product partition model (sPPM)
	Distance-dependent Chinese restaurant process (ddCRP) and spatial ddCRP
	Restricted Chinese restaurant process (rCRP)
	Summary


	Random Image Partition Models
	Introduction
	Ewens-Pitman attraction (EPA) distribution
	Potts-Gibbs models
	Gibbs-type random partition models
	Markov random field
	Markov random field constrained Gibbs-type priors
	Potts-Dirichlet process (Potts-DP) model
	Potts-Pitman Yor process (Potts-PY) model
	Potts-mixture of finite mixtures (Potts-MFM) model

	Comparison to other partition distributions
	Prior simulation comparisons in finite samples
	Comparison of the prior on the number of clusters
	Comparison of prior cluster sizes 
	Comparison of prior spatial connectivity

	Image segmentation
	Results on image segmentation

	Conclusions

	SIR with Random Image Partition Models
	Introduction
	Model
	Generalized linear model
	Image partition models
	Shrinkage priors
	Additional parameters
	Full model

	Posterior inference
	The update of the partition p
	Prior and tuning parameter specification
	Auxiliary variable model for binary and ordinal data
	Consensus clustering

	Posterior summary and prediction
	Conclusions

	Experiments
	Introduction
	Data simulation
	Real data application
	Hyperparameters selection
	Grid search range and other recommendations
	Tuning parameters of the GSW algorithm

	Evaluation metrics
	Results on simulated datasets
	Results on the ADNI dataset
	Conclusions

	Discussion and Future Work
	Appendix
	Posterior inference
	The update of the parameters , * and 2 given the data y and other parameters
	The update of the parameter * given the other parameters
	The update of the bond variables rjk given the partition p
	The update of the partition p given the data y and other parameters

	The computation of the coefficients  Vp(M) for the Potts-MFM model
	Algorithm pseudocode
	Experiments
	Traceplot
	Binary posterior inclusion map
	Posterior predictive checking






