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Abstract

Understanding natural language sentences requires interpreting words, and combining
the meanings of words into the meanings of sentences. Despite much work on lexical
and compositional semantics individually, existing approaches are unlikely to offer a

complete solution. This thesis introduces a new approach, which combines the benefits
of distributional lexical semantics and logical compositional semantics.

Linguistic theories of compositional semantics have shown how logical forms can

be built for sentences, and how to represent semantic operators such as negatives,
quantifiers and modals. However, computational implementations of such theories
have shown poor performance on applications, mainly due to a reliance on incomplete
hand-built ontologies for the meanings of content words. Conversely, distributional se¬

mantics has been shown to be effective in learning the representations of content words
based on collocations in large unlabelled corpora, but there are major outstanding chal¬

lenges in representing function words and building representations for sentences.
I introduce a new model which captures the main advantages of logical and distri¬

butional approaches. The proposal closely follows formal semantics, except for chang¬
ing the definitions of content words. In traditional formal semantics, each word would

express a different symbol. Instead, I allow multiple words to express the same symbol,

corresponding to underlying concepts. For example, both the verb write and the noun

author can be made to express the same relation. These symbols can be learnt by clus¬

tering symbols based on distributional statistics—for example, write and author will
share many similar arguments. Crucially, the clustering means that the representations
are symbolic, so can easily be incorporated into standard logical approaches.

The simple model proves insufficient, and I develop several extensions. I develop
an unsupervised probabilistic model of ambiguity, and show how this model can be
built into compositional derivations to produce a distribution over logical forms. The
flat clustering approach does not model relations between concepts, for example that
buying implies owning. Instead, I show how to build graph structures over the clusters,
which allows such inferences. I also explore if the abstract concepts can be general¬
ized cross-lingually, for example mapping French verb ecrire to the same cluster as

the English verb write. The systems developed show good performance on question
answering and entailment tasks, and are capable of both sophisticated multi-sentence
inferences involving quantifiers, and subtle reasoning about lexical semantics.

These results show that distributional and formal logical semantics are not mutually

exclusive, and that a combined model can be built that captures the advantages of each.
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CHAPTER

Introduction

This thesis describes a new approach to the automatic interpretation of natural lan¬

guage sentences. It brings together two successful previous models; the theory of for¬
mal semantics developed in the linguistics literature, and recent work on distributional
semantics from the natural language processing community. I will argue that while
both of these approaches are individually powerful, they ultimately have significant
limitations which are likely to preclude them from offering a complete explanation of
natural language semantics. However, their strengths and weaknesses are strikingly

complementary, which gives a powerful motivation for developing a combined model.
Natural language is the dominant means by which people express and communicate

knowledge. If computers could interpret natural language sentences, they would have
access to this knowledge, which would have immense practical value for applications
such as automated question answering and information retrieval.

This problem is also extremely challenging. Language is extremely productive,
with new words and meanings being developed constantly—consequently, attempts to

confine it to some manually constructed ontology have largely failed. Individual words
can have many meanings, but also many words can express the same meaning. Whilst
some words appear to express logical concepts like negation or quantification, others
are much harder to formalise. Understanding individual words is not enough—the

meanings of words must be composed into the meanings of sentences. The framework

1



2 Chapter 1. Introduction

introduced in this thesis offers a partial solution to all of these problems.
The success of a system at interpreting natural language can be evaluated by its

performance on the problem of natural language inference. Natural language inference
involves understanding how the meaning of some sentences relates to the meaning
of others—for example, knowing that the sentences Obama was born in Kenya and
Obama's birthplace is not Kenya contradict each other. This general framework allows
the evaluation of any mono-modal aspect of language understanding, but makes no

assumptions as to how the language is being understood. Consequently, there is great

diversity in existing approaches, which may represent sentences as bags of words,
high-dimensional vectors, or first-order logical forms. The models developed in this
thesis will be evaluated by their performance on this task.

In this chapter, I will first give a very brief background on two of the most suc¬

cessful approaches to the problem of natural language inference, discussing their ad¬
vantages and drawbacks. I will then sketch a method for combining them, which I
will argue gives the advantages of both. This method is the central idea of the thesis.
Section 1.2.2 gives an overview of the structure of the thesis.

1.1 Background

The task of language interpretation can be divided into the problems of interpreting the

meanings of individual words, and composing them into the meanings of phrases and
sentences. Words can further be divided into closed-class function words, and open-

class content words, which pose distinct challenges for representing their meanings.
Whilst these problems have received much attention individually, the most popular
solutions are mutually incompatible.

1.1.1 Formal semantics

Theories of formal semantics aim to map sentences onto logical forms. These logical
forms support inference (for example, using theorem provers).

Logical forms are built by first assigning an interpretation to each word, typically
using lambda-calculus as glue language, and then combining these into the meaning
of the sentences. Interpretations for content words can be generated automatically, by
simply using the word itself as a symbol in the logical form.
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The use of first-order logical forms makes it straightforward to model semantic
phenomena such as negation and quantification, as these concepts are an integral part
of first-order logic. Understanding negation is clearly extremely important—it is the
difference between a question-answering system saying yes or no. Quantifiers are also
potentially very powerful, as they express information over a number of individuals at
once. If we are told, for example, that Every dog is a mammal then we know something
about all the world's dogs.

Another key advantage of formal semantics is that composition is easily explained.
In the theory of CCG used in this thesis, the meanings of expressions are combined
using exactly the same standard function application and composition operators as are

used in the syntax tree. Syntax trees can now be built automatically using treebank
trained parsers with reasonable accuracy—and, given the syntax tree, semantic com¬

position is straightforward.
Several attempts have been made to build wide-coverage semantic parsing systems

based on formal semantics, but all have these have shown low recall on practical appli¬
cations, such as entailment [Bos and Markert, 2005, Bobrow et al., 2007]. The main

reason is that they have a weak model of the meanings of content words, which is
critical to almost all natural language inference. Existing lexical resources such as

WordNet [Miller, 1995] have proved of limited help in addressing this problem.
Whilst formal semantics elegantly explains compositionality and the meanings of

function words, it has ultimately failed to show strong performance on real world ap¬

plications. Being able to negate, quantify and compose meanings is of little use without
a good model of what the underlying meanings are.

1.1.2 Distributional semantics

Distributional semantics1 takes an orthogonal approach to formal semantics. It aims
to induce the meanings of words from unlabelled text in an unsupervised way. A
vector is constructed for every word based on its contexts in a large corpus (using
one of many possible methods), and it is assumed that similarity in the vector space

represents semantic similarity. It has been shown that the similarity of such vectors
correlates well with human judgements of word similarity [McDonald, 2000, Huang
et al., 2012],

'in this thesis, I use a general sense of the term distributional semantics which includes inference
rules derived from co-occurrence vectors—following, for example, Lin and Pantel [2001],
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However, there are many unsolved problems in distributional semantics. Despite
many proposals, it is not clear how best to combine the meanings of words to capture
the meanings of sentences [Mitchell and Lapata, 2008, Coecke et al., 2010, Socher
et al., 2011], and so far there is relatively little evidence to show that vector-space
representations of sentences are useful for entailment or question answering. Further
problems are likely to be faced when trying to combine the meanings of sentences into
those of documents, or whole encyclopedias.

It is also unclear how function words, such as not or every, should be modelled in
distributional semantics. Various attempts have been made to model these in vector

spaces [Socher et al., 2012, Baroni et al., 2012, Hermann et al., 2013, Grefenstette,
2013], but current work has significant limitations compared to logical approaches.
Many other semantic phenomena—including modality, tense, coordination—have well

developed solutions in the formal semantics literature, but will require much work to

adequately model in vector spaces.

1.2 This Thesis

1.2.1 Contributions

The major contribution of this thesis is a new approach to combining distributional and
logical semantics.

The first important contribution is the first implementation of a new theory of for¬
mal semantics [Steedman, 2012], with efficient mechanisms for reasoning about quan¬
tifier and negation scope. I also contribute a novel algorithm for converting the repre¬
sentations to standard first-order logic. I show the implementation has wide coverage,
models linguistically complex constructions, and is capable of making complex infer¬
ences.

As discussed in Section 1.1, formal semantics is strong at modelling function words
and compositionality, but weak at expressing the meanings of content words, meaning
the performance of the purely logical approach is low on practical applications. Con¬
versely, distributional semantics is able to learn the meaning of content words, but
expressing function words and composing the meaning of words are both problematic.

The complementary strengths and weaknesses of these two approaches motivates
trying to combine them in a way that captures the strengths of each. The approach
introduced here is firmly rooted in formal semantics, apart from for the semantics
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of content words. I make the hypothesis that there is some set of discrete abstract
concepts that words may express. Each of these concepts can be assigned a symbol,
and the lexical semantics of a word can use this symbol as a predicate.

I aim to uncover these concepts using distributional semantics. Standard formal-
semantics symbols, which capture predicate-argument structure, can be clustered based
on their arguments in a large corpus. When parsing new sentences, the cluster identifier
can be used as a symbol. The clustering converts noisy, continuous, high-dimensional

vector-space representations of words into atomic symbols. The clustering aims both
to uncover the latent underlying relations that language can express, and to show how
to map words onto those relations. The induced symbols can be conjoined, negated or

quantified, just like any other, preserving the advantages of formal semantics. How¬
ever, because synonyms like buy and purchase will be represented by the same symbol,
the system gains much of the power of distributional semantics.

The thesis also describes a series of developments to this model, addressing am¬

biguity, one-way implicative relations, implicative verb constructions, and a cross-

lingual generalization. These models show strong performance on a range of natural

language inference tasks, such as question answering and entailment.

1.2.2 Outline of Thesis

The rest of this thesis proceeds as follows:

Chapter 2 provides a survey of the current state of the start in computational se¬

mantics, which contains a huge range of approaches. It focuses on formal and dis¬
tributional models of semantics, arguing that they have attractive properties that other

approaches do not.

Chapter 3 describes the theory and first implementation of Natural Semantics, a

model of formal semantics that gives a sophisticated treatment of phenomena such as

negation and quantification. It describes how to create a lexicon for such a system in
a way that gives high coverage of natural language text. I also introduce an algorithm
for converting the semantic representation to standard first-order logic, and then the
implementation is evaluated on a dataset of inference problems, showing the ability to
reason about quantifiers in a sophisticated way.

Chapter 4 introduces the key idea of this thesis, which extends the model of Chap¬
ter 3 by modelling the meanings of content words with symbols derived from a distri¬
butional clustering. These symbols can seamlessly be integrated into the lexicon. A
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simple initial model is developed, and then it is refined to show how to model ambigu¬
ous words. The new model shows high performance on a question-answering task, due
to the strength of the clustering, without affecting the accuracy of the model of formal
semantics developed in Chapter 3.

Chapter 5 demonstrates how the model of Chapter 4 can be generalized cross-

lingually, by clustering words in different languages on the basis on named-entity ar¬

guments. The resulting clustering can be viewed as a simple interlingua. The model
outperforms a state-of-the-art model of machine translation on question answering and
translation reranking tasks, despite requiring no parallel text for training.

Chapter 6 extends the model of Chapter 4 to model a greater range of semantic
phenomena. I show how a more sophisticated approach to clustering can be used to
learn richer lexical entries, which support inferences between words that only one in
one direction. The model of formal semantics is also extended with modal logic opera¬

tors, allowing it to better model the meaning of implicative verbs. These improvements
show how advanced ideas from both the formal and distributional semantics literatures

can be easily incorporated into the framework. Both are shown to lead to improve¬
ments on an entailment task compared with the model of Chapter 4 and a variety of

existing approaches.
I also give a detailed discussion of the potential for future work in this framework.

I identify a number of weakness of the current model, and suggest how they could be
overcome to give a major step forward in automated natural language understanding.

Chapter 7 summarizes the key ideas developed in this thesis.



CHAPTER

Related Work

2.1 Introduction

Natural language semantics is a huge and diverse field, complicated by a range of
theoretical frameworks, numerous potential applications, and the competing tensions
of pragmatic short-term applications and long-term ambitions.

This thesis aims to be a step towards solving natural language inference problems
in the long-term, and I will discuss the related work from this viewpoint.

• First I will discuss traditional logical approaches, based on linguistic theories of
formal semantics.

• Then I will describe a variety of supervised approaches to semantics, which aim
to reproduce annotated corpora. I will argue that the ontologies these annotations
are based on are always likely to be incomplete.

• Finally, I will discuss distributional semantics, which has been successful in cap¬

turing some aspects of meaning, but fails to model the meaning of many function
words. I will conclude by discussing some recent work that uses distributional
statistics in a compositional symbolic framework.

7



8 Chapter 2. Related Work

2.2 Logical Semantics

2.2.1 Formal Semantic Approaches

Early work on computational semantics focused on building models of linguistic the¬
ories of formal semantics, which aim to compositionally combine logical forms repre¬

senting the meanings of words onto logical forms capturing the meanings of sentences.
Formal semantics has been highly successful theoretically at explaining many linguis¬
tic phenomena, including negation, quantification, plurality, anaphora, modality, tense,
and aspect. However, despite many attempts, it has fallen out of favour as a method of
modelling semantics. I briefly summarise two recent attempts.

The XLE system developed at Xerox PARC used a large hand-built lexical func¬
tional grammar for syntactic and semantic parsing [Bobrow et ah, 2007]. A large
lexicon is used, based both on existing annotations such as WordNet and VerbNet, and
extensions to deal with deverbal nouns, implicative verbs, light verbs. Both syntactic
and semantic ambiguity are handled using packed logical forms (as opposed to statis¬
tical disambiguation models), and an inference algorithm is used that reasons directly
with packed logical forms.

Boxer [Bos, 2008] was an important breakthrough in this field, as it was able to
build logical forms for sentences with high coverage without extensive grammar en¬

gineering. The system is based on CCG, which has a very strong link between the

syntactic type and the semantic type of words. Wide-coverage CCG syntactic parsers

already exist, such as the C&C parser [Clark and Curran, 2004], making it relatively
straightforward to generate semantic interpretations for words. Hand-built lexical en¬

tries are supplied for function words like not and every. Discourse Representation
Theory is used as a semantic formalism. Additional inference rules are added using
resources such as WordNet, and inference can be performed using first-order theorem

proving.

Both these approaches achieve high-precision on a textual entailment task, but re¬

call is very low—largely because of the weak model of lexical semantics provided by
the ontologies. This problem is certainly not through lack of effort—the XLE team had

expert linguists, and seemingly devoted large resources over many years in developing
their system—making it attractive to search for an alternative to further manual effort
in ontology construction.
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2.2.2 Natural Logic

MacCartney and Manning [2007] introduced a natural logic approach to interpreta¬
tion, which maps sentences to polarity-annotated strings. Polarity is either positive,
negative, or non-monotone, and encodes whether a word is in the scope of negation.
A sentence will entail another if its positively polarised words are replaced with more

general expressions, or its negatively polarized words are replaced with more specific
ones. For example Some farmers don't own any donkeys—i>Some people don't own any

fat donkeys because farmers is positively polarized and donkeys is negatively polarized.
Hand-built lexical entries for function words encode information about the polarity

of the word's arguments. For example, most is non-monotone on its first argument,
and upward-monotone on its second argument, so most birds fly^-most birds move.

They combine these polarities using a syntactic parse tree, to produce a polarity for
each word in the sentence. Inference on these annotated strings is a series of atomic
edits which transform the premise into the hypothesis, whilst keeping track of whether
the edited sentence is inferred by the original. These edits can be efficiently computed
using an edit-distance algorithm. Resources such as WordNet [Miller, 1995] are used
to model lexical semantics. They show excellent performance on a dataset that empha¬
sises a variety of complex linguistic phenomena, and match the precision of Bos and
Markert [2005] with much higher recall. However, natural logic has a much weaker

proof theory than first order logic, and is unable to handle inferences involving multi¬

ple sentences, make entailments where words are re-ordered, or model logical relations
such as De Morgan's Laws.

2.3 Supervised Semantics

Much work on semantics has taken place in a supervised setting, where sentences are

paired with some gold standard meaning representation, and systems learn to map be¬
tween them. There are two challenges here—defining and annotating the gold standard

representation, and learning the mapping. These approaches can broadly be divided
into domain-specific database querying tasks, and broad-coverage semantic annotation
projects such as OntoNotes [Hovy et al., 2006] and FrameNet [Baker et al., 1998].
All of these approaches require a predefined set of predicates which is used to an¬

notate language. I will argue that such any manually constructed ontology is likely
to be incomplete, limiting the effectiveness of supervised approaches, and motivating
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unsupervised distributional approaches to semantics.

2.3.1 Domain Specific

A large body of work, often called semantic parsing, has tackled the problem of map¬

ping natural language questions on to database queries. Commonly used databases
include Geoquery [Zelle and Mooney, 1996], ATIS [Dahl et al., 1994] and (more re¬

cently) Freebase [Bollacker et al., 2008], This task is clearly useful, as it allows natural
language interfaces to existing manually constructed databases. Freebase is by far the
largest example of such a database, containing 2.4 billion facts1, and will contain the
answers to many common questions. However, even this is far too small from the point
of view of wide coverage natural language understanding—Riedel et al. [2013] notes

that its ontology cannot express such high-frequency predicates as criticize.

2.3.2 Wide Coverage

Alternative approaches have attempted to annotate all sentences in a corpus with se¬

mantic representations.
The PropBank and NomBank projects have annotated argument taking nouns and

verbs respectively in the Wall Street Journal with predicate-argument structure [Kings¬

bury and Palmer, 2002, Meyers et al., 2004], The annotations abstracts away from
different syntactic realisations of arguments. For example, both Shakespeare wrote

Macbeth and Macbeth was written by Shakespeare would be annotated as having the
same semantic representation. OntoNotes extends this with other corpora, and maps

words to their senses in WordNet. FrameNet goes a step further than VerbNet, by

grouping predicates that have the same semantic arguments, even if they are realized

differently syntactically. For example, Shakespeare wrote Macbeth and Shakespeare
is the author of Macbeth would evoke the text creation frame, with author and text

arguments.

Much work has also been done on automatically learning to map text onto these

representations, including the fields of word-sense disambiguation [Navigli, 2009],
frame-semantic parsing [Das et al., 2013] and semantic role labelling [Gildea and Ju-

rafsky, 2002],

Creating such ontologies as WordNet, VerbNet and FrameNet is highly expensive.
However, even using these resources, the problem of lexical semantic inference is far

'As of February 2014
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from solved. Although they have been successfully used in downstream semantic tasks
such as entailment and question-answering, state-of-the-art models incorporate many

other sources of information [Hickl et ah, 2006], In contrast, parsers trained on the
Penn Treebank [Marcus et al., 1993] (or derived Treebanks such as CCGBank [Hock-
enmaier and Steedman, 2007]), are normally sufficient when a syntactic analysis of a

sentence is required.
Much of the problem lies with the difficulty of creating ontologies. WordNet con¬

tains over 200,000 lexical entries, but does not contain the information necessary for

simple inferences such as author of => wrote. Senses are also notoriously fine¬

grained, and hard to annotate [Hovy et al., 2006], Conversely, FrameNet represen¬

tations can be overly coarse-grained for inference. For example fry, bake, and boil all
evoke the same frame, but we would not want to infer that John baked a cake-yJohn

boiled a cake. VerbNet also contains interesting logical form annotations. However,
as with FrameNet, the predicates are too coarse-grained to support question-answering

applications (e.g. write, invent, mass-produce and synthesise are given the same se¬

mantics). The ultimate difficulty is that language is extremely productive, and express

a vast range of meanings, with subtle and complex relationships between the meaning
of one word and others—capturing all this in an ontology is extremely challenging.

In conclusion, there have been many large-scale expensive attempts to construct

ontologies for expressing the meaning of natural language. However, none of these
ontologies has proved sufficient for capturing the diversity and subtlety of meaning
that languages express, and consequently are insufficient for wide-coverage natural
language understanding. These limitations motivate the use of distributional semantics,
in an attempt to capture to learn a better representation than can be created by hand.

2.4 Distributional Semantics

Distributional semantics encompasses a wide range of approaches to modelling mean¬

ing. The key distinction is that methods attempt to learn the meanings of expressions
from unlabelled corpora, rather than relying on existing ontologies. The methods as¬

sume the Distributional Hypothesis, which states that words with similar meanings
should occur in similar contexts [Harris, 1954],

I broadly divide these approaches into ones in which context vectors are built for
words and then composed to interpret longer expressions (Section 2.4.1), and ones

where statistics are used to judge similarity between longer non-compositional patterns



12 Chapter 2. Related Work

(Section 2.4.2).

2.4.1 Vector Space Approaches

Vector space models of semantics have attracted a very large number of recent papers—

see Baroni et al. [2013] for an overview. Section 2.4.1.1 discusses how words are rep¬

resented in vector spaces, Section 2.4.1.2 describes how word vectors can be composed
into vectors representing phrases and sentences, and Section 2.4.1.3 discusses attempts
to model logical operators such as negation and quantification in vector spaces.

2.4.1.1 Distributional Models of Word Meaning

Vector space models of semantics represent the meaning of linguistic expressions as

vectors. The standard approach is to create a vector space with a dimension for each
of the N most common words in the corpus. Then, a vector is created representing
each word, based on the context it occurs in—the entries in the vector are the counts of

the corresponding context words. There are many possible versions of this approach,
including methods for normalizing the dimensions, the size of the context window,
the number of dimensions, the use of tensors and matrices instead of vectors, using

syntactically connected words as the context, performing dimensionality reduction on

the vectors, etc. A more recent alternative is to use auto-encoders to learn vector space

embeddings for words using neural-network language models [Bengio et al., 2006],
It is assumed that the similarity of words in a vector space (e.g. using cosine

or Euclidean distance to measure similarity) corresponds to semantic similarity. For

example, dog may be closer to cat than to television, as the former two will share more

contexts. Systems such as that of Huang et al. [2012] achieve good correlation with
humans on word similarity evaluations.

There is much evidence that such representations of words are useful (particularly
those of neural language models). For example, they have been used as features in su¬

pervised natural language processing tasks such as POS-tagging, named-entity recog¬

nition, noun-phrase chunking, CCG supertagging, dependency parsing and semantic
role labelling [Turian et al., 2010, Collobert et ah, 2011, Lewis and Steedman, 2014b].
In such tasks, rather than using purely unsupervised vectors, the vectors are typically
'fine-tuned' during supervised-training—by back-propagating errors into the vectors.

However, it is still unclear how sufficient vector space representations are for fully
modelling word meaning. For example, antonyms are typically found to be much
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closer to their opposites than to unrelated words, as they often share similar contexts

[Pado and Lapata, 2003], A single concept of distance in vector space seems to be
insufficient for representing the relation between antonyms. However, there has been
promising recent work in this regard from Socher et al. [2013], who train a neural
network for classifying WordNet relations between words, based on their vector repre¬

sentations.

2.4.1.2 Compositionality

Given that vector space representations of words have been shown to be useful, there
has been interest in creating vector space representations of longer expressions and
sentences.

The first approach to composing word vectors was Mitchell and Lapata [2008], who

proposed addition and multiplication as composition functions. The functions allow
both the words being combined to contribute to the meaning of the full expression.
Both these functions are associative and commutative, meaning word-order is ignored,
and all bracketings of the words are equivalent. Consequently, Frogs eat herons and
Herons eatfrogs will have the same representation. Despite their simplicity, they have
shown good performance compared to much sophisticated models [Blacoe and Lapata,
2012]. Baroni et al. [2013] argues that this combination of simplicity and performance
makes them "undoubtedly the best current choice for practical applications".

Other approaches have taken syntax into account, for example Coecke et al. [2010]
and Grefenstette et al. [2011] represent words as tensors depending on their semantic

type, and then use tensor products to combine them into the meanings of sentences. For
example, nouns can be modelled as vectors, and adjectives as matrices—so then an ad¬
jective is a function from a noun to a noun. This maintains the close link between syn¬

tax and semantics that is a key attraction of categorial grammar. One disadvantage of
this approach is that is can require extremely high order tensors to represent some cat¬

egories. For example, syntactic categories such as ((N/N)/(N/N))/((N/N)/(N/N))
are common in long noun-compounds, which requires an 8th order tensor for represen¬

tation. Even if the dimension for nouns is only 50, such words would be represented
with almost 40 quadrillion parameters.

Socher et al. [2011, 2012] model composition of word vectors using recursive au-

toencoders. Autoencoders are neural networks which aim to reconstruct their input
after first compressing it to a lower dimensional hidden layer via a function /. For ex¬

ample, given vectors for two consecutive expressions a,b £ R", the autoencoder aims
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to learn a matrix W G K"x2" such that f(a,b) = g(W(a; b)), where g is a function such
as tanh that introduces non-linearity. Crucially, the dimension of the representation
of the pair of expressions f(a,b) is then the same as the dimension of the represen¬

tation of the individual expressions—meaning that / can be applied recursively. The
choice of which order to combine expressions can either be based on a syntactic parse

[Socher et al., 2012] or choosing the combination with the minimum reconstruction
error [Socher et al., 2011]. The use of autoencoders means that the matrix W can be
learnt in a fully unsupervised way, to minimize the reconstruction error at every node
in every tree in the corpus. Socher et al. [2012] extends this model with the MV-RNN,
which represents words as a pair of its vector and a matrix representing its operator
semantics—so a different matrix is used in each composition. A softmax layer can be
added to the output layer, allowing supervised data to fine-tune the representations.

However, despite the large amount of work on this problem, there is relatively little
evidence that vector representations of sentences support the kinds of inference re¬

quired for tasks such as question-answering. Evaluations typically focus on very short

expressions, such modelling the meaning of verb-object or adjective-noun combina¬
tions [Mitchell and Lapata, 2008]. Socher et al. [2011, 2012] show that such vectors

can be combined with labelled data to perform tasks such as predicting sentiment, and
detecting instances of a small number of relations. However, as discussed in Section
2.3 it seems unlikely we will ever have adequate hand-built representations that capture
all aspects of meaning.

Baroni et al. [2013] make the following argument: "once you assume that words
have distributional representations, it is hard to avoid the conclusion that phrases and
sentences have distributional representations too". However, as discussed in the previ¬
ous section, there are few current models attempting to model aspects of word meaning
which are more complex than similarity. This problem becomes far worse when mod¬

elling the meaning of sentences, where similarity is rarely the most useful or meaning¬
ful metric. Applications such as question answering instead require entailment. Even
if sentences could be modelled successfully as vectors, many important inferences re¬

quire understanding longer texts, such as documents or whole encyclopedias—which
are likely to bring their own problems for vector-space composition.

2.4.1.3 Attempts to Model Logic in Vector Spaces

A major motivation for the development of formal semantics was the apparent need to

represent the meanings of words such as every, not and or. These words have obvious
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interpretations when meanings are represented in first order logics, but it is rather less
clear what their interpretation should be in a vector space. I briefly review several
attempts to tackle this problem.

Grefenstette [2013] show how to hand build tensor representations of function
words that simulate logical connectives. They assume a vector-space which is very

different from standard distributional approaches. In domains with n objects, objects
are represented as one-hot vectors in (0,1}", true and false are represented as (1,0)7
and (0, \ )T, and predicates are the 2 xn matrices that map objects onto either true or

false. Simple 2x2 matrices can be defined that simulate logical negation and connec¬

tives. It is not possible to represent quantifiers in this way, so an alternative predicate
representation is defined. Sets are represented by {0,1}" vectors where object k is in
the set S iff Sk — 1 • Then, predicates p are redefined to be functions that map sets to

subsets, which can be modelled with diagonal matrices Mp. Existential quantification
of the form 3x[p(x) A q{x)\ is then a function that checks whether Mp and Mq have a
non-zero intersection. Similarly, Vx[p(x) ==> q(x)\ can be modelled with a function
that checks if the intersection of Mp and Mp is equal to Mp (i.e. the extension of p is a
subset of the extension of q).

There are a number of challenges facing applying Grefenstette [2013]'s model to

text. In particular, the logical operators used assume object and predicate represen¬

tations which are quite unlike those which have been learnt in an unsupervised way

(which is the motivation for using vector spaces in the first place). The dimension of
the space, and hence the size of the predicate representations, also grows linearly in
the number of objects in world, which may prove problematic at scale.

Socher et al. [2012] show that the MV-RNN model learns to model interesting non-

Boolean cases of negation involving adjectives—for example learning that not great

does not mean terrible. They also show that with one-dimensional vectors, the model
can learn function representations of words that model propositional logic connectives.
Of course, the one-dimensional case is very different to the kinds of vectors that are

normally used to represent content words, and it is yet to be shown how to generalise
this approach to deal with both logical negation and distributional representations of
content words. Hermann et al. [2013] argue that the MV-RNN model allows nega¬

tion to take too broad a scope, and introduces an extension which limits how far the
functional representation of a word can propagate.

Baroni et al. [2012] implement the only system I am aware of that attempts to
model the meanings of quantifiers in vector spaces. They build vectors for pairs of
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quantifiers and nouns, and then try to classify the validity of inferences such as all
dogs-^some dogs. The classifier is trained based on labelled examples of entailment
with other quantifiers, such as every dog^many dogs. The experiments show that the
extracted vectors do contain some information about the meanings of the quantifiers.
As in other work modelling logic in vector spaces, they do not test the interaction with
the semantics of content words—for example every animal^many dogs. Of course

many properties of quantifiers are untested, such as monotonicity, scoping, and effect
on the verb phrase. It would be interesting to know if the model could be scaled up

to learn examples like Every person danced^All girls moved. Capetola (2013) argues

such inferences may be possible in vector spaces, but argues inferences like every dog
barks^Fido barks require model-theoretic semantics.

2.4.1.4 Conclusion

Vector space models of meaning remain a very active area of research, with much

progress made in recent years. However, there are many outstanding challenges. To

my knowledge, no research has yet demonstrated a vector-space model in which log¬
ical aspects of function words interact with distributional representations of content
words. There are also unsolved problems in compositionality, and most research still
concentrates on modelling the meanings of short phrases. There is limited evidence
so far that vector representations of sentences support the kind of inference needed for
tasks such as question answering, although they have proved very useful on tasks such
as detecting sentiment. Future work may well make progress with these challenges,
but they suggest that symbolic meaning representations are still worth pursuing.

2.4.2 Pattern-based Approaches

Given the difficulty of compositionality in distributional semantics, an alternative ap¬

proach is to build non-compositional models of longer expressions. Distributional sim¬

ilarity of these expressions is used to create inference rules, which determine whether
one can be substituted for another.

There are several possible ways to define longer expressions, the most commonly
used representations are Reverb patterns [Fader et al., 2011], and dependency paths
[Lin and Pantel, 2001]. Reverb patterns are are short sequences of words connect¬

ing two noun phrases, filtered by POS-tag. Whilst many common expressions can be

captured using these patterns, it will not find relations between noun-phrases that are
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separated by more than a few words, as it does not use syntax. Dependency paths are

the fragment of a dependency tree connecting two noun phrases. These patterns can

capture long-range dependencies, but will drop modifiers, such as adverbs, determiners
and negation. For example, the sentences Every American supports Obama and Most
Americans don't support Obama contain the same dependency path between American
and Obama.

Statistics can then be gathered on the two noun-phrases arguments of these pat¬
terns. The seminal DIRT system [Lin and Pantel, 2001] represented a pattern with
two vectors, containing the arguments of each of its slots in a large corpus. For ex¬

ample, the X wrote Y pattern and the X is the author of Y pattern may have similar
nouns instantiating X and Y, providing evidence they are semantically similar. The
idea here is closely related to other distributional semantic approaches; similarity in
vector space is intended to correspond to semantic similarity. To compare one pat¬
tern with another, the average similarity of the argument vectors was computed using
a information-theoretic metric. Many other possible metrics have subsequently been

proposed [Weeds and Weir, 2003, Kotlerman et al., 2010].
Pantel et al. [2007] made an important contribution to this area, by noticing that

the inherent ambiguity in such inference rules could be resolved by adding types to

arguments. For example, the verb means something quite different in charging a crim¬
inal and charging a battery, but knowing that the objects are different kinds of thing

suggests the verb means something different in each case. Schoenmackers et al. [2010]
used an alternative model of types based on Hearst patterns [Hearst and Schiitze, 1996],
whilst Yao et al. [2011] treated types as latent variables in a topic model, and Yao et al.

[2012]'s model learns types using agglomerative clustering. Rather than assume that
a single type fully disambiguates relations, Melamud et al. [2013] built a distribution
over types, and marginalised this distribution out during inference.

Berant et al. [2011] further developed these ideas by building entailment graphs.
An entailment graph contains a directed edge between every pair of predicates where
an inference is predicted to hold. The key observation is that entailment is a transitive
relation, so the entailment graph must be closed under transitivity—greatly limiting the

possible graphs. Learning entailment graphs is therefore a constrained optimisation
problem, where the objective is maximizing the probability of the edges in the graph,
whilst respecting the transitivity constraint.

Riedel et al. [2013] introduced a novel related approach. This model builds a

matrix in which rows correspond to pairs of entities, columns correspond to predi-
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cates, and entries indicate the probability of a relation holding between the pair of
entities. The matrix is initially populated with directly observed predicates, and then
an unsupervised model is used to complete it based on correlations between the ex¬

tensions of predicates. This approach has several advantages compared to previous
work. When judging the truth of a statement, such as Google bought YouTube, it
can take into account all the relations in the corpus observed between the entities—
whereas inference-rule approaches only make pairwise decisions like Google pur¬

chased YouTube^-Google bought YouTube. It also integrates seamlessly with existing
knowledge bases, as their relations can be added as predicates—making the mapping
from textual relations to knowledge-base schemas straightforward in both directions.
Whilst this model has clear practical applications, there are limitations. Modelling
logical concepts such as negation, quantification, disjunction and modality may prove

difficult in this matrix framework. The textual patterns used are non-compositional,
so the model would have to learn the relation between buy and did not buy based on

distributional statistics.

2.4.3 Compositional Symbolic Approaches

2.4.3.1 Unsupervised Semantic Parsing

Unsupervised Semantic Parsing [Poon and Domingos, 2009, 2010, Titov and Klemen-
tiev, 2011] is an important recent development in semantics.

USP maps dependency parsed sentences to logical forms where the symbols are

cluster identifiers. Every word is assigned to exactly one cluster. For example a buying
cluster may contain verbs such as buy, purchase and acquire. The cluster also contains
a set of roles, which will be represented as a distribution over dependencies. The
role corresponding to the purchaser may be likely to be realised by dependencies such
as nsubj or agent. Another role may correspond to the seller, and be realised by the

dependency from. These clusters can be learnt in an unsupervised way, as similar

predicates are likely to have similar arguments. Poon and Domingos [2010] extend
this model by learning hierarchies of predicates.

There are several limitations of current models of USP. The clustering is computa¬

tionally expensive, and can only be run on small datasets such as the 20,000 sentence

Genia corpus [Kim et al., 2003]. Ambiguous predicates are not modelled—a limitation
that is perhaps not exposed more because of the relatively specific biomedical domain
the approach is tested on. Whilst the model could be extended to deal with this weak-
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ness, there would be a corresponding computational overhead. The models assume that
the predicate and dependencies realising a role are conditionally independent given a

cluster. This assumption may mean it has limitations with clustering predicates which
express the same meaning using different dependencies, such as buy and sell. Current
work also makes no attempt to model function words, such as negatives and quantifiers.

2.4.3.2 Distributional Logical Axioms

Garrette et al. [2011], Beltagy et al. [2013] introduce a method for improving the per¬

formance of logic-based systems, by adding distributionally induced inference rules as

logical axioms.
Garrette et al. [2011] judge the probability that a WordNet-derived inference rule is

valid in a given context, based on the similarity of the vectors representing the words.
This softens deterministic WordNet rules, by making them probabilistic—and hence
is aimed at improving precision, rather than recall. Beltagy et al. [2013] extend this
work by creating axioms between all pairs of words. They also create axioms between
multi-word items, based on compositional vector space similarity.

This strand of research is in a similar spirit to that developed in this thesis; a com¬

parison between the approaches is given in Section 4.6.4.



 



CHAPTER

A Computational Model of Natural

Semantics

3.1 Introduction

This chapter develops the first wide-coverage implementation of the theory of natural
semantics, a CCG-based approach to semantics that is effective at modelling quantifier
and negation scope [Steedman, 2012]. This implementation provides the backbone for
the distributional semantics extensions that will be developed in the rest of this thesis.
The description of CCG will focus on the theory as it is currently implemented in
treebanks, parsers, and semantic analysis tools, which differs somewhat from textbook
treatments.

The goals of this chapter are to:

• Build first-order logical forms for open domain text with high-coverage.

• Model the underlying predicate argument structure, i.e. to identify which objects

participate in which relations. CCG allows us to handle a variety of linguistically
complex constructions.

• Model the meaning of function words, particularly quantifiers and negatives, to

allow the system to make powerful logical inferences.

21
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• To verify the correctness of Steedman [2012]'s theory of natural semantics, par¬

ticularly the mechanisms for representing scope ambiguities.

However, in this chapter I do not attempt a model of lexical semantics that goes

beyond using the word itself as a symbol.
Section 3.2 offers a brief introduction to the CCG theory of syntax and semantics.
Section 3.3 sketches a more sophisticated theory of semantics, based on that of

Steedman [2012], that is used in this thesis.

Section 3.4 describes how to build a wide-coverage implementation of this theory,

by showing how to create lexical entries for words based on their syntactic category.

Section 3.5 gives an algorithm for converting the natural semantics representation
into first-order logic, which can be used in standard theorem provers.

Section 3.6 evaluates the implementation. I show it has high-coverage, with valid

output for 99.6% of sentences. Investigating the output shows that it successfully mod¬
els complex syntactic constructions and scope ambiguities. I also evaluate the quality
of these logical forms on the FraCaS suite, showing that they are capable of sophisti¬
cated multi-sentence inferences involving quantifiers.

Section 3.7 discusses the limitations of the system, and future directions for com¬

putational models of formal semantics.
The FraCaS evaluation has previously been published in Lewis and Steedman

[2013a],

3.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar [Steedman, 2000, 2012] is a strongly lexicalized

theory of language, in which (almost) all the decisions made during syntactic and se¬

mantic parsing are assignments of definitions to words. During parsing, each word is
first assigned a lexical entry. A lexical entry is a triple of a word, its syntactic category,
and its semantic interpretation, denoted:
word h category : interpretation

For example, the following lexical entry asserts that Shakespeare can be a noun-

phrase, interpreted as a shakespeare symbol.
Shakespeare h NP : shakespeare

Many words act as functions. Their lexical entries have syntactic categories that
are functions from one category to another, and interpretations that take logical forms
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as arguments using lambda calculus. For example, the following lexical entry says

that the transitive verb wrote is syntactically a function from two noun-phrases to a

syntactic sentence, and semantically a function from two entities to a predicate on

events1 (representing a semantic sentence),
wrote h (S\NP)/NP : XxXyXe.write(y,x,e)

A small set of combinators define how categories and interpretations can combine,
of which function application is by far the most common. The same combinator ap¬

plies to both the syntax and semantics. The process that combines the meanings of all
the words in a sentence is called a derivation, for example:

Shakespeare wrote Macbeth

NP (,S\NP)/NP NP
shakespeare XyXxXe.write(x,y,e) macbeth

S\NP
\x.write(x, macbeth, e)

<
S

write(shakespeare, macbeth, e)

3.2.1 Syntactic Categories

CCG categories are either ground or functional.
Ground categories include S (sentence), NP (noun phrase), PP (prepositional phrase)

and N (noun). Ground categories may subcategorize with agreement features. For ex¬

ample PPjn refers to a prepositional phrase headed by in, and Spss refers to a passive-
voice sentence.

Functional categories can be constructed as functions between other categories. If
X and Y are categories then X/Y and X\Y are functions that return the category X if
applied to the argument Y. Backward slashes require that the argument occurs to the
left of the function in the sentence, and forward slashes require that it occurs to the

right.
Each category has a semantic type, which are e, t, ev (entities, truth values, and

events), or functions between these. The types of function categories can easily be
constructed from the types of ground categories.

Some example categories and their semantic types are given in Table 3.1.
'Event variables [Davidson, 1967] are useful semantically for analysing constructions such as ad¬

verbs. Sometimes they will be omitted from derivations for brevity, but the implementation uses event
variables for analysing all verbs and argument taking nouns.
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Category Description Semantic Type
N Noun < e,t >

NP Noun Phrase <e>

PP Prepositional Phrase <e>

PR Phrasal Verb Particle <e>

S Sentence < ev,t >

S\NP
(S\NP) /NP
N/PP
Ni/Nj
(S\NP)\(S\NP)

Intransitive Verb

Transitive Verb

Argument-taking Noun

Adjective
Adverb

< e,< ev,t »

< e,< e,< ev,t »>

< e,<e,t »

« e,t >,<e,t »

« e,< ev,t >>,< e,< ev,t »>

Table 3.1: Some example CCG categories, and their semantic types. In this interpre¬

tation, sentences are viewed as predicates on events.

3.2.2 Semantic Interpretations

As well as a syntactic category, each lexical entry also provides a semantic interpreta¬
tion. In this work, I will express interpretations using lambda-calculus and a first-order

logic, but other representations are possible. The crucial point is that the syntactic

category and semantic interpretation of a word must have the same semantic type.

For example the transitive verb loves has the category (S\NP)/NP, so its semantic
interpretation must have type < e,< e,< ev,t »>. One interpretation meeting this
restriction is: XxXyXe.love(x,y,e). Note that because the verb takes two noun-phrase
arguments in the syntax, it must also take two entity arguments in the semantics.

3.2.3 Combinatory Rules

A small set of binary combinators is used, that can combine two categories X and
Y to a category Z, and performs a corresponding operation on the semantics. The
combinators guarantee that the syntactic and semantic types will match for the result
of the combination, if they did for each of the arguments. The combinatory rules used
are listed in Table 3.2.



Rule

Left

Right

Result

Symbol

ForwardApplication

X/Y

ky.fiy)

7:y

x ■f(y)

>

BackwardApplication

Y:y

X\Y

Ay./(y)

X:f(x)

<

ForwardComposition

X/Y

Ay./(y)

Y/Z

Xz.giz)

X/Z:Xz.f(g(z))

>B

BackwardCrossedComposition
X/Y

Ay./(y)

Y\Z

kz.g(z)

X/Z:Xz.f(g(z))

>Bx

ForwardSubstitution
(X/Y)/Z
XzXy.f(y,z)

Y/Z

Az.g(z)

X/Z:Xz.f(g(z),z)
>S

BackwardsCrossedSubstitution
Y/Z

Xz.g(z)

(X\Y)/Z

XzXy.f(y,z)

X/Z:Xz.f(g(z),z)
<Sx

Forward2-Composition
X/Y

ky.fiy)

cY/Z)/W

ZwXz.g(z,w)
(X/Z)/W:XwXz.f(g(z,w))

>B2

Table3.2:ExampleCCGCombinatoryrules.Seethederivationsthroughoutthischapterforexampleinstantiationsoftheserules.
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3.2.4 Unary Rules

A small number of unary rules are also used, which convert one category to another. I
use a similar set of rules to those implemented by the C&C parser [Clark and Curran,
2004], and extend them with semantic interpretations2. Again, these rules perform
operations on the syntax and semantic in tandem, and guarantee that the category and
interpretation of the result will have the same semantic type.

For example, in reduced relatives such as the boy playing football, a verb-phrase
acts as a post-modifier on a noun:

S\NP : XxXe.p(x, e) —> N\N : XqXx3e[q(x) A p(x,e)\

3.2.5 Type Raising

Type-raising a category converts an argument into a function over functions. If A is a

ground category, then Y/(Y\X) and Y\(Y/X) are its type-raised forms. For example,
the following is a type-raised lexical entry:

Shakespeare b S/(S\NP) : Xp.p(shakespeare) This lexical entry defines Shake¬
speare as a function from verb-phrases to sentences, and can be used in the subject
position. Similarly, noun phrases occuring in the object position can use lexical entries
such as the following, where the category is a function from a transitive verb to a verb

phrase:
Macbeth h (S\NP)\((S\NP)/NP) : Xp.pfnacbeth)

Type-raised categories can be space-consuming and difficult to read, so I will nor¬

mally abbreviate them as NP^.
Here is a type-raised derivation for Shakespeare wrote Macbeth:

Shakespeare wrote Macbeth

S/(S\NP) (S\NP)/NP (S\NP)\({S\NP)/NP)
Xp.p(shakespeare) XyXx.write(x,y) Xp.p(macbeth)

S\NP <
Xx.write(x, macbeth)

>
S

write(shakespeare, macbeth)

In most existing work, e.g. CCGBank [Hockenmaier and Steedman, 2007] and
derived parsers, type-raising is implemented as a unary rule. In contrast, the categories

2One exception is that I handle type-raising in the lexicon, as discussed in 3.4.3.1. I also use an

option on the C&C parser to disable 'noisy' rules, which eases semantic interpretation, at small cost of
coverage.
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NP, PP and PR are always type-raised in the lexicon in theoretical treatments of CCG.

My system implements type-raising in the lexicon—to my knowledge, it is the first to
do this, and to show that lexicalized type-raising is possible for practical wide-coveage
parsing.

There are several reasons for type-raising all such categories:

• Most importantly for this thesis, type-raising allows us to give accurate se¬

mantic interpretations to generalized quantifiers. The most natural interpreta¬
tion for every is XpXqVx.p(x) q(x). However, this has the semantic type
« e,t >,« e,t >,t », which is not type-transparent to the none-type-raised
determiner category NP/N (of semantic type < e, < e,t >>). Schematized de¬
terminer categories, such as NP^/N can be used instead.

every b (S/(S\NP))/N : XpXq\/x.p(x) —>• q(x)

• It naturally explains case-marking on noun-phrases. For example, the fact that I
is used in the subject and me in the object is explained by the lexicon containing
entries such as:

I b S/(S\NP) : Xp.p(me)
me b (S\NP)\((S\NP)/NP) : Ap.p{me)
This distinction is particularly important in languages which make more use of
case-marking, such as Hindi.

• Typed-raised derivations allow left-branching derivations, which support incre¬
mental interpretation, which be useful for tasks such as language modelling. For
example:

Shakespeare wrote Macbeth
S/ (S\NP) (,S\NP)/NP S\(S/NP)

Ap.p(shakespeare) XyXx.write(x,y) Xp.p(macbetli)
>B

S\NP
Xy.write(shakespeare,y)

__ <

5

write(shakespeare, macbeth)
Note that this derivation produces the same logical form as the right-branching
version.

Boxer [Bos, 2008], another wide-coverage CCG semantic parser, takes an alter¬
native approach. Their system allows non-typeraised NP categories to have the type-
raised semantics, and making corresponding changes to the interpretations of words
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taking NP arguments so that semantically they take function arguments. For example,
the intransitive verb sleep would have the interpretation Xp.p(Xx.sleep(x)). I believe
that syntactically type-raising NPs in the syntax is a better solution, as it means words
can have simpler and more intuitive interpretations (at the price of more complex syn¬

tactic categories).

3.3 Natural Semantics for CCG

The next section outlines the theory of Natural Semantics proposed by Steedman
[2012], which is used in this thesis. The major change over the semantics outlined
so far is that existential quantifiers are replaced with generalized Skolem terms. This

change is intended to simplify reasoning about the scope of quantifiers and negation.
Steedman argues that this semantics is 'natural' because of the transparent interface
between syntax and semantics—which means that the approach fits into the natural

logic tradition (starting with Aristotle) that attempts to define a logic which matches
the grammar of natural language.

3.3.1 Quantifier Scope

Quantifiers are determiners that express how many entities are in a relation. Exam¬

ples include a, some, every, most, no, more than three etc. Determining which quan¬

tifiers have scope over which others is a major issue in building logical forms and

interpreting language. For example, the sentence Every man loves a woman has two

interpretations—one where there is a woman that all men love, and one where each
man may love a different woman— corresponding to the following two logical forms:

^ ^
a. 3w[woman(w) /\Mm[man{m) =$■ love(m,w)]]
b. Wm[man(m) 3w[woman(w) A love(m,w)]\
In the former interpretation, the existential is said to take wide scope, and in the

latter it takes narrow scope. The latter reading is called the surface scope reading, as

the ordering of the quantifiers in the sentence is the same as in the logical form—the
former called the inverse scope reading.

Determining the set of possible interpretations can be surprisingly complex. For

example, Geach [1973] points out that the sentence Every boy admires and every girl
detests some saxophonist appears to have exactly two readings—the saxophonist must
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either be wide-scope, or narrow-scope with respect to both boys and girls. There ap¬

pears to be no reading which means that all girls detest the same saxophonist, but all
boys may admire different ones.

3.3.1.1 Existing Work on Processing Scope

There have been many attempts in the linguistics literature to deal with such problems.
I briefly sketch several important approaches.

Perhaps the most obvious idea is to allow the syntax of the derivation to determine
which quantifiers scope over which others. For example, the following derivation gives
the narrow-scope reading:

Every man loves a woman

NF* (S\NP)/NP NP*
XpNm[man(m) =$> p(m)] XyXx.love(x,y) Xq.3w[woman(w) f\q{w)\

S\NP <
Xx.3w\woman{w) A love{x, w)]

>
S

Vm[man(m) =>■ 3w[woman(w) A love(m,w)}]
The corresponding wide-scope logical form can be derived with a left-branching

derivation:

Every man loves a woman

NP^ (S\NP)/NP NPl
XpNm[man(m) =» p(m)\ XyXx.love(x,y) Xq3w[woman(w) Ag(vv)]

>B

S/NP
Xy.\/m[man(m) => love(m,y)\

>
S

3w[woman(w) A Vm[man(m) => love(m, w)]]
However this method only allows the sentence Every boy admires and every girl

detests some saxophonist to have a single (wide scope) reading, as the right-node-

raising forces a left-branching derivation. It also means that purely semantic scope

ambiguities have to be reflected in different syntactic parses, and would require richer
syntactic treebanks that make this distinction.

Montague [1973] uses a non-monotonic quantifying in operation to model scope

ambiguities. Very loosely, this approach interprets the sentence with the quantifiers
replaced by pronouns, and then the quantifying-in operation is used to substitute the
actual semantics of the quantifier into the interpretation. For example, it can derive
the wide-scope reading by first considering the meaning of He loves some woman, and
then using the quantifying-in operation to replace the symbol for he with that of every

man.
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Cooper Storage [Cooper, 1975, 1983] builds an underspecified logicalform from a

syntactic parse, which is accompanied by a store of quantifiers. The example sentence

might parse to love(M,W), where M and W index a store <M — XpNm[man(m) —>

q(m)\,W = fqSJw\woman(w) —> q(w)\ >. The values of M and W can be substi¬
tuted in from the store to create a fully-specified interpretation. Applying M then
W gives 3w[woman(w) AVm[man(m) =>- love{m,w)]\, and applying IV then M yields
\/m[man(m) => 3w\woman[w) Alove(m,w)]].

Both quantifying-in and Cooper Storage can overgenerate readings, for example
it is easy to see how they derive 4 interpretations of the saxophonist sentence. These
approaches all also generate semantically spurious equivalent readings. The sentence
A man loves a woman has no scope ambiguities, however the methods suggested so far
will generate two different (but equivalent) logical forms:

(2)
a. 3w\woman(w) A 3m[man(tn) A love(m, w)]]
b. 3m[man(m) A 3w[woman(w) A love(m, w)]]

In the worst case, the number of interpretations is the factorial of the number of quan¬

tifiers. For example Koller and Thater [2006] note that the English Resource Grammar

[Flickinger, 2000] generates 3960 readings for the sentence For travellers going to

Finnmark there is a bus service from Oslo to Altara through Sweden—all of which are

semantically equivalent re-orderings of existential quantifiers.

3.3.1.2 Generalized Skolem Terms

Steedman [2012] proposes replacing almost all generalized quantifiers with gener¬

alised Skolem terms, in order to simplify reasoning about quantifier scope.

Singular generalised Skolem terms represent entities, and carry the following in¬
formation:

• Restrictor condition—a predicate on the entity the Skolem term represents. For
example, the restrictor condition for the noun-phrase a fat farmer would be

Xx.farmer{x) A fatfx).

• Scope—the set of universally quantified variables that the Skolem term is a func¬
tion of.

• Polarity—either positive, negative or unspecified (marked +, —, o), which deter¬
mines whether the Skolem term is in the scope of a negation operator (discussed
more in Section 3.3.2).
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• Identifier—an identifier, allowing coreference between multiple Skolem terms

referring to the same noun-phrase.

For example, the Skolem term +slc£fyx farmeri x: rePresents an entity that is a farmer,
which is not negated, has arbitrary unique identifier 27, and is scoped by two univer¬
sally quantified variables y and z (as in one reading for Every student knows that every

donkey is owned by some farmer). The unique identifiers can be automatically as¬

signed.
Plural Skolem terms represent sets. Here, the restrictor condition is a predicate on

every member of the set. These also have a cardinality condition, which is a predicate
on the cardinality of the set. For example, the wide-scope interpretation of the NP
More than 3 farmers would be represented as: -Xxfarmerix) ■ Is |s|>3

To simplify derivations, normally some of these features will be suppressed. For

example, the identifier will not be shown when no other term shares the identifier, and
the polarity will not be shown in sentences with no negation.

3.3.1.3 True Universals

The use of Skolem terms means that no entities are represented with existential quan¬

tifiers3. However, a small number of determiners introduce universal quantifiers, such
as each and every:

every h NP^ : XpXq.\/x[p(x) —» q(x)]
These are treated as being true universals, and have different properties to other

determiners—for example:

• True universals can invert scope. An Englishman won every gold medal is am¬

biguous between the wide-scope reading (with a single Englishman) and the
narrow-scope reading (with multiple Englishmen). On the other hand, An En¬
glishman won three gold medals can only be interpreted as having a single En¬
glishman.

• When conjoined, true universals take singular agreement. For example, Every
boy and every girl is dancing vs. A boy and a girl are dancing.

3For simplicity, events are represented with existentially quantified variables. However, we could go
further, and represent events with Skolem terms to reason about whether Three boys watched Macbeth
refers to a single event or three separate watchings.
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• True universals are not compatible with collective verbs, such as gather. For
example, The players gathered on the pitch vs *Every player gathered on the
pitch

3.3.1.4 Processing Scope

The scope of Skolem terms is initially underspecified—meaning the number of quanti¬
fiers it is bound by is not determined. However, at any point in the parse a specification
operation may take place, in which the scope is fixed to be the set of enclosing universal
quantifiers in the logical form.

For example, in the sentence Every man loves a woman, the Skolem term repre¬

senting a woman may specify either at the start of the derivation (and hence take wide

scope), or at the end of the parse (and take narrow scope). The two readings are:

(3) 0
a. dm[m.an(m)^m.an{m,skXw_i[w))\
b. dm[man(m) => man(m,sk{™jwomcm{w))}
A key advantage of using Generalised Skolem Terms is that logical forms with dif¬

ferent scopes are still structurally homomorphic—i.e. they are identical except for the

scope of the two Skolem terms. In contrast, using existential quantifiers the semantics
will be structurally different:

(4)
a. dw[woman(w) =$■ 3m[man(m) A love(m, w)]]
b. \/m[man(m) 3w[woman(w) A love(m,w)]}
The fact that the Skolemized logical forms are structurally homomorphic allows

both readings to be stored in a single shared structure:

f skP 1
(5) Vm[man(m) =>• love(m, < ^ > Xw.woman{w))]
Curly brackets here represent disjunctive packing of the logical form—cf. Maxwell
and Kaplan [1995]; Crouch [2005].

It is straightforward to derive such structures in a derivation: whenever a universal

quantifier takes scope over a new Skolem term, a new possible interpretation of that
Skolem term is created. For example:
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Every man loves a woman

NF* (S\NP)/NP NP^
XpNm[man{m) => p(m)\ XyXx.love{x,y) Xq.q(sk^wwoman{w))}

S\NP
Xx.love(x,sk9 , s)lv ' Aw.woman(w)' J

-<

Vm[man(m) =£- love(m, | | Aw.woman(w))]
Another key advantage is that logical form for A man loves a woman is unambigu¬

ous, despite containing multiple quantifiers:
love(man(sk9 , ,),sk9 , Av v Am.womanym)'' Aw.woman{w)'
This approach largely avoids the problems of underspecification, where sentences with
n quantifiers can have n\ spuriously equivalent readings.

Note that if the same Skolem term occurs multiple times in a logical form, only

readings where each instance of that Skolem is scoped by the same number of quanti¬
fiers are valid. For example, the packed logical form for Every boy admires and every

girl detests some saxophonist is:
[ sk° ] f sk° )

Vx[boy(x) => admire(x, < ^ > )] A Vz[gz>/(z) detest(z, < ^ > )] AsI S^35 J Xy.saxly) ^35 J Xy.saxiy)
before, the 35 identifier indicates that the Skolem terms all refer to the same noun-

phrase. The wide-scope reading follows from taking the first interpretation in the list
for each instance of sk35:

\/x[boy{x) => admire(x,sk%.Xy sax{y))] AMz[girl{z) => detest(z,sk%.Xy sax{y))\
The narrow scope reading is the second entry in the list for each instance of sk35:

\/x[boy(x) => admire(x,skflXy sax{y])]AVz[girl(z) => detest{z,skf5.Xysax{y])\
In conclusion, the method means that a single packed logical form can be created

from a single syntactic parse sentence that captures the genuine ambiguities, while not

generating spuriously equivalent logical forms.

3.3.2 Negation Scope

Negation scope is also crucial for correctly building accurate logical forms that support
the correct inferences. For example Obama didn't visit any EU countries-A-Obama
didn't visit Britain, but Obama didn't visit some EU countries-^Obama didn't visit
Britain.

If a noun-phrase is in the scope of negation, it is said to be negatively polarized,
and otherwise it is positively polarized. During inference, positively polarized noun-
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phrases can be replaced with more general ones, whereas negatively polarized noun-

phrases can be replaced with more specific ones. For example, the sentence Some
farmer owns no animals-Some person owns no donkey because farmer is positively
polarised and donkey is negatively polarised.

Polarity marking was used successfully by MacCartney and Manning [2007] to
draw such inferences—however we take the more general approach of doing this at the
level of logical form, rather than in syntax trees. To implement this in the semantics,
Generalised Skolem terms are marked with ± markers. For example:

a. Some farmer owns some donkey

own(+skfanner, "hskjQnkgy)
b. Some farmer doesn't own some donkey

—\own(-\-skfariner, -\-skjQnfey)
c. Some farmer owns no donkey

-<own(-\-skfarmer, sk(jonkey)
d. No farmer owns some donkey

~<own( skfanner, -\~skdQnkgy)
e. No farmer owns any donkey

-iownfy skfanner, skjonicgy)

Lexically, Skolem terms may have fixed positive or negative polarity, or the un¬

specified polarity o (slightly simplifying Steedman [2012], who also has inverting and
non-monotone polarities). If the polarity of a Skolem term is unspecified, it takes po¬

larity from its environment (i.e. negative if it is in the scope of negation, or positive
otherwise). Certain determiners fix the polarity of the Skolem term in the lexicon, e.g.:

some h NP^/N : XpXq.q(+sk^x p^

any h NP^/N : Xp?iq.q(-skXxp{x))
a h NPVN : kpkq.q(°skXx.p{x))

Constants representing named entities always have fixed positive polarity.

For example, in the following, the determiner some ensures that exam is positively
polarized, despite the negation.
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I didn't pass some exam

Sdd/NP NPt/N N
Xx.->pass(+i,x) XpXq.q(+skxx,P(x)) Xx.exam(x)

NPi'
kp.p(+skxx.exam(x))

>
3del

<pass(-\-i, ~\~sk^xexiim(x))

However, in the following, the determiner an leaves the polarity of exam unspeci¬
fied, so it takes negative polarity when it falls in the scope of negation.

I didn't pass an exam

Sdd/NP NP^/N N
Xx.-*pass(+i,x) XpXq.q(oskxxp^) Xx.exam(x)

NP^
Xp.p{oskXx,exam(x))

>

Sdcl
->pass(+i, skxx,exam(x))

This reading is equivalent to that for I didn 't pass any exam. The sentence also has
a positive polarity interpretation (in which an exam does refer to a particular exam),
where the Skolem term specifies early in the positive environment. An obvious exten¬

sion would be to also build a packed logical form capture negation scope ambiguities,
but I do not explore that here.

Steedman [2012] also uses polarity in the syntax, for example to disallow sentences

such as *Somefarmer owns any donkey. The present implementation only uses polarity
in the semantics.

3.3.3 Correction to Natural Semantics

As a consequence of implementing the theory, I discovered that Steedman [2012]'s
description of Skolem specification overgenerates readings. Problems can occur when
Skolem terms are nested inside others (as happens in relative clauses), because the two

terms are allowed to choose their scope independently. When the nested term takes
narrower scope than its parent, the resulting semantics does not have an interpretation.

For example, in Every man loves a woman who read a book, the theory allows the
woman Skolem term to specify early, taking wide-scope, and the book Skolem term to

specify late and be bound to the variable representing man. In this reading, every man
loves the same woman, but she must have read one book per man.
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Similarly, in John doesn't love some woman who read a book, it is possible for the
book Skolem term to specify late in the scope of negation, and be negatively polar¬
ized, whilst the woman Skolem term is positively polarized. However, book is clearly
positively polarized—the sentence does not entail John doesn't love some woman who
read a book by Tolstoy.

The problem in both cases is that nested Skolem terms are taking narrower scope

than their parent. This problem can be solved by not allowing Skolem terms to be
bound by negatives or quantifiers outside their parents, unless their parents are also
in that scope—which can be implemented by making the specification operation also
force the specification of all nested Skolem terms.

Unpacking the packed logical forms is then slightly more complex, as there are

dependencies between Skolem terms. A restriction has to be added so that nested
Skolem terms must be in the scope of all variables that their parents are in.

For example, the sentence Every man loves a woman who read a book yields the
following packed logical form :

f skO 1 f skO 1
\/m[man(m) => love(m, < > Xw.woman(w) A read(w, < > Xb.book(b)))

[ sky1' J [ sk^m> J
The new restriction on unpacking means that this subsumes three logical forms, not
the four predicted by the original theory. The incorrect blocked reading is:
Vm[man(m) => love(m,sk() (m) )]

Xw.woman(w)/\love{w,sk\b'book{b))
While the required correction is relatively minor, I believe this emphasises the im¬

portance of building testable computational implementations of linguistic theories to
validate their correctness.

3.4 Adding Natural Semantics to CCG Syntactic Parsers

Building wide coverage semantic parsers for CCG is relatively straightforward. First,
a syntactic parse from a CCGBank-trained parser can be used to assign categories to
each word and determine the combinatory rules used 4. Then, the semantic parser must

assign semantics to each word, based on its syntactic category, to build a complete lex¬
ical entry. As long as the choice of lexical entry means that interpretation of the word

4The C&C parser implements a subset of the rules and categories in CCGBank (based on frequency
cutoffs), which greatly simplifies semantic interpretation. CCGBank contains a large number of rare

categories and rules, many of which were the result of noise in the conversion process from CCGBank.
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has the same semantic type as its syntactic category, it is guaranteed that the interpreta¬
tion will be compatible throughout the derivation. For example, it will not try to apply
an expression expecting an entity argument to an event. This is a key advantage of the
close link between syntax and semantics in CCG, and greatly simplifies the process of
creating wide-coverage logical forms.

Of course, the fact that it is easy to produce logical forms does not guarantee that
they are useful—which must be validated experimentally.

3.4.1 Automatic Lexicon for Content Words

It would not be possible to enumerate all possible (word, category) pairs in advance
that might need a semantic interpretation, so the semantic interpretations must be gen¬

erated 'on the fly'. In this section, I describe an algorithm for doing this.
The simplest approach would be to manually write a template semantic interpreta¬

tion for each possible category, which optionally make use of a special LEMMA symbol
which is to be instantiated with the lemma of the word. Boxer [Bos, 2008] does this.

However, the system developed here uses a much larger set of lexical categories—
due to lexicalizing type-raising, and a different analysis of prepositions introduced in

Chapter 4. Instead, template interpretations can be created for many categories auto¬

matically, based on the interpretations of simpler categories.
Below, I discuss how lexical entries are assigned in a number of important con¬

structions. First, I explain how to assign semantics to some simple categories, and then
show how to build the semantics of more complex categories recursively.

3.4.1.1 Simple Categories

First, I manually create templates for straightforward base cases:

Common nouns: LEMMA F N : Xx.LEMMA (x)
Named Entities: LEMMA h NP^ : Xp.p(+LEMMA)
Prepositions: LEMMA h PPt/NP : XxXp.p(x)
Intransitive verbs: LEMMA h S\NP : XxXe.LEMMA(e) A argO(x, e)

Categories of the form X,-/X, and A,\A, are modifiers, e.g. adjectives and adverbs.
The interpretations of these re-states the semantics of the expression they are modify¬
ing, and then adds their lemma as an additional predicate. For example:
LEMMA P N/N : XpXx.p(x) f\LEMMA(x)
LEMMA h (S\NP)\(S\NP) : XpXxXe.p(x,e) ALEMMA(e)
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3.4.1.2 Entity Arguments

This section explains how arguments with the categories NP and PP are modelled,
which is the most common way arguments are expressed.

Noun-phrase arguments are labelled with a number in the style of PropBank [Kings¬
bury and Palmer, 2002], such as argO, arg 1 etc. By default, noun-phrase arguments
are counted from the left, in the order they appear in the sentence. For example, the
following template is generated for ditransitives:
LEMMA b ((S\NP)/NP) /NP: fxXyfzke.LEMMA(e) Aarg0(z, e) A arg I (x, e) Aarg2(y, e)

Prepositional phrase arguments are labelled based on the preposition, for example:
LEMMA b ((S\NP)/PPto)/PPfrom : kxXyXzhe.LEMMA{e) Aarg0(z,e) Afrom(x,e)A
to(y,e)

I add a special case for passive constructions, in order to give the same analysis
for Shakespeare wrote Macbeth and Macbeth was written by Shakespeare. For passive
verbs (headed with the Spss category), the argument keys of noun phrases are incre¬
mented by 1, and any argument supplied by PP^y is given the argO key. For example:
LEMMA b (Spss\NP)/PPby : XxXyXe.LEMMA{e) Aarg0(y,e) Aarg\(x,e)

Genitives can introduce arguments to nouns. In Honnibal et al. [2010]'s version of

CCGBank, they are analysed with an additional PP argument on the noun. Such argu¬

ments are given an arbitrary arg interpretation. For example, the following template
would be used for gift in Rome's gift ofpeace to Europe):
LEMMA b ((N/PP)/PPt0)/PP0f: XxXyfzXe.LEMMA(e) Aarg{z,e) Aof(x,e) Ato{y,e)

This approach means that rather than enumerating every verb category in advance,
as was done by Boxer [Bos, 2008], the system can generate them automatically.

3.4.1.3 Verb-Particle Constructions

The semantics of verb particle constructions often bears little resemblance to the se¬

mantics of the verb or particle, for example: take up, take on and take over. For this

reason, I choose to treat these as non-compositional, and implement this by appending
the particle to the main predicate. The verb then discards its particle argument. For

example, take in He took over the world, would use the template:
LEMMA b ((S\NP)/PRover)/NP: XxlyXz)ie.LEMMA_over{e) Aarg0{y,e)Aarg\(z,e)
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3.4.1.4 Predicative Complements

Many categories take predicative complements. For example, control verbs such as ask
and promise take verb-phrase arguments. For the semantic analysis to be valid, these
argument functions must themselves be supplied the correct arguments—for example,
a verb-phrase argument with category S\NP expects an entity and event argument.

The CCGBank co-indexing on categories is helpful here. If parts of a category are

co-indexed, they refer to the same object—which allows arguments to themselves take

arguments (non-coindexed arguments of arguments can be supplied with existential
quantifiers). This allows us to create the subject-control template, where the subject is
the argument of the verb-phrase complement:
LEMMA h ((Sdci\NP;)/(Sto\NPj))/NP: AxA,pXyXe.LEMMA(e) AargO(y,e)f\arg\(x
3e'\p{y,e')\ The corresponding object-control template is:
LEMMA h ((Sdci\NP)/(St0\NPj))/NPj: XxXpXyXe.LEMMA(e) AargO(y,e) Aargl (x
3e'[p(x,e')]

3.4.1.5 Function Words

Lexical entries can also be generated for many function words, based on their syntactic

category. Function words can be identified based on POS-tag, and are given a logical
form that mirrors their syntactic category, without introducing a new predicate. For

example, by using the argument co-indexation the system can automatically generate
lexical entries such as the following, which is used by relative pronouns such as that
and which:

LEMMA h (Ni\Ni)/(S\NPi) : kpkqXx.q{x) A 3e[p(x,e)\
I also add default templates for categories such as determiners and conjunctions,

though the function words lexicon will override most cases of these:
LEMMA h NPt/N : kpkq.q(skXx.p[x))
LEMMA h (X\X)/X : XpXqX ..../?(. ..)Aq(...)

3.4.2 Hand-built Lexicon for Function Words

The lexicon from Section 3.4.1 can be extended with a hand-built lexicon of function

words. I believe this is a good pragmatic choice, as there are a relatively small number
of function words, whose semantics can be quite complex. The semantics of such
words have also seen attention in the linguistics literature, making it straightforward
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to utilise ideas. I am not aware of any unsupervised NLP work that has learned the
semantics of complex function words.

There have also been attempts to learn the meanings of function words from distri¬
butional statistics—see Section 2.4.1 for some discussion.

The universal quantifiers each and every have the following semantics:
each b NP' /N : XpXqNx[p(x) ->■ <?(*)]
every b NP^/N : XpXq.\/x[p(x) —> q(x)]

All is given a different semantics. The fact that a universal quantifier is not used in
its definition means that it cannot invert scope,

all bNPt/N :XpXq.q{allXx_p{x))
The determiner Some ensures that the introduced Skolem term is positively polar¬

ized, so will not support downward-monotone inferences. For example, I don't own

some donkeys cannot be interpreted as meaning I don't own any donkeys.
some b NPt/N : XpXq.q(+skXxp^

The determiner a takes polarity from its environment:
a b NPt/N : XpXq.q(oskXxp^x))

Steedman [2012] defines any as forcing its noun-phrase to take negative polarity.
When implemented, I found this reduced coverage, as often the positively polarized
free-choice any is used, as in Any farmer who owns a donkey feeds it. As the current

model of syntax does not mark polarity, the system cannot distinguish these cases.

Instead, I give the same semantics as a, and allow:

any b NPT/N : XpXq.q(oskXxp{x))
The determiner no is often given the semantics ApXqNx[p(x) —> ->q(x)}. However,

it does not invert scope: Somefarmer owns no donkey does not seem to have an inverse-

scope reading, which would be equivalent to No donkey is owned by every farmer.
Instead, the definition uses a negatively polarized Skolem term:

no b NPVN : XpXq.^q(-skXxp{x)\
Not negates its verb-phrase argument:

not b (Sdd\NP)/(Sb\NP) : XpXxXe.^p(x,e)
n't b (Sdci\NP)/(Sb\NP) : XpXxXe.-^p{x,e)

Lexical entries for numbers can be generated 'on the fly', by using a simple algo¬
rithm for parsing string representations of numbers. For example:
three bNP1 /N : XpXq.q{skXx_p{x).Xs^=f)

Some quantifiers are themselves compositional, for example at least five or fewer
than three. Rather than attempt to handle these in a fully compositional way, I defined
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a short list of numeric modifiers (such as at least and fewer than) and their effect on

the cardinality. Then, the system can automatically generate lexical entries such as:

at least three h NPt/N : lphq.q{skXx.p[x). A,.w>3)
Upper bounds are modelled by negating lower bounds, so Fewer than three farmers

walk means that there is no set of three farmers, all of whom walk:
fewer than three h NPt/N : lpkq.^q(-skXx.p{x),Xs]s ,>3)

Some other multiword quantifiers are handled non-compositionally, for example:
at least a few h NP^/N : ApXq.q(skXxp{x). Aj.w>2)

CCGBank analyses many determiners as adjectives (i.e. N/N rather than NP"fN),
which is inconvenient for the semantics given here. To deal with this problem, any NP
node that starts with a determiner (as defined by our lexicon) is automatically converted
to the correct analysis.

Chapter 6 extends this lexicon with an account of implicative verbs.
It is worth pointing out that the semantics of many function words is highly context-

dependent, and the simple approach described here is insufficient to capture this. For

example, the number of individuals quantified by many and few is highly dependent on

the speaker's prior expectations, and does not seem to have truth-conditional bound¬
aries. Universal quantifiers rarely quantify over all individuals, but over some prag¬

matically relevant subset. A long tradition argues that the semantics of only depends
on access to a set of alternatives (and is also dependent on focus). Clearly much work
remains to be done here—annotated corpora would be particularly useful. However,

despite the challenges, formal semantics remains the most successful approach for
modelling function words.

3.4.3 Post-processing Syntax Trees

The current output from CCG syntactic parsers is not always in the best form for se¬

mantic interpretation. Consequently, the system makes a number of automatic post¬

processing steps to the syntax before building the semantics.

3.4.3.1 Lexicalizing Type Raising

Existing parsers implement type-raising as a unary rule. As explained in Section 3.2.5,
I implement type-raising in the lexicon. A first step towards is to eliminate type-raising
unary rules, by pushing them up to the lexical level. For example, the system makes
the following conversion:
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Some man wrote Macbeth —» Some man wrote Macbeth
NP/N N (S\NP)/NP NP (S/(S\NP))/N N (S\NP)/NP NP

NP S/(S\NP)
->T >B

S/{S\NP) S/NP
>B

S/NP

3.4.3.2 Type Raising all NP, PP and PR nodes

All categories of the form NP$, PP$ and PR$ categories are replaced with type-raised
equivalents (where $ schematizes over possible arguments). To do this, the system
finds function application nodes with arguments of type X e {NP. PP. PR}, and updates
them with the equivalent type-raised form5.

For forward application:

Y/X X —4- Y/X Y\(Y/X)
> — —<

Y Y
For backward application:

X Y\X -4- Y/(Y\X) Y\X
< >

Y Y
Once the category has been updated, the rest of the tree is then updated to ac¬

count for the change, using inverse combinators similarly to Thomforde and Steedman

[2011],

3.4.3.3 Named Entities

Named entities can be merged into a single node, by collapsing consecutive words that
have the same NER tag. For example, Barack Obama is collapsed into Barack-Obama.
The system makes no other attempt to model compound nouns, although there has been

interesting work on modelling their semantics [Tratz and Hovy, 2010],

3.4.3.4 Subcategorize PP and PR categories

All PP and PR categories are automatically subcategorized with the corresponding
head preposition. This is useful for our analysis where the preposition is a semanti-

5I assume that NP, PP and PR categories will eventually be arguments of a function application
combinator, as type-raising blocks composition operators. This causes occasional problems, for example
in preposition stranding constructions, such as I live in and like Edinburgh, where if in is type-raised
the composition is not possible. Following Steedman and Baldridge [2011], I use the category PP/NP
for the preposition here.
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cally transparent case-marker, but causes their predicates to subcategorize for different
frames.

Prepositions are treated as being semantically transparent case-markers on nouns—

i.e. the semantics of a preposition is the identity function.
For example, He ran from home and He ran to home, the following lexical entries

are used for ran, with distinct categories and interpretations6,
run h (S\NP)/PPfrom : AyXxXe.run(e) AargO(x,e) Afrom(y,e)
run h (S\NP)/PPt0 : XyXxXe.run(e) AargO(x,e) A to(y,e)

3.4.3.5 Correcting NP conjunctions

The Rebanked version of CCGBank [Honnibal et al., 2010] contains an error in which
NP conjunctions are treated as N conjunctions. Noun conjunctions are rare, so I auto¬

matically correct all such cases to be NP conjunctions. For example, the interpretation
of the uncorrected version below would be a single individual who is both John and

Mary:
John and Mary walked —» John and Mary walked

N conj N S\NP N conj N S\NP
> —lex —lex

N\N NP NP
N NP\NP

-lex —<
NP NP

3.5 Conversion to First-Order Logic

The logic used in Steedman [2012] supports inference directly. However, rather than
create a new theorem prover for this formalism, I chose to instead convert it to stan¬
dard first-order logic (for which there are already numerous highly-optimised theorem
provers). The conversion process involves replacing the Generalized Skolem Terms
with standard first-order quantifiers. It must ensure that the quantifiers are instantiated
in the correct scope with respect to negation and other quantifiers.

The conversion closely follows the definition of the model theory for the Skolem-
ized language. Note that some Skolemized logical forms cannot be interpreted by the
model theory, and have no translation in first order logic. The conversion algorithm re-

6This leads to occasional problems where the original parse coordinates nodes headed by different
prepositions, as in I climbed up the mountain and down the other side.
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lies on the semantic parser to not produce such forms. Therefore, the algorithm given
here is not intended to translate arbitrary sentences. In Section 3.6.11 show empirically
that the conversion algorithm interprets almost all sentences produced by the semantic
parser.

Before giving the main algorithm, I define a function 5, which searches the sub-
sentence for Skolem terms with the correct scope, and q, which replaces a given
Skolem term in a sentence with a standard first order quantifier.

3.5.1 Finding Skolem terms with a given scope

The function s searches a logical form for instances of Skolem terms with a specified
scope and polarity. For example s(S, {x,y},+) returns the set of positively polarized
Skolem terms in sentence S that are exactly in the scope of x and y (not any superset).

s(S, 0, —) returns all the negatively polarized Skolem terms in S.

3.5.2 Replacing Skolem terms with Quantifiers

3.5.2.1 Replacing Singular Skolem Terms

Singular Skolem terms represent entities. They are straightforward to replace, by exis-

tentially quantifying a new variable that meets the restrictor condition, and substituting
all instances of the Skolem term with the variable:

q(skn;\x.r(x)iS) = 3x[r(x) A subst(S,skn,x)]
subst(S,skn,x) replaces all Skolem terms with identifier n in S with the variable x.

I also define the corresponding function q' that uses a universal quantifier:

q\skn^x.r(x),S) = Vx[r(x) => subst(S,skn,x)\

3.5.2.2 Replacing Plural Skolem Terms

Plural Skolem terms represent sets, and can be translated in a similar way. I focus on

simple cardinality conditions of the form |.s| = k or |5| > k (upper bounds are expressed

by negating lower bounds). While the current lexicon ensures all cardinality condi¬
tions are of this form, it ignores the difficulties of translating quantifiers such as most,

fractions, ranges, comparatives, etc.

q(S, skXx_r{x).Xs.\s\>k) = 3y0... 3yk_x [unique(y0, ...yk_ i) AVx[(x = y0 V • • • Vx = yk-\)
(r(x) Asubst(S,skn,x))]\
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Where unique(xo,.. .x^-x) ensures the list of variables contains no duplicates (oth¬
erwise, all the existentially quantified variables could refer to the same object).

This function replaces a Skolem term with minimum cardinality k with k unique
existentially quantified variables, each of which satisfy both the restrictor condition of
the Skolem term and the predicate applied to it.

For example, the following represents q replacing the Skolem term in the interpre¬
tation of At least 2 dogs bark:

d(sknAx.dog{x);Xs.\s\>2ibat~k{skniXx.dog(x)As.\s\>2)) ~ ^yo3yi [yo 7^ 3h A Vx[(x = yo VX =

yi) =>• (dog(x) Abark(x))]

The case where the cardinality condition contains equality is similar, except that it
uses a biconditional rather than an implication. This implements Steedman [2012]'s
maximal participants condition, which states that no superset of the Skolem term
should both satisfy the restrictor condition and be an argument of the predicate. For

example, Shakespeare wrote 37plays is interpreted as meaning that Shakespeare wrote

exactly 37plays, and is false in models where he wrote 38.

q(S, •S^,jc.r(jc);As.|s|=fc)
3y0 • • • 3yk-1 [unique(y0, • • • y,t_ 1) A Vx[(x = y0 V • ■ • Vx = y^_ i) 4=> (r(x) A subst(S,sk„,

In practice, this conversion can lead to logical forms which are intractable for the¬
orem proving. For simplicity, for k > 5 I use the singular translation with an additional
predicate mod(x) — k. Of course, we could go further and add arithmetic axioms to the
theorem prover, but that is beyond the scope of this thesis.

3.5.3 Main Translation Algorithm

Next, I define the main translation function r. The algorithm recursively visits sub-
sentences of the logical form, maintaining a set X of all universal quantifier variables
enclosing the current sub-sentence. At each sub-sentence, it searches for a Skolem
term that can be replaced with a first-order quantifier there in the correct scope. If it
exists, all instances of the Skolem term are substituted with a new variable, and % is
called recursively on the new sentence. If no Skolem terms can be replaced at that
point, T is called recursively on its sub-sentences.
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3.5.3.1 Atomic Sentences

The simplest case is atomic sentences. Either an atomic sentence contains a Skolem
term in the current scope that can be translated, or the sentence is returned unchanged:

is, T = {}
t(S,X) = < where Y = s(S,X,+)

(x(q(keY,S),X), F ^ {}
For example, to translate the interpretation of Some man loves Mary we have:

T(love(-\-skxx.man(x), mary)) = 3x[man(x) A love(x, mary)]
If there are multiple saturated Skolem terms in the sentence, an arbitrary one is

chosen, and the function is recursively called on the result.

3.5.3.2 Negation

At a negated sentence, any negatively polarized Skolem terms can be quantified, so

that the existential quantifer is in the scope of negation. Note that negatively polarized
Skolem terms cannot be bound by universal quantifiers. As all negatively polarized
Skolem terms must be in the scope of a negation operator, all other cases only need to

translate positive Skolem terms.

T(-S,X) =
-.t (s,x), y = {}

where Y = s(S,X, —)
T^q(kEY,S),X), F # {}

For example, the interpretation of No man loves Mary can be translated:

x(-ilove(—skxx,man(x),mary)) — -<3x[man(x) Alove(x,mary)]

3.5.3.3 Conjunction and Disjunction

In cases of sentences joined by a connective, Skolem terms are only replaced if they
are positively polarized and appear on both sides of the connective.

x(SAT,X) = <
t(S,X)AT(7\X), F = {}

where Y = s(S, X, +) f)s(T,X, +)
z(q(keY,S),SAT), F ^ {}

T(5,X)VT(r,X), F = {}
x(SVT,X) = { whereY = s(S,X,+)r)s(T,X,+)

(x(q(k e Y,S),SVT), T/{}
For example, the interpretation of Some man loves Jane and Mary can be translated:

X{Ioveiy-\-sk^-x, \Xx.man(x)> jnne)) A love(-\-sk$2 ;Xx.man(x) imary))
= 3x[man(x) A love(x, jane) A love(x, mary)]



3.5. Conversion to First-Order Logic 47

3.5.3.4 Implicatives

Implicatives act slightly differently, in that if a Skolem term appears on both sides then
it is universally quantified.

T(S=>T,X) =
z(S,X) =>• x(T,X), F —{}

where Y = s(5,X,+) n s(T,X,+)
TW(keY,S=>T),X), Y^{}

For example, the interpretation of If a man loves Jane then he loves Mary can be
translated:

t(love(+sk53 :Xx.man{x)> jnne)) => love(+sk53 :Xx.man{x),mary))
— Vx[(man(x) A (love(x, jane))) =$■ love(x,mary)]

3.5.3.5 Quantifiers

Universal quantifiers change the current scope—so any Skolem term inside a quantifier
that is not bound by it must be quantified outside the universal:

T(VX[S],X)
v*wW)], r = {}

where Y — s(S,X, +)
T(^GF,VX[5]),Z), F/{}

For example, the wide-scope interpretation of Every man loves a woman can be
translated:

T(\/x[man(x) love(x>skxy.woman(y)^>ty = 3y[woman(y) A\/x[man{x) =» love(x,y)]}
However, in the narrow-scope reading, the s function will not return this Skolem

term, as it does not match the current scope, x is added to the current scope, and the
function is called recursively.

T{Vx[man{x) =4- love(x,sk^y woman{y))\,<I>)
= Vx[z(man(x) =» love(x,sk^y woman[y)),{x})]
= Vv[t(man(x), {*}) => x(love(x,sk^woman{y)),{x})\
= \/x\man{x) =>• 3y[woman(y) A love(x,y)}]

3.5.4 Other

For convenience, I represent the complete set of entities satisfying a predicate p with:

allxx.p(x) (this could equivalently be expressed with a Skolem term). Such all functions
must also be replaced with standard first order quantifers.

The atomic sentence q{..., allxx.P{x)»• • ■) can be replaced with: Vx[p(x) =>q(...,x,...
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3.6 Experiments

In the evaluation, I show that the system allows fast wide-coverage language interpre¬
tation, that it is capable of correctly analysing a variety of complex constructions, that
it successfully implements packed logical forms for scope ambiguities, and that the
logical forms support complex inference.

3.6.1 Coverage

First, I investigate the percentage of sentences for which the system is able to pro¬

duce logical forms. The C&C parser [Clark and Curran, 2004] is used, with settings
disabling 'noisy rules' and 'extra rules'. Parses whose top level category is not S are

ignored—the interpretations of sentences with other categories will contain free vari¬
ables, so do not support inference. Parsed sentences are first converted to the natural
semantics representation. Then, the resulting packed logical forms are unpacked, and
each interpretation is converted to standard first-order logic. The first-order logical
forms are checked to ensure they contain no free variables, that all interpretations con¬

tain no Skolem terms or free-variables, and that there are no duplicate logical forms

produced. The semantics pipeline is successful for 99.6% of sentences in Section 23
of CCGBank (after development on Sections 02-22).

Excluding the conversion to FOL, the system produces semantic interpretations
for 135 sentences per second on a single core on Wall Street Journal text. This com¬

pares to 27 sentences per second for syntactic parsing on the same system. This result
shows that the semantic interpretation is efficient enough to not be the bottle-neck in

processing large corpora.

3.6.2 Qualitative Evaluation

Figures 3.1 to 3.10 show examples of actual system output. These examples demon¬
strate that the system can build packed logical forms representing scope ambigities, and
can model predicate-argument structure across a variety of complex linguistic expres¬

sions. Where interesting, I also show the result of the conversion to first-order logic.
To save space in the derivations, the semantics of verbs is automatically simplified, so

verb(e) Aarg0(x,e) Aargl(y,e) is compressed to to verb(x,y,e).
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3.6.2.1 Syntactic Variation

A vote was won by Obama

Sdcl/(Sdc,\NP) (Sdcl\NP)/(Spss\NP) (Spss\NP)/PPby (Spss\NP)\{(Spss\NP)/PPby\j
hp.p(skxx.vote(x)) XpXxXe.p(x,e) XxXyXe.win(x,y,e) Xp.p(Obama)

S„ss\NP '
XxXe.win(Obama,x, e)

____

AxA c. win (Obama. x. e)
— >

Sdcl
Xe.win(Obama, skixvote^, e)

Figure 3.1: System output for a passive sentence, showing how it can derive the same

logical form as the equivalent active-voice sentence.

man who wrote Macbeth

N (N\N)/(Sdd\NP) (,Sdcl\NP)/NP (Sdcl\NP)\((Sdcl\NP)/NP)
Xx.man(x) XpXqXx.q(x) A3e\p(x,e)\ XxXyXe.write(y,x,e) Xp.p(Macbeth)

Sdci\NP <
AxA e.write(x, Macbeth, e)

N\N
XpXx.p(x) A 3e[write(x, Macbeth, e)\

<

N

Xx.man(x) A 3e[write(x,Macbeth, e)\

Figure 3.2: System output showing object extraction from a relative clause.
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play which Shakespeare wrote

N (N\N)/(Sdcl/NP) SX/(SX\NP) (SdcI\NP)/NP
Xx.play(x) XpXqXx.q(x) A3e\p(x,e)\ Xp.p(Shakespeare) XxXyXe.write(y,x,e)

>B

Sdci/NP
XxXe.write(Shakespeare,x, e)

N\N
XpXx.p(x) A 3e[write(Shakespeare,x,e)]

<

N

Xx.play(x) A 3e[write(Shakespeare,x, e)\

Figure 3.3: System output showing subject extraction from a relative clause.

I did n't pass an exam

Sdd/(Sdci\NP) (Sdcl\NP)/(Sb\NP) (Sb\NP)/NP (Sb\NP)\((Sb\NP)/NP)
Xp.p(i) XpXxXe.-^p(x,e) XxXyX e.pass(y,x,e) Xp.p(oskxx.exam{x))

Sb\NP <
XxXe.paSs(x, °skXy.exam(y))

Sdc,\NP >
XxX e.^pass(x, sk^y.exam{y)i

>

Sdcl
Xe.~>pass(i, skXx.exam(x) >e)

-i3x[exam(x) A 3e\pass(i,x,e)]\

Figure 3.4: / didn't pass an exam Example showing how the polarity of a noun can

change during the derivation, when used with an unpolarized determiner such as an.

Our analysis does not capture the positive-polarity interpretation, but in principle it could
be extended to build a packed logical form expressing the fact that either polarity is

possible.
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I did n't pass some exam
>B >

Sdd/(Sdcl\NP) (Sdci\NP)/(Sb\NP) (Sb\NP)/NP (Sb\NP)\((Sb\NP)/NP)
Xp.p(i) XpXxXe.^p(x,e) XxXyXe.pass(y,x,e) Xp.p{+skXxexam(x))

Sb\NP
XxXe.pass(x, X~skXyexam^, e)

Sdd\NP
XxXe.~*pciss(x, X~skXy exam(y^, ej

3del
Xe.~>pass(i, +£&^,xe;ram(;t))

3x[exam(x) A -i3e[pass(f,x,e)]]

Figure 3.5: / didn't pass some exam This derivation shows how the positively polarized
determiner some protects its noun from the scope of negation.

At least 2 students passed an exam

Sdci/(Sdc,\NP) (Sdc,\NP)/NP (Sdcl\NP)\((Sdci\NP)/NP)
Xp.p{+skix,sludent{x)-Xy.\y\>=2) XxXyXe.pass(y,x,e) Xp.p(oskXx,exam{x))

Sdc,\NP <
XxXe.pass(x, oskXy.exam(y), e)

>

Sdcl
Xe.paSs[-\~skXx student{x)\Xy.\y\>=2i °^Xz.exam(z)'

3e[3x[3y[-.y = x A 3z[exam{z) AMu[x = u\Jy = u =» student{u) Apass(u,z,e)]]]]]

Figure 3.6: At least 2 students passed an exam The system correctly builds a logical
form for the wide-scope reading, in which the two students may have passed different
exams. However, it fails to predict the reading where all the students passed different
exams. To cope with this, the system would need to be extended to mark plurality in
the syntax, and then have a separate 'distributive' category for verbs that introduces a
universal quantifier (as in Steedman [2012]).
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At most 1 student passed an exam

Sdcl/(Sdcl\NP) (,Sdcl\NP)/NP (Sdc,\NP)\((Sdc,\NP)/NP)
^P-^p{-shx.student(x)-Xy.\y\>=2) XxXyXe.pass(y,x,e) kp.p(oskXx.exam(x])

Sdci\NP <
XxXe.pass(x, oskXyexam{y), e)

>

Sdcl
Xe.^pass( sk^xsiudent (xytXy. |v|>=2 •> ^^Xz-cxamiz) *

-i3x[exam(x) A3y[3z[-\z = yAVn[y = nVz = u =>• student[u) A3e\pass(u,x,e)]]]]]

Figure 3.7: At least 1 student passed an exam This example shows how the system

deals with upper bounds. The interpretation denies the existence of two different stu¬

dents who both passed the same exam.

A man loves every woman

Sdcl/(Sdc,\NP) 7Sdcl\NP)/NP {Sdcl\NP)\((Sdcl\NP)/NP)
Xp-p(skxx.man(x)) XxXyXe.love(y,x,e) Xp.Vx[woman(x) => p(x)\

Sdd\NP
XxXeNy[woman(y) =>• love(x,y, e)\

Sdcl

Xe.Vx[woman(x) => love(< Sf,x\ 1 ,x,e)\I J Xy.man(y)

Figure 3.8: Output for a simple sentence contained scope ambiguities and scope in-
verion. It shows how the Skolem term becomes ambiguous when it becomes enclosed

by the universal quantifier.



Everyboyadmiresandeverygirldetestssomesaxophonist
—>

SX/(SX\NP)(Sdcl\NP)/NP((Sdcl/NP)\(Sdcl/NP))/(Sdcl/NP)SX/(SX\NP)(Sdcl\NP)/NPSdcl\{Sdcl/N&XpNx[boy(x)=>■p(x)\XxXyXe.admire{y,x,e)XpXqXxXe.q(x,e)Ap(x,e)Xp.\/x[girl(x)==>■p(x)\XxXyXe.detest(y,x,e)Xp.p(+skxx,saxoph^t{x)) >B>B3
Sdci/NPSdcl/NP§

XxXe.\/y[boy(y)=>admire{y,x,e)\XxXeX/y[girl{y)==>•detest{y,x,e)\ (Sdcl/NP)\(Sdcl/NP)
XpXxXe.p(x,e)AVy[grW(y)=>detest(y,x,e)\

Sdci/NP

XxXeNy[boy(y)==>admire(y,x,e)]AVz[girl(z)=>detest(z,x,e)]

03

Sdcl

+sk9r1wAwr•,/\j/f+S&11
Ae.Vx[fooy(x)==>admire(x,<̂>,e)]AVz[gj>/(z)=*>detest(z,+sk{'+sk35)\y.saxophonist(y)\35JXy.saxophonist(y)

3e\dx[boy(x)==>3y[.saxop/io«Af(y)Aadm/re(x,y,e)]]AVz[giV/(z)=>■3M[sax0p/mmsr(H)f\detest[z,M,e)]]] 3e[3x[saxophonist(x)AVy[boy(y)==>•admire(y,x,e)]A\/z[girl(z)=>detest(z,x,e)]]]
Figure3.9:EveryboyadmiresandeverygirldetestssomesaxophonistSystemoutputfortheGeachsentence.Thesystemcorrectlyhandles theright-node-raisingconstructionbycompositionandcoordination,tobuildalogicalformthatcapturestherelationsbetweenboys,girlsand saxophonists.AsexplainedinSection3.3.1.4,thelogicalformcanbeunpackedtorevealthecorrecttwointerpretations(e.g.itdoesnot predictinterpretationswheresaxophonistsarewide-scopewithrespecttoboysbutnarrow-scopewithrespecttogirls).Unfortunately,toget obtainthecorrectsyntacticanalysisIhadtomanuallysetthesupertagforadmires,whichtheparsingmodelassignsasanoun.Suchmistakes arefrequent,andhighlightthefactthatthesemanticanalysisishighlyreliantonthesyntax.
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Sh\NP
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Ap.p(her)
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(,Sdc,\NP)/(Sw\NP)

<

S„,\NP

XpXxXe.ask(e)
Aarg(x,e)
A3e'[p(her,e')\

XxXe.talk(e)
Aarg(x,e)

Sdd\NP

XxXe.ask(e)
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A
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3.6.3 Comparison with Boxer

An obvious comparison for the system is with Boxer. The systems are very similar in
principle, as both approaches are rule-based conversions of CCG parses onto logical
forms—and both then convert their output to first-order logic for inference. One differ¬
ence, which is useful for the work described later in this thesis, is a different analysis of
prepositions. In first-order logic, Boxer analyses the expression the author ofMacbeth
as 3x[author(x) Aof(x,macbeth)\. However, the preposition of has little meaning in
itself, and can only be interpreted with respect to the noun. For example, it is difficult
to see how to create good inference rules of the form: of(x,y) -A p(x.y). Instead, we

analyse the expression as 3x[authort,e^0f(x,macbeth)], so that all the predicates have a
clear meaning.

3.6.4 Comparison with Dependency Syntax

Syntactic dependeyncy representations, such as Standford dependencies, and currently

widely used in NLP applications. While there is a lack of empirical work comparing
these representations, there are a number of reasons for preferring CCG in this the¬
sis. The logical forms derived from our CCG parses can abstract over many syntactic
variations on the same meaning, which have different dependency parses. For exam¬

ple, the dependency parses for the following sentences would all express a different
relationship between John and cake, but would all receive the same interpretation in a

logical form:

• John baked a cake,

• A cake was baked by John

• John baked a cookie and a cake

• A cake that John baked

• John, who baked a cake

• John baked and ate a cake.

• John baked Mary a cookie and Sue a cake

This variation means that additional learning is required on top of the dependency

parse to judge whether they are equivalent. Some of these examples can be improved
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Premises: Every European has the right to live in Europe.

Every European is a person.

Every person who has the right to live in Europe
can travel freely within Europe.

Hypothesis: Every European can travel freely within Europe
Solution: Yes

Premises: Few committee members are from Portugal.
All committee members are people.
All people who are from Portugal are from southern Europe.

Hypothesis: There are few committee members from southern Europe.
Solution: Unknown

Premises: One of the leading tenors is Pavarotti.
Neither leading tenor comes cheap.

Hypothesis: Pavarotti is a leading tenor who comes cheap.
Solution: No

Figure 3.11: Example problems from the FraCaS suite.

by post-processing the dependency parse. However, I am not aware of any adequate

way of representing argument cluster coordination (as in John baked Mary a cookie
and Sue a cake) in a dependency parse, whereas CCG has an elegant account of this
construction [Steedman, 2012],

3.6.5 Experiments on the FraCaS Suite

The FraCaS suite [Cooper et al., 1996]7 contains a hand-built set of entailment prob¬
lems designed to be challenging in terms of formal semantics. Section 1 is used, which
contains 74 problems requiring an understanding of quantifiers8. They do not require

any knowledge of lexical semantics, meaning that the evaluation focusses purely on

the understanding of quantifiers and composition. Figure 3.11 gives several example

problems.
The only previous work I am aware of on this dataset is by MacCartney and Man-

7Using the version converted to machine readable format by MacCartney and Manning [2007]
8Excluding 6 problems without a defined solution.
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ning [2007]. Their Natural Logic9 approach is supplied with a small handbuilt lexicon
of function words, which marks how the polarity of the word affects the polarity of
its children. It uses this to transform a sentence into a polarity annotated string. The
system then aims to transform the premise string into a hypothesis. Positively polar¬
ized words can be replaced with less specific ones (e.g. by deleting adjuncts), whereas
negatively polarized words can be replaced with more specific ones (e.g. by adding ad¬
juncts). Whilst this approach is high-precision and often useful, this logic is unable to

perform inferences with multiple premise sentences (in contrast to the first-order logic
used by the CCG system).

Development consists of adding entries to the lexicon for quantifiers. For simplic¬
ity, multi-word quantifiers like at least a few are treated as being multi-word expressions—
although a more compositional analysis may be possible. Following MacCartney and
Manning [2007], the evaluation does not use held-out data—each problem is designed
to test a different issue, so it is not possible to generalize from one subset of the suite to

another. The design of the test-suite is analagous to a 'unit test', where each problem
checks a separate edge-case, but with little overlap.

As the aim is to evaluate the semantics, not the parser, gold-standard lexical cat¬

egories were annotated for sentences with parser errors. A consequence of CCG's
close link between syntax and semantics is that any syntactic mistake causes incor¬
rect semantics. Although an N-best parser is used [Ng and Curran, 2012], this does
not help in many cases as errors are caused by missing entries in the supertagger and
POS-tagger lexicons. For example, European is frequently used as a noun in the Fra-
CaS suite examples, as in Every European is a person. Unfortunately, European is
only used as an adjective in CCGBank (as in European minister), meaning that the su¬

pertagger model is unable to assign the correct category. Without the correct supertag,
no parse can deliver the correct dreivation. The problems contain up to 5 sentences,
increasing the chance that one will contain a parse error.

Following Bos and Markert [2005], a combination of the Prover9 theorem prover
and Mace4 model builder McCune [2005] theorem prover is used for inference, re¬

turning yes if the premise implies the hypothesis, no if it implies the negation of the
hypothesis, and unknown otherwise10. The theorem prover attempts to find a contradic¬
tion in the input, while the model builder attempts to prove that the input is consistent

9Despite the similar names, Natural Logic is quite different from Natural Semantics
'"it also returns unknown if both the hypothesis and negation of the hypothesis can be proven which

can happen if the premises are inconsistent
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System Single Multiple
Premise Premises

MacCartney&Manning 07 84% -

MacCartney&Manning 08 98% -

CCG-Dist (parser syntax) 70% 50%

CCG-Dist (gold syntax) 89% 80%

Table 3.3: Accuracy on Section 1 of the FraCaS suite. Problems are divided into those
with one premise sentence (44) and those with multiple premises (30). I do not give an

overall number, as the split into problems with single and multiple premise sentences is
an arbritraty choice by the authors of the dataset.

by constructing a model that satisfies it. As they can be run in parallel, the combination
can take less time than running either to exhaustion.

Results are shown in Table 3.3, and highlight the strengths and weaknesses of our

CCG approach compared to Natural Logic. The CCG system improves on previous
work by being capable of multi-sentence inferences. Causes of errors include missing
a distinct lexical entry for plural the (meaning all), only taking existential interpreta¬
tions of bare plurals, failing to interpret mass-noun determiners such as a lot of, and
not providing a good semantics for non-monotone determiners such as most. These

problems should be surmountable with further work.

Every error except one is due to incorrectly predicting unknown—the system makes

just one error on yes or no predictions (with or without gold syntax). This result sug¬

gests that extending downstream applications with first-order logic inferences will not

harm precision, and can potentially boost recall.

The system is less robust than MacCartney and Manning [2007] to syntax errors,

who achieve excellent performance using a parser of comparable accuracy. One reason

is that the CCG semantics is much more closely integrated with the syntax than in Nat¬
ural Logic. For Natural Logic, the parser simply has to identify the scope of negation,
and then the inference can be done at the string level. Conversely, using logical forms
for inference allows the CCG system to attempt more of the problems (i.e. those with
multi-sentence premises).
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3.7 Future Work

Modelling plurality is an obvious area for improvement. For example, it would be
useful to distinguish collective and distributive verbs (as in Steedman [2012]), such as

sleeps, with lexical entries such as:

gather b S\NPp] : ?isXe.gather(s,e)]
sleep b S\NPpi : XsXe.\/x[x E s =>■ sleep{x,e)]

The current syntax does not mark plurals, so it is not possible to assign the dis¬
tributive interpretation. It would be helpful if CCGBank were extended to mark which
NPs were singular or plural. Of course, plural agreement is also marked syntactically,
so may be useful for parsing.

The current approach to modelling scope is believed to capture the set of all pos¬

sible interpretations, but does not attempt to disambiguate them. Choosing which of
these readings is the intended reading would require a probabilistic model, such as that
of Srinivasan and Yates [2009], which would allow us to derive a distribution over in¬

terpretations (rather than a set). The fact that a probabilistic model would be helpful
does not mean that using linguistic constraints is unnecessary—as noted in Section
3.3.1.1, underspecification approaches can generate thousands of spuriously equiva¬
lent interpretations of a sentence which are all equally valid. The Natural Semantics

approach would mean the model would only have to assign probabilities to the genuine

ambiguities.
Current work on modelling quantifiers is limited by the lack of available annotated

data. Morante and Blanco [2012] annotated a corpus that marks the scope of nega¬

tion in text. Similar work on marking quantifier scopes would be extremely useful,
for training and evaluating models, and validating linguistic intuitions about available
readings. The Gronigen Meaning Bank [Basile et al., 2012] is a useful step in this
direction.

Lev et al. [2004] make the intruiging proposal of evaluating models of formal se¬

mantics on LSAT problems, which contain natural language logic puzzles. Solving
such problems requires little in the way of lexical semantics, but a good understanding
of quantifiers, negation, and complex function words such as same, only and different.
I experimented with a number of such problems, and while it was possible to solve
some examples, the major obstacle was syntactic errors. A consequence of the close
link between syntax and semantics in CCG is that, in general, a single syntactic error
is enough to cause the inference to fail. As such puzzles typically involve the under-
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standing of a passage of several sentences, even state-of-the-art parsers are unlikely to

parse every sentence correctly. There are also many cases where the current CCGBank
syntax does not support the correct semantic interpretation, for example in the treat¬
ment of comparative constructions. Further refinements to CCGBank, in the spirit of
Honnibal et al. [2010], would be useful in these cases.

3.8 Conclusions

This chapter has developed the first wide-coverage computational model of the Natural
Semantics theory described in Steedman [2012], discovering and correcting a flaw
in the original theory. The model produces packed-logical forms that model scope

ambiguities, and captures the underlying predicate-argument structure for a variety of
linguistically complex constructions. It also has high coverage of unseen text. I have
also shown that the system has the ability to make complex multi-sentence inferences
using quantifiers.

On the other hand, the system has a weak model of lexical semantics, and perfor¬
mance would be poor on natural language applications. The rest of this thesis concen¬

trates on addressing this weakness.



CHAPTER

Combined Distributional and Logical
Semantics

4.1 Introduction

This chapter introduces the main idea of the thesis, which is a new method for combin¬

ing distributional and logical semantics. The approach closely follows standard CCG

semantics, except that the non-logical constants in lexical entries are replaced with
distributionally-induced cluster identifiers, allowing distinct content words to express

the same semantics. The chapter proceeds as follows:

• Section 4.2 motivates combining formal and distributional semantics, arguing
that many practical inferences rely on simultaneously understanding lexical, log¬
ical and compositional aspects of semantics.

• Section 4.3 introduces a simple model which captures the desired properties.

• Section 4.4 shows how this model can be extended to model ambiguity. I intro¬
duce a novel probabilistic model of ambiguity, and show how to incorporate it
into CCG derivations.

61
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Input Sentence

Shakespeare wrote Macbeth
4-

Initial semantic analysis

writeargQ^arg\(shakespeare, macbeth)

Entity Typing
writeargo:pER,arg l -.book(shakespeare. PER,

macbeth:BOOK)

Distributional semantic analysis

relation37(shakespeare:PER, macbeth:BOOK)

Figure 4.1: Layers used in the model.

• In Section 4.5, The model is then evaluated on a question answering task, show¬

ing good performance.

• Section 4.6, discusses how this model relates to a variety of existing approaches.

The work in this chapter has previously been published as Lewis and Steedman
[2013a],

Figure 4.1 gives an overview of the model developed in this chapter.

4.2 Motivating Combining Distributional and Logical Se¬
mantics

There has been much recent progress in unsupervised distributional semantics, in
which the meaning of a word is induced based on its usage in large corpora. This

approach is useful for a range of key applications including question answering and
relation extraction [Lin and Pantel, 2001, Poon and Domingos, 2009, Yao et al., 2011],

Because such a semantics can be automatically induced, it escapes the limitation of

depending on relations from hand-built training data, knowledge bases or ontologies,
which have proved of limited use in capturing the huge variety of meanings that can be
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expressed in language. See Section 2.4 for a more detailed discussion of distributional

semantics.

However, distributional semantics has largely developed in isolation from the for¬
mal semantics literature. Whilst distributional semantics has been effective in mod¬

elling the meanings of content words such as nouns and verbs, it is less clear that it
can be applied to the meanings of function words. Semantic operators, such as de¬
terminers, negation, conjunctions, modals, tense, mood, aspect, and plurals are ubiq¬
uitous in natural language, and are crucial for high performance on many practical
applications—but current distributional models struggle to capture even simple exam¬

ples. Conversely, computational models of formal semantics have shown low recall
on practical applications, stemming from their reliance on ontologies such as WordNet
[Miller, 1995] to model the meanings of content words [Bobrow et al., 2007, Bos and

Markert, 2005].

For example, consider what is needed to answer a question like Did Google buy
YouTube? from the following sentences:

1. Google purchased YouTube

2. Google's acquisition of YouTube

3. Google acquired every company

4. YouTube may be sold to Google

5. Google will buy YouTube or Microsoft

6. Google didn't takeover YouTube

The examples require knowledge of lexical semantics (e.g. that buy and purchase
are synonyms), but some also need interpretation of quantifiers, negatives, modals and
disjunction. It seems unlikely that either distributional or formal approaches can ac¬

complish the task alone.

4.3 A Simple Model for Combining Distributional and
Logical Semantics

The approach to combining distributional and logical semantics is to attempt to learn a
CCG lexicon which maps semantically equivalent words onto the same logical form—
for example learning entries such as:
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Shakespeare wrote Macbeth
NP (,S\NP)/NP NP

shakespeare' XyXx.relation?!(x,y) macbeth'iy)
__

Xx.relation?! (x. macbeth!)
<

S
relation?)! (shakespeare', macbeth')

Figure 4.2: A CCG derivation for Shakespeare wrote Macbeth using clusters, in which
the predicate writeargO,arg\ has been mapped to cluster 37. Figure 4.3 shows how
the same logical form can be derived for the sentence Shakespeare is the author of
Macbeth

author h N/PP0f: XxXy. relation?!(x,y)
write h (S\NP)/NP : XxXy.relation?! (x,y)

Intuitively, these lexical entries encapsulate the idea that if two words express the
same meaning, they should have the same lexical semantics.

The only change to the standard CCG derivation is that the symbols used in the

logical form are arbitrary relation identifiers. These symbols are learnt by first mapping
to a deterministic logical form (using predicates such as authori,e^0f and writeargo,argi),
using the process developed in Chapter 3, and then clustering predicates (both verbal
and nominal) based on their arguments. This lexicon can then be used to parse new

sentences, and integrates seamlessly with CCG theories of formal semantics.

4.3.1 Initial Semantic Analysis

The starting point for the method is a standard formal-semantic analysis, using the sys¬

tem described in Chapter 3, which maps CCG syntax trees onto logical forms. Lexical
entries for content words are generated automatically based on the words and its CCG

category, and are supplemented with a small manual lexicon of function words (such
as not and every). A number of small changes are made to the semantic parser from

Chapter 3, as explained beneath.

4.3.1.1 Make Adjuncts Core Arguments

Many semantic theories distinguish core arguments of predicates and adjuncts. The
version of CCGBank used in this thesis [Honnibal et al., 2010] makes the distinction
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based on the Propbank annotations [Kingsbury and Palmer, 2002]. Unfortunately, such
distinctions are very difficult for parsers to make, and can lead to inconsistent analyses
of sentences. I found it useful in practice to assume all adjuncts were arguments, which
leads to greater consistency.

The conversion is made by searching for adverbial ((S\NP)\(S\NP)) /NP and ad-
nomial (N\N)/NP prepositions, and replacing them with the core-argument category

PP/NP. The change is then propagated through the tree, so that the noun or verb that
was originally modified gains an extra PP argument. In cases where the main verb is
modified by auxiliary or secondary verbs, care must be taken to attach the PP to the
main verb (e.g. in Shakespeare was born in Stratford, the PP, should attach to born,
not was).

For example, the parser may output an analysis such as the following:

Shakespeare was born in Stratford

M* {Sdd\NP)/(Sh\NP) Sb\NP {{S\NP)\(S\NP))/NP NPt
->B

Sdd\NP (S\NP)\(S\NP)
__

S
The previous derivation is automatically converted to:

Shakespeare was born in Stratford

M* (Sdd\NP)/{Sb\NP) (Sb\NP)/PPin PP]JNP NPI
>B <

at
in

<

{Sdci\NP)/PPin PP\,
S\NP

4.3.1.2 Binarizing Predicates

The focus of this thesis is on inducing binary relations. Many existing approaches have
shown how to produce good clusterings of (non-event) nouns [Brown et al., 1992], any

of which could be simply integrated into the framework developed here. However,
relation clustering remains an open problem (see Section 2.4.2). Relatively little work
has attempted to cluster predicates with variable numbers of arguments—USP [Poon
and Domingos, 2009] is one exception.

I take a simple (but novel) approach to circumventing clustering relations with
more than 2 arguments. Higher order relations are binarized, by creating a binary
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relation between each pair of arguments. For example, in the sentence Russia sold
Alaska to the United States the ditransitive verb sell would have the following lexical
entry:
sell I- (S\NP)/PPt0/NP : hxXy?iz.sellarg0targl(z,y) /\sellarg0tto(z,x) Asellarg^t0(y,x)

The three binary relations roughly correspond to sellToSomeone(Russia, Alaska),
buyFromSomeone(US, Alaska), sellSomethingTo(Russia, US).

This transformation does not exactly preserve meaning, but captures the most im¬
portant relations. For example, the system can infer that Russia sold Alaska to the
United States-^Russia sold Alaska, as both express the sellToSomeone(Russia, Alaska)
relation.

Expressing the predicates in this way allows the system to compare semantic rela¬
tions across different syntactic types—for example, both transitive verbs and argument-

taking nouns can be seen as expressing binary semantic relations between entities.
Section 6.7.3 suggests how the system could be improved to give a better handling

of n-ary relations.

4.3.2 Distributional Relation Clustering

Building the distributional lexicon requires clustering predicates that are semantically

equivalent. Following the distributional hypothesis, it is assumed that predicates with
similar usage in a large corpus will be semantically similar. First, the CCG seman¬

tics from Section 4.3.1 is used to gather statistics on predicates. Then, predicates are

clustered based on these statistics.

4.3.2.1 Corpus Statistics

Predicates are clustered based on their usage in a large corpus. The standard CCG

approach described in Section 4.3.1 is run over sentences. Then, the arguments of
binary predicates are extracted from the logical form.

For each predicate, a vector is built containing the count of each proper-noun argu¬
ment pair. Alternative approaches have used statistics based on individual arguments
(e.g. [Lin and Pantel, 2001]). The corpus used here is larger than most previous work,
reducing issues of sparsity, and proper-noun argument pairs may be more discrimi¬
native. For example, the predicates X was born in Y and X lives in Y will have very
similar vectors of individual arguments—for both, the X could be filled by any person,

and the Y slot could be any place. However, taking argument pairs may give more dis-
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bornarg\ jn birthplacepossbe

(Shakespeare, Stratford) 16 5

(Obama, Hawaii) 37 8

(Obama, 1961) 42 0

(Jesus, Bethlehem) 106 25

(Napoleon, Corsica) 7 2

(Shakespeare, 1564) 28 0

Table 4.1: Some example vectors for two similar predicates. The similarity of these
vectors is evidence they can be clustered.

criminative features, as there will be fewer semantic relations that hold between pairs
like (Obamci,Hawaii) and (Jesus,Bethlehem). These vectors can be viewed as samples
from the denotations of the predicates. If two predicates have the similar vectors with
a large sample size, this is evidence that they are samples from the same denotation,
and are therefore semantically equivalent.

Table 4.1 shows example vectors for two semantically related predicates which
should be clustered.

4.3.2.2 Clustering

Many algorithms have been proposed for clustering predicates based on their argu¬

ments [Poon and Domingos, 2009, Yao et al., 2012], The number of relations in the

corpus is unbounded, so the clustering algorithm should be non-parametric. It is also
important that it remains tractable for very large numbers of predicates and arguments,

in order to give a greater coverage of language than can be achieved by hand-built
ontologies.

Predicates are clustered using the Chinese Whispers algorithm [Biemann, 2006],
a simple graph clustering algorithm summarized in Algorithm 1. Although somewhat
ad-hoc, it is both non-parametric and highly scalable1. This algorithm has previously

'I also experimented with a Dirichlet Process Mixture Model [Neal, 2000], which is a more prin¬
cipled Bayesian approach to non-parametric flat clustering. Using the 'Chinese Restaurant' analogy
[Aldous, 1985] each of the 'tables' corresponds to an underlying semantic relation, and the 'dishes'
served are the entity-pairs observed for that relation. Predicates represent 'customers', and are likely to
choose the same tables as other predicates with similar arguments. However, even with the efficient A*
search algorithms introduced by Daume III [2007], the cost of inference was found to be prohibitively
high when run at large scale. The quality of the clustering was also highly dependent on the choice of
hyper parameters.
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writeargi)argl birthplacebeof

O
0.2

t Qauthor^ Qf ^^^argXJn

Figure 4.4: Example input graph for the Chinese Whispers clustering, in which nodes a

represent predicates and edge-weights are distributional similarities. The algorithm will

partition the graph into two clusters.

been used for noun clustering by Fountain and Lapata [2011], who argue it is a cogni-
tively plausible model for language acquisition.

The collection of predicates and arguments is converted into a graph with one node
per predicate, where edge weights represent the similarity between predicates. An

example input graph is shown in Figure 4.4. Predicates with different types have zero-

similarity, and otherwise similarity is computed as the cosine-similarity of the tf-idf
vectors of argument-pairs. As cosine-similarity is symmetric, the graph is undirected.
The system prunes nodes occurring fewer than 20 times, edges with weights less than
0.002, and a short list of stop predicates2. Removing low-weight edges is important,
as it allows predicates which only have very low similarities to any other predicate to
be assigned to their own singleton cluster, and prevents overly general clusters from

forming. The value was chosen based on empirical observation of the clustering.

4.4 Modelling Ambiguity

The model developed in Section 4.3 has many limitations. Two of the most serious are
that it cannot model ambiguous words, and that the clustering problem is intractable
with large numbers of predicates. In this section, I show how adding types to entities
and predicates can address both of these weaknesses.

^Mostly verbs which are frequently light, such as make, take or give, where the real predicate is often
the object rather than the verb. Section 6.7.5 discusses better ways of modelling such predicates.
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Data: Set of predicates P
Result: A cluster assignment rp for all p 6 P
Vp £ P : rp <— unique cluster identifier;
while not converged do

randomize order of P

for p € P do
rp i— argmax£p/1 r=r sim(p,p')

r

end

end

Algorithm 1: Chinese Whispers algorithm, used for predicate clustering. sim(p,p')
is the distributional similarity between p and p', and tr=r> is 1 iff r=r' and 0 other¬
wise. The algorithm is not guaranteed to terminate in pathological cases [Biemann,
2006], but this problem can be avoided by bounding the number of iterations. In
practice, it converged in all experiments.

4.4.1 Entity Typing

Typing predicates—for example, determining that writing is a relation between people
and books—has become standard in relation clustering [Schoenmackers et al., 2010,
Berant et al., 2011, Yao et al., 2012]. Section 4.4.3 demonstrates how to build a typing
model into the CCG derivation, by subcategorizing all terms representing entities in
the logical form with a more detailed type. These types are also induced from text3, as

explained in Section 4.4.2, but for convenience they are described here with human-
readable labels, such as PER, LOC and BOOK.

A key advantage of typing is that it allows the system to model ambiguous predi¬
cates. Following Berant et al. [2011], different type signatures of the same predicate
are assumed to have different meanings, but given a type signature a predicate is unam¬

biguous. For example a different lexical entry for the verb born is used in the contexts

Obcima was born in Hawaii and Obama was born in 1961, reflecting a distinction in
the semantics that is not obvious in the syntax4.

Typing also greatly improves the efficiency of clustering, as the system only needs

3 An alternative would have been to use WordNet for typing. However, this approach would introduce
additional difficulties. For example, many named-entities are not present in WordNet, and disambiguat¬
ing to WordNet senses is a hard problem with low inter-annotator agreement [Hovy et al., 2006]

4Whilst this assumption is very useful, it does not always hold—for example, the genitive in Shake¬
speare's book is ambiguous between ownership and authorship relations even given the types of the
arguments.
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to compare predicates with the same type during clustering (for example, the system
does not have to consider clustering a predicate between people and places with pred¬
icates between people and dates). Almost all clustering algorithms are superlinear, so
there is an advantage in decomposing the clustering problem into many smaller ones.

Even the simple and scalable Chinese Whispers algorithm used in Section 4.3.2.2 re¬

quires a quadratic number of cosine-similarity calculations, which cannot be scaled to

vocabularies with tens of thousands of predicates. In Chapter 6, a much more accu¬

rate but more expensive clustering algorithm is used, which is made possible by this
development.

4.4.2 Topic Model

The entity-typing model assigns types to nouns, which is useful for disambiguating
polysemous predicates. The approach is similar to O'Seaghdha [2010] in that it aims
to cluster entities based on the noun and unary predicates applied to them (it is simple to
convert from the binary predicates to unary predicates). For example, the pair (borrijn,
1961) should map to a DAT type, and (bortijn, Hawaii) should map to a LOC type.
This is non-trivial, as both the predicates and arguments can be ambiguous between

multiple types—but topic models offer a good solution (described below).
The type of each argument of a predicate is assumed to depend only on the predi¬

cate and argument, although Ritter et al. [2010] demonstrate an advantage to modelling
the joint probability of the types of multiple arguments of the same predicate, and Yao
et al. [2012] shows the importance of document level features. The standard Latent
Dirichlet Allocation model [Blei et al., 2003] is used, which performs comparably to

more complex models proposed in O'Seaghdha [2010].
In topic-modelling terminology, a 'document' is constructed for each unary predi¬

cate (e.g. bortiin), based on its set of argument entities ('words'). The model assumes

that these arguments are drawn from a small number of types ('topics'), such as PER,
DAT or LOC5. Example documents are shown in Table 4.2. Each type j has a multi¬
nomial distribution <j)j over arguments (for example, a LOC type is more likely to
generate Hawaii than 1961). Each unary predicate i has a multinomial distribution 6,
over topics, so the borrijn predicate will normally generate a DAT or LOC type. Sparse
Dirichlet priors a and /3 on the multinomials bias the distributions to be peaky. The
parameters are estimated by Gibbs sampling, using the Mallet implementation [Mc-

5Types are induced from the text, but I give human-readable labels here for convenience.
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Unary Predicate Arguments

borntn Hawaii, Bethlehem, 1961, Stratford, 1564, 1985, ...

year0f 2001, 1963, 1961, 2014, 1564, 1845,...

livejn Hawaii, Bethlehem, London, Paris, Edinburgh,...
diein Dallas, Edinburgh, 1963, Paris, 1918, 1985, ...

traveljo Edinburgh, Hawaii, London, Paris, Sydney, ...

Table 4.2: Hypothetical pseudo-documents for predicats, which are used as input to
the LDA topic model. From this data, the model is likely to learn that arguments are a

mixture of 'place' and 'date' topics, and the selectional preferences on the predicates.

Callum, 2002].

The generative story to create the data is:

For every type k:
Draw the p(arg\k) distribution </>/- from D/r(/3)

For every unary predicate i:
Draw the p(type\i) distribution 0, from Dir(ot)
For every argument j:

Draw a type Zij from Mult(Oj)
Draw an argument w,y from Mn/r(0e;.)

Following O'Seaghdha [2010], Ritter et al. [2010], a small number of very fre¬

quent, highly ambiguous predicates that have very weak selectional preferences are

excluded from the clustering. This was found to both improve the speed and perfor¬
mance of the clustering.

4.4.3 Typing in Logical Form

In the logical form, all constants and variables representing entities x can be assigned
a distribution over types px(t) using the type model. An initial type distribution is

applied in the lexicon, using the (j) distributions for the types of nouns, and the 0,
distributions for the type of arguments of binary predicates (inverted using Bayes'
rule). Then at each /3-reduction in the derivation, the type probabilities are updated to
be the product of the type distributions of the terms being reduced. If two terms x and



fileasuit (.S\NP)/NPNPT
(DOC=0.5\(PER=07}(CLOTHES=0.6\
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Figure4.5:Usingthetypemodelfordisambiguationinthederivationoffileasuit.Typedistributionsareshownafterthevariabledeclarations. Bothsuitandtheobjectoffilearelexicallyambiguousbetweendifferenttypes,butafterthejS-reductiononlyoneinterpretationislikely.Ifthe verbwerewear,adifferentinterpretationwouldbepreferred.
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y combine to a term z'

pM_ PADPMLt'Px{t')Py(t')
For example, in wore a suit and /z/e a suit, the variable representing suit may be lexi¬
cally ambiguous between CLOTHES and LEGAL types, but the variables representing
the objects of wear and file will have preferences that allow the system to choose the
correct type when the terms combine. Figure 4.5 shows an example derivation using
the type model for disambiguation.

4.4.4 Distributional Relation Clustering

The typed binary predicates can be grouped into clusters, each of which represents a

distinct semantic relation. Note that because typed predicates are clustered, bornargo-PER,in±oc
and bornargo:PER,in:DAT can be clustered separately.

4.4.4.1 Corpus Statistics

Typed binary predicates are clustered based on the expected number of times they
hold between each argument-pair in the corpus. This means there is a single vector of

argument-pair counts for each predicate (not a separate vector for each argument). For

example, the vector for the typed predicate writeargopER,argi:BOOK may contain non¬
zero counts for entity-pairs such as (Shakespeare, Macbeth), (Dickens, Oliver Twist)
and (Rowling, Harry Potter). The entity-pair counts for authorarg0 PER,of:BOOK maY be
similar, on the assumption that both are samples from the same underlying semantic
relation.

To find the expected number of occurrences of argument-pairs for typed binary

predicates in a corpus, the type-model is applied to the derivation of each sentence, as

described in Section 4.4.3. This outputs untyped binary predicates, with distributions
over the types of their arguments. The type of the predicate must match the type of its

arguments, so the type distribution of a binary predicate is simply the joint distribution
of the two argument type distributions.

For example, if the arguments in a bornargojn(obama,hawaii) derivation have the
respective type distributions (PER=0.9, LOC=0.1) and (LOC=0.7, DAT=0.3), the dis¬
tribution over binary typed predicates is: (bornarg0:PER,in:LOC=0.63, bornargo:pER,i„:DAT=0.27,
etc.) The expected counts for (obama, hawaii) in the vectors for bornargo-pERjn±oc and
bornargQ-pER,in:DAT are then incremented by these probabilities.
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f / /
,/

&̂ Ae/'
/VVV\)° X)x \)° \!

(Shakespeare, Stratford) 13.5 4.6 0.6 0.0

(Obama, Hawaii) 29.1 7.3 1.6 0.0

(Jesus, Bethlehem) 87.9 23.5 2.4 0.0

(Napoleon, Corsica) 5.6 1.8 1.1 0.0

(Obama, 1961) 1.2 0.0 37.5 10.1

(Shakespeare, 1564) 0.8 0.0 25.9 8.0

Table 4.3: Hypothetical example vectors for typed predicates (corresponding untyped
predicates are shown in Table 4.1). The two senses of bornarg\jn are disentan¬
gled by splitting the predicate into two typed predicates—one of which is similar to

birthplaceposs:pER,be\LOC> and another which is related to birthdateposs PER be.DAT

Table 4.3 shows example vectors for several typed predicates, demonstrating how

adding types to predicates can help resolve ambiguity.

4.4.4.2 Clustering

As in Section 4.3.2.2, predicates are clustered using the Chinese Whispers algorithm.
However, the predicates are now typed, meaning that the graph of predicates can first
be decomposed into subgraphs of predicates with the same type. For example, there
may be a subgraph for predicates with the (PER,LOC) type (containing predicates
such as livearg<y„ and flyargo,to) and one for predicates with the {PER, DAT) type.
This greatly improves efficiency, as the edge weights only need to be computed for
nodes in the same subgraph. It also means the algorithm can easily be parallelized, by
having one thread per subgraph.

4.4.5 Semantic Parsing Using Relation Clusters

The final phase is to use the relation clusters in the lexical entries of the CCG semantic
derivation. This is slightly complicated by the fact that the predicates are lexically
ambiguous between all the possible types they could take, and hence the relations they
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could express. For example, the system cannot tell whether bornargij(„ is expressing
a birthplace or birthdate relation until later in the derivation, when it combines with
its arguments. However, all the possible logical forms are identical except for the
symbols used, which means the system can output a packed logical form capturing the
full distribution over logical forms. To create the packed logical form, the predicates
used are functions from argument types to relations.

For each word, the system first finds the lexical semantic definition produced by
the algorithm in Section 4.3.1. For binary predicates in this definition (which will be
untyped), the system performs a deterministic lookup in the cluster model learnt in
Section 4.3.2.2, using all possible corresponding typed predicates. As multiple rela¬
tions symbols are found for a single untyped predicate, the predicate can be represented
as a packed predicate: a function from argument types to relations.

For example, if the clustering maps bornargQPERjn\LOC to rel49 ("birthplace") and
bornargQ:per.in:dat to re153 ("birthdate"), the lexicon contains the following packed
lexical entry (type-distributions on the variables are suppressed for brevity):

, , * w r , , „ \(x-.PER,y.LOC)^rel49\ ,

born h (S\NP) PP\in] : XyXx. < > (jc,y)
\(x:PER,y:DAT)=>rel53 J

The distributions over argument types then imply a distribution over relations.
For example, if the packed-predicate for bornargoiin is applied to arguments Obama
and Hawaii, with respective type distributions (PER=0.9, LOC=0.1) and (LOC=0.7,

DAT=0.3)6, the distribution over relations will be (rel49=0.63, rel53-0.21, etc.).
If 1961 has a type-distribution (LOC=0.1, DAT=0.9), the output packed-logical

form for Obama was born in Hawaii in 1961 will be:

rel49=0.63

rel53=0.27 (obama, hawaii) A

rel49=0.09

rel53—0.81 (obama, 1961)

The probability of a given logical form can be read from this packed logical form.

4.5 Experiments

The model is evaluated on a question-answering task. Results in Chapter 3 show that
the system offers a strong model of formal semantics, capable of sophisticated multi-

6These distributions are composed from the type-distributions for both the predicate and argument,
as explained in Section 4.4
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Type Top Words
1 suspect, assailant, fugitive, accomplice
2 author, singer, actress, actor, dad
5 city, area, country, region, town, capital
8 subsidiary, automaker, airline, Co., GM
10 musical, thriller, sequel, special

Table 4.4: Most probable terms in some clusters induced by the Type Model.

sentence inferences, and these results are unaffected by the use of clustering. To eval¬
uate the work in this chapter, an evaluation is used that focuses on lexical semantics.

4.5.1 Experimental Setup

The system is trained on Gigaword [Graff et al., 2003], which contains around 4 billion
words of Newswire. The corpus was preprocessed to reduce noise.

• Only text occurring within \P£ or \TEXTi tags was used, and only documents
whose type is story.

• To filter text such as (END OPTIONAL TRIM), lines containing no lower case

letters were ignored.

• Parts of the corpus appear to contain errors where underscores are used instead
of commas - these were automatically replaced.

• Some articles start with meta-information, such as: Y2K-MAIN _ WASHINGTON

_ . These are filtered with a regular expression.

The type-model is trained using 15 types7, and 5,000 iterations of Gibbs sampling
(using the distributions from the final sample). Table 4.4 shows some example types.
The relation clustering uses only proper nouns, to improve precision (sparsity problems
are partly offset by the large input corpus). Aside from parsing, the pipeline takes
around a day to run using 12 cores.

7This number was chosen by examination of models trained with different numbers of types. The
algorithm produces semantically coherent clusters for much larger numbers of types, but many of these
are fine-grained categories of people, which introduces sparsity in the relation clustering.
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4.5.2 Question Answering Experiments

As yet, there is no standard way of evaluating lexical semantics. Existing tasks like
Recognising Textual Entailment [Dagan et al., 2006] rely heavily on background knowl¬
edge and coreference resolution, which is beyond the scope of this work. Intrinsic
evaluations of entailment relations have low inter-annotator agreement [Szpektor et al.,
2007], due to the difficulty of evaluating relations out of context.

The evaluation is based on that performed by Poon and Domingos [2009]. A set
of questions is automatically constructed by sampling from text. The evaluation then
tests how many correct answers can be found in a different corpus.

From dependency-parsed Newswire (using the MaltParser Nivre et al. [2007]), sim¬
ple binary relations are sampled using the following patterns: verbd^V Y,
verbp—j Y or x"«—^ be d"Vnoun°V Y patterns, where X and Y are proper nouns and
the verb is not on a list of stop verbs. These patterns are deterministically converted to

questions in the present tense. For example, from Google bought YouTube, the ques¬

tions What does Google buy? and What buys YouTube? are created. To improve the

quality of the questions, patterns are only extracted from predicates with a single ob¬
ject, which avoids generating questions like What gives Michelle? from Obama gave

Michelle a present. I also automatically excluded questions where the main predicate
is a frequently light verb, or the preposition is as, than or like. While these filters do

prune some valid questions, they were found to greatly improve the overall quality of
the question set.

The task is to find proper-noun answers to these questions in a different corpus,

which are then evaluated by human annotators based on the sentence the answer was

retrieved from8. Systems can return multiple answers to the same question (e.g. What
did Google buy? may have many valid answers), and all of these contribute to the

result. As none of the systems model tense or temporal semantics, annotators were

instructed to annotate answers as correct if they were true at any time. This approach
means that relations are evaluated in proportion to corpus frequency. 1000 questions
were sampled from the New York Times subset of Gigaword from 2010, and the New
York Times from 2009 was used for evaluation. A 50% sample of the output was

annotated for the CCG systems.

8Common nouns are filtered automatically. To focus on evaluating the semantics, annotators ignored
garbled sentences due to errors pre-processing the corpus (these are excluded from the results). Weekday
and month answers were also automatically filtered, which are overwhelmingly syntax errors for all
systems—e.g. treating Tuesday as an object in Obama announced Tuesday that...
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The following comparison systems were used for evaluation:

• CCG-Baseline The logical form produced by the standard CCG derivation, with¬
out using clustering.

• CCG-WordNet The CCG logical form, plus WordNet as a model of lexical
semantics.

• CCG-Distributional The logical form including the type model and clusters.

• Relational LDA An LDA based model for clustering dependency paths [Yao
et al., 2011], The model was trained on New York Times subset of Gigaword9,
using their setup of 50 iterations with 100 relation types.

• Reverb A sophisticated Open Information Extraction system [Fader et ah, 2011].

Unsupervised Semantic Parsing [Poon and Domingos, 2009, 2010, Titov and Kle-
mentiev, 2011] would be another obvious baseline. However, memory requirements
mean it is not possible to run at this scale (the CCG-Distributional system is trained on

4 orders of magnitude more data than the USP evaluation). Yao et al. [2011] found it
had comparable performance to Relational LDA.

For the CCG models, rather than performing full first-order inference on a large

corpus, the system simply tests whether the question predicate subsumes a candidate
answer predicate, and whether the arguments match.This approach is much more effi¬
cient than full first-order theorem-proving. Theorem-proving would allow the system
to make additional inferences, such as answering What did Google buy? from Google

bought the largest video website and YouTube is the largest video website.. The system
is able to use the scope of negation, so will not answer the question based on Google
did not buy Apple.

In the case of CCG-Distributional, the probability is calculated that the two packed-
predicates are in the same cluster, marginalizing over their argument types. For ex¬

ample, say the system considers answering the question What is Obama's birthplace?
from the sentence Obama was born in Hawaii. The predicates bornarg\jn and birthplacep0ss^e
may map to the same relation cluster with some types (e.g. (PER,LOC)), but not with
other types such as (PER,DAT). The probability that the inference holds is then the
probability that they both have a type where the inference holds, i.e:

9This is around 35% of Gigaword, and was the largest scale possible with available resources.
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Figure 4.6: Precision at Rank curves for a wide-coverage Question Answering task.
It is not possible to give a recall figure, as the total number of correct answers in the
corpus is unknown. Relational-LDA is not shown, but found 7046 answers with 11.6%
precision.

Htl,t2 ^r(bornargVn,i„-,t2)=r{birthplacep0SS:t^he.g)P{t^dAcontext)
Yjtl,t2P(tl,t2\context)

Where r maps predicates to cluster identifiers, and:

p(t\,t2\context) = p{t\\obama)p(t\\bornarg\)p(t\\birthplaceposs)
•p{t2\ Hawaii)p(t2\ bornjnp [t2 \birthplaces)

Question/Answer pairs are ranked by this probability. For CCG-WordNet, the sys¬

tem checks if the question predicate is a hypernym or synonym of the candidate answer

predicate (using any WordNet sense of either term).
Results are shown in Figure 4.6.

• Relational-LDA induces many meaningful clusters, but all predicates in the cor¬

pus must be assigned to one of 100 relation types. As there are far more than 100
different kinds of relations in a large English corpus, the model learns a num¬

ber of very large, noisy clusters, which dominate the results. It is not possible
to take the N-best answers as the cluster assignments do not have a confidence

score. Yao et al. [2011] show that these clusters can still be useful in a super¬

vised framework, as a supervised classifier can learn which clusters are useful.

However, I believe this result is an argument for using non-parametric clustering.



Question

Answer

Sentence

WhatpresidesoverHouse?
NancyPelosi

-k.

TheDemocratically-controlledHouseledbyHouseSpeakerNancyPelosi,D-Calif..̂
WhatisacolumnistforDenverPost?

ChuckPlunkett
ChuckPlunkettisarunnerandaneditorialwriterforTheDenverPostrri

><

WhatisacolumnistforDenverPost?
WilliamPorter
WilliamPorterisareporterforTheDenverPost§

WhatlivesinIndia?

Briton

Slym,aBritonwhoworkedforthecompanyinPoland...beforecomingtoIndia...jd
WhatdoDemocrateswinin?
SouthDakota
MyRepublicanparentswereshockedthataDemocratcouldgetelectedinSouthDakofh

WhatreportsfromWashington
EricSchmitt
EricSchmittcontributedfromWashington

WhatmovesfromBoston?
Ramirez

TheDodgerssold30000ticketsthedayafterRamirezarrivedfromBostoninatrade
WhatdoesDalaiLamaarrivein?

Taiwan

MareluctantlyallowedtheDalaiLama,thespiritualleaderoftheTibetans,tovisitTaiwan
WhatmeetswithObama?
Gates

ObamawhohasalreadydiscussedmilitaryspendingwithGates...
WhatservesinSenate?

Burris

Burris...hopestobeginworkingintheSenatethenextday
WhatmeetswithObama?
HenryGates

ObamahasinvitedHarvardProfessorHenryGates...totheWhiteHouse
WhatleavesforHarvard?

Hatch

HatchwentbacktoHarvard

WhatarrivesinWashington?
Price

LewisandPriceflewtoWashingtontomeetwithofficialsfromtheFederalReserve
WhatrunsforCongress

Coffin

CoffinwaselectedtoCongresstwoyearslaterandservedtwoterms
WhatservesinHouse

JeffFlake

...saidRep.JeffFlakewhohassponsoredbipartisanimmigrationreformintheHouse
WhatspeakswithHuJintao?

Geithner

GeithneralsowasscheduledtomeetTuesdaywithPresidentHuJintao
WhatspeakswithHillaryClinton?

Karzai

HillaryClintonbluntlytoldKarzaithatrunningwithFahimwoulddamagehisstanding withtheUnitedStates

WhatreturnsfromChina

Nixon

...theping-pongdiplomacyprecedingPresidentNixon'shistoricvisittoChinain1972
Table4.5:ExamplequestionsansweredbyCCG-DistributionalthatcouldnotbeansweredbythebaselineCCGsystem.Someoftheseare relyonerroneousclustering—forexample,equatingrunningforCongresswithbeingelectedtoCongress.



82 Chapter 4. Combined Distributional and Logical Semantics

• The two deterministic systems, CCG-Baseline and Reverb systems both achieve
good precision, with the CCG system able to improve recall based on long-
range dependencies and coordination constructions. The CCG-Baseline errors
are mainly caused by parser errors, or relations in the scope of non-factive op¬
erators. For example, it believed Mexico is struggling to qualify for the 2010
World Cup—^Mexico qualifies for the World Cup, because it did not understand
that struggling is non-factive. This issue is addressed further in Chapter 6. There
were also a number of errors due to misidentifying named-entities.

• CCG-WordNet adds relatively few correct answers to CCG-Baseline, reflecting
the limitations of hand-built ontologies. It loses precision compared to CCG-
Baseline, mostly due to us not modelling word-senses. For example, it inferred
Randolph saw combat in Vietnam —> Randolph met in Vietnam , because one

WordNet sense of meet is in the same synset as see. We could in principle
use word-sense disambiguation to resolve this problem, but resolving WordNet
senses is notoriously difficult [Hovy et al., 2006]. In any case, recall is still far
lower than for the distributional approach.

• CCG-Distributional substantially improves recall over other approaches whilst

retaining good precision, demonstrating that that our system has learnt a power¬

ful model of lexical semantics. Table 4.5 shows some correctly answered ques¬

tions. The system improves over the baseline by mapping expressions such as

merge with and acquisition of to the same relation cluster. Many of the errors

(and, in fact, successes) are caused by conflating predicates where the entailment

only holds in one direction, such as was elected to with ran for—meaning that
many of the clusters do not truly correspond to underlying semantic concepts.

Chapter 6 introduces a much more sophisticated approach to clustering to solve
this problem.

4.5.3 Qualitative Evaluation

The answers returned by the system were inspected to determine the contribution of
different parts of the model. The use of formal semantics helps the CCG-based models
to improve both precision and recall over alternative approaches. However, a weak
model non-factive verbs is a major source of errors.

Using formal semantics helps the CCG models to easily return answers that would
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be difficult for the other systems, by capturing non-local arguments and normalizing
syntactic variations. The most frequent examples are in relative clauses and coordina¬
tion. For example, the CCG models correctly answer a question by making the infer¬
ence Kuklo, who is currently an associate professor ofmedicine at Washington Univer-
sity-^Kuklo is a professor at Washington University. Answering the question would
require additional inference for an approach based on syntactic dependencies, as the
relative clause changes the dependencies between Kuklo and professor. Similarly, for
the question What does GM focus on?, the CCG models return all four answers from
the sentence GM... is focusing on Chevrolet, Cadillac, Buick and GMC—because the
use of logical form allows the same relationship between all the conjuncts and the

predicate (as explained in Chapter 3). Syntactic dependency trees give a less elegant
account of coordination, as only one of the conjuncts can be the head—meaning that
the other conjuncts have a different relation to the predicate. These examples show how
the use of CCG can improve recall over using syntactic dependencies, by abstracting
over different syntactic ways of expressing the same meaning.

The use of formal semantics allows the CCG models to identify negated predi¬

cates, which helps improve precision over other approaches. For example, Reverb
incorrectly answers the question Who testifies before Congress? with Obama based on

the sentence Susan Sher... emphasized that Obama would not testify before Congress,
because the relatively simple pattern matching ignores adverbs (including not). How¬
ever, the CCG models avoid that mistake by detecting that the verb testify is within
the scope of negation. This shows how formal semantics can boost the precision of
question answering systems.

We find many errors to do with failing to model non-factive predicates. For ex¬

ample, the CCG approaches license inferences such as Mexico is struggling to qualify
for the 2010 World Cup^Mexico qualifies for the World Cup, Burris plans to ar¬
rive in Washington^Burris arrives in Washington and GM is expected to focus on

China-^GMfocuses on China, leading to precision errors. A more detailed considera¬
tion of implicative verbs is given in Chapter 6, which partially addresses these issues.

4.6 Comparison with Related Work
This section compares the approach outlined in this chapter with a range of recent work
in computational semantics. More detailed descriptions of alternative approaches can
be found in Chapter 2.
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4.6.1 Unsupervised Semantic Parsing

Unsupervised Semantic Parsing [Poon and Domingos, 2009, 2010, Titov and Klemen-
tiev, 2011] is a closely related approach to the Distributional CCG model, in that it
builds a logical form using cluster identifiers as symbols. It has both strengths and
weakness compared to the model developed here.

USP clusters a greater range of predicates than the system developed in this thesis.
Whereas my work has concentrated on binary relations, USP also clusters other kinds
of predicates, such as adverbs. However, the evaluation of the system only focuses
on nouns and binary predicates, so it is unclear how effective their methods are on

other kinds of relations. USP gives a Davidsonian analysis of multi-argument rela¬
tions, rather than the simple alternative here of binarizing predicates with more than
2 arguments. USP's approach has advantages when comparing a binary relation to a

unary one, for example I walked to work^I walked. In contrast, our current ambiguity
model would not work in this setting (USP assumes all words are unambiguous). Bi¬

narizing also makes it easier to capture relations between equivalent expressions with
different syntactic frames, such as in the equivalence between X bought Y and Y was

sold to X. USP is likely to assign the verbs buy and sell to unrelated clusters, as it
assumes argument keys are conditionally independent given a cluster.

On significant limitation of USP is that it has extremely high memory requirements,

meaning it can only be applied to small corpora. Yao et al. [2011] found it required
45GB of RAM to run on just 1000 news articles. Reassigning a predicate to a new

cluster affects the probabilities of all sentences containing that predicate. The CCG

system is much more computationally efficient, as rather than trying to find a clustering
that maximizes the probability of all the sentences in the corpus, every predicate is
transformed into a vector based on local context, and then clustered based on these

vectors.

4.6.2 Compositional Vector Space Models

Section 2.4.1 discussed several challenges for current compositional vector space models—
including representing logical operators, composing word meanings for expressions
longer than a few words, representation of factual knowledge, and dealing with com¬

plex syntactic constructions such as coordination. The CCG model developed in Chap¬
ter 3 offers good solutions to these issues, and this chapter developed it by including
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distributional representations of content words. However, vector space models do have
some advantages over the current work, which I discuss here.

Both the present approach and compositional vector space models start from vec¬

tors representing non-compositional units. Vector space approaches typically use con¬

text words as dimensions [Baroni et al., 2013], whereas the CCG model uses argument
entities. It is reasonable to expect that the context word approach is less sparse, though
the statistics are also potentially less informative. Of course, which gives the better
performance is an empirical question. The model of developed in Chapter 6 takes
advantage of both.

Baroni et al. [2013] make an extended case for compositional vector space models.
They view them as complementary to logical models, but argue they are superior in a

number of ways. Most of their criticisms of logical models—including the size of the
lexicon and modelling ambiguity—are handled by the distributional CCG approach
(by non-parametric clustering and a probabilistic model of ambiguity).

One advantage of compositional vector space models over the current proposal
is in their ability to handle compositionality involving multiple content words—for
example, capturing that dog house—kennel. The predicates clustered in the CCG model
all contain a single content word. The most simple solution to this in the CCG model
would be to treat such items as multi-word expressions, and cluster them based on

the composed vectors for individual words. Section 6.7.4 discusses this point in more

detail, and gives an alternative solution.
Baroni et al. [2013] suggest that another advantage of vector space models is the

ability to capture near paraphrases—expressions which are strongly related, but not

truth-conditionally equivalent. For example: The workers are stressed~The workers
are busy10. The current approach would deny that the sentences imply each other,
whereas a vector-space approach is likely to find correlations between them. The dis¬
tributional CCG system could be extended to capture such inferences, by using a soft-
clustering model such as a Hierarchical Dirichlet Process [Teh et al., 2006] (instead of
the hard clustering given by the Chinese Whispers algorithm). This model would allow
the semantics of typed predicates to express a distribution over clusters, which could
capture that the stressed utterance was generated by the busy cluster with non-zero
probability. It is somewhat unclear what the applications of such reasoning are—near-

paraphrasing is probably insufficiently high precision for question-answering applica¬
tions, although it may be useful for information retrieval.

10The example was suggested by Chris Manning
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4.6.3 Natural Logic

Natural Logic [MacCartney and Manning, 2007] circumvents many of the problems as¬
sociated with building full logical forms for sentences, by simply annotating the scope

of negation in text. MacCartney and Manning [2007] point out that there are many ob¬
stacles to building full semantic interpretation, including idioms, ellipsis, paraphrase,
ambiguity, vagueness, lexical semantics, the impact ofpragmatics, and so on. Whilst
the present work attempts to address some of these issues, there are clearly many out¬

standing problems. The simpler approach of natural logic aims to provide more robust
inference than full semantic interpretation, whilst retaining the ability to reason about
phenomena such as negation and quantifiers.

On the other hand, the insertion and deletion rules used by Natural Logic for in¬
ference limits the potential for certain kinds of entailment, as words must appear in
the same order in the premise and hypothesis. For example, it would not be able to
infer: Google bought YouTube =4- YouTube was bought by Google. Traditional for¬
mal semantics approaches can avoid this problem, as mapping to a traditional logical
form abstracts away from the original word order. Natural Logic also cannot make
inferences involving multiple premises. MacCartney and Manning [2007] relies on

WordNet for a model of lexical semantics, which is likely to limit the inferences it
can make. It may be possible to create a Distributional Natural Logic using similar

techniques to those developed in this thesis.

4.6.4 Distributional Inference Rules

Garrette et al. [2011], Beltagy et al. [2013] introduced an approach in which the output
of a CCG system is augmented with distributionally-induced inference rules (see Sec¬
tion 2.4.3.2 for a more detailed introduction). This approach is the most closely related
to ours in both aims and methods. However, there are several important differences.

The most important distinction is in how the lexical semantics is expressed. Gar¬
rette et al. [201 l]'s model needs to create an axiom between each pair of content words
in the corpus (though low-probability rules are pruned), and the number of axioms re¬

quired will grow quadratically in the size of the corpus. In contrast, the system de¬
veloped here grounds the meaning of words in cluster identifiers, so the size of the

logical form grows linearly in the size of the corpus. For example, if a corpus con¬

tains four words with high distributional similarity, such as buy, purchase, acquire and
take-over, Garrette et al. [2011] would create 9 axioms {buy—^-purchase, buy—>■acquire,
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purchasedacquire, etc.). The clustering approach would simply have all terms express
the same cluster identifier. Using clustering may also reduce sparsity; rarer terms such
as take-over may have low distributional similarity with some of their synonyms, but
clustering may still allow the relation to be identified.

The distributional inference rule approach is based on the idea that lexical seman¬

tics is inherently fuzzy, and should be dealt with probabilistically. A consequence of
the clustering approach is that words are treated as being synonyms or unrelated (Chap¬
ter 6 generalizes this approach to handle entailments that only hold in one direction,
but the approach is still discrete). The use of a probabilistic typing model means that
our system is probabilistic, but conceptually words are ambiguous between discrete
meanings, rather than themselves having fuzzy interpretations.

Our approach could equivalently be formulated using probabilistic inference rules,
by making each word express a unique semantic primitive (so each word instance has
a unique meaning, based on its context), add adding probabilistic inference rules ex¬

pressing a distribution over cluster identifier symbols. For example:

p(buy456(google,youtube) -H- clusterAl (google,youtube) = 0.9
p(buy456(google,youtube) cluster\86(google,youtube) — 0.01
p(purchase423(google,youtube) <H> cluster41 (google,youtube) — 0.85
p(acquire768(google,youtube) clusterM(google,youtube) = 0.95
p(take_over&61 (google,youtube) f-> clusterAl(google,youtube) = 0.93

Because words express distributions over cluster identifiers, rather than distribu¬
tions over other words, this approach asymptotically reduces the number of inference
rules required. Ignoring pruning, the number of inference rules added for understand¬
ing a corpus is the product of the number of content words and the number of types
(rather than being quadratic in the number of words). This approach may be useful for
efficiency, as probabilistic theorem proving is expensive.

Of course, these approaches are not mutually exclusive—one way to hybridize
them would be to represent synonyms using clusters, but also add axioms to represent
fuzzy inference rules between clusters, which would capture the advantages of both.

4.7 Conclusions

This chapter has introduced a new model which combines many of the advantages
of formal and distributional semantics, by modelling the meanings of content words
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with distributionally induced cluster identifiers. I have demonstrated that the combined
model is capable of both making complex logical inference involving quantifiers, and
answering questions that require knowledge of lexical semantics. However, there is
much potential for enhancing the current model, and it will be greatly improved in

Chapter 6.



CHAPTER

Unsupervised Induction of Cross-lingual
Semantic Relations

5.1 Introduction

This chapter attempts to generalise the work of Chapter 4 to multiple languages. It

explores the strongest hypothesis presented in this thesis, which speculates that the

interpretation of all languages can be expressed using the same set of predicates, and
that these predicates can learnt from unlabelled text. Chapter 4 suggested that the
clusters represent abstract concepts—are they abstract enough to be shared between

languages? To investigate this, I build clusters containing both French and English
predicates, using the fact that named-entities are similar between languages to guide
the clustering. The work inevitably remains somewhat preliminary, as there is little

existing work in a potentially large field, but encouraging results suggests that the
direction is worth pursuing. The work in this chapter was previously published as

Lewis and Steedman (2013b).

The rest of the chapter proceeds as follows:

• Section 5.2 discusses the motivations for attempting to induce cross-lingual se¬

mantic clusters.

89
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• Section 5.3 gives an overview of the proposed method.

• Sections 5.4 and 5.5.1 discuss how predicates and entities are represented to
allow the cross-lingual clustering.

• Sections 5.7 and 5.8 evaluate the method, showing good results on question-
answering and translation reranking experiments.

• Section 5.9 describes how this work is related to other recently proposed meth¬
ods in machine translation and cross-lingual semantics.

5.2 Motivation

Identifying a language-independent semantics is a major long term goal of computa¬
tional linguistics, and is interesting both theoretically and for practical applications.

Interlingual machine translation [Dorr et al., 2004] assumes that semantically equiva¬
lent sentences in any language can be mapped onto a common meaning representation.
Such a representation would be of great utility for tasks such as translation, relation ex¬

traction, summarization, question answering, and information retrieval. Regardless of
whether it is even possible to create such a semantics, I show that even an incomplete
version can be useful for downstream tasks.

Semantic machine translation aims to map a source language to a language-independent
meaning representation, and then generate the target language translation from this. It
is hoped this would alleviate the difficulties of simpler models when translating be¬
tween languages with very different word ordering and syntax [Vauquois, 1968]. It
would also avoid the problem of needing parallel text in every pair of languages to be
translated, as is required by current approaches. Instead, each language only requires
a single mapping into and out of the interlingual representation.

Despite many attempts to create interlingual representations [Mitamura et al., 1991,
Beale et al., 1995, Banarescu et al., 2013], state-of-the-art machine translation still uses

phrase-based models [Koehn et al., 2007]. The major obstacle to defining interlinguas
has been devising a meaning representation that is language-independent, but capable
of expressing the limitless number of meanings that natural languages can express

[Dorr et al., 2004].
I introduce an approach that avoids this problem, by utilising the methods of distri¬

butional semantics. The work presented in Chapter 3, and several other recent papers
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[Poon and Domingos, 2009, Yao et al., 2011], has shown that paraphrases of expres¬
sions can be learnt by clustering those with similar arguments —for example learning
that X wrote Y and X is the author of Y are equivalent if they appear in a corpus
with similar (X, Y) argument-pairs such as {(Shakespeare, Macbeth), (Dickens, Oliver

Twist)}. In this chapter, I extend this to the multilingual case, aiming to also map the
French equivalents X a ecrit Y and Y est un roman de X on to the same cluster as

the English paraphrases. Conceptually, I treat a foreign expression as a paraphrase of
an English expression. The cluster identifier can be used as a predicate in a logical
form, suggesting that the fundamental predicates of an interlingua can be learnt in an

unsupervised manner via clustering.
In this chapter I focus on learning binary relations between named entities. This

problem is much simpler than attempting complete interlingual semantic interpreta¬
tion, but in Section 5.10 I suggest how it could be generalized. This class of expres¬

sions has proved extremely useful in the monolingual case, with direct applications for
question answering and relation extraction [Poon and Domingos, 2009, Mintz et al.,
2009], and I demonstrate how to use them to improve machine translation. It is im¬

portant to be able to extract knowledge across languages, as many facts will not be

expressed in all languages—either due to less-complete encyclopedias being available
in some languages, or facts being most relevant to a single country.

In contrast to most previous work on machine translation and cross-lingual clus¬
tering, the proposed method requires no parallel text (see Section 5.9 for discussion
of some exceptions). It instead exploits an alignment between named-entities in dif¬
ferent languages. The limited size of parallel corpora is a significant bottleneck for
machine translation [Resnik and Smith, 2003], whereas the clustering approach can

be used on much larger monolingual corpora. This means it is potentially useful for
language-pairs where little parallel text is available, for domain adaptation, or for semi-
supervised approaches.

The other motivation for this work is to explore whether cross-lingual clustering
can induce better mono-lingual clusters than simply running on one language alone.
The intuition here is that seeing the same concept expressed multiple languages pro¬

vides stronger evidence that it is really an underlying relation. Another possibility is
that using multiple languages may allow the use of parallel text as a way to super¬
vise clustering—effectively treating a parallel corpus as a huge paraphrase corpus. In
practice, I did not find that adding multiple languages helped improve the clustering
in individual languages, but in Section 5.10 I discuss possibilities for overcoming this
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obstacle.

5.3 Overview of Approach

This chapter builds on clustering-based approaches to monolingual distributional se¬

mantics, such as that of Chapter 4, aiming to create clusters of semantically equivalent
predicates based on their arguments in a corpus. In each language, each sentence in a

large monolingual corpus is first deterministically mapped onto a simple logical form,
by extracting binary predicates between named entities. Then, predicates with similar
arguments are clustered both within and between languages.

When parsing a new sentence, instead of using the monolingual predicate, the clus¬
ter identifier is used as a language-independent semantic relation, as shown in Figure
5.1. The resulting logical form can be used for inference in question answering.

Unlike traditional approaches to translation, this method does not require paral¬
lel text—but it does impose some additional constraints on language resources. The

approach requires:

• A large amount of factual text, as the approach relies on the same facts being

expressed in different languages. I use Wikipedia, which contains articles in 250

languages, including 121 with at least 10,000 articles.1 Other domains, such as

Newswire, may also be effective. However, the method would probably not be
successful for works of fiction.

• A method for extracting binary relations from sentences. This is straightforward
from dependency parses, which are available for many languages. It is also

possible without a parser, with some language-specific work [Fader et al., 2011].
The approach is described in Section 5.4.

• A method for linking entities in the training data to some canonical representa¬
tion. McNamee et al. [2011] report good results on this task in 21 languages. A
simple method for entity linking is described in Section 5.5.1.

5.4 Predicate Extraction

The proposed method relies on extracting binary predicates between entities from sen¬

tences. Various representations have been suggested for binary predicates, such as Re-
1 As of June 2013.
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verb patterns [Fader et al., 2011], dependency paths [Lin and Pantel, 2001, Yao et al.,
2011], and binarized predicate-argument relations derived from a CCG-parse [Lewis
and Steedman, 2013a]. The approach suggested here is formalism-independent, and is
compatible with any method of expressing binary predicates.

For English, the CCG parser developed in Chapter 3 is used. It outputs a log¬
ical form derived automatically from the CCG-parse, containing predicates such as:

writeargQ arg\(shakespeare,macbeth). By using the close relationship between the CCG
syntax and semantics, it is able to generalize over many semantically equivalent syn¬

tactic constructions (such as passives, conjunctions and relative clauses), meaning that
both Shakespeare wrote Macbeth and Macbeth was written by Shakespeare can be

mapped to the same logical form. Using a dependency-based representation, these
would have different predicates, which would need to be clustered later. As discussed
in Chapter 3, CCG also has a well developed theory of operator semantics [Steed-
man, 2012], so is able to represent semantic operators such as quantifiers, negation and

tense—understanding these is crucial phenomena to high performance on question an¬

swering or translation tasks. As in Chapter 4, clusters derived from the output from
the parser can be integrated into the lexicon, allowing us to build logical forms which

capture both operator and lexical semantics.

High performance CCG syntactic parsers are currently only available for English,
meaning the semantic parser developed in Chapter 3 can only be used for English.
However, recent work has explored creating CCGBanks for other languages including
Hindi [Ambati et al., 2013], German [Hockenmaier, 2006], Chinese [Tse and Curran,

2010], Italian [Bos et al., 2009], and Japanese [Uematsu et al., 2013], so ultimately it
may be possible to use CCG for many languages.

As a short term solution, dependency parsing has seen much attention in many

languages [Buchholz and Marsi, 2006], so is a good pragmatic choice. Consequently,
the dependency path representation is used for French, which captures the nodes and
edges connecting two named entities in a dependency parse. The extraction of these

paths is language-independent, and does not depend on the dependency grammar used,
which means the approach could be adapted to new languages with minimal work.
In practice, it can be difficult to find pipelines of sentence segmenters, tokenizers,

morphological analyzers, POS-taggers and parsers that are compatible with each other
- which is the main reason French is the only non-English language I used.
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5.5 Entity Semantics

5.5.1 Entity Linking

As discussed in Section 5.3, the approach assumes that semantically similar predicates
will have similar argument entities. This requires it to be able to identify coreferring
entities across languages during training. In the monolingual case, it suffices to rep¬

resent entities by the string used in the sentence, as was done in Chapter 4. String
matching is inadequate in the multilingual case, as many entities may be referred to

by different names in different languages—for example the United States translates as

les Etats-Unis in French and die Vereinigte Staaten in German. This problem is wors¬

ened by the ambiguity of named-entity strings—for example, in the context of a sports

article, United States may refer specifically to a team, rather than a country.

Recent work on multilingual named-entity linking [McNamee et al., 2011] shows
how to link named entities in multiple languages onto English Wikipedia articles,
which can be used as unique identifiers for entities. Consequently, the method could
be applied to any text. However, as Wikipedia itself is used for the training corpora,

entity information can be bootstrapped directly from its markup. Wikipedia contains
cross-language links, e.g. between the United States articles in different languages,
allowing us to determine the equivalence of entities in different languages.

Wikipedia links also help us automatically disambiguate entities to a given article.
For unlinked named-entity mentions, simple heuristic co-reference and entity linking
is used. This was not the focus of the work, so a rather ad-hoc strategy was used, but it
was found to be effective:

• First, all Freebase entities whose name matches the string are returned—for ex¬

ample, every entity with the name Obama. If there is only one such entity, or
if one of the entities matches the subject of the article, then this entity is re¬

turned. Otherwise, if exactly one of the matching entities has previously been
used in the document before, that is returned. For example, if Michelle Obama
has previously been mentioned, but no other Obamas, then she will be matched
by Obama.

• Next, the system sees if the name has non-zero word overlap with a previously
seen entity for example, Barack matches Barack Obama. If so, that entity is
returned.
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• The system then checks if the entity name defaults to a particular Wikipedia ar¬
ticle (and then returns the corresponding Freebase entity). For example, while
there are articles about several different Obamas on Wikipedia, the title Obama
redirects to the Barack Obama article. This method captures the intuition that
even though most names are ambiguous, there is often a sensible 'default' inter¬
pretation.

• Finally, if the entity begins with a title (e.g. Mrs, President etc.), it tries removing
it, and running the coreference algorithm recursivel on the result.

We also ignore entities matching the Freebase 'language' type, which were prob¬
lematic for the above algorithm (which would incorrectly identify English as a lan¬
guage in I am English).

While Wikipedia information is useful for co-reference and linking, it of course

does not mean that our approach is only applicable to the Wikipedia corpus.

5.5.2 Entity Typing

It has become standard in clustering approaches to distributional semantics to assign

types to predicates before clustering, and only cluster predicates with the same type

[Schoenmackers et al., 2010, Berant et ah, 2011, Yao et ah, 2012], Typing predicates
is useful for resolving ambiguity—for example the phrase born in may express a place-
of-birth or date-of-birth relation depending on whether its second argument has a LOC
or DAT type. Doing this is particularly imporant when clustering cross-lingually, as

ambiguous expressions may translate differently in other languages. For example,
the two interpretations of was born in translate in French as est ne a and est ne en

respectively. The type of a predicate is determined by the type of its arguments, and
predicates with different types are treated as distinct.

In Chapter 3, an unsupervised model of entity types was induced using Latent
Dirichlet Allocation [Blei et ah, 2003], based on selectional preferences of verbs and
argument-taking nouns. When applied cross-linguistically, I found this technique tended
to create language-specific topics. As a simple alternative to inducing types, I use an

existing type-schema. I exploit the fact that many Wikipedia entities are linked to the
Freebase database, which has a detailed manually-built type-schema. This means that
the system can look up the Freebase types of many Wikipedia entities.2 The simpli¬
fied type-set of 112 types created by Ling and Weld [2012] is used, as it cleaner and

2Named entities not present in Freebase are ignored during training.
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contains less duplication than the full Freebase schema. Where entities have multiple
types (for example, Shakespeare is both an author and a person), a separate relation is
created for each type.

5.6 Relation Clustering

Predicates are clustered into those which are semantically equivalent, based on their

argument-pairs in a corpus. The initial semantic analysis is run over the corpora, and
for each predicate a vector is built containing counts for each of its argument-pairs
(these counts are divided by the overall frequency of an argument-pair in the corpus,

so that rarer argument-pairs are more significant). These vectors are used to compute

similarity between predicates.

First, the clustering algorithm is run on each language independently, and then the
clusters are aligned. Due et al. [2011] and Tackstrom et al. [2012] use similar two-

step approaches. Running the clustering on both languages simultaneously was found
to produce many clusters only containing predicates from a single language. This ap¬

pears to be because even if predicates in two different languages are truth-conditionally

equivalent, the language biases the sample of entity-pairs found in a corpus. For exam¬

ple, the French verb ecrire may contain more French author/book pairs than the English
equivalent write. This difference can make the verbs appear to represent different pred¬
icates to the clustering algorithm. The two-step approach also means that advances in
monolingual clustering should directly lead to improved cross-lingual clusters.

5.6.1 Monolingual Clustering

As in Chapter 4 the Chinese Whispers algorithm [Biemann, 2006] is used for mono¬

lingual clustering. As before, the advantages are that the algorithm is simple, non-

parametric (meaning that the number of relation clusters is induced from the data),
and highly scalable. A separate graph is created for each type of predicate in each
language—for example, predicates between types AUTHOR and BOOK in French (so
only predicates with the same type will be clustered). One node is created per predicate
in the graph, and edges represent the distributional similarity between the predicates.

The distributional similarity between a pair of predicates is calculated as the cosine-
similarity of their argument pair vectors in the corpus. Many more sophisticated ap¬
proaches to determining similarity have been proposed [Kotlerman et al., 2010, Weis-
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man et al., 2012], and future work should explore these. To reduced noise, the system

prunes nodes with less than 25 occurrences, edges of weight less than 0.05, and a short
list of stop predicates. These parameters prune considerably more predicates and edges
than those used in Chapter 4, and reflect the difficulty of building good cross-lingual
clusters. Many of the French dependency paths do not have a clear semantic interpre¬
tation (dependency paths appear to be noisier than CCG predicates), so the additional
requirements are added that dependency paths contain at least one content word, con¬

tain at most 5 edges, and that one of the dependencies connected to the root is subject,
object or the French preposition de.

5.6.2 Cross-lingual Cluster Alignment

A simple greedy procedure is used to find an alignment between the monolingual clus¬
ters in different languages. First, the entity-pair vectors for each predicate in a relation
cluster are merged, creating a single 'super-predicate' subsuming all the predicates in
the monolingual cluster. Then, the cosine similarity between entity-pair vectors for
clusters in different languages is calculated—based only on argument-pairs that occur

in both languages, to reduce the potential bias of some entities being more relevant to
one language. Clusters are then greedily aligned, in order of their similarity, as in Algo¬
rithm 2 (pruning similarities less than 0.01). This means that clusters are aligned with
their most similar foreign cluster. Only clusters with the same types are considered for
alignment.

Data: Sets of monolingual relation clusters Rl\ and Ri2
Result: An alignment between the monolingual clusters A
a *-{};
while Rl 1 {} ARL2 ± {} do

(r\,r2) <— argmax sim(rl,r2);
{r],r2)eRLixRL2

A <—AU{(rl,r2)};
Ru+~Ru/{r\y,
RL2 <— Rli/1/2};

end

Algorithm 2: Cluster alignment algorithm

An efficient implementation of this algorithm is possible using a priority queue.

First, the similarity matrix of relations is pre-computed, and then converted into a
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priority queue of (rl, r2) pairs. In each iteration of the loop, the highest scoring (r 1, r2)
pair is removed from the queue. If neither r\ nor r2 have yet been aligned (i.e. they
are still in the sets Ri\ and R12 respectively), then (rl,r2) is added to A, and R^\ and
Rl,2 are updated. The complexity of building the priority queue is &(nlogn), where
n = \Rl\ I x \Rl2 I ■

5.7 Cross-lingual Question Answering Experiments

The system is evalutated on English and French, using Wikipedia for corpora. The En¬
glish corpus is POS-tagged and CCG-parsed with the C&C tools [Clark and Curran,
2004], The French corpus is tagged with MElt [Denis et al., 2009] and parsed with
MaltParser [Nivre et al., 2007], trained on the French Treebank [Candito et al., 2010],

Wikipedia markup is filtered using Wikiprep [Gabrilovich and Markovitch, 2007]—

replacing internal links with the name of their target article, to help entity linking.
Some example clusters learnt by the model are shown in Table 5.1. The cross-lingual
clusters typically contain more French expressions than English. One explanation is
that the English corpus is substantially larger than the French, so the predicates have
more observations, making large English clusters appear dissimilar to the French sim¬

ply because they cover a wider range of arguments. Using more sophisticated similar¬

ity metrics than cosine may help address this limitation. Adjusting the parameters in
Section 5.6 results in larger clusters, but introduces noise. Despite these weaknesses,
the clusters have learnt to identify a wide range of concepts across languages with no

supervision.

5.7.1 Experimental Setup

The system is evaluated on a cross-lingual question answering task, similar to mono¬

lingual QA evaluations by Poon and Domingos [2009] and in Chapter 4. A question
is asked in language L, and is answered by the system from a corpus of language L'.
Human annotators are shown the question, answer entity, and the sentence that pro¬

vided the answer, and are then asked whether the answer is a reasonable conclusion
based on the sentence. Whilst this task is much easier than full translation, it is both a

practical application for the approach, and a reasonably direct extrinsic evaluation for
the cross-lingual clusters.

As in Chapter 4 and Poon and Domingos [2009], the question dataset is automat-
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English French

X invades Y X envahit Y

invasion de Y par X
X orbits Y X est un satellite de Y

X est une lune de Y

X is a skyscraper in Y X est un gratte-ciel de Y
X is a novel by Y X est un roman de Y

X joins Y
X is a member of Y

X adhere a Y

X entre dans Y

X rejoint Y

Table 5.1: Some example cross-lingual clusters. Predicates are given in a human-
readable form, and predicate types are suppressed.

ically generated from the corpus. This approach has the advantage of evaluating on

expressions in proportion to their corpus frequency, so understanding frequent expres¬

sions is more important than rare ones. Then 1000 questions are sampled for each
language, by extracting binary relations matching certain patterns (xT^7 verbd°V Y,

verbP°\J Y or x"^—7 be d^XJnounp^J Y), and removing one of the arguments. For
example, from the sentence Obama lives in Washington the questions X lives in Wash¬

ington? and Obama lives in X? are created.3 Answers are judged by fluent bilingual
humans, and do not have to match the entity that originally instantiated X. Multiple
answers can be returned for the same question.

The implementation attempts this task by mapping both the question and candidate
answer sentences (which will be in a different language to the question) on to a logical
form using the clusters, and determining whether they express the same relation. This
tests the ability of the approach to cluster expressions into those which are semantically
equivalent between languages. It is possible for entities to have multiple types (see
Section 5.5.2), and answers are ranked by the number of types in which the entailment
relation is predicted to hold.

3Questions are given in a declarative form, to make the tasks simpler for the machine translation
baseline. The machine translation performed poorly on questions such as What is Obama the president
of?, as inverted word-orders and long-range dependencies are difficult to handle with re-ordering models
and language models (though are straightforward to handle for a CCG system [Clark et al., 2004]). The
machine translation was found to perform much better on declarative equivalents, such as: Obama is
the president ofX.
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5.7.2 Baseline

The baseline makes use of the Moses machine translation system [Koehn et al., 2007],
and is similar to previous approaches to cross-lingual question answering such as Ahn
et al. [2004], I trained a Moses model on the Europarl corpus [Koehn, 2005]. First,
the question is translated from language L to L', taking the 50-best translations. As the

questions are typically shorter than corpus sentences, this is substantially easier for the
machine-translation than translating the corpus. These are then parsed, and patterns
are extracted (as in Section 5.4). To avoid penalizing the translation system for failing
to translate named-entities that have not been seen in its training data, the Freebase

named-entity translation is automatically supplied. These patterns are then used to
find answers to the questions. Answers are ranked by the score of the best translation
that produced the pattern. Figure 5.2 illustrates this pipeline.

The choice of languages is very favourable to the machine-translation system; En¬

glish and French have similar word-order, and there is a large amount of parallel text
available [Koehn and Monz, 2006]. The clustering system is insensitive to word-order,
and does not require parallel text for training, so it is reasonable to expect better per¬

formance relative to machine-translation on other language pairs4. Future work will

experiment with more diverse languages. The sentences to be translated are also very

short, reducing the potential for error. On the other hand, Wikipedia text is out-of-
domain for the machine translation system.

5.7.3 Results

Results are shown in Table 5.3. Accuracy for each system is based on a sample of 100
answers from its output. Unsurprisingly, the machine-translation has high accuracy on
this task, given the choice of languages and the short queries. Pleasingly, the clusters
achieve similar accuracy to machine-translation, with much greater recall, with no

usage of parallel text.
On examining the results, I found that the distribution of answers is highly skewed

for all systems, with many answers to a smaller number of questions (multiple answers
can be returned to the same question). This is due to the Zipfian nature of language, the
difficulty of the task (which is far from solved in the monolingual case), and the pos¬
sibility that questions may have no answers in the foreign corpus. This is particularly

4On the other hand, my system does rely on large corpora and reliable NLP tools, which are not
available for all languages.
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Figure 5.2: Pipeline used by baseline system for answering French questions. The

pattern extracted from the translated sentence is used to search for answers in an

English corpus.

English—> French Answers Correct

Baseline 269 86%

Clusters (best 270) 270 100%

Clusters (all) 1032 72%

French—^ English Answers Correct

Baseline 274 85%

Clusters (all) 401 93%

Table 5.3: Results on wide-coverage Question Answering task. Best-N results are

shown to illustrate the accuracy of the cluster-based system at the same rank as the
baseline. It is not possible to give a recall figure, as the total number of correct answers
in the corpus is unknown. English^ French results are from the full French Wikipedia
corpus, whereas French-^English results are from a 10% sample.



104 Chapter 5. Unsupervised Induction of Cross-lingual Semantic Relations

true for the clustering approach—although the clustering system finds more answers
with the English corpus, the baseline system answers slightly more unique questions
(57 vs 66). The 1032 answers found by the clusters in the French corpus came from
just 56 questions (compared to 29 unique questions answered by the baseline). This
suggests that the translations found by the clustering can be more useful than those of
Moses on this task—for example, it may find an equivalence between a rare French
term and a common related English term, where machine translation may only find a

more literal translation.

Despite this, the clusters have learnt to paraphrase a variety of relations between
languages with high accuracy, suggesting that there is much potential for the use of
unsupervised clusters in cross-lingual semantic applications. Some examples answers

are given in Table 5.2. Most of the errors are caused by a small number of questions.

5.8 Translation Reranking Experiments

Ultimately, I would like to be able to translate using semantic parsing with cross-

lingual clusters. However, the current representation is far too weak to support trans¬
lation. As a step towards this goal, I investigated whether the clusters could be used to

rerank the output of a machine translation system, on the basis of whether the semantic

parse of the source sentence is consistent with that of candidate translations.
French sentences are sampled where the system can produce a semantic parse (i.e.

it can extract a predicate between named entities that maps to a cross-lingual cluster).
These sentences are translated to English using Moses, taking the 50-best list, and se¬

mantic parses are produced for each of these. If the semantic parse for the 1 -best trans¬
lation does not match the source semantic parse, the system searches for the parse from
the 50-best list that most closely matches it—otherwise the sentence is discarded from
the evaluation, as the cluster-based semantics agrees with the machine-translation.

To ensure that the evaluation focuses on the clusters, I excluded several other fac¬

tors that might affect the results. The coverage of the CCG parsing and semantic analy¬
sis drops significantly on noisy translated sentences, and potentially acts as a language
model by failing to produce any semantic parse on ungrammatical output sentences.
Therefore only sentences which the system could produce a semantic parse for the
1-best machine translation output were considered. To avoid penalizing the machine-
translation system for failing to translate named entities correctly, the system did not

attempt to rerank sentences where the entities from the source sentence are not present
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Source Machine translation 1-best Reranked translation

Le Princess Elizabeth

arrive a Dunkerque le 3
aout1999

Le Princess Elizabeth is to

manage to Dunkirk on 3 Au¬

gust 1999

The Princess Elizabeth

arrives at Dunkirk on 3

August 1999
Esau Mwamwaya est

un chanteur du Malawi

Esau Mwamwaya is a singer
Malawi

Esau Mwamwaya is a

singer from Malawi
Baltz vit maintenant a

Paris et Venise

Baltz has been living in the

period that now there are

Paris and Vienna

Baltz now live in Paris

and Venice

San Pietro in Gessate

est une eglise de Milan

San Pietro in Gessate is a case

of a church to the Milan

San Pietro in Gessate is

a church in Milan

8 fevrier : Le Yuder

Pacha atteint le Niger

28 February : The Yuder
Pacha achieved both by Niger

28 February : The
Yuder Pacha reached

Niger

Table 5.4: Example sentence that is reranked by the cluster-based reranking system.
Human evaluators were asked which translation best preserved the meaning between
the named entities.

in the 1-best translation.

Human annotators were shown the source sentence, the 1 -best translation, and the

translation chosen by the reranker (the translations were shown in a random order). To
focus the evaluation on the semantic relations being modelled, annotators were asked
which sentence best preserves the meaning between the named entities that have dif¬
ferent relations in the semantic parse. This avoids the reranker being penalised for
choosing a translation that is worse in aspects other than the relations it is modelling.
An example is shown in Table 5.4. The data was annotated jointly by two fluent bilin¬
gual speakers, who reported high agreement on this task.

Results are shown in Table 5.5, with the original Moses output being preferred
to the reranked translation in only 5% of cases where the model makes a positive
prediction. The results also provide further evidence that the clustering has been able
to accurately learn a range of semantic relations.

On inspecting the results, it was found that many of the cases where the annotators
had no preference were caused by syntactic parse errors. For example, if the 1-best
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Percentage of
translations preferred

1-best Moses translation 5%

Cluster-based Reranker 39%

No preference 56%

Table 5.5: Human preference judgements for the translation reranking experiment,
based on a sample of 87 sentences. Results show the percentage of sentences for
which the annotators preferred the original translation, the reranked translation, or nei¬
ther. As discussed in the text, results where annotators had no preference were typically
due to syntactic parse errors.

translation is correct, but a prepositional phrase is incorrectly attached by the parser, it
will appear to have an incorrect semantics. A similar translation in the 50-best list may

be correctly parsed, and consequently selected by the reranker. However, a human will
have no preference between these translations. Incorporating K-Best parsing into the
pipeline may help mitigate against such cases.

This preliminary experiment suggests that there is potential for future improve¬
ments in machine translation using cross-lingual distributional semantics. The system

only attempts to rerank a very small proportion of sentences, but the coverage could
be greatly improved by including relations between common nouns (rather than just
named-entities)—future work should explore this.

5.9 Related Work

This chapter builds on Chapter 4, and other recent progress in monolingual distribu¬
tional semantics [Poon and Domingos, 2009, Yao et al., 2011], by clustering typed
predicates into those which are semantically equivalent. I have also shown how to

bootstrap semantic information about entities from the Wikipedia markup, and I be¬
lieve that this makes Wikipedia an interesting corpus for future work on monolin¬

gual distributional semantics. Other work on distributional semantics has represented
named entities as strings, but linking them to a knowledge base reduces sparsity and
should improve the quality of the clustering.

Cross-language Latent Relational Analysis [Due et ah, 2011] is perhaps the most
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similar previous work to this chapter, which moves the work of Turney [2005] into a

multilingual setting. Due et al. [2011] aim to compute, for example, that the 'latent re¬

lation' between (Obcimci, US) in an English corpus is similar to that between (Cameron,
UK) in a foreign corpus. This is solved by finding all textual patterns between the two

entity-pairs, and computing their overall similarity. Like us, they compute similarity
between expressions in different languages based on named-entity arguments and clus¬
tering (unlike us, they also rely on machine translation for computing similarity). A
key difference is that their system aims to understand the overall relation between an

entity-pair based on many observations, whereas the approach developed here attempts
to understand each sentence individually (as is required for tasks such as translation).

Various recent papers have explored the relationship between translation and mono¬

lingual paraphrases —for example Bannard and Callison-Burch [2005] create para¬

phrases by pivoting through a foreign translation, and Callison-Burch et al. [2006]
show that including monolingual paraphrases improves the quality of translation by

reducing sparsity. The success of these approaches depends on the many-to-many re¬

lationship between equivalent expressions in different languages. My approach aims to
model this relationship explicitly by clustering all equivalent paraphrases in different

languages.

Current state-of-the-art machine translation systems circumvent the problem of full
semantic interpretation, by using phrase-based models learnt from large parallel cor¬

pora [Brown et al., 1993], Although this approach has been very successful, it has
significant limitations—for example, when translating between languages with very

different word-orders [Birch et al., 2009], or with little parallel text.

Semantic machine translation aims to map the source language to an interlingual
semantic representation, and then generate the target language sentence from this.
Jones et al. [2012] show how this can be done on a small dataset using hyperedge
replacement grammars. A major obstacle to this is designing a suitable meaning rep¬

resentation, which involves choosing a set of primitive concepts which are abstract
enough to be capable of expressing meaning in any language [Dorr et al., 2004], A re¬
cent proposal for this is the Abstract Meaning Representation [Banarescu et al., 2013],
which uses English verbs as a set of predicates. This is a less abstract form of seman¬
tic interpretation than the clustering approach, as semantically equivalent paraphrases
may be given a different representation. Such an approach also relies on annotating
large amounts of text with the semantic representation—whereas the clustering ap¬
proach offers a way to build such an interlingua using only a method for extracting
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predicates from sentences.

Whilst almost all recent work on machine-translation has relied on parallel text,

there have been several interesting approaches that do not. Rapp [1999] learn to trans¬
late words based on small seed bilingual dictionary. Klementiev et al. [2012a] exploit
a variety of interesting indirect sources of information to learn a lexicon—for example
assuming that equivalent Wikipedia articles in different languages will use semanti-
cally similar words. The Polylingual Topic Model [Mimno et al., 2009] makes use

of similar intuitions. Whilst the present work exploits equivalent Wikipedia articles
for entity linking, it does not require aligned articles. Incorporating such techniques
into the model would be a natural next step, allowing it to learn a more complete lex¬
icon. To my knowledge, this chapter introduces the first approach to learn to translate
semantic relations, rather than words and phrases.

Several other recent papers have learnt cross-lingual word clusters, and used these
to improve cross-lingual tasks such as document-classification [Klementiev et al., 2012b],

parsing [Tackstrom et al., 2012] and semantic role labelling [Kozhevnikov and Titov,
2013] in resource-poor languages. Cross-lingual word clusters are learnt by aligning
monolingual clusters on the basis of parallel text—in language-pairs where parallel text
is available, this offers an interesting complement to the proposed method of clustering
based on named entities.

Mikolov et al. [2013b] recently introduced an unsupervised method for translating
words. A recurrent neural network language model is trained on each individual lan¬

guage, which learns vector space embeddings for each word. Then, they assume that
a mapping can be learnt from the vector space for one language to that of another. In
contrast to my method, learning this mapping requires supervision (Google Translate
is used). They also do not attempt to model ambiguity, and note that this problem
significantly worsens results in some languages. However, if such techniques gener¬

alise well then they solve an important problem by improving the lexicons of machine
translation systems using unlabelled text.

5.10 Future Work

An obvious extension is to try to cluster more languages, particularly more diverse
ones. As discussed in Section 5.2, the major advantages of interlingua-based trans¬
lation are to handle languages with diverse word orders, and those with little parallel
text. This chapter only explored clustering English and French, which are closely
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related languages with a similar word order, and large amounts of parallel text avail¬
able. It would be interesting to explore whether similar results could be obtained with

languages such as Chinese. This would also provide a more thorough test of the hy¬
pothesis that meanings in any languages can be mapped to the same set of language-
independent predicates.

Chapter 6 shows how a small amount of supervision can be used to greatly improve
the quality of a monolingual clustering. It would be interesting to explore whether par¬
allel text can provide this supervision in the multilingual case. Given two aligned
sentences in different languages, we know that their underlying semantics is the same,

which provides a large amount of information that can be used to guide the clustering.
This process can be used as a complement to the named-entity based technique, which
allows the system to exploit large amounts of non-parallel text. Chapter 6 introduces
a semi-supervised technique for learning entailment graph structures over monolin¬
gual predicates, and parallel text would be a natural way of providing the necessary

supervision in the cross-lingual case.

One of the biggest limitations of the current technique is that can only be applied
to entities in Freebase, as Freebase is relied on for typing the entities. As discussed
in Section 5.5.2, the LDA typing model of Chapter 4 was found to produce language-

specific topics. It may be possible to avoid this limitation by building a variant of LDA
with language-specific topic-document distributions drawn from the same Dirichlet
with sparse priors. This constraint would encourage the model to have similar topic-
document distributions in each language, to avoid creating language-specific topics.

5.11 Conclusions

In this chapter, I have shown that it is reasonably straightforward to extend the work
of Chapter 4 to a multilingual setting, by exploiting the fact that equivalent predicates
in different languages may have similar named entity arguments. The technique re¬

quired had to be adapted by linking entities to an existing knowledge base, and using
the knowledge base type schema. The best clustering was obtained by clustering pred¬
icates in each language independently and then aligning the clusters. Results show that
clusters can be built with high precision for a variety of relations. Tentatively, I sug¬

gest that this is evidence that a set of interlingual semantic relations could be learnt for
expressing the semantics of multiple languages. I believe this work opens a new and
exciting direction, and I have suggested several interesting avenues for future work.



 



CHAPTER

Directional Inference for Combined

Distributional and Logical Semantics

6.1 Introduction

This chapter extends both the formal and lexical semantics of the system described in

Chapter 4. As a motivating example, consider a question answering system attempting
to answer Did Columbus sail to India? from the sentence Columbus failed to reach
India. To correctly answer no, the system must both understand that sails to—^reaches,
and that fail negates its complement. Conversely, the system should be able to answer

yes to Did Columbus try to reach India?

Existing work struggles to model such complex interactions between the lexical
and compositional semantics. Approaches based on non-compositional inference rules
[Lin and Pantel, 2001, Berant et al., 2011] suffer from sparsity when dealing with com¬

plex expressions like try to reach. In contrast, standard formal-semantic approaches
[Bos, 2008, Bobrow et al., 2007] cannot handle the relation between sails to and

reaches, while modelling negation and monotone inference is problematic in vector-

space models [Hermann et al., 2013]. The example questions also expose limitations of
the model proposed in Chapter 4 (as discussed below), but I show how to extend it by
incorporating ideas from both the distributional semantics and linguistics literatures.

111
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The model developed in Chapter 4 use a flat clustering to model the meaning of
content words. The flat clustering enables the system to model synonymy relations be¬
tween words, but not relations where the entailment only holds in one direction—for

example, sails to-^-reaches, but not vice-versa. I address this problem using the entail¬
ment graph framework introduced by Berant et al. [2011], which learns an ontology
of entailment relations. I build entailment graphs over binarized predicates extracted
from CCG parses, and show how to convert the graph into a CCG lexicon. I also show
how the performance of these graphs can be improved with novel and linguistically
motivated morpho-syntactic features.

Another limitation of the model from Chapter 4 is that it has a weak model of im¬
plicative verbs, such as try orfail. Such verbs are common, but semantically complex—
for example, X tried to reach Y entails neither X reached Y nor X did not reach Y, but
does entail X attempted to reach Y. I extend the existing work by including a lexicon
of implicative verbs—using modal logic operators to help capture their semantics.

Both these developments are integrated into the system from Chapter 4, and I show
that they lead to substantial improvements on an entailment task over the original
model and a range of existing approaches.

6.2 Global Learning of Entailment Graphs

To solve the problem of directional lexical inference, I use the global entailment graph
framework developed in [Berant et al., 2010, 2011, 2012].

Previous work had shown how to estimate a probability that one predicate entails
another; for example that conquers^-invades. I call a function that estimates this like¬
lihood a local classifier. Berant et al. [2010] shows how a local classifier can be used

to construct a global entailment graph, that contains an edge between all predicates
that are predicted to entail each other. An example is shown in Figure 6.1. The graph
is learned by maximizing the product of the probabilities of all the pair-wise edge
decisions, based on the local classifier. The key observation is that because entail¬
ment is a transitive relation, the graph structure must be restricted to be closed under

transitivity—which gives two important advantages to using the graph over simply
using the output of the local classifier:

• It can reduce sparsity, by predicting edges for which there is no direct evidence.

If the classifier gives high probabilities to conquer invade and invade ->•
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Local Classifier Probabilities

piconquerargQargi -> invadearg0>argj) = 0.9
p(invo.deargQ^argl 'V OttClckargO^argl^) = 0-8

piconquerargQ arg\ ^ ottcickargo,argl) = 0.4

Optimal Global Entailment Graph

Figure 6.1: An entailment graph for relations between countries, built from the lo¬
cal classifier. Cliques have been collapsed into nodes representing synonyms, and

edges represent entailments. The transitivity constraint means the global graph pre¬

dicts conquerargQ)arg\ —»attackargQtarg\ (unlike the local classifier). Section 6.3.3 shows
how to build a CCG lexicon from such graphs.
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attack, this is evidence that conquer —»• attack, even if there is weak direct evi¬
dence for this.

• A local classifier can be inconsistent, as it only makes pair-wise decisions. For
example, a system based on a local classifier may claim conquer —» invade
and invade -» attack with high probability, but conquer —» attack with low
probability—which may affect performance in downstream tasks.

Transitivity can be unsound when predicates are ambiguous. Berant et al. [2011]
add types to predicates, assuming typed predicates are unambiguous, and then con¬

struct separate graphs for predicates with the same types.

6.2.1 Learning Entailment Graphs

The aim is to find an optimal graph G = (X,E), where X is a set of predicates x, and
E is a set of directed edges eg. The input to the graph learning algorithm is a set of
predicates X, and a function that estimates p(x,- -» xj\F) for all i, j such that i ^ j. The
output is a set of direted edges E.

The probability of a graph then depends solely on the probability of the set of edges
in the graph. [Berant et al., 2011] assumes decisions on whether to include are inde¬

pendent of each other (apart from the separate transitivity constraint). The probability
of a given graph is then simply the product of all the pair-wise edge decisions:

P(G) = EI P(xi~+xj) EI (1 Pixi ^ xj))
etjeE eij^E

To find the most probable graph:
G - argmax P(xi xj) Id ~ xf))

G eueE eijiE
Equivalently optimizing for log probability gives:
G = argmax £ logp{x) ->*,)+ £ (1 - p{x{ *,•))

G eijeE euiE
Introducing an indicator function I on whether an edge is in the graph:
G = argmax£[/ei;.e£/ogp(x, xj) + (1 -IetjGE)log(l - p(xt ->xj))]

G ¥i
G = argmax£[/e,.;eiE/og/?(^ ->Xj) + log(l-p(xj -> xj)) - Ie,jeElog(\-pfa-txj))]
Dropping the term log( 1 - p(xt Xj))9 which is independent of the graph:
G = argmax.Y,[Ie,jeElogp(xi->Xj)-Ieij€Elog(l-p(xi->Xj))]

G ¥J
a v-i , p{xj-rxj)G = arg max ^ log- ^—IeeE

G f^j 1 -p{Xi->Xj) "
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The graph is restricted to be closed under transitivity, so additional constraints are

added:

\/NjVk[(eij £ e A ejk £ e) —>■ eik £ e]
The transitivity constraint means that the problem is constrained optimization. As

the objective is a linear function with binary variables, it can be solved optimally using
Integer Linear Programming (ILP) solvers. The number of transitivity constraints is
cubic in the number of predicates.

ILP is an NP-hard problem, and does not scale to large numbers of predicates.
Berant et al. [2011] propose improving the efficiency by first decomposing the graphs
into subgraphs G„ such that for Vx, £ Gm, Vx;- £ Gm p(x, -> xj) < 0.5. The intuition
here is that the classifier estimates that there are no likely edges between two sets of
predicates, then the optimal solution can never contain an edge between these sets of

predicates, and they can effectively be treated as separate optimization problems.
Berant et al. [2012] introduce further methods for improving the efficiency. First,

graphs are restricted to structures called forest reducible graphs (FRGs). An FRG is
a graph in which nodes are grouped into cliques (here, representing clusters of syn¬

onyms), and there is a tree-structure over cliques. Berant et al. [2012] show experi¬
mentally that, while this approximation is not always valid, it requires removing only
5% of edges from a gold-standard graph.

The FRG approximations allow a new optimization algorithm, called tree-node-fix.
Nodes are iteratively removed from the graph, and then re-inserted at the point that
most improves the graph's objective function. This process is repeated to convergence.

Bounding the maximum number of iterations means that the algorithm is quadratic in
the number of edges in the graph. The graph is initialized using ILP, multiplying the
local classifier probability by a prior low enough that an optimal solution can be found
quickly. This initialization aims to avoid local minima, by building an optimal sparser

graph that captures the main structure.

6.3 Entailment Graphs for CCG

The present section shows entailment graphs of typed predicates can be built and con¬
verted into a CCG lexicon. This lexicon allows the CCG system to make directional
lexical inferences, which are not possible with Chapter 4's flat clustering.

In Section 6.3.1,1 describe how entailing/non-entailing pairs of predicates are ex¬

tracted from a small annotated entailment dataset, and are used for training the local
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classifier.

Section 6.3.2 then defines the features used for training the local classifier, which
include distributional statistics (extracted from a large unlabelled corpus), and novel
morpho-syntactic features.

The features and training data are used to train a local classifier, which is used to
construct entailment graphs with Berant et al. [2012]'s method. The training method
is semi-supervised, as it uses both a small annotated dataset and a large unlabelled
corpus.

Section 6.3.3 shows entailment graphs can be converted into a CCG lexicon, which
can then easily be incorporated into the CCG inference system.

6.3.1 Training Data

The local classifier is trained using a small amount of labelled data (as well as dis¬
tributional statistics). Training data is automatically extracted from an entailment
dataset, which contains pairs of sentences annotated with whether the first entails the
second. First, the system makes a CCG semantic parse of each sentence, and then
determines if changing a single binary predicate in the premise and hypothesis logical-
forms is sufficient to make an inference hold. For example, if the entailment problem
is Rome conquered Carthage^Rome invaded Carthage then the inference only holds
if conquerargO:T\,arg\:T2 —> m\'adearg0 T\Mrg\:T2 (where T1 and T2 are the types of the
predicate). Training instances are created for all type combinations (T1,T2), and the
instances are weighted by the probability of that type combination according to the

type model (filtering instances with weight less than 10~3).
If the predicates are negated, the direction of the training instances are reversed, be¬

cause (-ip —> ~>q) <t=i> (q —> p). For example, in Britain didn't invade Rome-» Britain
didn 't conquer Rome, the following training instance is added: conquerargo j\,arg\\T2 —>

invadeargO j\ arg\ j2-

6.3.2 Features

The training data is used to train a local classifier, which determines the probability
of one predicate entailing another. In Chapter 4, predicate similarity is determined
based on a single statistic—cosine similarity of vectors of expected counts of named-
entity argument-pairs. This statistic is often sparse, is symmetric (so does not capture

similarity that only holds in one direction) and ignores other potentially useful sources
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of information. In contrast, the present method can use multiple features to determine
similarity, because it uses a supervised classifier.

The classifier is trained using a variety of features, many of which are novel. The
most important features are still distributional similarity statistics—but I also experi¬
ment with adding ontological and morpoh-syntactic features.

Distributional Features Following Berant et al. [2010], I incorporate a range of dis¬
tributional features, which are based on the expected argument counts of the predicates
in a large corpus. I use the Weeds precision [Weeds and Weir, 2003] similarity mea¬

sure which is asymmetric (unlike the commonly used cosine similarity), allowing the
system to capture entailments that hold in only one direction. The similarity of two

predicates P\ and P2, with arguments x occurring with frequency //(x), is calculated
as:

sim(PuP2) = W)
This metric is calculated for the argument-pairs of the typed predicate, the average

of individual arguments of the typed-predicate, and argument-pairs of the correspond¬

ing untyped-predicate. This limits the potential for errors caused by the type-model to
make equivalent predicates appear to have different distributions. I also add a feature
for the cosine similarity of the word embeddings released by Mikolov et al. [2013a] (it
is not clear how to represent directional similarity in a vector space).

I take the novel step of discretizing all of these real-valued features, splitting them
into 10 bins, choosing thresholds that make the bins of as equal width as possible. One
bin is reserved for unseen predicates, to distinguish them from predicates which have
been seen but are have 0-similarity. Binning features allows their importance to scale

non-linearly in their value, and avoids problems with feature scaling.

Morpho-syntactic Features The morphology and syntax of predicates can provide
reliable clues about their entailments, but have seen surprisingly little attention. For ex¬

ample, the system could reasonably infer Google owns YouTube-^Google is the owner

ofYouTube, even if it has never seen the words own or owner before. I add a variety of
novel features to capture such inferences.

• Add prefix. If two predicates are identical, except for one having an additional
prefix (of length < 4), this feature is the value of the prefix. This feature learns,
for example, that adding the prefix re to a word makes an entailment hold in one
direction (as in rewrite—^write).
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• Diathesis alternation A diathesis alternation occurs where a predicate has mul¬

tiple subcategorization frames, which is reflected in different argument keys
expressing the same semantic relation. Dativization is one example, e.g. in /
gave the present to her^rl gave her the present. It may learn, for example:
verbarg\io — verbarg2,argl

• Swap argument key This feature applies if two predicates are identical except for
a single change of argument key. For example, the argument keys provided by
the prepositions at and in are often equivalent.

• Change Suffix If two predicates start with the same string, and have the same

argument keys, this returns the difference in the suffixes. This learns, for exam¬

ple, that re and er endings are sometimes interchangeable (e.g. British English
centre and US English center).

• Change Suffix and Argument Keys This feature is the same as the Change Suf¬
fix feature, but also allows the argument keys to change. This feature can learn to

map verbs onto deverbal forms, for example the pattern: verbargQ,arg\ = verb-eri,e of

(as in X owns Y and X is the owner ofY).

These features prove useful, but currently the technique is limited by their sparsity
in labelled data. Semi-supervised techniques such as co-training may be useful in
generalizing them.

WordNet Features The lexicalized framework makes it simple to add information
from existing word ontologies, such as WordNet [Miller, 1995], Previous work has
found WordNet of limited use for semantic inference [Bos, 2008, Bobrow et al., 2007].

Challenges include limited coverage (for example, no WordNet relation holds between
write and the noun author), and fine-grained sense distinctions which even humans
find difficult [Hovy et al., 2006],

The system uses WordNet information as features in the classifier, meaning that it
can incorporate information from hand-built ontologies, without being limited by their
weaknesses. I add binary features if any of the following WordNet relations holds
between any sense of the predicates: synonym, hyponym, hypernym, and antonym.
The relations causes and entails were found to be too rare to be useful.
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Rome invaded Carthage
NP (,S\NP)/NP NP

rome' XyXx.rl(x,y) Ar2(x,y) carthage'(y)
S\NP >

Xx.r 1 (x, carthage') A r2(x, carthage')
S <

r 1 (rome'.carthage') A r2(rome'.carthage')

Figure 6.2: A CCG derivation using the lexicon derived from entailment graphs.

6.3.3 Lexical Entries

The training data and features from Sections 6.3.1 and 6.3.2 (basing distributional
features on a large unlabelled corpus) are used to train a local classifier, which is used
to build entailment graphs. In this section, I show how to use the entailment graph in a

CCG system, allowing it to be combined with the benefits of formal semantics.

The simplest approach would be to create a logical axiom for each pair of predi¬
cates in an entailment relation, analogously to how Bos and Markert [2005] compile
WordNet into logical axioms. This method would be inefficient, as the number of logi¬
cal axioms required grows quadratically in the size of the vocabulary. It is also at odds
with CCG's lexicalized philosophy, as it would require the meaning of a word to be
stored in an ontology, rather than in its lexical entry.

I therefore propose an alternative, lexicalized approach that requires no additional
logical axioms. Each node in the entailment graph is assigned a unique arbitrary re¬

lation identifier, representing a unique concept. Then, the interpretation of a predicate
becomes the conjunction of all reachable relation identifiers in the graph. For example,
for the graph in Figure 6.1, the system creates entries such as:
attack h (S\NP)/NP : lxly.rl(y,x)
invade h (S\NP)/NP : XxXy.rl(y,x)Ar2(y,x)
conquer h (S\NP)/NP : AxAy.rl (y,x) Ar2(y,x) Ar3(y,x)
bomb h (S\NP)/NP : lxXy.r\(y,x) ArA{y,x)

It is easy to verify that this lexicon allows inferences such as conquers-y invades
(but not the reverse) and didn't invade-ydidn't conquer.

An example derivation using this lexicon is shown in Figure 6.2.
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Verb Interpretation

try

fail

XpfxXe.try(e) A agent (x, e) A o3e' [p(x, e') A theme(e,e')]
XpXxXe.try(e) Aagent(x,e) Ao3e'[p(x,e') Atheme(e,e')\ A->3e"[p(x,e")\

Table 6.1: Example entries from the lexicon of implicative verbs, with category:

(Sdd\NP)/(Sto\NP)

6.4 Implicative Verbs

Another weakness of the approach of Chapter 4 is that it has a poor model of implica¬
tive verbs. Many verbs that take predicative complements do not assert the truth of that

complement. For example Google wants to buy YouTube does not entail Google buys
YouTube—however, the Chapter 4 model would licence the inference, as the nested

proposition will be present in the logical form.

Lexicons of implicative and factive predicates have previously been used by Mac-
Cartney and Manning [2008], Bos [2013] and Lotan et al. [2013]. Following this work,
I improve the system by adding a lexicon of implicative verbs. This lexicon requires
extending the logic with the modal-logic operator o (propositions scoped by a o oper¬
ator are hypothetical).

Given the complex semantics of such verbs [Karttunen, 1971], and the relatively
small number of common examples, I chose to hand-code the semantics for a small

ontology of a number of common examples. Whether the semantics of implicative
verbs can be learnt from distributional statistics is an open question. Some examples
are shown Table 6.1, which allow the system to capture inferences such as Google
failed to buy Microsoft—>Google didn't manage to buy Microsoft. These lexical entries
are more detailed than those used by previous work—which only mark whether the
nested proposition is entailed or not, so do not capture relations such as those between

try, fail, and manage. I hand-code semantics for 22 verbs, split into classes of wanting,
trying, failing, managing, needing, avoiding and expecting.

Other auxiliary verbs are treated as being semantically transparent. This is nec¬

essary to allow inferences such as Obama lives in Washington-^Obama continues to

live in Washington—where any non-trvial semantics for continues to would prevent the
inference from holding. I leave a thorough treatment of temporal semantics to future
work—a more detailed proposal is sketched in Section 6.7.2.
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While the current ontology is clearly very limited in size, I show empirically that
it does help on an entailment task, which motivates a more detailed treatment in the

future.

To allow inference with a standard theorem prover, modal operators are removed
using a possible worlds semantics [Kripke, 1963], To do this, the system adds an extra

'possible world' argument to each predicate in the logical form. At the top level, this is
instantiated by an actual-world constant, o operators can be removed by existentially
quantifying a new possible-world variable, and using this as an argument to nested
terms. For example, it is simple to convert the semantics for John might sleep from
osleep(john) to 3w[sleep(john,w)].

The current approach is unable to deal with negated factive verbs. For example,
both John knew Google bought YouTube and John didn't know Google bought YouTube

imply that Google bought Youtube—because the inference relies on presupposition
rather than entailment. However in the latter, our current approach has no way to mark
that the Google bought YouTube is not within the scope of negation, and would instead
build a logical form that does not entail Google bought Youtube, such as:

-i3e[know(e) A agent(john, e) A 3e'[buy(e') A argO(google, e') A argOiyoutube, e')\\
One way to deal with this in the compositional framework would be to build a

separate semantics for presuppositions in parallel with the main semantics during the
derivation, analogously to Clausen and Manning [2009]. Another alternative, along
the lines of Chapter 3, would be to represent events with Skolem terms, which could
be given positive polarity to move them outside the scope of negation. Then lexical
entries such as the following could be used, where +EP refers to a non-negated event

satisfying predicate p:

know I- (Sdd\NP)/S : XpXxke.know(e) /\ agent(x,e) Aarg(+Ep,e)

6.5 Entailment with Combined Distributional and Logi¬

cal Semantics

6.5.1 Inference

The logical forms from the system can be used to recognize textual entailment, by
performing logical inference with theorem provers. The output of the CCG derivation
is a distribution over logical forms, as explained in Chapter 4. The probability of
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the inference is then the sum of the probabilities of the logical forms for which the
entailment holds, allowing the system to marginalize out the ambiguity.

As explain in Chapter 4, the probability of a given logical form for a syntactic
parse is conditioned solely on the types of the nouns (which determine the types of
the corresponding predicates). For example, there may be a high-probability logical
form for Obama was born in Hawaii in which Obama has a person type and Hawaii
has a location type, but there will be some probability mass reserved for other types
(such as Hawaii being a date. I make the assumption that all entities referred to by the
same word in the premise and hypothesis have the same type—to do this, I merge their
separate type distributions by taking the product and renormalizing. This is similar
to the one-sense-per-collocation assumption that has been used in word-sense disam¬
biguation [Yarowsky, 1993], and significantly reduces the search space. I also prune

logical forms whose probability is less than 10"3. A more efficient alternative would
be to directly use a probabilistic logic, such as Markov logic networks [Richardson and
Domingos, 2006].

6.5.2 Missing Predicates

The test data may contain predicates which are too rare in the unlabelled corpus to be
included in the entailment graphs1. For example, the verb vanquish may not satisfy the

frequency cutoffs for the graph on relations between countries. As building the graphs
is computationally expensive, we cannot include entries for every possible predicate.

For inference, these predicates are temporarily inserted into the graph—for exam¬

ple, vanquish should be added to the conquer cluster in the graph in Figure 6.1. The
local classifier is used to estimate the probability that the new predicate implies each of
the other predicates in the graph, and then they are inserted at the point that maximizes
the probability of the new graph (according to the probability from Section 6.2. The
insertion is restricted so that only edges connecting to the new predicate are modified,
so that inferences between predicates already in the graph are unaffected. This restric¬
tion is achieved by either inserting the new predicate into an existing synonym cluster,
or into a new singleton synonym cluster—which can either be a root, a leaf, or between
two already-connected clusters. After performing inference, the graph is restored to its
original state, so the graphs cannot grow to an unbounded size.

'Previous work on entailment graphs avoids this problem by evaluating on a prespecified list of
predicates.
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Premise Hypothesis Answer

Obama want to boost the defense budget Obama increase the defense budget False

The thieves make off with TVs The thieves manage to steal TVs True

My son be terrified of him My son have a fear of him True

Table 6.2: Examples from the Zeichner et al. [2012] entailment dataset.

6.6 Experiments

6.6.1 Dataset

I perform the evaluation on the entailment dataset produced by Zeichner et al. [2012].
This contains 5556 entailment problems (after excluding those annotated as nonsensi¬
cal), based on pairs of Reverb extractions from the ClueWeb corpus2. Some examples
are given in Table 6.2. I chose this dataset as the inferences rely purely on lexical se¬

mantics, so it targets the traditional weakness of formal semantics approaches. Chapter
3 has already shown the CCG-approach offers a strong model of logical and compo¬
sitional semantics, and the work in this chapter addresses lexical semantics. Other
entailment datasets, such as RTE [Giampiccolo et al., 2007], involve many forms of
inference that are not the current focus, such as coreference resolution and encyclope¬
dic knowledge. I held out a random 10% for testing, and a 10% development set was
used.

There are several reasons for preferring an entailment-based evaluation to the question-
answering evaluations used in previous chapters and other work.

• There are no gold-standard answers for question answering, as the number of
correct answers in the corpus is unknown. Therefore the output from every sys¬
tem has to be evaluated manually, which is time-consuming. A major disadvan¬
tage of manual evaluation is that it makes it much harder to develop models,
as there is no development set. The model described in Chapter 4 has a num¬
ber of parameters and design decisions, and these are difficult to tune accurately
without an automatic evaluation. In contrast, entailment evaluations have gold-
standard annotations.

2http://lemurproject.org/clueweb09/
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• Automatically generated questions are naturally skewed towards frequent predi¬
cates, which may mask weaker performance on rare predicates. Frequent predi¬
cates are easier to cluster because they have less sparse distributional statistics.

• Performance on question-answering evaluations could also easily be improved
by incorporating other NLP techniques, such as using co-reference resolution to
find additional answers. However, this masks the performance of the distribu¬
tional component of the model, which is the main focus of the evaluation. The
simple sentence construction in the Zeichner corpus means that results primarily
demonstrate the quality of the lexical semantics.

For these reasons, I chose to only evaluate the new models on the entailment dataset,
and suggest that similar datasets should be used in future work.

6.6.2 Experimental Setup

6.6.2.1 Training Corpus

In order to use a large training corpus, I used the recently-released Google Syntactic
N-grams [Goldberg and Orwant, 2013], The corpus contains the frequency of small
fragments dependency trees from a parsed version of the Google Books corpus, con¬

taining 345 billion words (roughly 2 orders of magnitude larger than the Gigaword
corpus used in Chapter 3).

Dependency parses are of course a different representation from the predicates pro¬

duced by the system in Chapter 4, so I defined a simple mapping for converting com¬

mon constructions to the format that would have been produced by the CCG system.
While there is not a 1 -to-1 mapping between the predicates produced by the system
in Chapter 4 and the dependency tree fragments, and the dependency parses fail to
abstract over constructions such as relative clauses, the large size of the corpus am¬

ply compensates. Better training data could be extracted by CCG-parsing the original
corpus, but would not be practical on academic resources.

The following mapping was used:

• Active-voice verbs: The verb is used as the predicate, and argument keys are

mapped as follows: nsubj-^argO, dobj—targl and iobj~^arg2. Prepositions add
an argument key of the same name—to reduce the number of predicates, we filter
those where both arguments are supplied by prepositions (so from Obama was

born in Hawaii in 1961, we do not extract a binary relation between 1961 and
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Phrase Dependencies Predicate

X is president of Y

X is taller than Y

X bought Y

X was bought by Y

X"r'is"%president'}'

ought"*,'
rsubJr"boughrb4byY

president^ 0f

talters,than
buyargO,argl

buyarg()arg i

Table 6.3: Example conversion between dependency parse fragments and the predi¬
cates used by the CCG system.

Hawaii). If the verb has a particle argument (identified by the prt dependency)
then the particle name is appended to the verb name.

• Passive-voice verbs are treated as for active voice verbs, with the following ex¬

ceptions: If the verb has a passive nsubjpass dependency, I use nsubjpass-^argl,
dobj^arg2 and pobjJby^r argl.

• Nouns: If the noun is the dobj or attr of a copula verb, a be argument is added to
the subject of the copula. Genitive poss dependencies add a pass argument key.
Arguments supplied by prepositions are handled as for verbs.

• Predicative Adjectives: The adjective is used as the predicate, and an argument

key is added for the subject: nsubj-^be. Arguments supplied by prepositions are
handled as for verbs.

Some examples are shown in Table 6.3, which may make the process clearer.
A type model was trained using the same methods and data as Chapter 3—but

with 25 types instead of 15. A larger number of types was necessary here to ensure
there were sufficiently fine-grained word senses for transitivity to hold. For building
entailment graphs, I take the most frequent 100 predicates of each type (filtering those
occurring less than 100 times).

Test sentences are parsed with the N-best version of the C&C parser [Ng and Cur-
ran, 2012], taking the 50-best parses to attempt to mitigate parser errors.

6.6.2.2 Building Entailment Graphs

Entailment graphs are built using the Tree Node Fix algorithm [Berant et al., 2012]
with a prior of 0.5 (because the test examples are drawn from the same distribution as
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the training data). The graphs are initialized using Integer Linear Programming with
a prior of p (initially 0.25, but backing off to p - 0.05 if no solution is found in 60
seconds). Parameters were chosen based on development data. For ILP solving, I use

LPSolve [Berkelaar et al., 2004], Supervised classifiers use the Weka [Hall et al., 2009]
implementation of logistic regression. A fragment of an entailment graph learned by
the system is shown in Figure 6.3.

6.6.3 Comparison Systems

I compare with the following approaches:

• Non-compositional: Various papers have explored learning inference rules be¬
tween Reverb patterns, based on their arguments [Berant et al., 2011]. I use the
distributional features used by the CCG model, and train a logistic regression
classifier. This approach is not compositional, which causes sparsity when deal¬
ing with expressions such as try to sail to, but means it has no extra difficulty
with multiword expressions. For training, I used the publicly available corpus of
the best 15-million Reverb extractions from ClueWeb.

• CCG-Baseline, the model from Chapter 3: a simple CCG semantic parser with
no distributional clustering. Performance on this dataset is weak, as the premise
and hypothesis are constructed to have different predicates—however, it can still
make inferences when the predicates differ in function words, or are the same

except for the removal of modifiers.

• CCG-WordNet, which extends the previous system with WordNet-derived in¬
ference rules.

• CCG-ChineseWhispers: Chapter 4's unsupervised model for CCG semantics
with predicate clusters derived using Chinese Whispers [Biemann, 2006],

• CCG-EntailmentGraphs: CCG with lexical entries derived from entailment

graphs.

• Simple Compositional Semantics (SCS) Several proposals have been put for¬
ward recently for computing the meaning of word combinations in vector spaces

(see Baroni et al. [2013] for an overview). I experimented with both the addi¬
tive and multiplicative models of Mitchell and Lapata [2008], which have been
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shown to perform competitively with more sophisticated alternatives [Blacoe
and Lapata, 2012], I use word vectors from Blacoe and Lapata [2012]. I rep¬
resented each premise and its hypothesis in the dataset by their corresponding
compositional vectors, and trained a logistic regression classifier that uses vec¬

tor entries as features to predict entailment.

• LATENTLC A recent model from Abend et al. [2014], which was designed
specifically for handling multi-word predicates, such as light verb constructions.
Results are quoted from Abend et al. [2014], who uses a different test/train split.

The only other previous work I am aware of on this dataset is by Melamud et al.
[2013], This work only reports results of various subsets of the dataset, so it is difficult
to make a direct comparison with their models. Their approach to typed-predicate
similarity is related to that used here and in Chapter 4.

Unfortunately, the dataset only contains lemmatized sentences, which is problem¬
atic for syntactic and semantic models which rely on morphological information. I

attempted to automatically un-lemmatize the corpus, by replacing each pattern with
the most frequent phrase that lemmatizes to it, but this process is noisy (for example,
X is taught at Y and X is teaching at Y lemmatize to the same string). This means that
the syntactic parser performance on the dataset is weak (as it relies on morphological
information), with a consequent effect on the semantics. I used an N-best parser, but
this does not mitigate errors by the POS-tagger.

6.6.4 Results

Results are shown in Table 6.4. Results demonstrate that the entailment graph ap¬

proach outperforms both the baseline CCG and the flat clustering used in Chapter 4
by a wide margin. Using the implicative verb lexicon also improves the results. The
non-compositional system only improves slightly over the majority-class baseline, due
to the sparsity of its patterns—using a larger corpus may offset this somewhat, but
sparsity will always be problematic for non-compositional approaches.

It should be noted that this particular dataset targets the weaknesses of the CCG
approach, rather than its strengths—the aim being to expose and address the limitations
of computational models of formal semantics. The sentences are relatively simple
syntactically (they are extracted by a finite-state model), so it contains few examples
of the kinds of relations that require compositional semantics, such as conjunctions,
relative clauses and long-range dependencies. Conversely, the dataset contains many
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System Accuracy

Majority Class 56.8%

SCS—Additive 60.6%

LATENTLC 64.6%

Non Compositional 57.4%

CCG Baseline 57.8%

CCG Baseline+WordNet 61.9%

CCG ChineseWhispers 58.0%

CCG Entailment Graphs 64.0%

CCG Entailment Graphs+

Implicative Verb Lexicon
66.0%

Table 6.4: Results on the entailment task.

examples of problems that the system is currently unable to model compositionally.
A common example is light verb constructions, such as take a shower. The current

CCGBank syntax gives the same analysis as the 'heavy' usage of take, as in take a

book, whereas ideally the syntax would identify shower as being the main predicate.
Improvements here should lead to better overall results on this task. Results in Chapter
3 show strong performance on a dataset that emphasises function words, and that result
remains independent of the present approach to lexical entailment.

Inspecting the results, I found that the system in fact predicts a relatively small
number of answers with high precision (29% recall at 80% precision), and has 0-
confidence on others. In fact, it is not possible for the system to make a prediction
on 40.1 % of problems, with any clustering. Cases where the system is unable to make
predictions include light verb constructions, and multi-word expressions. I test if an

inference is possible by seeing if it holds when all binary predicates are replaced with
the same symbol—if not, then no clustering can make the entailment hold. Future
work should address improving the coverage.

Because I build deterministic ontologies, many inferences will have 0-probability,
even if there is some distributional similarity between the predicates. On the other
hand, high precision systems are likely to be useful for applications such as question-
answering. This result also suggests that much higher accuracy numbers could be ob¬
tained by hybridising with high-recall methods, but I do not explore that here. Ablation



6.6. Experiments 129

Feature Set Accuracy
All 66.0%

Without Distributional 65.3%

Only Distributional 63.8%

Without Morpho-syntactic 66.0%

Without Wordnet 63.7%

Table 6.5: Accuracy using different feature sets (using the implicative verb lexicon).

results are given in Table 6.5. Although distributional features are helpful, they have
surprisingly little impact. This result is at least partially an artifact of the dataset—
which was constructed by choosing examples that already had high distributional sim¬
ilarity, thereby making distributional similarity artificially less effective. If the dataset
had been constructed differently based on inferences that held in WordNet, then Word-
Net features would be found to have little impact. It is crucial to take the methodology
used to construct entailment datasets when interpreting the results. However, despite
this limitation, purely distributional features do achieve good results.

Results highlight the importance of incorporating WordNet into distributional models—
future work should experiment with other lexical resources. The novel morpho-syntactic
did not affect results, possibly due to the limited syntactic constructions found in the
dataset.

The SCS—Additive model performs surprisingly well, given the simple bag-of-
words approach to composition (I was unable to outperform the majority-class baseline
with the multiplicative model). This is partly an artifact of the dataset—the premise and
hypothesis sentences are identical, except for a small number of consecutive words,
meaning that the difference between the premise and hypothesis vectors will be the
difference between a small number of word vectors. Consequently the classifier can

effectively treat the classification as a simple word-similarity problem, rather than a
sentence inference problem. The dataset is much more a test of lexical semantics than
compositional semantics (the work has focused on lexical semantics, as it has been
the main weakness of logical approaches). Composition is straightforward with the
logical CCG approach, so it is reasonable to expect the performance to be unaffected
by longer sentences—but they are likely to be much harder for the SCS approach. For
example, the SCS—Additive model has the same representation for Herons eat frogs
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Figure 6.3: Example fragment of an entailment graph learnt by the model.

and Frogs eat herons, but this weakness is not exposed as the dataset does not require
any knowledge of compositionality.

LATENTLC was designed specifically to handle construction such as MWEs and
light verbs, which are not possible for my model. The model is a bag-of-words ap¬

proach, which means it would need some modifications to scale to full length sen¬

tences. Despite the dataset being better suited to LATENTLC, my model achieves
slightly higher performance. On the other hand, I make use of larger unlabelled cor¬

pora, and the WordNet ontology, so the comparison is not a fair one. Future work
should investigate combining the strengths of both approaches.

6.7 Future Work

While the model described in this chapter gives a much more powerful model of se¬

mantics than that of Chapter 4, it is still very far from being a complete solution to

computational semantics. However, I believe that the current framework could be ex¬

tended in a number of ways to provide a quite general model of natural language infer¬
ence. Here, I describe some of the major limitations of the current model, and propose

how they could be overcome with future work. Some of these ideas have previously
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been published in Lewis and Steedman [2014a],

6.7.1 Entity Typing

The models introduced in this thesis have used an LDA topic model for entity typing.
However, this approach is clearly sub-optimal. Firstly, it is parametric, meaning that
the number of types must be pre-specified. This problem could be addressed using a

Hierarchical Dirichlet Process model [Teh et al., 2006], a non-parametric generalisa¬
tion. Another major drawback is that a 'flat' typing is used. For example, the model
learns separate types for different kinds of people, such as politicians and footballers.
A better model would build a hierarchy of types, in which politicians and footballers
were sub-types of people. Existing topic models such as Pachinko Allocation [Li and

McCallum, 2006] attempt to address these problems. I experimented with these mod¬
els, but found that the Gibbs sampling was highly susceptible to poor solutions in
which a bad topic was set at the root.

6.7.2 Temporal Semantics

One case where combining formal and distributional semantics may be particularly

helpful is in giving a detailed model of temporal semantics. A rich understanding of
time would allow the system to understand when events took place, or when states

were true. Most existing work ignores tense, and would treat the expressions used to

be president and is president either as equivalent or completely unrelated. Failing to
model tense would lead to incorrect inferences when answering questions such as Who
is the president of the USA?

Another motivation for considering a detailed model of temporal semantics is that

understanding the time of events should improve the quality of the distributional clus¬
tering. It has recently been shown that such information is extremely useful for learn¬
ing equivalences between predicates, by determining which sentences describe the
same events using date-stamped text and simple tense heuristics Zhang and Weld. Such
methods escape common problems with traditional approaches to distributional simi¬
larity, such as conflating causes with effects, and may prove very useful for building
entailment graphs.

Temporal information is conveyed by both by auxiliary verbs such as will or used
to, and in the semantics of content words. For example, the statement John is visiting
Baltimore licences entailments such as John has arrived in Baltimore and John will
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leave Baltimore, which can only be understood through both knowledge of tense and
lexical semantic relations.

The requisite information about lexical semantics could be represented by labelling
edges in the entailment graphs, along the lines of Scaria et al. (2013). Instead of edges
simply representing entailment, they should represent different kinds of lexical rela¬
tions, such as precondition or consequence. Building such graphs requires training
classifiers that predict fine-grained semantic relations between predicates, and defin¬
ing transitivity properties of the relations (e.g. a precondition of a precondition is a

precondition). For example, the system might learn the following graph:

By defining a simple mapping between edge labels and logical forms, this graph
can be converted to CCG lexical entries such as:

visit b (S\NP)/NP: XyXxXe.rel\(x,y,e) A3e'[rel2(x,y,e') Abefore(e,e')\ A3e"[rel3(x,y,
after{e,e")\
arrive b (S\NP)/PPjn : Xy?ixXe.rel2(x,y,e)
leave b (S\NP)/NP : XyA,xXe.rel3(x,y,e)

These lexical entries could be complemented with hand-built interpretations for a

small set of common auxiliary verbs:
has b (S\NP)/(Sb\NP) : 2,pXxXe.before(r,e) A p(x,e)
will b (S\NP)/(Sb\NP) : XpXxXe.after(r,e) Ap(x,e)
is b (S\NP)/(Sng\NP) : XpXxXe.during{r,e) Ap(x,e)
used b (S\NP)/(St0\NP) : X pkxle.before(r,e) Ap(x,e) A ->3e'[during(r) Ap(x,e')]

Here, r is the reference time (e.g. the time that the news article was written). It is
easy to verify that such a lexicon supports inferences such as is visiting^will leave,
has visited-^has arrived in, or used to be president—>is not president.

The model described here only discusses tense, not aspect—so does not distinguish

arriveargpin

reachai-gQ arg\

leaveargQarg\
CXltargQarg\

departargofrom
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between John arrived in Baltimore and John has arrived in Baltimore (the latter says
that the consequences of his arrival still hold—i.e. that he is still in Baltimore). Going
further, we could implement the much more detailed proposal of Moens and Steedman
(1988). Building this model would require distinguishing states from events—for ex¬

ample, the semantics of arrive, visit and leave could all be expressed in terms of the
times that an is in state holds.

6.7.3 N-ary Relations

The models presented in this thesis only attempt to cluster binary relations (binarizing
higher-order relations). Whilst this is a common approach, it is clearly a simplification,
and better modelling of these relations should result in much improved performance.
One problem is that binarizing means it is not possible to make inferences such as

Obama was born in Hawaii^Obama was born, because the binary predicate in the
premise does not entail the unary predicate in the hypothesis. It also cannot learn that
the similarity of buyargo,arg\ and purchaseargo,arg\ makes it more likely that buyargojrom
and purchaseargo jmm will be equivalent.

A better model would adopt a neo-Davidsonian approach, and aim to learn repre¬

sentations such as the following:

buy b ((S\NP)/PPfrom)/NP: XxXyXzhe.rel41 (e) AargO(z,e) Aarg\(x,e) Aarg2(y,e)
sell b ((S\NP)/PPt0)/NP : XxXyXzfe.rel41 (e) AargO(y,e) Aarg\(x,e) Aarg2(z,e)

As in PropBank, each argument here has non-interpretable predicate-specific la¬
bels (as opposed to trying to learn a predicate-independent concept of an agent or

instrument). However, the predicates are induced cluster identifiers. Learning such a

representation requires us to both cluster predicates (such as buy and sell) and align
their arguments (for example, the subject of buy corresponds to the argument of sell
supplied by the preposition to). Onto-USP [Poon and Domingos, 2010] takes a closely
related approach.

6.7.4 Multiword Compositionality

One of the greatest limitations of the work presented in this thesis is that it only models
relations between predicates based on a single content word. As such, it cannot capture
cluster predicates where a relation is expressed by multiple content words. Some other
models avoid this, by finding similarity between longer expressions—for example,
Lin and Pantel [2001]'s system learns that X solved Y and X found the solution to Y
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are equivalent. Beltagy et al. [2013]'s computes the similarity of phrases based on

compositional vector space models of their meaning, and then creates probabilistic
inference rules.

There are two ways our approach could handle such compositionality. The simplest
approach would be to consider cases such as found the solution to to be multiword
expressions, and cluster them in the same way as normal predicates. Implementing
this would be straightforward, as CCG's generalized notion of constituency means a

standard right-branching parse can be re-bracketed so that insteadfound the solution to
has a transitive verb-category. This approach is unattractive, as it loses the advantages
of compositionality—for example, related cases such as discovered the answer to or X
found no solution to Y would all have to be clustered separately.

A more compositional approach would instead be to decompose the meaning of
solve into two predicates, so its interpretation literally becomes finding a solution to.
For example:
solve h (S\NP)/NP : kxXyke.findar&,arg\ [y,skXz.solulionbeto^x))

Such decisions could be made based on the non-compositional similarity of solve
and find a solution to.

6.7.5 Light Verb Constructions

Light verbs constructions are frequent in English, and are problematic for the approach
described so far. In expressions such as John took a shower, John made a plan or John
gave a talk, the main predicate appears to be the noun, and the verb is semantically
bleached (or light), and contributes little to the meaning. The semantics of the exam¬

ples could be paraphrased as John showered, John planned, or John talked, and the

meanings seem to have little connection to the usual interpretations of take, make or

give.
Such cases are difficult, as the syntax and predicate-argument structure appear to

be out-of-step, violating one of they key assumptions behind CCG. CCGBank analy¬
ses John took a shower in exactly the same way as the 'heavy' usage in John took a

book, and does not capture the idea the key dependency that John is an argument of
showering. As a consequence, there is a danger the system will answer questions like
What did John remove? with shower. My current implementation crudely deals with
these cases by treating all instances of common light verbs as being stop predicates,
and therefore cannot analyse many frequent relations.
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As in Section 6.7.4, there is a simple non-compositional solution approach to deal¬
ing with this problem: the system could simply treat instances of light verb+object
as multiword expressions, and use clustering to infer their meaning. For example, the
predicate takeMJshowerargo may cluster with showerargo. Such an approach would not
generalise well, for example to took a hot shower or took no shower. Instead, it may
be possible to devise a new syntactic analysis for light-verb constructions, in which
the noun expects an additional entity argument, and a semantically transparent verb
supplies the subject to fill that argument.

6.8 Conclusion

This chapter has greatly developed the model of Chapter 4 by learning complex graph
structures over predicates, rather than a simple flat clustering. The major advantages
of the new framework are in allowing directional inferences to be represented, and
in incorporating information from a diverse range of sources using a discriminative
classifier. Both of these improvements contribute to much-improved results over the
model of 4. The weak results of the clustering on this task show that relatively few lex¬
ical semantic relationships can be adequately captured by clustering, as true synonymy

is rare, suggesting that entailment graphs offer a far stronger framework for learning
lexical semantics than clustering. The other major advantage of entailment graphs is
that they allow a wide variety of features to be incorporated in a principled way—in
contrast to clustering, which uses a single similarity statistic.

I have also described how the work could be extended in the future, to build a

much richer and more powerful model of semantics. The major limitations of the cur¬

rent model come from a weak model of light verb constructions, only modelling binary

relations, not addressing multi-word compositionality, and not modelling temporal se¬

mantics. I hope the model described in this thesis will open new avenues in research
to find synergies between formal and distributional semantics.
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CHAPTER

Conclusions

This thesis has shown that distributional and formal logical semantics do not have to

be mutually exclusive, and can be combined in a single model. I have argued that the
problem of language interpretation can be divided into the problems of understanding
content words, understanding function words, and composing their meanings. Nei¬
ther formal nor distributional semantics solve all of these problems alone. My major
contribution is developing a solution that incorporates the main advantages of each ap¬

proach. Such a combined model is necessary for high performance on many practical
applications, such as question answering. For example, correctly answering the ques¬

tion Was Obama born in Kenya? from the sentence Obama's birthplace isn't Kenya

requires combined distributional and logical semantics.

Compositionality and the semantics of function words already have extensively de¬

veloped solutions within the linguistics literature, and I have created the first computa¬
tional implementation of the modern theory described in Steedman [2012], As a conse¬

quence of creating the implementation, I discovered some subtle technical problems in
the theory, for which I created solutions. I also developed an algorithm for converting
the semantics to standard first-order logic, allowing it to be used with theorem provers.

I demonstrated that the implementation can create logical forms with wide-coverage,
at a speed which supports web-scale semantic interpretation of text. Example output
from the system shows that it can handle linguistically complex constructions, such

137
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as right-node raising, and represent scope ambiguities using packed-logical forms. I
also showed how it can be used to make complex multi-sentence inferences involving
quantifiers, which was not possible for previous work on the dataset.

Neither compositionality nor operator semantics is useful without an understand¬
ing of content words. There is little use to being able to compose, negate or quantify
words, without a good model of what the words themselves actually mean. Exist¬
ing work has used hand-built ontologies such as WordNet to model lexical semantics,
but despite huge investment in such resources, the problem remains far from solved.
I developed a solution in which distributional semantics is used to cluster symbols
representing the interpretations of content words, based on similar named-entity ar¬

guments. Predicates like X was born in Y and Y is X's birthplace may have similar
named-entity arguments in a large corpus, such as (Obama, Hawaii), (Napoleon, Cor¬
sica) and (Jesus, Bethlehem), providing evidence that they express the same concept.

Using the cluster identifier as a symbol allows us to generate definitions for born and
birthplace that express the same symbol. Intuitively, the approach aims to assign the
same definition to words that have the same meaning. Because the lexical semantics
is still symbolic, it integrates seamlessly with compositional and operator semantics.
This approach allows lexical semantics to be fully represented in the lexicon, without
the need for additional inference rules.

The approach of simply clustering words suffers from a number of limitations. The
most serious is that it does not model ambiguity, which is pervasive in natural language.
I introduced a new method for modelling ambiguity, by assigning types to predicates
and their arguments with a topic model, and assuming that the occurrences of the same

predicate with different types are semantically distinct. I gave a novel method that
allows these distributions to be combined compositionally during a semantic deriva¬
tion, by combining distributions at /3 -reductions, and representing ambiguous terms as

'packed predicates'. The output is therefore a distribution over logical forms, and I
introduced a way for succinctly representing the full distribution in a packed logical
form. The resulting model shows good performance on a question answering task.

The use of flat clustering does not allow the model to learn lexical relations that

only hold in one direction, such as conquer-^invade. To solve this, I adapted recently
proposed methods for building directed graph structures over predicates, in which
edges represent entailment. Because entailment is a transitive relation, the graphs are

restricted to be closed under transitivity. I introduced a novel method for converting
these graphs into an equivalent lexicon, by collapsing cliques into clusters, and making
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the semantics of a word be the conjunction of the identifiers of all reachable clusters.
Instead of relying solely on distributional statistics to determine lexical semantic rela¬

tions, I showed how to extract supervised training data from an entailment dataset. The
use of a supervised classifier means the model can take advantage of a diverse range of
features, and not just distributional statistics. I developed a model that uses novel and
interesting morphological features, which can learn common diathesis alternations, or

how to create deverbal nouns from verbs. These techniques lead to much improved
performance on an entailment dataset over the flat clustering model, demonstrating
that this approach to learning lexical semantics is far more effective.

I also created a cross-lingual generalisation of this work, which is the first unsu¬

pervised model for clustering relations cross-lingually. This work explores the idea
that if the clusters correspond to primitive concepts, then they should be language-
independent. Cross-lingual clusters can be learnt by aligning named-entities between

languages (using Freebase to ground entities), and then clustering predicates with sim¬
ilar arguments. I found a two-stage process was most effective, in which predicates
were first clustered mono-lingually, and then the clusters are greedily aligned. Ulti¬

mately, I hope that cross-lingual clustering could be used to induce better clusters in
each language than monolingual clustering alone, as if multiple languages refer to the
same concept, it increases the likelihood that it is a good semantic primitive. However,
the current clustering did not achieve this—future word should explore using parallel
text for supervision, which may significantly improve the quality of the clustering.

I have also tried to emphasise that the current proposal remains far from a complete
solution to computational semantics, and much interesting work remains to be done.
Several major challenges are discussed in Chapter 6. The current model can only
cluster binary predicates, but I suggest how the model could be extended to handle
relations of any arity. It is also important to subcategorize entailment into more fine¬
grained concepts, such as pre-conditions, cause-effect relations, or hypernymy. The
current CCGBank grammar does not capture the true predicate-argument structure in
some cases, such as light verb constructions, and should be updated to address this.
Standard first order theorem provers do not scale to inferences involving large num¬

bers of sentences, and do not allow probabilistic inference, which would prevent the
current system from providing inference over a large corpus such as Wikipedia. The
recently developed Tractable Markov Logic [Domingos and Webb, 2012] may provide
a solution here.

The major conclusion from this thesis is that formal and distributional semantics
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have much to learn from each other. Distributional semantics can be made more pow¬

erful by representing meaning in logic rather than vectors, and formal semantics can

benefit greatly from lexical knowledge derived from large unlabelled corpora. The pro¬

posed framework, in which logical forms are enhanced with distributional information,
offers rich potential for future work.

This thesis has developed a new approach to natural language semantics, which
combines the most powerful aspects of solutions from both the linguistics and natural

language processing literature. It is the first to incorporate a distributionally-induced
lexicon of content words within a wide-coverage implementation of formal semantics,
to give a powerful and general model for natural language understanding.
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Appendix

8.1 Questions used in Chapter 4

This section contains the question set used in Chapter 4. Answers were annotated by a

native English speaker.

What does Marilyn write about?
What does Robert O'Leary run for?
What is Orakzai a stronghold of?
What comes from New England?
What is Provenge a product for?
What ends in Nuevo Laredo?

What collaborates with Boeing?
What is a spokesman for Lucas Bols?
What does FTC reject between?
What is a movement in United States?

What reports from New Orleans?
What is a child of Raj?
What does Timothy M. Dolan arrive in?
What is Safe Kids USA a program of?
What does Ettinger serve in?

What is Colette Bancroft a editor of?

What does Florida run against?
What does O'Hare graduate from?
What do Uruguayans disappear in?
What shows from Hulu?

What works for Disney?
What talks with ESPN?

What looks for Andy?
What is a writer for New Yorker?

What does Terrell Suggs wheel around?
What works with Michelle Obama?

What does Awlaki meet with?

What is Schrade a director of?

What does China leapfrog over?
What does Nugent stand for?
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What does White House consult with?

What swoops into Wisconsin?
What is a kind of Robin Hood?

What do Rangers go with?
What is D-N.J. Adler a freshman in?

What arrives in Florence?

What does Nebraska depart for?
What writes in New York Times?

What is a pick from Vanderbilt?
What is a author at St. Petersburg Times Fes¬
tival?

What is a base for Potash Corp.?
What does CBS talk with?

What does Doyle arrive in?
What serves in Senate?

What is Kennedy a sailor on?
What does Mazorra remain at?

What is a widow of James Clair Jr.?

What is John a home in?

What remains at Guantanamo?

What is a market after Japan?
What agrees with Perricone?
What rides into Boston?

What does BP work with?

What does Vicki Kennedy speak with?
What works for Exxon?

What is Sherman a daughter of?
What is a heart of Switzerland?

What does Timothy F. Geithner arrive in?
What is Olivo a catcher with?

What knows in United States?

What does Rendell land in?

What reports from New York?
What is Chad a coach for?

What is a leader for Patriots?

What is St. Augustine a place in?
What testifys in Portuguese?

What is Sean Daly a critic of?
What files for Social Security?
What is a nation on Earth?

What is a boy of MLS?
What does Red Star contract with?

What meets with Netanyahu?
What testifys before Senate Banking Commit¬
tee?

What is Fahim a brother of?

What stays on U.S.?
What speaks with Hu Jintao?
What do Puritans land on?

What calls for Congress?
What does Nathan Deal resign from?
What suffers under Hussein?

What does Jeanetta work in?

What is Russia a stakeholder in?

What do Yankees receive from?

What does Beltran meet with?

What does Olofsson come from?

What is Joseph Main a official with?
What is King George V a patron of?
What does Tampa blow by?
What do Mets negotiate with?
What feels about Moss?

What writes Queer Kids?
What does Broadway converge with?
What rules for Big Oil?
What is Steve Persall a critic of?

What works at Treasury?
What is a investor in GM?

What does Charlie Crist converge at?
What lives in Brooklyn?
What is a senator from Manhattan?

What performs in Oslo?
What does Stroughter start alongside?
What is a coach with Baltimore?
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What lives in Jamaica?

What does Merkel call for?

What is a teacher at Skinner Middle School?

What presides over House?
What jumps from Jeep Cherokee?
What is Yasar Ozdemir a member of?

What does Lau work for?

What joins with Monterey Institute?
What does Nobel Peace Prize win by?
What wins by Liu Xiaobo?
What does Harry Reid negotiate with?
What is a program of David Horowitz Free¬

dom Center?

What works with Aaron Israel?

What is Montague a officer for?
What is a stakeholder in Kyrgyzstan?
What does CHINA report from?
What is a member of Palm Beach Post Edito¬

rial Board?

What does Cathy Connolly arrive in?
What is Morelia a drive from?

What is a youngster in San Diego?
What is Pinera a person in?
What is a son of Pete Muldoon?

What does Lee live in?

What undertakes with Bill?

What is a news for White House?

What is Tom Blackburn a member of?

What does McDaniels believe in?

What is Bob King a president of?
What asks about Kadyrov?
What withdraws from Open?
What does A.O. Scott write in?

What practices with Washington Redskins?
What does Coke live in?

What works with Meetup.com?
What does Shumate slide around?

What does Sam Snead fume at?

What does Nicklaus win in?

What talks about Lee?

What is a president of United States?
What is a draw in AFC West?

What settles in Sand Lake?

What breaks into TJX?

What is a place for Mays?
What looks at Institute?

What works with Pavarotti?

What is a resident of Greenwich?

What is Sean Daly a critic of?
What does Marcelus live on?

What stands on Iraq?
What starts for Cardinals?

What secedes from United States?

What does Spalding graduate from?
What is a commentator for National Public

Radio?

What relys on Manning?
What does Denis O'Hare open on?
What is a uproar among Muslims?
What is Cleaves a guard from?
What is a creation of Arthur Conan Doyle?
What is Steve Persall a critic of?

What does Brazil look at?

What works with Mike Leahy?
What is VANCOUVER a tournament at?

What is a candidate in Toronto?

What writes Therese Murray?
What routes from Kabul?

What goes by Lady Gaga?
What does Tim Anderson move from?

What is a influence on Steve?

What teaches at Harvard Business School?

What is Thomas a director for?

What does Atlanta Hawks part with?
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What does NFL start for?

What do Democrats convene in?

What convenes in South?

What pays for Greece?
What reports from Bishkek?
What is Bakhtiar a minister under?

What reports in Washington Post?
What does BABA BOOEY abate with?

What does Pasco County Library Cooperative
work with?

What does Salazar call on?

What is a native of San Antonio?

What is Barry Lutz a cousin of?
What is a area for Republicans?
What performs at East Room?
What is a investigator at National Institute?
What does Mitchell meet with?

What does Ensign speak with?
What does Lindsey Vonn arrive at?
What is a columnist for Denver Post?

What originates in Grand Canyon?
What votes for Pelosi?

What does McCaskill join with?
What does Martin report in?
What does Betty live in?
What does Bellamy sign with?
What do Chargers look at?
What looks at L.A.?

What do Miracles happen in?
What pairs with MTV?
What is El Camino a school in?

What starts for Rams?

What is Mark Kiszla a columnist for?

What does Charles Smith head for?

What does Taliban route from?

What does LeBron James heel in?

What does Lee prosper with?

What is a coach at West Virginia?
What is a senator in Illinois?

What cooperates with Renault-Nissan?
What is Robert M. Hertzberg a co-chair of?
What works with Israel?

What does Sam Dolnick report from?
What is a deal with Colorado Rockies?

What is Miss Universe Organization a com¬

pany of?
What is McGregor a end at?
What does Kenya arrive in?
What is Treacy a son of?
What is Colette Bancroft a editor of?

What is a critic of St. Petersburg Times?
What does Bauer work on?

What does Cohl think beyond?
What is Germany a partner in?
What does Ayestaran live in?
What withdraws from Vieques?
What does Sunderland compete with?
What is a experiment for Viacom?
What is Woody Paige a columnist for?
What is a owner of Clearwire?

What moves from Merritt Island?

What is a presence in Kasumigaseki?
What does Beara rank above?

What is a editor of New Republic?
What is Postal Service a employer after?
What is a manager for Mark?
What does Keselowski call for?

What works at St. John?

What does Deevy live in?
What does Greer fly with?
What does DeMint run for?

What is a quarterback for Cowboys?
What does Jennifer stay in?
What does Mclnnis appear on?
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What is a rookie from Texas?

What is Dr. Berger a customer of?
What is Wetherell a receiver at?

What is Jordan a student at?

What is Lindsey Vonn a star of?
What uses for EMI?

What does Slovenia qualify for?
What does Fischer leave for?

What leaves for Credit Suisse?

What does Livonia Republican fly aboard?
What is Charles Schwab a face of?

What studys in Israel?
What does Mullen meet with?

What is Bedford Post Inn a hour from?

What is John Henderson a columnist for?

What does Automotive News report from?
What is a coach for Kim?

What is Marie Valencia a president of?
What spars with Republicans?
What is Gregoire a ally on?
What resigns from HP?
What does Bill Richardson fly into?
What reports from Houston?
What is Allen a worker from?

What lives in Mumbai?

What does Newton land in?

What is Lanchester a admirer of?

What does Sayle resign from?
What remains at Guantanamo?

What meets with Steadman?

What is Hirsch a son-in-law of?

What does Mullen meet with?

What is a director of Brant Publications?

What does Lecavalier center for?

What talks with Times?

What does Joe Biden arrive in?

What works with Palomar College?

What belongs in Denver?
What is a president of IMA?
What graduates from University?
What is Trattou a guy from?
What does Miller resign from?
What trades for Carter?

What does Obama arrive in?

What does Camden work with?

What does Microsoft remain in?

What stands between Rays?
What is a editor of Albany?
What heads into U.S. Open?
What is Dave Krieger a columnist for?
What reports in International Herald Tribune?
What does Mascheroni work for?

What graduates from James Madison High
School?

What is a rock for Karls?

What is a leader of Afghanistan?
What is Ogilvy a presence on?
What do Americans blow into?

What is a resident of Mission Viejo?
What is a nominee in Illinois?

What writes in International Herald Tribune?

What appears with Murray?
What does Janessa Goldbeck work in?

What does GE work with?

What forgets about Rodney Stuckey?
What does Lysacek edge out?
What does Kathy Brearley testify before?
What is South Africa a host for?

What does Washington work for?
What is Joe Lombardi a grandson of?
What battles in Superior Court?
What is a daughter of Oliver Warbucks?
What calls for Gulf Coast Restoration Plan?

What does O'Donnell run for?
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What do Knicks drift among?
What does Morefield graduate from?
What is a friend of Allison?

What writes in Times?

What pens in Red-Headed League?
What is Chile a country in?
What interviews on MSNBC?

What jails in Iran?
What do Giants receive from?

What writes in Times?

What does Barack Obama meet with?

What does Bauer live in?

What does El Tovar Lodge perch on?
What skates in Tampa?
What joins with Lamar Lundy?
What confers with Arab?

What lives in Troy?
What is Carroll a chaplain at?
What differs from Ellis Island?

What wins at Raymond James Stadium?
What is Dave Krieger a columnist for?
What does Malcolm Forbes live at?

What does Christie Collbran remain in?

What arrives in Lebanon?

What does Zazi drive from?

What do Rays arrive in?
What does Gelber write?

What looms over Scarlett?

What designates by United States?
What is a rookie in NBA?

What is Onyango a aunt of?
What is a coordinator at Youngstown State?
What is Romo a quarterback for?
What is a part of Federation?
What is a member of Palm Beach Post Edito¬

rial Board?

What stands behind Kabul Bank?

What returns from Pakistan?

What votes for George W. Bush?
What returns from Mexico City?
What is a president with College Board?
What does Rudolph W. Giuliani campaign
with?

What does Big Boi collaborate with?
What is Buick a brand after?

What does Karachi rely on?
What does Sheldon kneel beside?

What is Alexandre a member of?

What is a columnist for Denver Post?

What is a agency of United Nations?
What is Vinas a ace of?

What is Kirby a talent at?
What is a champion in New York?
What do Bucs practice at?
What does Hagan live in?
What is a coach at Temple?
What is Morris a officer in?

What flys aboard Air Force?
What writes in Times?

What clashes with Phelps?
What is Russell Long a whip of?
What does Chung work in?
What comments on Meehan?

What is a chairwoman of Senate Agriculture
Committee?

What lives in Vilcabamba?

What meets with Dalai Lama?

What waits for Longoria?
What survives in Tampa Bay?
What does Emanuel light into?
What is Thomas a coach at?

What does McMahon level at?

What does Bill Marriott meet in?

What travels in Middle East?
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What works for CIA?

What does McCoy testify before?
What is a professor at Harvard Law?

What is Shahzad a buyer of?
What is Peterman a legislator from?
What does Florida Dance Festival move from?

What arrives in North Korea?

What is a director of Philharmonic?

What is Gifford a writer from?

What is a player for Mets?
What does Judge Richard A. Posner clerk for?
What is a cousin of Oppenheim?
What partakes of Coors Light?
What does Latson report from?
What writes in New York Times?

What scowls about New Jersey?
What does Michael Silverman think about?

What is Clegg a agent in?
What shuttles around Jerusalem?

What does Justin Olsen hop behind?
What does al-Bashir charge by?
What is Mr. Tully a publisher of?
What is a bank in Ireland?

What signs with Yankees?
What plans FOR National Aeronautics?
What stands at Audubon Nature Institute?

What brings from Colorado?
What is a president of CBS Television Net¬
work?

What meets with Hillary Rodham Clinton?
What does Barack Obama meet with?

What does Hayes Jenkins win at?
What does Havasupai originate in?
What is Thomas a part of?
What meets with Izzo?

What is a representative from Providence?
What do Democrats vote in?

What runs for Congress?
What is Ash a investor in?

What is a investor in Bayview?
What does Abdullah meet in?

What races in Florida?

What does Reid talk about?

What does Krajewski work at?
What expects from Grand Prix?
What does Darragh perform alongside?
What is a director of Boston Lawyers Group?
What lands at Florida International Univer¬

sity?
What is Reynolds a executive of?
What is a agent in Columbus?
What does Icahn lean on?

What flys with Tuskegee Airmen?
What coaches at Toledo?

What is Stephen Alexander a chairman at?
What produces from Social Security Admin¬
istration?

What is Pirozhkova a edition in?

What is Bowser a teenager during?
What is a antithesis of Berlin?

What is Chad Doll a bartender in?

What is a chairman of Protean Holdings?
What is a obstacle in U.N. Security Council?
What writes in New York Times?

What does Barone live in?

What is a part of U.S. Virgin Islands?
What does Peter Watrous write in?

What does Maddon look at?

What does HP work WITH?

What expects in Beethoven?
What does Catan move from?

What is Tom Blackburn a member of?

What does Drumm resign from?
What is Stern a member of?
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What does Goya work with?
What does New Hampshire vote for?
What bolts from GOP?

What does Lawrence live in?

What exhibits at LACMA?

What is a brainchild of Irwandi Yusuf?

What is a denomination in United States?

What reaches around Berrian?

What is a correspondent for New York Times?
What is a columnist for Denver Post?

What does Sweeney scowl about?
What does Don Kreamer vote for?

What is a critic of Times?

What talks with Richard Sestak?

What does IRS look at?

What does Hillsborough County School Dis¬
trict undertake with?

What is ElBaradei a figure in?
What is Big Red a seed from?
What leaves for Harvard?

What is a president of National Ocean Indus¬
tries Association?

What graduates from Brown University?
What runs from James O. Eastland?

What does Germany prepare for?
What does Gordon Brown meet near?

What does Octavio Paz come from?

What looks for Afghanistan?
What does Ben Brantley write in?
What is a end at Colorado State University?
What is a focus of St. Petersburg Times Festi¬
val?

What lives in India?

What does Bondi edge out?
What comes from Chicago?
What is Joel Brinkley a correspondent for?
What is a editor of Austin American-

Statesman?

What does Boise State bolt for?

What is a evocation of Liverpool?
What is Tampa Bay a team in?
What does Civil Rights Act work alongside?
What builds in Chattanooga?
What is a criticism of GM?

What calls for United States?

What is Higgins a scorer for?
What does White House rely on?
What does GM focus on?

What reports from Washington?
What is a fixture in Senate?

What does Hefner talk about?

What works with Kerry?
What is Peter Lewis a editor at?

What is a forest in United States?

What coaches with Steve Addazio?

What does Hillary Rodham Clinton speak
with?

What does Gaiutra Bahadur write in?

What does Napolitano testify before?
What is Felix Carroll a writer for?

What draws in Connecticut?

What is Harley a director at?
What do Italians stick in?

What walks onto George Washington Bridge?
What publicizes on Facebook?
What is Samantha a daughter of?
What drowns with Karzai?

What writes in Times?

What does Viktor Kassai preside over?
What is Pinot Grigio a benchmark for?
What is Michael Yakes a mayor of?
What is Medicaid a deal in?

What is Brody a wife of?
What does Khloponin ask about?
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What does Mian graduate from?
What is Marco Rubio a member of?

What is a topic on Weibo?
What is Feldstein a chairman of?

What is ASL a part of?
What does Matt Duchene arrive in?

What returns from China?

What wins over Mississippi State?
What agrees with Krzyzewski?
What follows by Hutchison?
What is Tom Marshall a writer for?

What does Jeremy W. Peters report from?
What is a daughter of Dan Reeves?
What drops below Redskins?
What is a tenant in Avery Fisher Hall?
What happens in Massachusetts?
What does Jim Tracy look at?
What does A.O. Scott write in?

What is a governor in Kunduz?
What arrives in Portland?

What is a longshoreman in San Francisco?
What is a manager of Kansas City Royals?
What is Richardson a project of?
What is Sander M. Levin a chairman of?

What lands at Bagram Air Base?
What does Shahzad return from?

What is Mark Kiszla a columnist for?

What is Toomey a banker for?
What is James Baker III a operator on?
What is a laughingstock of NFL?
What does Mason work at?

What writes in New York Times Book Re¬

view?

What lives in England?
What does Mattioli enrol at?

What does Dietz agree with?
What does Dan Aykroyd team with?

What works for Toyota?
What does Edward Kennedy run for?
What is Carpenter a president of?
What is a republic in Central Asia?
What speaks about Fed?
What does National Conference meet in?

What qualifys for Olympics?
What is Germany a man of?
What is Woody Paige a columnist for?
What does Whitacre speak at?
What writes on About.com?

What does Dalai Lama arrive in?

What does Rogers score at?
What is a executive at Ford Motor?

What studys at UCLA?
What does Blumenthal serve in?

What is a critic of Times?

What is a critic of China?

What tackles for USC?

What replys from Houston?
What does Meyers enjoy following?
What does James stay in?
What is a teacher in West Palm Beach?

What is Elena Kagan a student at?
What works on Capitol Hill?
What does Mr. Salinger serve in?
What does Mikenley dream of?
What is Mark Kiszla a columnist for?

What advances unlike Dinara Safina?

What is Mark Kiszla a columnist for?

What stands before Bill Ford Jr.?

What does Open compete in?
What does Brad Ellsworth run for?

What is Laland a biologist at?
What inquires about Carlos Queiroz?
What does Mihos write?

What is Carey a president at?
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What does Association convene in?

What is a partner in Bracewell?
What honeymoons on Sea Island?
What does Ellen land in?

What does CenterPoint wait for?

What does Clausen start against?
What operates in India?
What is Eskendereya a winner in?
What testifys before Congress?
What is Ryskamp a director of?
What is Bill a group of?
What is AEI a subsidiary of?
What performs with Santana?
What is a columnist for Denver Post?

What votes with Republican Party?
What does Freyman graduate from?
What is WellPoint a example of?
What docks in Tampa?
What does Michael J. Lohman arrive at?

What flys through Tulsa?
What does George A. Papandreou meet with?
What meets at Tropicana Field?
What is Tom Blackburn a member of?

What volunteers at Lenox Hill Hospital?
What does Carter serve in?

What is John Solomon a reporter with?
What finds by Loria?
What does Keal talk about?

What is Elena Kagan a student at?
What looks at Cody?
What is a professor at University?
What does Elizabeth Gilbert write of?

What does Wolf speak with?
What do Colts lose in?

What works in Afghanistan?
What identifys with Iran?
What writes on Huffington Post?

What is Kennedy a sailor on?
What does Clifford J. Levy report from?
What is a president of Hudson Castle?
What does Goldman bet against?
What is a partner at Hogan?
What is a athlete among Rays?
What lives in West Bloomfield?

What is Erin a intern at?

What chokes against Ghana?
What testifys before Congress?
What is a analyst at Basketball-Reference?
What is Tim Foley a student at?
What is Wilhelm a teammate of?

What does Agassi write of?
What is Ellis a disciple of?
What does Zobrist hear about?

What expands in Switzerland?
What does David Garrard intend for?

What sings at Cafe Society?
What is a member of National Commission?

What is a city in Punjab?
What meets with Bobby Jindal?
What does Robert Allenby withdraw from?
What is Europe a slogan of?
What does Mattek-Sands excel in?

What does Peter Baker report from?
What does Manohla Dargis write in?
What is Shirley a member of?
What is Baldwin a son of?

What arrives at San Francisco International

Airport?
What recalls in U.S.?

What works for Linden Lab?

What wins in Europe?
What does Henry VIII break with?
What does Barack Obama meet with?

What does Saints arrive in?
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What is Obama a senator in?

What do Knicks plan for?
What does DSi XL arrive in?

What loses in Foxborough?
What graduates from Harvard?

What is a figure at Roulette?
What cheers for Netherlands?

What is a head of National Ocean Industries

Association?

What does Williams board at?

What tucks in Indonesia?

What is a blow for Corzine?

What compares with MFA?
What is a housewife of D.C.?

What works with White House?

What is a teacher at Agoura?
What does Saab build outside?

What is a champion with PGA Tour?
What surrenders at Cumberland Federal Cor¬

rectional Institutional?

What merges with Metavante Technologies?
What competes in Salt Lake City?
What is a automaker behind BMW?

What does Charlie Crist bolt from?

What does International Monetary Fund meet

in?

What is a dean of Harvard Law School?

What is Joel Brinkley a correspondent for?
What does Hough coach for?
What writes in Le Monde?

What merges with United Airlines?
What is a critic of Times?

What is a goalie for San Jose?
What drives for Lotus?

What appears before Political Action Confer¬
ence?

What apologizes FOR Carl Paladino?

What is Lennie Bennett a critic of?

What does Blumenthal serve in?

What lives on MTV?

What contracts with Defense Energy Supply?
What does Paul McCartney perform at?
What re-signs with Denver?
What is a player on Team USA?
What coaches at USC?

What does No Child leave Behind?

What remains at Tropicana Field?
What does Rodriguez bolt for?
What arrives in New Delhi?

What lives on Rue Macajoux?
What exiles in India?

What does Faisal settle in?

What works with Stan?

What does Hellickson remain at?

What does Sarasota win over?

What counts on Delhomme?

What is a sister of Cruz Bustamante?

What is Goolsbee a professor at?
What moves into Nuevo Laredo?

What is Woody Paige a columnist for?
What retreats from Asia?

What is Berkowitz a follower of?

What acquires from Toronto?
What does Cathy Connolly meet with?
What sides with Democrats?

What does Bud Perrone stay in?
What does Virginia Heffernan write in?
What do Bucs count on?

What does Hossa sign with?
What serves in House?

What calls for Congress?
What does Democrat win in?

What does Philip Langridge die in?
What does Steve Ipsen run against?
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What reports from Houston?
What does Jessica Park graduate from?
What graduates from Mount Greylock High
School?

What talks with Barack Obama?

What graduates from Williams College?
What resides in Elysee Palace?
What pictures between Betty?
What does Lazy Beetle Bailey star with?
What does Charpak join with?
What does John Hudson report on?
What is George Kiefer a assistant at?
What is Mexico City a jurisdiction in?
What is a jurisdiction in Latin America?
What does Washington report from?
What negotiates with White House?
What is Gary Indiana a writer in?
What does Shami vouch for?

What writes in Times?

What does BUPPALO report from?
What is Chapman a guest of?
What does Naipauls meet with?
What works for Pernod Ricard USA?

What is Johnny Boy a descendant of?
What arrives in New York?

What does Teixeira land in?

What is Kresa a director at?

What runs into Pfizer?

What moves from Boston?

What is a editor of Albany?
What is BMG Rights Management a venture

between?

What is a brother of Daleisha Cam?

What does Levin argue with?
What is a editor of Times?

What does Andy Warhol look for?
What does Dana Milbank write in?

What is a supporter of Muqtada al-Sadr?
What does Delta merge with?
What does Wade Davis pitch in?
What arrives at Open?
What works at General Foods?

What is Saskatchewan a base for?

What is Israel a member of?

What is Elway a contributor on?
What does Jenkins win against?
What is Elena Kagan a dean of?
What files from Alabama?

What is a surgeon from Crystal Falls?
What is Dave Krieger a columnist for?
What is a editor of Times?

What is a champion of Kleibacker?
What does A.O. Scott write in?

What is a president at Conde Nast?
What is Peyton Manning a player in?
What bashes on Blake?

What does Youkilis meet with?

What is a kind of Nantucket?

What runs for County Commission?
What fumes at Wal-Mart?

What does Graham Bowley contribute from?
What is McCotter a chair of?

What calls for China?

What is Anton Renault a reporter for?
What does Manohla Dargis write in?
What is John Henderson a columnist for?

What does Dwight Howard tug at?
What is Brace Froemming a umpire at?
What does Reuters report from?
What is a emeritus at National Zoo?

What meets in Vietnam?

What is Florida a focus of?

What do Romans talk about?

What speaks at Political Action Conference?
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What does Karzai talk with?

What is Bryan a professor of?
What prepares for World Expo?
What is Tom Blackburn a member of?

What is a also-ran in United States?

What arrives in Washington?
What is a pastor of New Birth Missionary
Baptist Church?
What is Zuckerman a supporter of?
What warns about Bayou?
What does Robert M. Gates arrive in?

What does Doug Busch invest in?
What is a critic of Times?

What is Sandberg a veteran of?
What does Google team with?
What works for U.S. Army?
What arrives in Tampa?
What does Affiliated Transaction Committee

meet in?

What arrives in South Africa?

What calls from Washington?
What works with Alliance?

What speaks at Brookings Institution?
What is a colonel from Army Reserves?
What do Canadians skate at?

What meets with Leibman?

What contemplates following Beilein?
What is David D'Arcy a correspondent for?
What is Cano a child of?

What is a editor of San Antonio Express-
News?

What is Jack a junior at?
What is a legislator from St. Petersburg?
What does Tiffany reside in?
What is a producer with Peter Jankowski?
What is Bill Barton a coach at?

What is Miller a star in?

What is a star in Miami?

What is a stage in Washington?
What does Lucic tangle with?
What is Mr. Williams a professor at?
What wins at Pebble Beach?

What is a chief at HUD?

What is Rich a critic for?

What runs for Congress?
What does Tom Kelleher come from?

What is Craig Updyke a manager for?
What arrives at Boston Marathon?

What does Joshua M. Stone appear in?
What is a tale of London?

What is a critic of St. Petersburg Times?
What does Wendel settle on?

What begins in English?
What does Bob Bradley slip into?
What is Guadalupe Herrera a eighth-grader at?
What focuses on Northeast?

What is a resident of United States?

What hails from Birmingham?
What is Tampa Bay Bucs a speaker at?
What runs between Santa Fe?

What does Taliban operate in?
What returns from Pakistan?

What leaves for China?

What withdraws from Action Partnership?
What emerges from Communism?
What does Stover break into?

What is a talent at Comics? •

What is a automaker behind GM?

What do Turks feel toward?

What is Fisher a coordinator at?

What is Jackson a artist in?

What does IBM team with?

What is Tom Blackburn a member of?

What writes in Washington Post?
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What opts for Seguin?
What remains in Toronto?

What arrives in United States?

What is a officer in Pacific?

What does Blumenthal run for?

What races past United States?
What opts for Taser?
What does Sadik-Khan speak at?
What is Lourd a page at?
What is Posey a star for?
What is Lowe a place for?
What is a student at UCLA?

What does Jim O'Rourke live in?

What is Dr. Carlos A. Zarate Jr. a investigator
at?

What does Marquez arrive in?
What is Bigeleisen a member of?
What warns from Afghanistan?
What sits on University?
What is a masterstroke for Sabean?

What is Afghanistan a version of?
What does Obama meet with?

What reports from New York?
What does Harrison sign with?
What works for CBS?

What is Kuchar a champion with?
What is a lawyer at SEC?
What does Ian Urbina report from?
What works with Yanick Alleno?

What reports in Times?
What folds in United States?

What does Army storm into?
What does Barack Obama state in?

What do Bucs go with?
What is a jockey at Mango Radio?
What writes in Times?

What suggests in Europe?

What is Udall a supporter of?
What is Gibney a match for?
What does Kottkamp work for?
What does Sen. John McCain meet with?

What signals ON Iran?
What does Michael R. Gordon report from?
What abates with Chad Millman?

What lives with Feldman?

What is a child of Dolph?
What does Rubio benefit from?

What is Sean Daly a critic of?
What does Rachel Alexandra lose in?

What does Rafanelli live in?

What lives in South End?

What does Tucker appear in?
What is Lahore a city in?
What debuts in New York?

What does Cabrera glare at?
What does Holmes vote for?

What appears with Branca?
What does DreamWorks march into?

What does Holladay vote for?
What does Mark Kiszla file from?

What is a market after China?

What does Francisco Liriano start for?

What is a student at Marefat High School?
What storms into World Series?

What is a executive of Chicago Public
Schools?

What does Omar Lopez walk into?
What meets with Ted Branch?

What goes into St. Louis?
What is Lugano a center in?
What is Yvonne Walker a president of?
What waits for PUC?

What does Houston Astros pitch for?
What does George J. Mitchell meet with?
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What fights in Afghanistan?
What competes in BMX?
What is China a neighbor of?
What is a anchor at Fox News?

What does Ashton know in?

What is Paulin-Ramirez a wife of?

What does Association meet in?

What does Polgar live in?
What writes with Benjamin?
What does Navy withdraw from?
What is a instructor at Upsala College?
What is Germany a market in?
What travels from Texas?

What is a senator in Illinois?

What is a mentor for Cabrera?

What do Olympics approach in?
What works with Isabelle Huppert?
What does Kurt Wallander travel by?
What is Jeff Saitas a lobbyist for?
What meets with Tony Blair?
What writes in Times?

What does Marsha Collier live in?

What is Cheung Kong Infrastructure a part of?
What does Tyson discriminate against?
What works with Bruce Allen?

What does Woody Johnson speak with?
What does Delahunt travel in?

What competes in Olympics?
What qualifys for World Cup?
What wins in Massachusetts?

What resurfaces at Hofstra?

What does Miller acknowledge at?
What is a senator from Orlando?

What does Errol Kerr compete in?
What arrives in Colorado?

What does Michael Billington write in?
What is a capital of U.S.?
What does Farhi Saeed bin Mohammed cap¬

ture in?

What do Americans wait for?

What is BP a producer in?

8.2 English Questions used in Chapter 5

This section contains the French question set used in Chapter 5. Answers (in French)
were annotated by a native French speaker who speaks fluent English.

XYZ inhabits Slovakia

XYZ leaves Ireland

XYZ starts Heathkit

Bullies reaches XYZ

XYZ pins Darren Matthews
France means XYZ

Joni Mitchell visits XYZ

XYZ accepts Christianity
Japan looks to XYZ
South Africa rests XYZ

XYZ travels to Africa

Monteux works with XYZ

Rue Morgue Magazine interviews XYZ
Ghassan Tueni returns to XYZ

XYZ works in Roatan

Radostin Stoychev replaces XYZ
XYZ bases The Defense

XYZ goes on Tennessee
XYZ is a director of Schola Cantorum

XYZ captures Chiang Mai
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XYZ stars to The Stars

XYZ includes John Gutfreund

Willy Vandersteen chooses XYZ
Cichiva River is a tributary in XYZ
XYZ comes from Wembley
XYZ borders Gmina Czemierniki

XYZ is a member of Abstract Rude

XYZ uploads to Y-O-U
Pacoima Wash continues to XYZ

XYZ returns to Celebrity Fit Club
XYZ is a village in India
XYZ drives United States of America

XYZ enrols at Yale University
XYZ succeeds Keith Joseph
William Careless serves at XYZ

Henry Doetsch leaves XYZ
Liu Shan sends XYZ

Admiralty requisitions XYZ
Priscian cites XYZ

XYZ names Automatic Data Processing

Dominique Lapierre renovates XYZ

Pope John Paul II apologises of XYZ
XYZ links Montreal

XYZ availables on Compact Disc
XYZ arrives on Earth

Robert Hiibner vses XYZ

Emperor Shomu remotes XYZ
XYZ demobilizes in England
XYZ is a settlement in California

Joe Diffie meets XYZ

Canada drains into XYZ

Mary Bonnin enlists in XYZ
XYZ reports to Clement Wood
Davison attends XYZ

XYZ gains South Hornsey

Negley meets XYZ
Chad Valley is an area of XYZ

XYZ becomes Steeler

XYZ returns to DEL

INS Sarayu serves with XYZ
XYZ announces Phillip Burrows

Lindsay Lohan portrays XYZ
XYZ becomes African American

XYZ campaigns for Barack Obama
XYZ is a town of Hounslow

XYZ moves to Wikia, Inc.

New York nicknames XYZ

XYZ attends Pennsylvania
XYZ reaches Davey Allison
XYZ transfers Sergey Korolyov
Bob Peak teaches at XYZ

Ardanu? is a village in XYZ

Serge Brammertz replaces XYZ
XYZ sees Gillian Polack

XYZ confirms Zeuss

XYZ dissolves Euroregion
XYZ marries Sylvius Leopold Weiss
Paul Sturrock brings XYZ
XYZ records What You Know

Henry Wadsworth Longfellow publishes XYZ
XYZ reveals to Earth

PennYo performs at XYZ
XYZ enters Waseda University
Thomas Kyd is a son of XYZ
Australia matches XYZ

John C. Fremont learns XYZ

XYZ attends Farragut High School

Padthaway naracoortes XYZ
Marshal acquires XYZ
XYZ visits Australia

XYZ moves to San Antonio

XYZ works for William Randolph Hearst
Leon Surmelian goes to XYZ

Singapore is a state of XYZ
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XYZ trails Mary Norwood

Aberystwyth University attends XYZ

Jay tricks XYZ
Edward Bellamy pens XYZ

Rainey battles XYZ
Encantadia returns to XYZ

Muso Gonnosuke encounters XYZ

XYZ is a team from Canada

XYZ describes Harley Psalter

Giuseppe Ottavio Pitoni arrives in XYZ

Sarah McCarron attends XYZ

XYZ goes Dave Lovering
XYZ populars with Ernest Hemingway
XYZ competes for Sweden
Mohsin Hamid is a finalist for XYZ

XYZ premiers in New York City

Schlossplatz is a square in XYZ
XYZ confirms Aki Maeda

Australia defends XYZ

XYZ leaves Patton Boggs LLP
XYZ terminates in Grant-Valkaria

XYZ sails to Africa

XYZ announces Boeing
China helps XYZ
XYZ publishes Indonesia Handbook
Mochdre is a village in XYZ

Roger Dubuis collaborates with XYZ
Turner Network Television negotiates XYZ
Crown Limited informs XYZ

XYZ pressures Vichaichan
XYZ invades Soviet Union

Gary Hines serves on XYZ
XYZ dies Hamar

Abihu is a son of XYZ

Hugh Douglas marches against XYZ
Delta Air Lines starts XYZ

Paul Kadak works for XYZ

XYZ parodies Tokimeki Memorial
XYZ is a start of Davar

Houston Rockets drafts XYZ

XYZ develops Howard Hughes
XYZ moves to Derbyshire
Moscow studies in XYZ

XYZ overtakes California

Carthage destroys XYZ

Roigheim survives XYZ
XYZ is a battle of American Civil War

Islam is an extension of XYZ

Davar means XYZ

British Broadcasting Corporation contracts

XYZ

XYZ actives in The Association

Kenny Young recruits XYZ
Bruce Springsteen states XYZ
Modwheelmood releases XYZ

Some enters XYZ

Wyryki lies of XYZ
Charles-Pierre Colardeau returns to XYZ

XYZ goes on Lawrie McMenemy

Dorothy Hill attends XYZ
XYZ stretches to Pett

Batu Khan leaves XYZ

XYZ is an engine from Microsoft
XYZ is an attendance in Malmo PL

United States of America arrives at XYZ

Shinya Aoki fights XYZ
XYZ moves from Porbes Pield

Nathan Hindmarsh immigrates from XYZ
Jose Basora meets XYZ

XYZ starts with Barani Department
XYZ works David Morales

Bill Evans is a thing in XYZ
XYZ stars Suresh Oberoi

XYZ regards M.o.v.e
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XYZ visits Scotland

Paper availables in XYZ
XYZ teaches at Brandeis University

Christopher Walken sings XYZ
XYZ meets in London

XYZ announces Barking
XYZ buys Boston Red Sox
XYZ attacks Israel

ASCII Media Works publishes XYZ
XYZ occurs from New South Wales

United Kingdom withdraws from XYZ
XYZ withdraws from International Olympic
Committee

XYZ is a band from Finland

XYZ 'blessings King
XYZ instructs Shankar Kistaiya
XYZ writes to Muhammad

Sleeping Satellite goes to XYZ
XYZ records Manchester Square
XYZ releases Need You Now

Shahbaz Sharif includes XYZ

XYZ goes in Eger
British Broadcasting Corporation shows XYZ
XYZ stars for Metro-Goldwyn-Mayer
Gary Williams beats XYZ
XYZ wins World Cup
Garris joins XYZ
James Pinnock joins XYZ
The Cardinals is a member of XYZ

XYZ joins Raith Rovers F.C.

XYZ beats Mickey Rooney
John Sutter leases XYZ

Arabic Language is a language in XYZ
Solon works in XYZ

XYZ works in Japan

Kougny Department is a commune of XYZ

XYZ distinguishes Professor

XYZ represents India
XYZ drives Germans

XYZ goes on Hermann Buhl

Indianapolis scores with XYZ

Rey Bucanero feuds with XYZ
XYZ ports to Xbox Live Arcade
Shaun Morgan joins XYZ
XYZ records Warren G

XYZ works at Kent State University
Earth returns to XYZ

McColl joins XYZ

Humbert, Pas-de-Calais leaves XYZ

Citigroup buys XYZ
XYZ is a region of Prussia
Cherubs sails in XYZ

Ralph Smart produces XYZ
XYZ operates from Rambouillet
All Blacks thrashes XYZ

XYZ is a district in St. Charles County
Fourth Macedonian War fights from XYZ
XYZ moves to Berlin

XYZ ensures East Bengal
Ray Charles titles XYZ
St. James's Gate is a home of XYZ

XYZ is a building in Philadelphia
XYZ conquers Association for Intercollegiate
Athletics for Women

XYZ wears Naoki Maeda

Cortes returns to XYZ

XYZ is a mayor of Evansville-Vanderburgh
School Corporation, Vanderburgh County, In¬
diana

XYZ leads Co-operative Championship
XYZ is a tributary in Romania
New York Yankees wins XYZ

Indian Army leaves XYZ
XYZ becomes The Association
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XYZ exits RCA

Warnock disappoints with XYZ
XYZ is a mountain of Scotland

XYZ anticipates Thomas Aquinas
Arthur Blomfield builds from XYZ

Western Telegraph borders XYZ
XYZ designs Wharncliffe Viaduct
XYZ beats Austria

Holy Trinity Monastery is a monastery in
XYZ

XYZ establishes Lowell National Historical

Park

XYZ returns to Chicago
Amritsar translates from XYZ

XYZ drafts Ricky Williams
Stefan Batory Foundation establishes XYZ
XYZ views Gundi

Spencer Day opens at XYZ
XYZ serves Empress Dowager Ding
Stanislas Wawrinka defeats XYZ

Bristol Rovers F.C. joins XYZ
XYZ is a village of Vietnam
XYZ participates in World War II
Cass Technical High School is a school in
XYZ

Lewis remains in XYZ

XYZ continues C60

XYZ presents Richard Dunwoody
Buckley purchases XYZ
Gloucester Green is a square in XYZ
Peters quits XYZ
Darius James quotes XYZ
Sordello arrives at XYZ

XYZ owns United States of America

Weiner interesteds in XYZ

Floyd Allen beats XYZ
Government Street constitutes XYZ

Calkins Media publishes XYZ
Honduras replaces XYZ

Germany invades XYZ
XYZ is a 21 for Mac OS X

XYZ interviews Chinese

XYZ uses Napoletano-Calabrese Language

Yeager lives in XYZ
Mbabaram Language is a language of XYZ
XYZ defeats Amelie Mauresmo

XYZ writes Rhapsody in Blue
XYZ signs Simone Loria
Mauritania recognizes XYZ
Eva Peron visits XYZ

XYZ lies of Jihlava

XYZ uses Davar

Mazarin studies in XYZ

Plum returns to XYZ

XYZ finishes The Muppets Take Manhattan

Anarchy Online consists of XYZ

Partibrejkers performs in XYZ
XYZ spreads Zoroastrianism
XYZ crowns King
XYZ is a figure in Ireland
XYZ operates Veolia Transport
Davar is a shape for XYZ
XYZ collaborates The Connoisseur

The Lucy Show is an episode of XYZ
Y-O-U sees XYZ

XYZ believes in Allah

Roland wins XYZ

XYZ headquarters in New York
XYZ merges into Bank of America
XYZ signs Travis Kvapil

Aluminij is a company from XYZ
XYZ hourlies to Bradford

XYZ accepts Russia
XYZ sculpts Tolerance Monument
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Liu Xin sees XYZ

XYZ meets Italy
Simon Pedersen Holmesland sits in XYZ

XYZ moves with Pat Pottle

XYZ caves Elephanta Island

Major availables at XYZ
XYZ forms Oklahoma

XYZ is a manufacturer in Earth

Rose Creek is a stream in XYZ

Overtones travels to XYZ

XYZ emigrates to France
Garrett Morris stars XYZ

XYZ invades Earl of Sutherland

Terry Slesser joins XYZ
XYZ inherits Hainaut

Andrew Young opposes XYZ
XYZ meets Ralph Waldo Emerson
XYZ begins in San Antonio
XYZ marries Patrice Wymore
Cornelius Gemma dies in XYZ

James Stewart stars in XYZ

Francisco Franco leaves for XYZ

Fumio Nanri lives in XYZ

Robert Earl announces XYZ

Marlon Fernandez returns to XYZ

Warren Cormier is a ceo of XYZ

XYZ writes Mobile Suit Gundam

XYZ embarks on Far East

Brad Sham replaces XYZ
XYZ involves with William Aberhart

Duke University recruits XYZ
XYZ portrays Marcella
XYZ sells Flanders

Irm Hermann stars on XYZ

XYZ falls to Duke University
Miles Copeland III understands XYZ
XYZ leaves N.W.A

Dragon's Lair joins XYZ
XYZ lists Reggie Watts
XYZ gathers Followers
Plato returns to XYZ

XYZ accuses Thaksin Shinawatra

XYZ goes to Campbell College
XYZ succeeds Wenno

XYZ varietieses Manseng
XYZ departs Japan
Muse performs at XYZ

Bjork grabs XYZ
Cofton Hackett works at XYZ

XYZ marries Frederick William, Elector of

Brandenburg
Thornton Burgess broadcasts XYZ
XYZ is an university in Europe
XYZ is a way in Delhi
XYZ goes to Paris
Eva Luckes lives in XYZ

King attends XYZ
Gamba Osaka retains XYZ

Moffat contributes to XYZ

XYZ attends Sedbergh School
XYZ travels to Kyoto
Germania explores XYZ
XYZ engages Li Zitong
XYZ succeeds Chick Hearn

Clement Smyth is a bishop of XYZ
XYZ admonishes Luxo Jr.

Leinster defeats XYZ

Brown attacks XYZ

XYZ rises in Illinois

Hangangno-dong is a neighbourhood in XYZ
Clairefontaine produces XYZ
XYZ lies of Jihlava

Candice Night performs in XYZ
XYZ moves to New York
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XYZ lies of Jihlava

XYZ resides England
XYZ describes Happy Accidents
The Federation is a representative from XYZ
XYZ rises in East Sussex

Back to Black is a seller in XYZ

Colin Montgomerie is a captain for XYZ
XYZ works for Scinteia

XYZ runs for Mayor of Chicago
Wedmore leaves XYZ

XYZ is a stadium in Chorley

Scarling. releases XYZ
XYZ writes Paper
Ashburne Hall is a hall on XYZ

Tooting Bee acquires XYZ
XYZ is a part of Brie
XYZ goes to Medina
XYZ dies in Moscow

Philadelphia Eagles drafts XYZ
XYZ draws New South Wales

XYZ diagrams West Virginia
XYZ is a character in Naked Lunch

XYZ is a municipality in Brazil

May Fortescue dies in XYZ
XYZ is a benefactor of Lapham Institute
Jarvis rejoins XYZ
Milton Shapp challenges XYZ
Amaranth reaches XYZ

Hungary rechambereds XYZ
California anchors in XYZ

Finland allies with XYZ

XYZ defeats Mike Kyle
Samuel Taylor Coleridge drifts from XYZ
XYZ reaches New York

Oracle Corporation develops XYZ
Diego serenades XYZ
United States of America attacks XYZ

Netherlands Antilles consists of XYZ

Pierce-Arrow carries XYZ

XYZ attends Texas High School
Australia sells XYZ

Greece competes in XYZ
XYZ moves to Venice

Sweden invades XYZ

XYZ is a band from England
Akalovo is a village in XYZ
XYZ joins Robert Borden
XYZ visits Havana

XYZ forms Pro Wrestling Noah
XYZ is a student of Bible

Apple Inc. joins XYZ
XYZ is a location of The Importance of Being
Earnest

XYZ wins FA Cup
XYZ reserves Carl Monroe

XYZ is a concentration of Marist Brothers

Hillman goes to XYZ
XYZ wins GHC Tag Team Championship
Nathaniel Baldwin moves to XYZ

Anthony Lewis writes in XYZ
XYZ arrives at Virginia
XYZ stars Joel McCrea

Lewis travels to XYZ

XYZ is a replacement of Currie Cup
Errett Bishop teaches at XYZ
XYZ joins Crowded House
Poland forms XYZ

David Savan devoteds to XYZ

Buffet Crampon buys XYZ
XYZ serves Hong Kong Island
XYZ shares Nobel Prize

XYZ is a hero at Roush Fenway Racing
XYZ visits Japan
Son Ngoc Thanh escapes from XYZ
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XYZ is a home to Military Academy
James D. Watson comes to XYZ

XYZ stops at Itami
XYZ strikes Union Army
XYZ serves at Inc.

McGehee studies at XYZ

XYZ moves to Greenwich Village

Jerry Kirkbride freelances in XYZ
XYZ departs Australia
XYZ describes Aristotle

XYZ returns to Nootka Sound

Two Horses of Genghis Khan lives in XYZ
Brown serves at XYZ

XYZ taps for WWE HEAT
Pontiac GTO promotes XYZ

Sternberg works in XYZ

Troop guards XYZ

Vicksburg Campaign importants to XYZ
XYZ lies of Treble

XYZ works with South Africa

XYZ defeats Don Allen

XYZ is a market for The Atlas

Herat: The National Movement departs from
XYZ

Praz Bansi cashes in XYZ

Long Island is an extension of XYZ
XYZ annexs Oak Knoll

George H. Crosby Manitou State Park is a

park on XYZ
XYZ includes Planet Hulk

XYZ attacks Shawn Michaels

XYZ replaces Niki Evans
XYZ studies in England

Lyndon B. Johnson goes to XYZ
XYZ walks on Moon

Writers includes XYZ

Osgoode returns to XYZ

Walter V. Shipley is a chairman of XYZ
XYZ tours Europe
XYZ is a school in Somalia

XYZ beats Steve Davis

XYZ includes Nora Andy Napaltjarri
XYZ travels to Paris

XYZ coaches at FC Winterthur

Chris Benoit chases XYZ

Syria is a member of XYZ

Doorways hints at XYZ
Kathleen Waldron becomes XYZ

Namco ports XYZ
XYZ onwards to Morocco

XYZ appears in Sex
XYZ works in Public Relations

Steve Bracks replaces XYZ
XYZ deprives Hannibal Barca
XYZ loses Staffordshire County Cricket Club

Sakuye adopts XYZ

Volkswagen Passenger Cars evolves into XYZ
XYZ replaces Adam McKay

Piyush Chawla replaces XYZ
XYZ moves into Silesia

XYZ investigates Seibal
XYZ jilts Gino Cervi
XYZ stars John Longden
Croatia extradites XYZ

XYZ beats Gomez

XYZ sails for California

XYZ joins in CSS Alabama

Wrexham Industrial Estate is a large in XYZ
XYZ serves on Trustee

XYZ moves to England
Paolo Sorrentino attends XYZ

Anacostia High School serves XYZ
XYZ begins Alejandro Pena
XYZ is a tributary in Romania
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Graham Taylor manages XYZ
Borland starts in XYZ

XYZ levels at Rangers F.C.
XYZ resides in Cape Town
XYZ is a municipality of Piauf
XYZ goes on Heart of Midlothian F.C.

Tenedos falls to XYZ

Tan Zhongyi replaces XYZ
XYZ is a nazim of Abbottabad District

Reel Big Fish includes XYZ
XYZ bases American Airlines

XYZ preaches for Islam
Mahan sells XYZ

XYZ runs Cromer

XYZ becomes Vice President

William Hull surrenders XYZ

XYZ is a castle in Farnham

Russia influences XYZ

XYZ migrates into Byzantine Empire
XYZ blames Claudia Jordan

James Stewart enlists XYZ

Brian moves from XYZ

XYZ is a municipality in Brazil
XYZ is a peak in Bulgaria
B-45 Tornado is a bomber in XYZ

Shade Sheist features XYZ

Cove Rangers F.C. sells XYZ
XYZ allies with France

XYZ refers to Undertaker

XYZ leaves Roman Catholicism

The Trust arranges XYZ
Ku Klux Klan disperses from XYZ
Othello receives XYZ

David Amram meets XYZ

Key Tower rises on XYZ
XYZ speaks with Jason Pierce
Gideon returns XYZ

McCartney supplants XYZ
Allah prohibits XYZ
XYZ is a founder of Word of Life Church

XYZ studies Somerset

Tring stops at XYZ
XYZ consults Dinosaur

XYZ annexs Mobile District

XYZ loses in Wally Masur

Cherry co-createds XYZ
Camurus partners with XYZ
Matt Cameron attends XYZ

Nexcom Bulgaria LLC is an operator in XYZ
XYZ loses Division of Canberra

XYZ features John Entwistle

XYZ defeats Low Ki

XYZ relates to Typha
XYZ is a system in Canada
XYZ goes at Keystone Studios
Jesse James Leija loses to XYZ
Antonin Dvorak arrives in XYZ

XYZ leads Cleveland Cavaliers

XYZ bounds Ezzahra

XYZ regards South West Africa
XYZ beats Lancashire County Cricket Club
Kemak Language is a dialect of XYZ

Stephen F. Austin moves to XYZ
Luhden is a municipality in XYZ
Thomas Patrick Moore represents XYZ
XYZ arrives in United Kingdom
XYZ moves to Colorado

Pete Wilson becomes XYZ

XYZ returns to Van Nuys High School
XYZ withdraws from Lebanon

XYZ kills Pryderi
XYZ stops at Blue Mounds Fort
Oruk-Zar is a village of XYZ
Brian Shaw finds XYZ
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Sokal releases XYZ

Redlight is a composer from XYZ

Bogner follows into XYZ
Susannah reports from XYZ
Peru competes in XYZ
Notts County F.C. returns to XYZ
XYZ rightbacks Nicky Hunt
Western Abenaki emigrates to XYZ
Colombia is an exporter in XYZ
Vardenis is a settlement in XYZ

Adolf Hitler rules XYZ

O'Donnell hits XYZ

XYZ is a stream from Ranchi

XYZ is a west of Mississippi
XYZ returns to Chicago
Pinheiro Machado is a municipality in XYZ
XYZ weakens Kentucky

Pontymoile Basin is a site to XYZ
XYZ is a school in United States of America

XYZ is a municipality in Schleswig-Holstein
XYZ employs Mates
XYZ conquers Russia

Bulgari works in XYZ

Norway qualifies from XYZ
XYZ becomes Prime Minister

Labor loses XYZ

XYZ runs for Connecticut

XYZ requires Viasat
XYZ defeats The Diamonds

Smith's Fort Plantation is a house of XYZ

Dattus looks to XYZ

XYZ stretches from Den Helder

Ormiscraig tens XYZ
Peach is a flavor in XYZ

XYZ returns to New York

Cicero undermines XYZ

XYZ populars in Darlington

XYZ terms Asif Ali Zardari

XYZ returns to Saint Petersburg
Archie Reynolds attends XYZ
XYZ replaces Dusty Baker
XYZ runs from Waiblingen
Charlie Earp Bridge is a bridge over XYZ
XYZ is a district of Cabo Delgado
XYZ relocates from Brooklyn

Danny Payne moves of XYZ
XYZ returns to Queens Park Rangers F.C.
XYZ arrives at New York City

Joseph Haines goes to XYZ
Rosa Parks exits XYZ

Venus Williams beats XYZ

XYZ feuds with David Bautista

Mars orbits XYZ

Viet Minh ups to XYZ
XYZ is a tributary in Romania
XYZ competes with Cees Paauwe
XYZ is a secretary of CDB

Brantley is a double in XYZ
XYZ partners Stan Smith
James Courtney moves to XYZ
XYZ chooses Grand Master

XYZ returns to Co-operative Championship
Christine Fernandes moves to XYZ

Germans travels to XYZ

XYZ withdraws from Tier

Chris Myers pairs with XYZ
Ethelbert of Kent meets XYZ

XYZ sees Samuel Beckett

XYZ screens at Melbourne Underground Film
Festival

XYZ is a neighborhood in United States of
America

Frantorp belongs to XYZ
XYZ studies Margate
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Cheyenne High School is a school in XYZ

XYZ appears in Toronto
XYZ includes Things We Said Today
XYZ announces with Indie Recordings
XYZ attends Pepperdine University
XYZ criticises Government of Pakistan

XYZ partners with NBC
Greece competes in XYZ
Railroad Tycoon II is a game for XYZ
XYZ backs Greg Urwin
Otto Vogl joins XYZ
XYZ visits Nepal
XYZ replaces Amanda Holden
XYZ leaves ABC Records

XYZ comes from Rothley
XYZ includes Edinburgh Gunners
Black joins XYZ
Schofield marches XYZ

Holy Roman Emperor unites XYZ
XYZ is a henge in Leagrave
Barbara Goldsmith becomes XYZ

XYZ defeats Killings
Gmina Zdzieszowice borders XYZ

Nate meets XYZ

XYZ parts from EMI
James A. King names XYZ
XYZ operates Brisbane
Oliver Reed assaults XYZ

XYZ leicesters in United Kingdom
Edward Canby defends XYZ
Eartha wins XYZ

Ronan Keating confirms XYZ
XYZ dominates Magahi Language
Olin occurs on XYZ

Bulldog defeats XYZ
Krumstedt is a municipality in XYZ
Milne returns to XYZ

XYZ visits Istanbul

USS Kinzer departs XYZ
XYZ remains under Lloyd D. George
XYZ defeats Ferreira

Lakshmi is a resettle in XYZ

Piribebuy River ends at XYZ

Tufanganj femaleses XYZ

Benny Andersson submits XYZ
Dissidenten tours XYZ

XYZ archives Department
Y-O-U asks XYZ

Malli worships XYZ
XYZ wins Drama Desk Award

XYZ moves to Melbourne

XYZ headlines Take Action Tour

XYZ records Could I Have This Kiss Forever

Ho Yeow Sun represents XYZ
XYZ progresses to Finals
Chris Jericho unmasks XYZ

Tyler Saint occupies XYZ
Mersin covers XYZ

Brett Steven loses to XYZ

XYZ fights with George Washington
Areas includes XYZ

XYZ marrieds to Latvians

XYZ rescues Semih Kaya
XYZ represents Japan
XYZ leaves London

Brent Weedman fights XYZ
XYZ features Ken's Labyrinth
XYZ creates Green Mountain Coffee Roasters

XYZ is a municipality in Slovakia
Gann is a pilot for XYZ
Connecticut lives in XYZ

XYZ loses to Johnny Curtis
XYZ introduces Japan
Jabez Bryce invests XYZ



166 Chapter 8. Appendix

Hunter Douglas expands into XYZ
XYZ creates Graham Goddard

XYZ obsesses with Fanny Pelopaja
Lake Macleod is a lake in XYZ

XYZ requests Masahiro Sakurai
XYZ retires from Sarah Lawrence College
XYZ is an actress from England
XYZ proposes HOPE
New York climbs XYZ

Nickelodeon partners with XYZ
Taliban Movement flees XYZ

XYZ moves to Prudential Center

XYZ delists from NASDAQ
Little Fyodor is a musician from XYZ
Li Cunxu aids XYZ

XYZ is a tributary in Romania
XYZ defeats University of Virginia
XYZ borders Haryana

Bjprgulv Braanen succeeds XYZ
Dinamo Riga signs XYZ
XYZ settles in Tushino

XYZ releases Amused to Death

Rose Kelly represents XYZ
Don Dunstan builds XYZ

Trebelovice lies of XYZ

XYZ is a graduate of Air War College
XYZ defeats Syuri
XYZ speaks English Language
Tivi is a municipality in XYZ
Madhur Bhandarkar re-approacheds XYZ
XYZ is a suburb of Australia

Gavin returns from XYZ

XYZ arrives in Guantanamo

XYZ is a car from United Kingdom
Daniel defeats XYZ

Lheebroek resides in XYZ

Port of Yingkou is a seaport in XYZ

XYZ stars Peter Davison

Ksawerow is a village in XYZ
XYZ goes to Massachusetts
XYZ buys Paper
Cookie Mueller writes XYZ

Davey Allison plows into XYZ
XYZ joins Iris Associates
XYZ qualifies for NCAA Men's Ice Hockey
Championship
Michael Crozier deafeatings XYZ
XYZ teaches English Language
Andrew W.K. provides XYZ
XYZ replaces Psycho Clown
XYZ is a broadcast on NBC

XYZ is a partner with Professor
Rivers Guthrie attends XYZ

XYZ flamboyants in Newsday

Joseph Haydn arrives in XYZ
Clement Attlee becomes XYZ

Adam Smith publishes XYZ

England assigns to XYZ
XYZ dramatizes The Murder of Roger Ack-

royd
Leddra Chapman releases XYZ

Powderfinger tours XYZ
XYZ grows Stange
XYZ immigrates Ontario
XYZ worships God
XYZ is an ostler in British English
XYZ moves to Los Angeles

Grampian is a region of XYZ
United States Agency for International Devel¬

opment assists XYZ

XYZ forms Rodinia

The Truth About Youth is a drama from XYZ

White returns to XYZ

Laughlin moves to XYZ
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XYZ moves to CNN

Irving Allen directs XYZ
XYZ enrols at Harvard University
Ruben Bemelmans replaces XYZ
XYZ joins Titanium
XYZ goes to Stonyhurst Saint Mary's Hall
Charles Gordone returns to XYZ

Geoff Mack goes with XYZ
XYZ joins Pet Shop Boys
Texas Battle stars in XYZ

XYZ regards Soviet Union
XYZ runs The Hollywood Reporter
XYZ commissions Li Shenfu

Marie Webster lives in XYZ

XYZ describes Tovik

XYZ joins Janata Dal
XYZ is a member of Fier

Fyodor Dostoyevsky works on XYZ
Houston dies at XYZ

Nicholas I of Russia visits XYZ

Cassiodorus writes XYZ

Don Luce trades to XYZ

Canada becomes XYZ

XYZ dependents on Treneglos
Moses reminds XYZ

Roman Empire adopts XYZ
Rantirov lies on XYZ

Syama Sastri hails XYZ
Richard M. Elliot serves at XYZ

Morgul signs to XYZ
Nu Aurigae is a light-year from XYZ
River Tyne is a river in XYZ
Special Criminal Investigation publishes XYZ
Amherstview Jets becomes XYZ

Arthur Lismer immigrates XYZ
XYZ steps in Yushin Okami
Hadley Richardson travels to XYZ

XYZ leaves for Fox Kids

XYZ houses in Florence

Dan Wood creates XYZ

XYZ moves from Birmingham
XYZ results in Kid Knievel

EMI releases XYZ

XYZ occupies Kengtong

Malaysia vses XYZ
Luce Lopez-Baralt sees XYZ
XYZ meets Andrew Breitbart

Masjid Al-Iman is a mosque in XYZ
MIR is a member of XYZ

XYZ releases Elantris

XYZ spawns The Waltons
XYZ throws Gatorade

Peter Thiel supports XYZ
XYZ provides CNN
Dimondale is a village in XYZ
Ante Gotovina returns to XYZ

Andre Williams releases XYZ

Supreme Court of Canada rules of XYZ

Kuryer Polski refers to XYZ
XYZ accredits Turpin High School
XYZ is a brother-in-law of Hadrian

XYZ wins Award Software

XYZ waits for Y-O-U

XYZ returns to England
XYZ comprises Bernard Sumner

Italy enters XYZ
XYZ connects to Nishinomiya-Kitaguchi Sta¬
tion

XYZ wins at The Olympic Club
XYZ loyals to Gallienus
Neale coaches XYZ

XYZ votes for Daniel D. Tompkins
Motnau River is a tributary in XYZ
XYZ is a professor at Columbia Law School
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XYZ defeats Pyle
XYZ remarks Venus

Bruce Campbell serves on XYZ
Leverett DeVeber attends XYZ

XYZ links Bristol

Joan Rivers works with XYZ

XYZ invades England
XYZ buys Bottle Rack
Bret Harte moves to XYZ

Rajesh Khanna tutors XYZ

Wigan Warriors meets XYZ
XYZ is a son of Burgate
Jove Francisco is a journalist from XYZ

Thangal Kunju Musaliar is an author of XYZ
XYZ recognizes North Korea
M.o.v.e comes XYZ

Buckshot Roberts kills XYZ

XYZ visits Europe
XYZ collaborates with Chesney Hawkes
XYZ wins Maria Joao Koehler

Grant Morrison writes XYZ

XYZ runs Anstruther

William J. Byron distinguishes XYZ
White leaves XYZ

XYZ beats Royal Engineers A.F.C.
Iltutmish circles XYZ

Valea Mare River is a tributary in XYZ
Parnitha relies on XYZ

New York Jets places XYZ
XYZ releases In Search of Solid Ground

XYZ becomes President

XYZ is a tree in England
XYZ returns to Germany
XYZ continues with Jeremy Roenick
Malachi is a prophet of XYZ
XYZ heads to Michigan
XYZ creates Timbuktu

Liberia completes XYZ
Oslo is a city in XYZ

GameSpy adds XYZ

Mary Robinson visits XYZ
XYZ replaces Darrell Nulisch
XYZ studies at Makerere University

Jacques Goddet succeeds XYZ
XYZ files Los Angeles Police Department
Finland joins XYZ
XYZ visits Venice

United States of America enters XYZ

XYZ studies with Ralph Shapey
XYZ rules Germany

Dogen refers to XYZ
Paul Friedmann publishes XYZ
XYZ ends with Restless Farewell

XYZ returns to Leipzig
Perez teams for XYZ

XYZ goes to Paris
Gachantiva is a municipality in XYZ
XYZ divides Earth

XYZ serves in Las Vegas
James M. Swift attends XYZ

XYZ continues Babylon
XYZ becomes Chief Executive Officer

God charges XYZ

Getawarayo stars XYZ
XYZ is a critic of Israel

XYZ stars Dana Andrews

Balji invades XYZ
XYZ travels to California

The Palace is a complex in XYZ
XYZ attacks Republic of Venice
United States Navy provides XYZ
Coe Booth graduates in XYZ

Henry IV retains XYZ
XYZ regains Victor McLaglen
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XYZ travels to England
XYZ situates Gloucester

XYZ appears in Domesday Book
XYZ distributes The Golf Channel

Paul Bryant Bridge absorbs XYZ
XYZ splits into Eurasia
XYZ performs in Moscow
XYZ defeats The Godwinns

XYZ resides in Vienna

XYZ works with Yoko Ono

Blumenthal, Schleswig-Holstein a

XYZ

Ellery Hanley involves XYZ
XYZ pens I'll Never Break Your Heart
Basil II repulses XYZ
XYZ attends Michigan
NK Engines Company succeeds XYZ
XYZ stands against A.D. Patel
President arrives at XYZ

XYZ rides Comanche

XYZ purchases Blue Poles
XYZ travels to Australia

XYZ appears in FA Cup Final
XYZ leads Watford F.C.

XYZ is an airport in Mohave County

Norway follows XYZ
XYZ lives in Norfolk

XYZ federates with Barstable School

Moon works in XYZ

XYZ wins at Huddersfield Town F.C.

Chris Wragge replaces XYZ
XYZ stars Nikolaj Lie Kaas
Marwan spies for XYZ

Coupling is a broadcast on XYZ
XYZ is a district in England
Roos falls with XYZ

Mongke Khan returns to XYZ

8.3 French Questions used in Chapter 5

This section contains the French question set used in Chapter 5. Answers (in English)
were annotated by a native English speaker who self-assessed as being fluent in French.

Tarentule est un espece de XYZ Scott Steiner bat XYZ
Scott Steiner defie XYZ XYZ quitte Londres
XYZ compte Serbes Colette de Corbie rencontre a XYZ
Larzac est un reacteur de XYZ Finlande remporte XYZ

XYZ emmene Syracuse XYZ lance Game Boy Advance SP
XYZ est un commune de Territoire de Belfort Michel Marie Claparede chasse XYZ

XYZ est un membre d'Euroregion XYZ est un membre de Commission
Tina Turner re?oit XYZ Ulamburiash est un roi de XYZ
XYZ est un officier de Schutzstaffel Tosawi est un chef de XYZ

Vandales envahit XYZ Afrasiab regoit XYZ

XYZ sort Game Boy Micro Australie gagne XYZ
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XYZ est un album de Heart

An Fheothanach est un village de XYZ
XYZ part a Rome
Gmina Koscielec est un commune de XYZ

XYZ est un ville de Suede

Oberroth est un commune de XYZ

XYZ repart a Londres
Charlotte Casiraghi est un fille de XYZ
XYZ est un fils de Dionysos

Jerry Lawler pousse XYZ
Cao Cao envoie XYZ

XYZ trouve Petrus Borel

XYZ est un commune d'Indre-et-Loire

Jonny Storm challenge XYZ
XYZ passe par Albert II de Belgique
XYZ defie Michael Coulthard

La Derniere Femme est un film de XYZ

Pritulany est un village de XYZ
Joan Baez part pour XYZ
XYZ est un inventeur d'Alfred Bird

XYZ publie Porcie
XYZ est un fils de Marcus Livius Salinator

XYZ est un ville de Suede

XYZ accueille Intel

Alexandres Papanastasiou soutient XYZ
Gmina Kraszewice est un commune de XYZ

Madeleine Castaing est un amie de XYZ
XYZ occupe Malacca Town
XYZ vit a Saint-Germain-en-Laye
Sebastian Vettel double XYZ

Lady Catherine Grey visite XYZ
Henri II de Rohan defend XYZ

Namangi Aute est un mouvement de XYZ
XYZ gouverne Syrie
Allen Dulles est un numero de XYZ

Chelsea Football Club est un champion de
XYZ

XYZ est un ville de Pays-Bas
XYZ est un officier de Cao Cao

XYZ est un prevot de Douai
Chretiente celebre XYZ

Norvege commande XYZ
XYZ est un ville de Yemen

XYZ entre dans Milan

XYZ allie avec France

Antsiranana est un province de XYZ
XYZ est un disciple de Martin Heidegger
XYZ est un album de Jay Brannan
XYZ occupe Tchecoslovaquie
Cara Black represente XYZ
XYZ expulse Juifs
XYZ est un patinoire de Winnipeg Jets
XYZ est un village de Tasmanie
XYZ retire sur San Miguel de Tucuman
Hizan est un district de XYZ

XYZ vit a Frohnau

XYZ est un ville d'Alaska

XYZ est un commune de Haiti

XYZ nie La Cite de Dieu

The Undertaker bat XYZ

Invertigo est un copie de XYZ
XYZ cite Wilhelm Ropke
Acacia est un reman de XYZ

XYZ est un ville de Pologne
The Four Tops est un quartet de XYZ
Pedra Badejo est un localite de XYZ
XYZ porte RKO Pictures
XYZ est un clone de Roxy Theater

Roxy Theater est un clone de XYZ

Georgenberg est un commune de XYZ
XYZ est un volcan de Russie

XYZ est un artiste d'lsrael

Buse inspire XYZ
XYZ est un commune de Voi'vodie de Grande-
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Pologne
Francesco Cairo part a XYZ
XYZ remplace Tully Blanchard
Beez est un riviere de XYZ

XYZ rejoint Rome
XYZ revient sur Officine Meccaniche

Seveso est un riviere de XYZ

XYZ est un album de The Bee Gees

Barnkanalen est un chaine de XYZ

XYZ regagne Russie
XYZ decouvre Thebe

Hamilcar Barca investit XYZ

Benoit XV nomme XYZ

Ryan Reeves regagne XYZ
XYZ ecarte Meaux

Graham Parker quitte XYZ

Racing Club de France Football affronte XYZ
Francisco Mancebo gagne XYZ
XYZ est un film de Douglas Sirk
XYZ est un numero de Central Intelligence

Agency
XYZ est un etang de Pyrenees
Pavel Pabst est un ami de XYZ

XYZ invite Jean Monnet

Capitaine Blood est un roman de XYZ
Rim-Sin I est un roi de XYZ

Gino Paoli persuade XYZ
XYZ est un ville de Saxe

XYZ nomme Machaon

Zduny est un ville de XYZ
XYZ est un village de Bosnie-Herzegovine
XYZ remporte European Table Tennis Union
Microids publie XYZ
XYZ est un groupe de Saxe
XYZ est un rue de Londres

Alexander Creek est un communaute de XYZ

XYZ assiege Perpignan

XYZ est un ville de Pologne
Maine-et-Loire situe a XYZ

XYZ joue avec Gibson Guitar Corporation
XYZ est un pere de Satsuki
John Boiling est un petit-fils de XYZ
Les Colocs remporte XYZ
XYZ accompagne Oliver Hardy
XYZ gagne Prix de Diane
Owen Hart bat XYZ

XYZ est un commune de Pas-de-Calais

Francs annexe XYZ

XYZ est un commune de Voi'vodie de Grande-

Pologne
XYZ est un prefecture de Bas-Rhin
XYZ est un localite d'Alaska

XYZ est un cite de Kent

XYZ ramene Nankin

Lantern gagne XYZ
Simeria est un ville de XYZ

XYZ vend Atari

Charles Rogier quitte XYZ

Sega sort XYZ
Numerien atteint XYZ

Birmanie perd XYZ
XYZ attaque Segeste
XYZ est un capitale d'Australie
XYZ reconquiert Angleterre
Catalans ravage XYZ
Scafell Pike est un sommet de XYZ

Michel de Montaigne est un precurseur de
XYZ

XYZ devance Alonso

Canton Charge transfere XYZ

Royaume-Uni detache XYZ

Azerbai'djan envoie XYZ
Chinzei est un nom de XYZ

Winchell est un ami de XYZ
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Finlande achete XYZ

Ditzingen est un ville de XYZ
XYZ aime Labe

XYZ bat Roumanie

Eventful est un single de XYZ
XYZ est un localite de Senegal
Gmina Duszniki est un commune de XYZ

XYZ est un commune de Terre de Feu

XYZ est un femme de Mao Zedong
XYZ est un espece d'Amphibia
Villefort est un commune de XYZ

Evonne Goolagong bat XYZ
XYZ vit a Vis-en-Artois

Ryan Peake joue sur XYZ
XYZ est un pseudonyme de Per Yngve Ohlin
XYZ est un espece d'Urodele
Serenade gagne XYZ
XYZ bat Victoria Azarenka

Daniel Iffla dit XYZ

Michael Matthews adjuge XYZ
Chinese Stripe-necked Turtle est un espece de
XYZ

XYZ quitte Bauhaus

Auguste Frederic Louis Viesse de Marmont

abandonne XYZ

XYZ habite Paris

Robertsport est un ville de XYZ
Phraortes est un roi de XYZ

XYZ est un ville de Liberia

Manhattan Valley est un quartier de XYZ
Preciosa est un surnom de XYZ

Historia de Gentibus Septentrionalibus est un

oeuvre de XYZ

China Europe International Business School
existe a XYZ

XYZ traverse Ocean Atlantique
XYZ est un capitale de Pas-de-Calais

Laye est un ville de XYZ
XYZ est un l'edition de Wikipedia
Stanislas Skalski obtient XYZ

Mahomet est un descendant de XYZ

Montlufon est un h de XYZ
Catch dit XYZ

XYZ est un his de Mathieu de Foix-Castelbon

Bensonville est un ville de XYZ

South African Airlink rejoint XYZ

Sanniquellie est un ville de XYZ
XYZ est un tils de Cesar de Vendome

Diego Forlan remporte XYZ
Andree Putman cree XYZ

Sony Ericsson XPERIA X10 est un incursion
de XYZ

Libye accuse XYZ
XYZ est un ville d'Alaska

KAA La Gantoise accueille XYZ

Leonora Dori est un confident de XYZ

XYZ est un ville de Sreten Stojanovic
XYZ est un commune de Bade-Wurtemberg
Jasenov est un village de XYZ

Majapahit attaque XYZ
XYZ part de Goa
XYZ est un comedie de Roger Donaldson
Samuel Taylor Coleridge rencontre XYZ
Socrate encourage XYZ
XYZ gagne Aria
XYZ cite Audovera

Normands pille XYZ
XYZ quitte Uruguay
Patricia Rozema considere XYZ

XYZ detache Birmanie

XYZ est un ville d'Alberta

Milagro emmene XYZ
XYZ est un ville de Philippines
XYZ est un ville de Nepal
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Frangais remporte sur XYZ
XYZ relegue Andy Schleck
South African Air Force investit XYZ

XYZ est un supergroupe de Limp Bizkit
Chen est un ancetre de XYZ

Christophe Colomb perd XYZ
XYZ est un temoin de Breton

Calamia gagne XYZ
Kalwaria Zebrzydowska est un ville de XYZ
Masiliwa Snout-burrower est un espece de
XYZ

XYZ dit Jacques Feyder
XYZ enregistre Magic Night
XYZ quitte La Haye

Andromaque est un tragedie de XYZ
Saint-Michel-des-Saints est un municipalite
de XYZ

XYZ quitte HAL Laboratory
XYZ est un espece de Serpentes
XYZ est un roman de Georges Simenon
XYZ dit Coluche

Francisco Pizarro quitte XYZ
XYZ est un espece de Sauria
Audi repose sur XYZ
XYZ est un subdivision de Birmanie

XYZ insulte Insane Clown Posse

XYZ est un single de Depeche Mode
Gaulois fond XYZ

XYZ quitte Pickfair
Altman realise XYZ

XYZ envahit Pologne
Samarra est un ville de XYZ

Gutenzell-Hurbel est un commune de XYZ

Gerald Passi est un frere de XYZ

XYZ est un fils de Sven II de Danemark

Robert Trujillo quitte XYZ
XYZ obtient Belgrade

XYZ quitte Damiette
XYZ vit dans Viet Nam

XYZ est un roi de Bhoutan

Coquimbo est un ville de XYZ

XYZ est un fils de Robert Francis Kennedy
XYZ est un general de British Army
Roumains cotoie XYZ

XYZ charge Jean-Henri Fabre
Zubne est un village de XYZ
Roumains cotoie XYZ

Minor Swing est un composition de XYZ
XYZ situe sur Pouance

Craig Quinnell quitte XYZ
XYZ est un quartier de Rodez
XYZ bat Lindsay Davenport
XYZ retire Matt Holliday
XYZ chasse Matvei' Platov

Vasily Petrenko enregistre XYZ
XYZ est un ville de Burkina Faso

Roumains cotoie XYZ

Marty Friedman accueille XYZ
Esther Dale joue a XYZ
XYZ remplace Leone
Machow, Lublin Voivodeship est un village de
XYZ

Jordanow est un ville de XYZ

Andre Luis Garcia dit XYZ

Bentiu est un ville de XYZ

Vijfheerenlanden est un region de XYZ
Cristina Fernandez de Kirchner soutient XYZ

Madura va de XYZ

Ted Parsons vit a XYZ

XYZ bat Saint Louis Athletica

XYZ est un village de Neerijnen
XYZ est un condottiere de Pesaro

XYZ perd Hulk Hogan
XYZ acquiert Ping.fm
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Punta Perrucchetti est un sommet de XYZ

XYZ est un ville d'Israel

Marcus Loew achete XYZ

Death Dealer est un peinture de XYZ

Maggie Mae est un chanson de XYZ
Wiilfrath est un ville de XYZ

Wake Up Dead Man est un chanson de XYZ
XYZ est un commune de Baviere

Umberto Eco mentionne XYZ

Roumains cotoie XYZ

Wigeric de Bidgau accueille XYZ
XYZ est un fois de Pologne
XYZ est un espece d'Amphibia
Hollandais occupe XYZ

Merovingiens nomme XYZ
XYZ est un commune de Savoie

XYZ bat Kurt Angle
XYZ dit Big Bill Broonzy
XYZ est un ville de Kirghizistan
XYZ gagne Prix de Diane
XYZ est un nom de Tivoli

Democrates veut XYZ

XYZ est un riviere de Siberie

XYZ cotoie Roumains

Charles W. Bartlett quitte XYZ
XYZ est un membre de Club de Budapest
XYZ guide Windows Communication Foun¬

dation

Jean-Baptiste Nicolas Roch de Ramezay est
un fils de XYZ

Tepoztecatl est un frere de XYZ
XYZ envahit Israel

Wheat Kings de Brandon est un club de XYZ

XYZ est un voix de Harvey Keitel
XYZ rejoint Russie
XYZ est un fils de Giacomo Attendolo

Kool Here appelle XYZ

XYZ est un village de Colombie-Britannique
Keremeos est un village de XYZ
XYZ bat Helen Gourlay
XYZ sort Stone Cold Sober

XYZ est un village de Serbie
LVG C.VI est un amelioration de XYZ

Mszana Dolna est un ville de XYZ

Brecon est un ville de XYZ

XYZ regoit Modibo Kei'ta
Glenn Whelan rejoint XYZ
Xanten est un ville de XYZ

John Petrucci inaugure XYZ
XYZ est un commune de Slovenie

Sonnaz regroupe XYZ
Ville de Shoalhaven quitte XYZ
Toulouse decouvre XYZ

Saint ressemble par XYZ
XYZ bombarde Kaboul

XYZ remporte Brixia Tour

Hans-Georg Gadamer est un disciple de XYZ
Jesus Fernandez Saenz dit XYZ

XYZ remporte Anemie de Fanconi
XYZ invite Michael Hutchence

XYZ tue Arabes

Mikhail Gorbatchev re?oit XYZ
Fibertarias est un film de XYZ

XYZ envahit Hollande

Carleton-sur-Mer est un ville de XYZ

Gengis Khan occupe XYZ
XYZ est un album de Dalida

XYZ porte RKO Pictures
Chiefs de Johnstown est un franchise de XYZ

Jules Cesar defend XYZ

Alojzy Ehrlich represente XYZ
XYZ produit Internationalist
XYZ adjuge Tour de Castille-et-Leon
Civita Castellana est un cite de XYZ
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Saint-Chely-d'Aubrac absorbe XYZ

XYZ accompagne Jay Farrar
XYZ est un volcan d'Islande

XYZ bat Fergal Devitt

Gornja Trepca est un village de XYZ

Olimpia Milan retrouve XYZ
XYZ occupe Kobryn

Konigsplatz est un place de XYZ

Warburg est un ville de XYZ
XYZ est un ville d'Allemagne
Christian Bale joue XYZ

Sammy Hagar est un chanteur de XYZ

Eagles de Philadelphie affronte XYZ
XYZ est un province de Japon
XYZ est un chanson d'Alice Cooper

Kay Khusraw Ier assiege XYZ
Florent III de Hollande accompagne XYZ
Mike Tyson bat XYZ
Roumains cotoie XYZ

Liliane Bettencourt est un femme de XYZ

XYZ vit a Thionville

Fenerbah£e SK accueille XYZ
XYZ bat Rosie Casals

Alicia, Bohol est un municipality de XYZ
XYZ est un wali de Pampelune
We Want Miles est un album de XYZ

Ryan Vogelsong joue avec XYZ
Monica Seles bat XYZ

XYZ est un ami d'Owney Madden
XYZ est un point de Jamai'que
Totila reprend XYZ
XYZ dit Kenny Washington
XYZ fonde Nouvelle-Amsterdam

XYZ connait Wilhelm Furtwangler
Soleil rechauffe XYZ

Lutece devient XYZ

XYZ bat Lesley Turner

Paris est un capitale de XYZ
XYZ est un h d'Orleans

XYZ occupe Balkh
XYZ franchit Rhin

XYZ invite Guerrilla War

Nokia E70 est un successeur de XYZ

Chelsea Football Club recrute XYZ

XYZ nomme Yoshihiko Noda

XYZ sort Hunky Dory
XYZ est un ville de Comte de Moira

Praia est un ville de XYZ

XYZ est un fille de Nigel Lawson
XYZ est un roi de Babylone
Burna-Buriash est un roi de XYZ

Joseph Simmons est un frere de XYZ

Cologne menace XYZ

Long Island est un lie de XYZ
Joe R. Lansdale vit a XYZ

Juffureh est un ville de XYZ

XYZ engendre Pontos
XYZ vit dans Connecticut

Thiodina force XYZ

XYZ est un soeur de Modoald de Treves

Arabella Steinbacher joue XYZ
XYZ dit Ivan IV de Russie

XYZ est un epouse de Christian VIII de Dane-
mark

XYZ quitte Dublin
Saintes est un chef-lieu de XYZ

XYZ joue contre Fluminense Football Club

Raeapteek est un pharmacie de XYZ
XYZ part dans Borneo
Tahiti domine XYZ

Paris ramene XYZ

The Stranger Next Door est un roman de XYZ
XYZ envoie Alcibiade

XYZ est un sophiste d'Athenes
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Angleterre passe par XYZ
XYZ est un ville de Michigan

Meyenburg est un ville de XYZ
XYZ devance Jenson Button

XYZ est un ville d'Argentine
XYZ nomme Greg Byrne
XYZ est un tils d'Oscar Aguirregaray
RMS Mauretania quitte XYZ
XYZ affronte Syracuse
Fun House est un album de XYZ

XYZ tourne Ernest Hemingway
XYZ annexe Damaraland

XYZ est un ville de Gilan

Suns de Phoenix appuie sur XYZ
XYZ transfere Darvin Ham

Hue est un ville de XYZ

XYZ est un lie de Philippines
XYZ est un dialogue de Platon
XYZ bat Ann Haydon Jones
XYZ voit Afrique
Eslarn est un commune de XYZ

Phillies de Philadelphie rapatrie XYZ
XYZ remplace Henton
XYZ aide Hayao Miyazaki
XYZ est un parodie de Wikipedia
Asian Dub Foundation est un composante de
XYZ

XYZ nomme Conrad II de Baviere

XYZ accueille Coupe Memorial
XYZ rejoint Machen
XYZ est un municipality de Benguet
XYZ est un capitale de Province de Kibuye
XYZ absorbe Cite

XYZ quitte Marinus de Tyr
Catherine de Medicis regagne XYZ
Polanes forme XYZ

Jean-Hugues Ateba rejoint XYZ

XYZ depasse Hughes H-4 Hercules
XYZ est un commune de Baviere

XYZ est un sommet d'Iran

Ratko Svilar rejoint XYZ
Alix de Vergy est un duchesse de XYZ
Esham quitte XYZ
XYZ remporte Tour de Suisse
XYZ envoie Luis

Royaume-Uni annexe XYZ
Canale est un canal de XYZ

Ferguson Jenkins prononce sur XYZ
Steve Corino attaque XYZ

Philadelphia Independence bat XYZ
XYZ occupe Landshut
XYZ embarque Pekin
Wehrmacht entre dans XYZ

Central Intelligence Agency aide XYZ
Piemont souleve contre XYZ

XYZ affronte Sale Sharks

Sunny est un reprise de XYZ
XYZ realise sur Jean Renoir

Bavarois est un habitant de XYZ

Byumba est un capitale de XYZ
XYZ est un surnom d'Ahmed Abdallah Sambi

XYZ propose Star Trek
XYZ devance Cadel Evans

Don Escudero represente XYZ

Orenoque est un fleuve de XYZ
XYZ est un epoux de Hathor
XYZ bat Suisse

XYZ vit a Summerside

XYZ connecte Teheran

XYZ est un fan de Depeche Mode
Mr. Natural est un album de XYZ

Barnabe regne sur XYZ
XYZ est un 12single de Mami Kawada
XYZ est un roi de France
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Lion de Belfort est un sculpture de XYZ
Joan Baez rencontre XYZ

Tarnowka est un commune de XYZ

BOMA est un acronyme de XYZ
Malchin est un ville de XYZ

XYZ est un cimetiere de Dresde

XYZ est un ville de Pologne
Juan Francisco Garcia dit XYZ

Some Hearts est un album de XYZ

XYZ incarne James Bond

Seamus Heaney quitte XYZ
Pretoria evince XYZ

XYZ dit Andre Luis

XYZ fonde Allemagne

Kraiburg est un commune de XYZ
XYZ rencontre Etienne Martin

Printemps de Prague conduit XYZ
XYZ bat Eagles de Philadelphie
XYZ reyoit Siyavash

Bigwig est un groupe de XYZ

Wojnicz est un ville de XYZ
Steve Borden attaque XYZ

Segolene Royal rencontre XYZ
XYZ pousse Werner Best
XYZ saccage Abarkuh
Michel Serrault accueille XYZ

Football Club de Nantes quitte XYZ
XYZ est un commune de Baviere

Niederbergkirchen est un commune de XYZ
Bratislava est un nom de XYZ

XYZ gagne Prix de Diane
XYZ quitte Addis-Abeba
XYZ cede Holstein

Thayetmyo est un ville de XYZ
Justine Henin bat XYZ

MTS Centre est un patinoire de XYZ
XYZ remporte Tour de Suisse

XYZ devance Sarah Hendrickson

Rattenkirchen est un commune de XYZ

XYZ part a Berlin
XYZ joue a Dendre
XYZ quitte Belgique
XYZ est un playoffs de The Women
Rokstarr est un album de XYZ

Schwindegg est un commune de XYZ
Easier Said Than Done est un composition de
XYZ

XYZ est un commune de Voi'vodie de Grande-

Pologne
XYZ est un ami de John Milton

Alt Urgell est un comarque de XYZ
XYZ est un ville de Rhenanie-du-Nord-

Westphalie
Shawn Hernandez bat XYZ

XYZ est un ville de Baviere

XYZ rejoint Imerys
XYZ quitte King Oliver
XYZ est un urbaine-rurale de Voi'vodie de

Grande-Pologne

Spartak Saint-Petersbourg est un club de XYZ
XYZ est un defenseur de Dion de Syracuse
XYZ est un president d'International Business
Machines

Bugojno est un centre de XYZ
Louis IV de Germanie appuie sur XYZ
Selena designe XYZ

Papln est un village de XYZ
Holzheim, Neu-Ulm est un commune de XYZ

Johannes Kepler quitte XYZ

Clay Shaw attaque XYZ
XYZ est un phare de Stonebridge Press
Bien Unido est un municipality de XYZ
Manhattan est un comedie de XYZ

XYZ vit avec Hidatsas
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Ainazi est un ville de XYZ

XYZ envoie Muqali
XYZ appuie Nikita Khrouchtchev
Cambridge remporte XYZ

Dinklage obtient XYZ
XYZ dote Singapour
XYZ est un ville de Pologne
Gmina Miedzichowo est un commune de XYZ

Zavadka est un village de XYZ
Grafenwohr est un ville de XYZ

XYZ invite Satan

XYZ est un enfant de Biafra

Phil Jackson replace XYZ
XYZ forme Mondo Generator

XYZ est un sornmet d'Alpes
XYZ bombarde Liege
XYZ est un commune de Baviere

XYZ est un espece d*Amphibia
XYZ dit Hugo Grotius
Schrobenhausen est un commune de XYZ

XYZ est un commune de Baviere

Darius Ier est un vainqueur de XYZ
XYZ est un commune de Baviere

XYZ envoie Scott Speed
XYZ demenage de Birmingham
Herbert Hoover vit dans XYZ

Aristoxene accuse XYZ

XYZ rachete Club Mediterranee

Evonne Goolagong bat XYZ
XYZ devance Kamui Kobayashi
Massachusetts General Hospital est un hopital
de XYZ

XYZ occupe Qingdao
XYZ joue avec Frangois-Rene Duchable
Jean-Paul II cite XYZ

XYZ est un gratte-ciel de New York
XYZ remporte Bataille de Mylae

Bezymianny est un volcan de XYZ
XYZ est un membre de Hanse

XYZ est un capitale de Roumanie
Mottola retrouve XYZ

Alcmond de Derby ecrit XYZ

Aresing est un commune de XYZ
XYZ traverse Gaule

Frangoise Dolto rencontre XYZ
XYZ cotoie Hongrois
XYZ est un groupe de Rhenanie-Palatinat
XYZ identifie Cicogni
XYZ devance Marcel Hirscher

XYZ rejoint Indiana
Benito Mussolini rejoint XYZ
Pascal Lissouba obtient XYZ

XYZ regoit Naples
XYZ contacte Emil Hacha

Autriche envahit XYZ

Italiens occupe XYZ
RMS Carpathia atteint XYZ

Stadtbergen est un ville de XYZ

Grande-Bretagne rend XYZ

Fontenay-Mauvoisin est un commune de XYZ

Halliday quitte XYZ
XYZ est un descendant de Nobunaga Oda
XYZ bat Arantxa Sanchez Vicario

XYZ convainc Paulist Fathers

XYZ envoie Hermes

XYZ est un departement de Niger
Clint Eastwood engage XYZ
XYZ part avec Thai'lande

Congressional Plaza est un place de XYZ
Cork bat XYZ

Charlie Chaplin rencontre XYZ
Claris sort XYZ

XYZ bat Roumanie

Sonoma est un municipality de XYZ
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XYZ est un genre de Phoque
Euroregion organise XYZ
Dirkou est un commune de XYZ

XYZ dit Vivant Denon

XYZ est un roi de Larsa

Ostrorog est un urbaine-rurale de XYZ
XYZ est un espece de Sauria

Roger Taylor est un membre de XYZ
XYZ est un membre de Crips

Hugues est un habitant de XYZ
XYZ joue a Diegem

Staley enregistre XYZ
XYZ est un He d'Espagne
XYZ est un commune de Baviere

Lukacovce est un village de XYZ
Manco Capac est un frere de XYZ
XYZ rejoint FK Partizan Belgrade
XYZ quitte France
XYZ est un ville de Chili

XYZ soumet Kirghizes
XYZ domine Mer Mediterranee

Ric Flair perd XYZ
Diamond Heights est un quartier de XYZ
XYZ est un ville de Suede

Roger Miller epouse XYZ
XYZ est un commune de Voi'vodie de Grande-

Pologne
Hernan Rengifo rejoint XYZ
Angra joue sur XYZ

Gougoush rencontre XYZ
XYZ est un commune de Baviere

Stornstein est un commune de XYZ

XYZ est un ville de Kent

Sugenheim est un commune de XYZ
XYZ est un successeur de Nokia E70

Hollandais installe a XYZ

XYZ est un ville d'Albanie

XYZ possede Taba International Airport
Louis Chevrolet fonde XYZ

Markt Taschendorf est un commune de XYZ

Segolene Royal recueille XYZ
Comets de Houston appuie sur XYZ
XYZ est un constructeur de Renault

XYZ defend Alfred Kerr

XYZ est un film de Martin McDonagh
XYZ est un piece de Richard Strauss
Beaubassin-Est est un membre de XYZ

Suedois envahit XYZ

XYZ decouvre Adrastee

XYZ remplace Lysandre
XYZ elimine Angleterre
XYZ quitte The Hollies
XYZ est un commune de Baviere

XYZ decrit Homme de Neandertal

XYZ recrute Mau Maus

XYZ quitte Vickers
FK Alania Vladikavkaz prive XYZ
XYZ est un entrameur d'Ajax Amsterdam

Jerry West recrute XYZ

Woody Allen confie XYZ
XYZ propose Piranha
Kent Cooper est un directeur de XYZ
XYZ rejoint Milan
XYZ compte Nonza
XYZ est un salle de Hongrie
Caramelos de Cianuro est un groupe de XYZ
XYZ veut Amerique
XYZ declare GNU

XYZ recouvre Milet

XYZ est un famille d'Acari

XYZ cite Regis Debray
XYZ est un prince de Salm-Kyrburg
XYZ atteint Jerusalem

XYZ est un gratte-ciel de Hong Kong
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XYZ est un leader de MSC Croisieres

Mikhail Mikhai'lovitch Speranski invite XYZ
Axel Braun est un tils de XYZ

Prussiens assiege XYZ
Heini Hediger est un directeur de XYZ
XYZ rencontre Anatole Demidoff

XYZ est un riviere de Russie

Ludmila Javorova vit a XYZ

Dong Zhuo soumet XYZ
XYZ dit Randy Williams
XYZ reintegre Chateau de Prague
Serena Williams bat XYZ

Marcos Aoas Correa dit XYZ

Hobart quitte XYZ
Afternoon apparait sur XYZ
Ransart est un commune de XYZ

Castanheira quitte XYZ
XYZ est un vainqueur d'Aristagoras
XYZ est un ville de Meeklembourg-
Pomeranie-Occidentale

XYZ affronte Rangers de New York
Le Solitaire est un long-metrage de XYZ
Conrad Ferdinand Meyer ecrit XYZ
XYZ rencontre Francisco Franco

XYZ decide Commission

Syracuse detruit XYZ
XYZ achete Metro-Goldwyn-Mayer
Oaxaca Mud Turtle est un espece de XYZ

Christopher Tolkien vit en XYZ
XYZ est un commune de Voivodie de Grande-

Pologne
XYZ envoie Chen Deng
Emmaiis est un hospitalite de XYZ
XYZ est un poete de Pleiade
XYZ occupe Vilnius
Ladislas abandonne XYZ

XYZ bat Akiba Rubinstein

Doris Hart bat XYZ

XYZ lance Club Jenna

Mori Yoshinari bat contre XYZ

Osogbo est un ville de XYZ
XYZ obtient Dornier

XYZ bat Comte de Laois

XYZ est un fils de Johny Schleck
XYZ accuse Hans Kiing

Bragi Boddason est un scalde de XYZ
XYZ quitte Shinoui'

Gisenyi est un ville de XYZ
Clerette est un riviere de XYZ

Royaume-Uni annexe XYZ
XYZ est un drole de Schutzstaffel

XYZ domine Vanuatu

Qanun est un oeuvre de XYZ
XYZ obtient Ottawa

Causapscal est un ville de XYZ
XYZ bat Jack Bobridge
Kirwan est un amie de XYZ

XYZ est un ville de Quebec

Roger Miller nait XYZ
XYZ marche sur Lahore

Royale Union Saint-Gilloise represente XYZ
XYZ situe a Saint-Cyr-en-Bourg
XYZ est un village de Slovaquie
Kevin Nash affronte XYZ

Charles Quint concede XYZ

Cyborg est un film de XYZ
Wihtred de Kent laisse XYZ

Napoleon Ier quitte XYZ
XYZ rachete Charisma Records

Trinquetaille est un quartier de XYZ
XYZ est un groupe d'Allemagne
Verchen est un commune de XYZ

Marlik est un archeologie de XYZ
XYZ est un ville d'Allemagne
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XYZ annonce DVD

XYZ epouse Frederic-Guillaume II de Prusse

Kan River est un riviere de XYZ

XYZ rejoint Extreme Championship
Wrestling
XYZ bat Mary Pierce
Flavio Sergio Viana revient sur XYZ
XYZ bat Cork

XYZ vit en France

Canterbury Rugby Football Union remporte
XYZ

Assyrie soumet XYZ

Pygmy Salamander est un espece de XYZ

Geislingen est un ville de XYZ

Tokyo Dome bat XYZ

Turquie conserve XYZ
XYZ vit a Maranello

Plourin-les-Morlaix situe a XYZ

Republique de Genes usurpe XYZ
XYZ est un neveu de Robert Guiscard

XYZ remplace Devon Aoki
The Penguins elimine XYZ
XYZ est un sous-ordre de Squamata
XYZ est un volcan de Chili

XYZ quitte Florence
Pruille situe a XYZ

XYZ quitte Londres
Benito Mussolini occupe XYZ
XYZ cree Questar

Abakan est un riviere de XYZ

Jules II place XYZ
XYZ signifie AT&T
Persee de Macedoine quitte XYZ
Ohre est un nom de XYZ

XYZ gagne Kentucky Derby
Gmina Ladek est un commune de XYZ

Intensive Care est un album de XYZ

Egra est un nom de XYZ
Sokan Yamazaki quitte XYZ
Cotton Mather contacte XYZ

Beaubassin-Est est un municipalite de XYZ
Alexandre de Wurtemberg est un due de XYZ
AT&T signifie XYZ
White-faced Tree Rat est un espece de XYZ

Jean-Jacques Pauvert edite XYZ
XYZ est un port d'lndonesie
Sand Hill Road est un route de XYZ

Westre est un commune de XYZ

Lehrte est un ville de XYZ

Lescure designe XYZ
XYZ va Tenerife

Rachel part a XYZ
XYZ conquiert Hollywood
XYZ charge Lii Bu

Bobby Bazini est un auteur-compositeur-

interprete de XYZ
Nelson de Jesus Silva rejoint XYZ
XYZ rejoint Thibaut Pinot
Bruno Senna remplace XYZ
Anna Leonowens part avec XYZ
XYZ est un municipalite de Quebec
XYZ assiste Pierre Mendes France

Koskovce est un village de XYZ
XYZ rencontre Frangoise Arnoul
Amelie Mauresmo bat XYZ

Konrad Adenauer est un chancelier de XYZ

Le Gitan est un film de XYZ

Chiriqui Pocket Gopher est un espece de XYZ
XYZ est un fils d'Owen Tudor

XYZ est un ville de Malaisie

ReinXeed est un groupe de XYZ
Wehrmacht occupe XYZ
XYZ traverse Belgique
XYZ est un clavieriste d'Ozzy Osbourne
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XYZ cree Studio

XYZ part pour Londres
Boucher lance XYZ

XYZ fonde Reuters

Selayar est un lie de XYZ
XYZ est un dame de Liban

XYZ ignore Seville
Metastase joue contre XYZ
Alberto Contador remporte XYZ

Voghiera est un hameau de XYZ
XYZ manque Venezuela
XYZ est un ville de Pologne
XYZ ravage Cilicie
XYZ est un commune d'Allemagne
New York bat XYZ

Bopfingen est un ville de XYZ

Micky Moody rejoint XYZ
Britton Hill est un point de XYZ
XYZ est un ville de Maroc

XYZ bat Lakers de Los Angeles
XYZ est un localite d'Alaska

XYZ est un titre de Tampa Red
Dreux regoit XYZ
XYZ invite Paris

XYZ occupe Chios

Villerupt possede XYZ
XYZ appelle La Farlede
XYZ quitte Gengis Khan
Hannibal Barca attire XYZ

XYZ est un propriete de Discovery Commu¬
nications

Johann Turmair dit XYZ

XYZ est un proprietaire de Discovery Chan¬
nel

XYZ est un lac d'Alaska

Shou envoie XYZ

XYZ bat Zina Garrison

XYZ bat Margaret Smith Court

Chaguaramas est un localite de XYZ
Gollheim est un commune de XYZ

XYZ est un branche d'IJ

XYZ cite Steve Vai

Agnetha Faltskog rencontre XYZ
XYZ dit Sergio Paulo Barbosa Valente
XYZ assiege Byzance
XYZ quitte Inter Milan
Hernan Crespo quitte XYZ

Lydia Aran est un specialiste de XYZ
Giovanni Antonio Canal dit XYZ

Albert Kirchner destitue XYZ

XYZ dit Pisano

XYZ quitte Apple Computer
XYZ entre dans Tunis

Frangais devance XYZ
XYZ rappelle Hamren
XYZ quitte Ajax Amsterdam
XYZ est un ville de Rhenanie-du-Nord-

Westphalie
XYZ est un departement de Niger
XYZ ecrit sur Allmusic

Glentoran Football Club bat XYZ

Solmania designe XYZ
XYZ lance Macintosh LC

XYZ est un espece d'Amphibia
XYZ vit a Konya
Melbourne est un ville de XYZ

Trinity Church est un batiment de XYZ

Samurai Math Beats est un album de XYZ

XYZ est un fils de Djotchi
Gigi Fernandez bat XYZ
XYZ est un municipality de Basilan
XYZ est un epoux de Satis
Rene Desmaison quitte XYZ

Vallespir est un region de XYZ
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Michel de Montaigne evoque XYZ
Ernest Shackleton considere XYZ

Victor Serge espere XYZ
XYZ envahit Beotie

XYZ devance Felipe Massa
XYZ est un ville de Guinee-Bissau

XYZ represente Univers
Chams occupe XYZ
XYZ est un riviere de Serbie

XYZ invite Koshi Inaba

XYZ joue contre Shahar Peer

Quebec compte XYZ
XYZ remporte Coupe Davis
Elvis Presley dit XYZ

Ustyurt Plateau est un plateau de XYZ
Almucs de Castelnou est un noble de XYZ

XYZ achete Activision

Stephen Frears connait XYZ

Alphonse Esquiros trouve XYZ
XYZ bat Kim Clijsters
XYZ est un ville de Malte

Guanahani debarque XYZ
XYZ survole Paris

XYZ est un pare de Seville
Judith Gautier previent XYZ
XYZ traduit par Matthieu Chedid

Stephen P. Synnott decouvre XYZ
Arthur Miller regagne XYZ
XYZ subit Pakistan International Airlines

XYZ est un riviere de Belgique
XYZ rejoint Bayonne
XYZ differencie par Rheinmetall
Jean II Casimir Vasa conserve XYZ

Bhola est un He de XYZ

XYZ remplace Lino Ventura
Tamura invite XYZ

Chepo est un ville de XYZ
Abdul Rachid Dostom bombarde XYZ

XYZ rejoint Cardinals de Saint-Louis

Blackbelly Salamander est un espece de XYZ
XYZ est un village de Bosnie-Herzegovine
XYZ choisit Angerfist
Steamboat Willie est un dessin de XYZ

XYZ cree Ulster Democratic Party

Sainte-Clotilde-de-Beauce, Quebec est un

municipality de XYZ
XYZ reprend Montresor
XYZ joue sur Canal+
Didier Deschamps declare XYZ



.
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