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Abstract

Individual differences across seemingly disparate cognitive tests are not independent.

This general factor of cognitive ability allows around halfof the variation in a diverse battery

of cognitive tests to be explained in terms of individual differences along a single dimension.

An individual's position on this dimension, as ascertained using standardised tests of cognitive

ability (intellectual quotient (IQ) tests), has been shown to be predictive of important life

events ranging from educational and occupational success, to enjoying good health and

longevity. Genetic differences have been shown to be associated with differences in cognitive

ability and recent molecular genetic research has demonstrated that variants in linkage

disequilibrium with common single nucleotide polymorphisms (SNPs) can explain around

50% of the variation in general cognitive ability.

The goal of this thesis was to build on these findings by applying gene-set analysis

methods to examine genome-wide association data sets to test guided hypotheses regarding

the mechanisms and genetic architecture of human cognitive differences. Gene set analysis

is a method that can lead to an increase in statistical power and help derive functional

meaning from the results of genome wide association studies (GWAS). Existing GWAS

data sets provided by the Cognitive Ageing Genetics in England and Scotland (CAGES)

consortium, the Brisbane Adolescent Twin Study (BATS) and the Norwegian Cognitive

NeuroGenetics (NCNG) cohort were used. The individuals in each of these groups have

also completed a battery of cognitive tests enabling the extraction of a general factor of

fluid cognitive ability and a measure of crystallised ability.

In Chapter 3, the role of synaptic plasticity was examined using data derived from

proteomic experiments on human and animal brain tissue which details the molecular

constituents of the postsynaptic density and the associated components of the glutamatergic

synapse. These components include: the a-amino-3-hydroxy-5-methyl-4-isoxazoiepropionic

acid receptor complex (AMPA-RC), the A-methyl-D-aspartate receptor complex (NMDA-

RC), and the metabotropic glutamate 5 receptor complex (mGlu5-RC). Using a competitive
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test of enrichment it was shown that the genes responsible for the proteins of the NMDA-RC

were associated with fluid cognitive ability. This study (published as Hill et al., 2014)

indicates that individual differences in synaptic plasticity may underlie some of the

differences in fluid cognitive ability.

In Chapter 4, rather than using traditionally defined linear pathways, the focus was

on a gene set created by grouping genes according to their cellular function. Linear pathways,

such as the glutamatergic system share proteins, a property which can be exploited by

utilising horizontal pathway analysis, also termed functional gene group analysis. In a

functional gene group analysis genes are grouped according to their cellular function such as

ligand gated ion channels, neurotransmitter metabolism, and G protein relays. This chapter

(published as Hill et al., 2014) examined the role that heterotrimeric G proteins play in

cognitive abilities as previous work has indicated a role for them in individual differences in

human cognitive ability. The analyses carried out in this chapter indicate that whilst

heterotrimeric G proteins may be required to engage in cognitive tasks, genetic variation in

the genes that code for these proteins is not associated with normal variation in cognitive

ability.

Chapter 5 examined the role of functional SNPs, defined as those that have been

shown to be able to alter protein expression. Previous research has shown an association

between genotype and methylation status and between genotype and gene expression in

human cortical tissue. Using the results of previous research, gene sets were assembled which

detailed SNPs known to alter methylation status and gene expression in the frontal cortex, the

temporal cortex, the pons, and the cerebellum. In addition, the bioinformatics database

dbQsnp was mined to assemble a SNP set detailing SNPs in known promoter regions.

Finally, a gene set was made using published literature to capture SNPs affecting microRNA.

Two complementary statistical methods were used to examine these sets for an association

with general cognitive ability. The results of these analyses indicate that these gene sets are

not more associated with cognitive ability beyond what would be expected by chance.
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Chapter 6 exploits the current knowledge of the molecular genetics of non-syndromic

autosomal recessive intellectual disability (NS-ARID). The 40 genes associated with NS-

ARID have a large deleterious effect on cognitive ability and appear to do so without the

cognitive deficit being the product of obvious pathology. These 40 NS-ARID genes were

examined as a gene set for an enriched association with cognitive abilities. Additionally, the

biological systems that these genes are involved in were examined using an automated

literature mining tool. These systems were then examined for an enriched association with

general cognitive ability. When examining the 40 NS-ARID genes as a set there was no

evidence that they were associated with cognitive abilities. The results of the literature search

provided 180 additional gene sets based on the relationship between the 40 NS-ARID genes.

These gene sets were examined for an enriched association with cognitive ability where the

sodium ion transporter gene set (G0:0006814) was shown to be significantly enriched in the

CAGES data set, but not BATS data set, for fluid ability. This could indicate that whilst the

same genes are not involved in both intellectual disabilities and in cognitive abilities, the

genes that can contain mutations resulting in intellectual disabilities are found in pathways

that govern the normal range of cognitive ability.

The results of this thesis indicate that common SNPs which tag causal variants are

not randomly distributed across the genome but are clustered in genes that work together as

part of a larger mechanism. In addition this work provides working examples of how

multiple data sources that can be utilised to construct gene sets designed to explore the

known relationship between genotype and cognitive ability and to utilise GWAS data sets to

prioritise groups of genes.
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Chapter 1: Introduction to intelligence

1.1 Intelligence

The degree in which people are capable of cognitively challenging activities is one

such way that individuals can differ. Differences in this capacity can be referred to as

differences in intelligence (abbreviated to as intelligence from this point), however loose

verbal descriptions of intelligence make subsequent quantification impossible and with the

myriad of tests used, often with seemingly unrelated material, vocabulary or reaction time for

example, it is not possible to describe intelligence in terms of the tests used in its assessment.

Indeed, such verbal descriptions are not always agreed on by psychologists studying

intelligence (Neisser et al., 1996). Despite this, individual differences in standardized tests of

intelligence, IQ tests, have been shown to be predictive of educational attainment (Deary,

Strand, Smith, & Fernandes, 2007a), everyday decision making (Gottfredson, 1997) and even

ofmortality (Calvin et al., 2011). This makes understanding the origins of these differences

important to intelligence researchers and those outside the field alike.

Regarding the source of these intelligence differences it has been shown that the

more similar individuals are in terms of their genetic makeup the more similar their

performance on intelligence tests, demonstrating a heritable component to intelligence. This

finding has been shown using methods which compare parents to their offspring, as well as

comparing twins, (Bouchard & McGue, 1981) as described in section 2.1-2.2. More

recently, this relationship between genotype and phenotype has been shown using common

SNPs from unrelated individuals using the Genome-Wide Complex Trait Analysis (GCTA)

method (Yang et al., 2010; Yang, Lee, Goddard, & Visscher, 2011). However, whilst GCTA

does provide an estimate of the proportion of variance attributable to genetic variants

correlated with common DNA variants, like the twin method, it does not indicate which

genetic variants are of particular importance and so cannot be used to examine the biological

systems that are responsible for intelligence using current sample sizes.
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With these current limitations in mind, the goal of this thesis is to build on the

finding that there is a genetic element to intelligence and begin to prioritize specific groups of

genes selected in accord with a particular theory regarding intelligence differences. Chapter 3

examines the role of synaptic plasticity using data derived from proteomic experiments on

human and animal brain tissue. These data detail the molecular constituents of the

postsynaptic density and the associated components of the glutamatergic synapse including

the a-amino-3-hydroxy-5-methyl-4-isoxazoiepropionic acid receptor complex (AMPA-RC),

the A'-methyl-D-aspartate receptor complex (NMDA-RC) and the metabotropic glutamate 5

receptor complex (mGlu5-RC).

Chapter 4 examines a different set of genes expressed in the synapse. This set

corresponds to the heterotrimeric G proteins, created using functional gene group analysis

where genes are grouped according to their cellular function, such as ligand gated ion

channels and neurotransmitter metabolism rather than according to classically defined

vertical pathways such as the glutametergic system. This method has the potential to increase

power and the heterotrimeric G proteins have previously been associated with intelligence

(Ruano et al., 2010).

Chapter 5 looks for an enriched association between functional single nucleotide

polymorphisms (SNPs), defined as those that can alter protein expression through a known

association with methylation, gene expression or being found in promoter regions or effect

microRNA.

Chapter 6 builds on the knowledge of the molecular genetics of intellectual

disabilities to determine if the same genes and biological systems are involved in both

intellectual disability and the normal range of intelligence differences.

1.2 The structure of Intelligence

Before the empirical work in this thesis, addressing the search for the molecular

underpinnings of intelligence is presented; it is important to have an operational definition of
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what intelligence is at the phenotypic level. As mentioned, such verbal definitions as

"problem-solving ability" or "processing capacity" do not help with establishing an

operational definition of intelligence, nor do they help with the question ofwhether

intelligence is composed of a single ability or if it is best described in terms of multiple

independent or dependent abilities. The next sections detail the development of the idea of

the phenotype of intelligence. Whilst the notions of intelligence being a unitary construct

predate the foundation of differential psychology (Spencer, 1855) it also predates the

statistical method of factor analysis to test this hypothesis, and so, this review begins by

detailing the work of the discoverer of the general factor of cognitive ability as well as a

pioneer of factor analysis, Charles Spearman. Following this, hierarchical models of

intelligence will be discussed before looking at models that do not include a general factor.

Finally, the predictive validity of the general factor will be addressed.

1.3 Spearman's Two-factor Theory of Intelligence

Charles Spearman (1863 - 1945) invented one of the first forms of factor analysis and

was the first to use this method to address the question ofwhether intelligence can be

described in terms of individual differences along a single dimension (Spearman, 1904).

Factor analysis allows the researcher to test if cognitive performance across a wide variety of

tests can be described by a smaller number of dimensions termed factors. A factor, in the

parlance of factor analysis, refers to an underlying hypothetical variable that cannot be

observed and can also be called a latent variable. Whereas latent variables cannot be directly

observed, they can be sampled and, in the case of cognitive ability, this sampling takes the

form of batteries of cognitive tests to derive a latent measure of intelligence or performance

on intellectually engaging material such as that found in schools which can be used to derive

a latent variable describing educational attainment. A factor or factors will emerge following

a factor analysis if there are non-zero correlations between all or most of the cognitive

abilities required to score well in the test battery.
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Spearman (1904) applied an early form of factor analysis to teachers' ratings of the

rank order of 22 pupils' performance across different school subjects. Included in the school

subjects ofClassics, French, English, Mathematics, and Music was a test of Pitch

discrimination, enabling Spearman to test an earlier hypothesis of Gabon's that intellectual

ability was linked to seemingly more basic processes including information intake (Gabon,

1883). What Spearman found was that the pupil's ranks between any two subjects was

positively correlated, a phenomenon termed a positive manifold. In addition to this, following

the inclusion of the pitch discrimination task, the positive manifold remained, indicating the

link first suggested by Gabon between an individual's level of intellectual ability and the

keenness of the senses. Spearman found that a single factor could explain some of the

variance on each test. Spearman termed this latent trait g in an effort to move it from a verbal

definition of general intelligence to a scientific construct describing a universal source of

variance for diverse cognitive abilities.

In order to show the importance of this general cognitive trait, Spearman used the

observed correlations between the subjects and g to derive the degree to which each pair of

subjects correlated due to the variance each pair shared with g. Once the variance attributable

to g had been removed from each test, no residual correlations between the subjects

remained, indicating that the observed correlations only occurred due to each subject

providing a measure ofg.

Spearman used this finding to construct his two-factor theory of intelligence, where g

was the sole source of communality and accounted for 63% of the observed variance.

Although the statistical methods deviate from what is used today, when factor analysis is

applied to sample sizes larger than that used by Spearman a general factor accounting for

63% appears an overestimation when considering modern estimates of around 40% (Carroll,

1993).

The remaining variance in his battery of tests, termed s, was attributable to both the

variance specific to each test and to measurement error. Whilst termed the two-factor theory,
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it is important to note that test specific variance did not constitute a factor as there would be

as many independent sources of variance, termed s, as there were tests used.

1.3.2 Criticisms of Spearman's two factor theory

Notably absent from Spearman's two factor theory of intelligence, when compared to

the psychometric models of today, are group factors. Group factors reflect the shared

variance of tests that is not attributable to g but rather to domain-specific factors such as

memory or information processing speed (Carroll, 1993). Whilst Spearman's early form of

factor analysis was limited in the sense that it could only be used on a correlation matrix

where a single underlying factor provided the only common source of variance his data were

reanalysed by Carroll (1993). Carroll (1993) found that Spearman's hypothesis was supported

by this data. However, the method devised by Spearman is only appropriate when a single

factor is present. Ifmore than one common factor exists Spearman's method will not work.

Additionally, Spearman also constructed his test battery in such a way that no two tests were

measuring the same ability outside of g. Spearman contended that in addition to measurement

error the variance in any test was due to a completely general source, g, or a completely

specific source and so attributable to s. If groups of tests were found to correlate more highly

with those of similar content, such as groups of tests each stressing speed of response for

example, Spearman concluded that they were each measuring the same 5 indicating that they

were equivalent forms of the same test. This strict dichotomy of total generality and total

specificity was found to be insufficient to explain such clusters of correlations which were

soon found to be common in large batteries of tests (Burt, 1917) leading to the notion of

group factors. A group factor would be a source of variance that is more general than the s of

Spearman's model but does not have the same level of generality across the range of

cognitive abilities that g would have. By 1927 a wealth of data indeed indicated that these

group factors were the norm in large data sets and led Spearman to concede that group factors

did exist (Spearman, 1927).
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1.4. Carroll's hierarchical three factor model

Carroll's model accounts for the positive manifold discovered by Spearman with a

domain-general factor. However, whilst Spearman's method involved the extraction of first-

order factors by directly examining the correlation matrices, Carroll's model includes second

and third-order factors. Second-order factors arise when multiple first-order factors are

derived from the correlation matrix, which in turn correlate with each other. This allows for a

further factor analysis to determine if the variance in the first-order factors is better explained

by a smaller number of factors. Carroll (1993) reanalysed over 430 data sets drawn from

predominantly English speaking groups to show that cognitive abilities were organised into

three hierarchical levels. At the first level are narrow abilities that are measured by single

tests. The second level features abilities that are much more general than the first level but

still constrained into particular aspects of cognitive ability and include such abilities as fluid

ability (gf) involving problem solving with novel information and crystallised ability (gc)

utalising previously learned knowledge, as well as memory, visual perception, auditory

perception, retrieval ability, mental speed and processing speed (see Figure 1.1). However,

these factors were correlated with each other indicating a third-stratum factor which

accounted for around 50% of the observed variance in test scores. The group factors load

highly on the g factor where in adulthood these loadings are .80 and above.
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Figure 1.1 Graphical representation of the distribution of variance in Carroll's model. Moving

up through the levels, variance becomes more general and less specific to any cognitive
domain or test. The first level shows the specific tests. The second shows that tests which tax

similar abilities correlate more highly with each other than tests that measure other abilities

indicating the presence of group factors such as fluid intelligence (Gf), crystallised

intelligence (Gc), general memory and learning (Gy), broad visual perception (Gv), broad

auditory ability (Gw), broad retrieval ability (Gr), broad cognitive speediness (G.v), and

processing speed (G.s). At the top of the hierarchy is general cognitive ability.

1.4.2 Criticisms of Carroll's hierarchical three factor model and the g-VPR model

Whilst the wealth of data collected by Carroll indicates that the three stratum view of

human intelligence accounts for the positive manifold and the existence of group factors, the

accuracy of this model was questioned by a study which compared Carroll's model to both

the Cattell and Horn gf-gc model and an earlier hierarchical model (Vernon, 1964, 1965).

Vernon's model incorporated a g factor and so accounted for the positive manifold between

cognitive abilities in addition to the two group factors of verbal educational and perceptual

motor ability. Using a sample of 436 adults who had completed 42 tests ofmental ability and
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confirmatory factor analysis Johnson and Bouchard Jr (2005b) showed that Vernon's model

provided a better fit to the data than both Carroll's three stratum model and the Cattell Horn

gf-gc model. In addition to this finding Johnson and Bouchard Jr (2005b) extended

Vernon's model to include four levels of ability. Like earlier models these four were

hierarchically arranged with the least general abilities at the first-stratum, followed by

multiple second-order abilities. These are more general but still focused around a specific

skill set, such as the distinction between verbal comprehension and verbal fluency.

Importantly, these second-order factors can load onto more than one third-order factor. Three

third-order factors were included, the first two being the verbal and the perceptual factors

from Vernon's model. Johnson and Bouchard Jr (2005b) included an additional factor of

rotational ability which is measured by tests involving the mental manipulation of stimuli.

These third-order factors also show strong correlations between them leading to the need for

a fourth level consisting of a single domain general factor g. This four-stratum model (g-VPR

model) provides a better fit to the data than other models and has been replicated (Johnson &

Bouchard Jr, 2005a) and found to provide a better fit when compared to the Cattell Horn

Carroll model which included a general factor (Major, Johnson, & Deary, 2012).

1.5 Theories ofmultiple intelligences

Spearman's idea that a diverse battery of cognitive tests yielded a single factor

indicating general intelligence was challenged by Thurstone (1938b) who postulated that the

positive manifold was a result of impure tests which measured multiple independent abilities.

In his own analysis of 240 university students he found that seven "Primary mental abilities"

(PMA)-verbal comprehension, word fluency, arithmetic, spatial ability, memory, processing

speed, and reasoning ability-were evident. Thurstone contended the positive manifold existed

because each test used by Spearman drew on multiple PMAs and that if tests could be

designed that would only measure a single PMA no such general factor would be found.

Thurstone's conclusions rested on rotating his factors to simple structure with, at
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first, orthogonal vectors. The aim of simple structure is to aid in the psychological

interpretation ofwhat the factors represent by ensuring the tests have large loadings on a

small number of factors, and near zero loadings on others. Ideally tests would load on a

single factor. The ease in interpretation can be seen when, for example, tests that incorporate

verbal abilities load highly on one factor following rotation to simple structure. This

underlying factor can be called a factor of verbal ability.

Methods of rotation do not alter the degree to which each test will correlate with

other tests but rather alter the position, and therefore the loading, of the latent variable that is

used to account for the variance seen in the tests. Whilst Thurstone did expressly state that his

method would allow for a single general factor to be extracted (Thurstone, 1938b) the use of

orthogonal vectors is ill suited to this task. The general factor of cognitive ability arises as a

result of each test positively correlating with every other test in a battery. Whilst rotating the

factors to simple solution using orthogonal vectors does not eliminate this, it does lead to the

variance that is attributable to a domain general factor being redistributed amongst the tests

new loadings on the orthogonal factors. This form of rotation can provide a level of clarity

when naming the factors found to be present in a test battery however, it does result in the

loss of clear evidence for a domain general factor. A further point illustrating the unsuitability

of rotation to simple structure using orthogonal factors lies in the fact that some tests may

load highly on multiple factors following rotation making simple structure impossible to

achieve. Building on his earlier work with factor rotation (Thurstone, 1938a) devised a

method by which the factors can be rotated but with oblique vectors. The advantage of using

oblique vectors allows a closer approximation to simple structure and accounts for the

positive manifold as now the factors themselves are permitted to correlate if the data allows.

This method allows for a domain general factor to be extracted as it is now accounted for by

the correlation between the oblique factors. This form of analysis based on the extraction of

factors from the correlation of factors is known as a hierarchical factor analysis.

The g factor derived only accounted for 31% of the variance it should be noted that
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the data came from university students, a sample that by definition, are in the upper end of

the distribution for intelligence. This would constrain the differences between them in terms

of a general factor and inflate domain specific cognitive abilities. Indeed this is what was

found when Thurstone applied his tests to a sample of school children.

Howard Gardner's theory ofMultiple Intelligences (MI) (Gardner, 1983) begins with

the assumption that there is no single general factor. The positive manifold observed is a

consequence of psychological tests only measuring a small subset of what could be termed

intelligence. Gardner also asserts that multiple forms of intelligence exist and are

independent. Gardner identifies seven forms of intelligence including linguistic ability,

logico-mathematic ability, spatial intelligence, kinesthetic intelligence, naturalistic

intelligence being the ability to deal with elements in the natural environment, intrapersonal

intelligence and interpersonal intelligence. Whilst each of these abilities can be named and

described to be single abilities, over 100 years of psychometric studies into the structure of

intelligence has shown that many of these abilities are not independent and the positive

manifold can be found between tests that are cognitive in nature. The MI theory of

intelligence was explicitly tested in the work of (Visser, Ashton, & Vernon, 2006), using the

Wonderlic Personnel Test. These data showed there to be a strong g factor that had high

loadings on Gardner's Linguistic, Logical/Mathematical, Spatial, Naturalistic, Interpersonal

intelligences. There were also lower loadings for tests of other abilities, particularly

Kinesthetic intelligence. An additional problem for the MI theory was that once the effect of

g was removed there were only weak correlations between tests thought by Gardner to

measure the same form of intelligence.

1.6 Cattell and Horn fluid and crystallised model

In contrast to single g models Cattell proposed that what appeared to be a general

ability was in fact composed of two highly co-operative systems (Cattell, 1963). Cattell

named these two factors Crystallised ability (gc) and Fluid ability (gf) to distinguish between
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mental activities which required the individual to draw upon a body of acquired knowledge

and, in the case ofgf, tasks that required adaptive thinking to solve problems featuring novel

information. The link between these two factors is that an individual's level of gc would be a

product of their level ofgf, specifically how it is invested. Cattell theorized that the more time

an individual spent engaged in study or cultural pursuits the greater their level of gc.

Additionally those with a high level ofgfwould require less exposure to information before

they could assimilate information meaning that they would also have a high level of gc.

The tests that are the best measures ofgc will draw heavily on scholastic knowledge

and verbal ability and is typically measured using tests of vocabulary. The tests that are the

best measures ofgfwill not draw on verbal ability but rather include tests which include

novel information and will be less affected by the culture of the tests taker than tests of gc.

Following their discovery ofgfand gc additional group factors of visual inspection speed,

fluency in recall of learned information, auditory thinking and quantitative reasoning were

later added (Cattell, 1971, 1987; Horn, 1985). The gf-gc distinction made by Cattell is

supported by evidence from ageing research where, gf shows the same age related decline as

other physical attributes, whereas gc is more robust to the effects of ageing (Tucker-Drob &

Salthouse, 2008).

1.6.2 Criticisms of the Cattell and Horn fluid and Cryatallised model

The gf-gc model asserts that there is no single factor corresponding to general

intelligence (Cattell, 1971; Horn, 1985). This argument stems in part from the belief whilst a

general factor can be extracted it would vary between batteries, making it an artifact of the

tests used. This was directly tested using a hierarchical confirmatory factor analysis using 400

individuals from the Minnesota Study ofTwins Reared Apart (Johnson, Bouchard Jr,

Krueger, McGue, & & Gottesman, 2004; Johnson, te Nijenhuis, & Bouchard, 2008). Johnson

et al. (2004) found that the g factor formed using three separate test batteries, the Hakstian

and Cattell Comprehensive Abilities Battery, the Hawai Battery including Raven's Matrices
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and the Wecshler Adult Intelligence Scale, correlated .99 .99 and 1. This result was replicated

by Johnson et al. (2008) and provides strong evidence that g is not merely a statistical artifact

created by factor analysis, but rather all these batteries are providing a measure of the same

domain general ability. This indicates that that the extraction of a general factor is valid,

because such a factor is not merely a creation of the test but rather the g factors from different

tests are all measures of one trait.

The positive manifold found in tests of cognitive ability is one of the most replicated

findings in psychology and indicates a trait common to seemingly disparate cognitive tasks.

Models that do not acknowledge the positive manifold are not consistent with the data.

However, as indicated, a model containing g alone is insufficient to describe the full structure

of intelligence differences, instead meaningful sources of variance are arranged hierarchically

with the most domain general source, g, at the top and test specific sources acting at the base

of the four levels (Johnson & Bouchard Jr, 2005b). Contrary to positions such as those of

Gould (1981) the choice ofmodels is not a matter of opinion but one of empirical fact, where

confirmatory factor analysis has been used to compare models the g-VPR model has

consistently shown to be the best fit to the data (Johnson & Bouchard Jr, 2005a, 2005b;

Major et al., 2012). Whilst the number of factors in addition to g would vary as a function of

the tests used in the g-VPR theory (Major et al., 2012) the presence ofg is ubiquitous due to

the positive manifold. This degree to which this common source of variance is measured by a

test will determine if the test can be used to predict future educational and occupational

success as well as future health and mortality.

1.7 The predictive value of intelligence

Whilst the g factor remains a ubiquitous feature of any battery of cognitive tests

which tap multiple domains in any sample representative of the distribution of mental

abilities it does not indicate that the tests provide a measure of anything that exists outside of

the tests themselves. In order to establish that these tests are measuring something useful the
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results must be compared with an external criterion. The predictive validity of a test, in this

case an intelligence test, pertains to the ability to use the score to predict an outcome on a

different measure. Intelligence as established by Spearman being the general factor of

cognitive ability predicts performance for every type of behavior which requires learning new

information and reaching decisions based on the sound use ofjudgment. This includes school

grades, occupational success and social mobility as might be expected, but intelligence scores

also predict health outcomes and even mortality.

1.8 Education and social mobility

Some of the earliest forms of cognitive test were used in educational settings to find

which children were failing due to lack of ability (Binet, 1905) and which were failing due to

other reasons and with the discovery ofg being made using data from school teachers

(Spearman, 1904) it should not be surprising that tests of cognitive ability predict academic

achievement. Using longitudinal data, the association between intelligence and educational

success appears to be in the range of 0.40 - 0.63 (Jencks, 1979) with a more recent meta¬

analysis finding similar results (Strenze, 2007). This relationship is greatest at the level of

primary school, r = 0.60 - 0.70, following which a decrease can be seen at each stage of

education culminating at university level, where the relationship drops to r = 0.40 - 0.50

(Jensen, 1998). This decrease is not attributable to the importance of factors besides

intelligence taking precedence, but rather is the consequence of selective dropout from

schooling, where those of low cognitive ability fail to progress to the upper levels of

education. From this selective dropout there is a restriction of the range of cognitive ability

which constrains the correlation between intelligence and education. Using a longitudinal

design of 70,000 school children (Deary et al., 2007a) found that the g factor from a number

of cognitive tests taken at age 11 years correlated at 0.81 with a general factor composed of

national exam grades at age 16. The exams in question were from the General Certificate of

Secondary Education (GCSE). Although there is some scope to select subjects, the exams are
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compulsory and taken prior to the minimum age of school leaving, meaning that these results,

with the exception of those who suffer from learning disabilities, include data from almost the

full range of the distribution of intellectual ability. The association between each subject with

g was then examined where correlations ranged from 0.43 (Art and Design) to 0.77

(Mathematics) indicating that performance across the 25 subjects was substantially associated

with differences in g.

Socioeconomic success, as typically measured through income, occupation and level

of education, can also be predicted by intelligence tests (Jensen, 1998). Intelligence test

scores have also been shown to be a better predictor ofjob success than any other variable

including personality and even on the job experience (Schmidt & Hunter, 2004).

In a meta-analysis of 135 longitudinal studies (Strenze, 2007) examined the role that

general intelligence, education and occupational status play in determining socioeconomic

status. Adult social class has been shown to be an important predictor of both access to

resources and mortality (Smith, Hart, Watt, Hole, & Hawthorne, 1998). (Deary et al., 2005)

investigated the role that childhood cognitive ability played in social status in middle age.

Importantly the cognitive tests were administered during the years of compulsory education

meaning that each child had been in education for the same number of years. In a sample of

242 males, childhood IQ was associated with SES in midlife. This relationship held for both

upward and downward social mobility where the men's fathers SES was used as the point of

reference. This was extended by (von Stumm, Macintyre, Batty, Clark, & Deary, 2010) using

a sample of 6281 men to show that education acts as a mediating variable between general

intelligence and socioeconomic status and again found that intelligence plays a greater role

in socioeconomic status than social class of origin.

1.9 Intelligence and mortality

Whilst the notion that health can impact upon cognitive abilities has been shown
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(Comijs et al., 2009; Kivipelto et al., 2005; Rafnsson, Deary, Smith, Whiteman, & Fowkes,

2007) the now established field of cognitive epidemiology seeks to examine the reverse

direction of association. Cognitive epidemiology grew from two studies (O'Toole, 1990;

O'Toole & Stankov, 1992) linking cognitive ability and mortality whilst these initial studies

did employ a longitudinal design the participants were only in middle age when mortality

was examined meaning that causes of death had yet to be established. Additionally, these

studies by O'Toole (1990) & O'Toole and Stankov (1992) only utilised data drawn from

males and so any effect of sex on the link between intelligence and health could not be

ascertained. Whalley and Deary (2001) used data from the Scottish Mental survey of 1932

where almost every 1921-born Scottish child was given the same cognitive test at age 11

years to reduce this concern. By following them up in old age it was shown that the test taken

in childhood could be used to predict survival into old age. This effect was found across the

distribution of scores and was not altered by adjusting for socioeconomic position. Indeed,

this link between cognitive test scores taken in young adulthood and mortality in middle age

has also been found in a sample of 1 million Swedish males (Batty et al., 2009). A systematic

review and meta-analysis conducted by Calvin et al. (2011) gathered the results of 16

unrelated studies using a total of 1,107,022 participants. Calvin et al. (2011) found that a 1

standard deviation increase in cognitive ability was associated with a 24% reduction in the

risk of death over the follow-up period ranging from 17 to 69 years with no effect of sex.

This result remained once adjusted for childhood SES, but was attenuated by 34% by

controlling for adult SES and by 54% by controlling for the level of education. However, it

maybe that education and adult SES are both providing an imperfect measure of intelligence

and that by including these variables the model is over adjusted.

Increasing levels of intelligence may be associated with an increased ability to assess

the risk factors that contribute toward disease. Engaging in behaviours that are adverse to

health will increase the prevalence of disease, and environmental risk factors such as smoking

(Martin, Fitzmaurice, Kindlon, & Buka, 2004) and binge drinking (Batty, Deary, &
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Macintyre, 2006 ) have been linked to intelligence.

Dealing with medical conditions requires the learning of new, and in some cases

seemingly abstract, information and using it to reach a decision (Baker, Parker, Williams, &

Clark, 1998). Individuals who have a low level of education have been found to be less likely

to seek medical intervention with their symptoms (Williams, Baker, Parker, & Nurss, 1998)

and are less equipped to deal with a condition, such as diabetes, which require consistent

observation and self-medication (Williams et al., 1995).

One theory postulated as to the link between intelligence test scores and longevity is

that IQ tests provide a measure of system integrity (Deary, 2012). The system integrity (SI)

hypothesis states that tests of general cognitive ability tap into a latent trait of how well an

individual's body is put together. The SI theory also states that the link between mortality and

intelligence is due to both physical health and cognitive ability requiring a physique that is

free from defect. SI theory contrasts with the common-cause hypothesis as in SI both

mortality and intelligence are thought to measure the same latent trait of bodily integrity

meaning that the two should correlate in youth or before the presence of environmental insult.

The common cause theory, originally postulated to account for the correlation

between sensory discrimination and cognitive functioning in old age, states that health and

intelligence are linked in old age as a third variable, age, acts on them both. Evidence that

supports the SI theory includes the finding that reaction time is correlated with g and was

found to be a better predictor of death than IQ in a population based sample of 898

participants (Deary & Der, 2005). Indeed, once reaction time was controlled for the link

between g and mortality was substantially attenuated and no longer statistically significant

indicating that reaction time and g both share variance and this shared variance is predictive

ofmortality as would be required for the SI theory. Whilst this evidence is suggestive of a

latent trait of system integrity both reaction time and g are cognitive abilities and a more

parsimonious explanation for their correlation with mortality is that g and reaction time

measure cognitive ability which in turn is correlated to mortality. A stronger test of SI would
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be to find a measure of the latent trait for integrity that cannot be explained by the positive

manifold between cognitive abilities. One such measure is fluctuating asymmetry. This is

based on the notion that achieving perfect symmetry involves no defects and if defects were

present they would be random across the body leading to a deviation from perfect symmetry.

A meta-analysis with a total of 1871 individuals concluded that there was a small but

consistent correlation of r = 0.12 - 0.20, between measures of symmetry and intelligence test

scores (Banks, Batchelor, & McDaniel, 2010).

These findings provide strong evidence that tests of cognitive ability are measuring

something that exists outside of the context of the test. By being able to predict education, job

success and mortality it is clear that tests of cognitive ability are measuring something of

importance. The predictive validity of tests of intelligence underscores the importance of

understanding the etiology of these differences. Intelligence has also been found to be highly

familial indicating that in order to understand the etiology of intelligence differences genetic

effects must be considered.
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Chapter 2: Introduction to the Genetics of intelligence

2.1 Introduction

This section will provide an introduction to the basic principles of genetic theory

beginning with the work ofMendel describing models of single gene phenotypes before

moving on to discuss how these laws apply to quantitative traits. Following this, the classical

twin method will be described, followed by molecular genetic methods including linkage and

association. Finally multi-SNP methods including GCTA and gene set analysis will be

discussed.

Much work has been done to elucidate the genetic contributions to general

intelligence utilizing behavioural genetic methodology. This section will provide a concise

overview of the methods used in linking genotypic variation to phenotypic variation. Prior to

the work of Mendel in the 1800's (Mendel, 1865) the accepted wisdom for a phenotype being

passed down was one of blended inheritance understood as the progeny of any pairing

manifesting an intermediary phenotype somewhere between that which was demonstrated in

each of the parents. Mendel used garden peas to show that when pairing plants with different

phenotypes, one with a wrinkled pea and one with a smooth pea, the resulting offspring were

all smooth rather than a blend. The next step in his experiment involved the self-fertilization

of the offspring where Mendel observed 0.75 of this generation displayed the smooth pea

phenotype whilst 0.25 demonstrated the wrinkled pea phenotype.

These results demonstrated that the phenotype is not lost between generations but

rather is retained and may be seen in later generations. Mendel theorized that each of the

plants contained two elements, today referred to as alleles, of which one is inherited from

each parent. In this way the genetic potential for phenotypic variation is maintained across

the generations, formalised as the particulate law of inheritance. Mendel also theorized that,

based on the observed proportion of phenotypes in the third generation of pea plants, one of
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the two alleles would be dominant in the sense that only one of the two alleles would need to

be present to fully express the associated phenotype. The other allele was described as

recessive, and in order to express the phenotype associated with the recessive allele two must

be present, one inherited from each parent. The observations Mendel made explained the

frequencies of the phenotype observed in the third generation plants and the absence of the

wrinkled phenotype from the second generation plants. These findings were used to form the

Law of Segregation.

Mendel also used his observations to examine multiple phenotypes and discovered

what became to be known as The Law of Independent Assortment. This was shown by

demonstrating that two dominant traits alleles corresponding to two different traits were

inherited independently, although this is only true in the absence of both pleiotropy and

linkage disequilibrium (Falconer & MacKay, 1996).

Whilst Mendel's work provides an elegant account of how phenotypic variation is

transmitted and retained across the generations many traits of importance, including

intelligence, are continuously distributed across the population and seemingly defy Mendel's

laws. The imposed distinction between Mendelian traits, single gene traits inherited in the

dominant recessive manner outlined above, and quantitative traits including height, weight

and intelligence was not resolved until the work of Fisher (1919). Fisher united the

mechanistic account ofMendel's works with his knowledge of statistics to show that if

multiple genes are involved in the expression of a phenofype then across a population that

phenotype will be normally distributed, hi behavioural genetic research, the role that genes

play in contributing to the variance of a trait is shown by comparing patterns of covariance

between the phenofypic traits and the degree to which individuals share genes. This is used in

methods such as comparing the difference between monozygotic twins and dizygotic twins in

the classical twin design (Neale & Cardon, 1992). By using related groups such as the twin

method it is possible to derive the proportion of variance in a trait that is attributable to

genetic or environmental effects.
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The variance components approach (Neale, Boker, Xie, & Maes, 1999; Neale &

Cardon, 1992) using twin or pedigree data is used to estimate the relative genetic and

environmental contributions to any trait. By way of the classic twin design the total observed

variance for a trait can be divided into four sources: A, additive genetic effects; D, non-

additive genetic effects; C, shared environmental effects; and E, non-shared or unique

environmental effects. However, D and C are confounded in data sets where twins are raised

together and cannot be estimated in the same model. Additive genetic effects refers to a

genetic effect where the effects of each contributing allele sum (Falconer & MacKay, 1996).

Non-additive genetic effects describe instances ofwhere the observed phenotype is

not the simply the sum of each contributing allele but rather the product of an interaction.

This interaction can take place between loci, referred to as epistasis, or can be an intra-loci

interaction, referred to as dominance. Shared environmental effects refers to elements in the

environment that both twins were exposed to and can include socio-economic status. Unique

environmental effects, together with measurement error, reflects instances from the

environment that the twins do not have in common and can include, peer group, periods of

illness, or employment.

Estimates for the components are derived according to the principles that

monozygotic twins (MZ) are both genetically identical and live in the same household. This

means that a correlation between MZ twins' performance on a tests would be an estimate of

A+C. Therefore any differences that exist between them are the product of E, their unique

environment. Dizygotic twins (DZ) share, on average, only 50% of their genes. If they are

raised in the same household a correlation between their performances on a test would be an

estimate of 0.5A + C. The difference in their abilities would be a product of their unique

environment and the genetic differences that exist between them. Using this logic, and

assuming no genetic interactions or more similar environments for MZ twins, it is clear that

the difference between the magnitude of the correlation between the MZ twins and the DZ

twins is due to the lower genetic similarity of the DZ twins. Indeed, the contributions of
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additive genetic effects can be defined as the difference between the MZ correlations and the

DZ correlations multiplied by 2.

A = 2(rMZ - rDZ)

The MZ correlation is a product of the total additive genetic effect in addition to the

full shared environmental effect and so magnitude of the unique environmental effects can be

estimated subtracting the MZ correlations from 1.

E = 1 - rMZ

Variance attributable to the shared environment can be estimated by subtracting the

additive genetic effects from the MZ correlations.

C = rMZ - A

This logic can also be extended to multivariate analysis using a cross-trait, cross-twin

design. By correlating the score from one twin with the scores from a separate measure in the

other twin, the degree to which the two traits are genetically independent can be derived. If

the MZ twin cross correlations are greater than the DZ cross correlations then the two

measures are not genetically independent and a genetic correlation can be seen. This measure

is statistically independent of the additive genetic variance and so a genetic correlation can be

high even when the contribution made by additive genetic effects is negligible.

2.2 Application of behavioural genetic methodology to intelligence

The earliest attempt to link genotype with intellectual ability was conducted by

Francis Galton who examined eminence, defined as the ability to rise through social
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hierarchy (Galton, 1892). By examining historical records he found that the sons of those

deemed to be eminent men were more likely to display eminence themselves. Whilst this

work did not control for the inheritance of wealth and social connections that would also

contribute towards an individual's rise to power, Galton did suggest that twin studies would

make a valuable contribution towards his hypothesis that intelligence was passed down.

Indeed, the finding that there is a substantial genetic component responsible for variance in g

has been consistently replicated. In a review containing 30 studies of general cognitive ability

(Nichols, 1978) showed that the total genetic contribution to the phenotype, termed broad

sense heritability, was around 0.44. Nichols (1978) also conducted his own analysis utilizing

data drawn from the National Merit Twin Study containing data from around 3000 sets of

same sex twins where he estimated the broad sense heritability to be around 0.70 once

corrected for reliability error in zygostiy as well as assortative mating. Bouchard and McGue

(1981) conducted an extensive review of the literature comparing the correlations between

intelligence test scores and different degrees of relatedness. hi a comparison of over 10,000

MZ and DZ twins the correlation between MZ twins was on average around 0.86 with the DZ

twins being 0.60 showing that as genotypic similarity increased so too did phenotypic

similarity indicating large genetic influences acting on intelligence (see Figure 2.1). Also

apparent here is the finding that MZ twins adopted apart show substantial correlations on

tests of intelligence.
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Figure 2.1 Average correlations for family designs, adoption designs and twin

designs. P-O = parent-offspring, Sib = sibling. Figure assembled using the reviews of
Bouchard and McGue (1981) as revised by Loehlin (1989). For the adopted MZ twins raised

apart, Old MZ data excludes the data ofBurt (1966) New includes the data of Bouchard,

Lykken, McGue, Segal, and Tellegen (1990) and Pedersen, McClearn, Plomin, and
th

Nesselroade (1992). Figure adapted from Behavioral genetics (5 ed., Figure 8.7, p. 157) by

Plomin, DeFries, McClearn, and McGuffin (2007).

A heritability estimate was derived with these data by Plomin, DeFries, McClearn,

and McGuffin (2001) where model-fitting analysis was used to show that around half of the

phenotypic variation in g was attributable to genetic differences between the individuals in

these studies. The studies included in the review by Bouchard and McGue (1981) were

predominantly collected from studies using European and North American samples but

comparable estimates for the genetic effects on intelligence have also been observed in Japan,

East Germany and rural and urban Indian samples (Plomin et al., 2001).

Pleiotropy, the degree to which the same genes are involved in multiple traits can be

examined by extending the twin design to encompass multivariate genetic analysis. For the

study of cognitive abilities the degree to which genetic effects are shared between g and
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second order cognitive domains can be examined to derive a genetic correlation. Using this

methodology Petrill (1997) found that the genetic correlations between g and specific

cognitive abilities were close to 1.0 indicating a high level of pleiotropy. Indeed, Rijsdijk,

Vernon, and Boomsma (2002) used data from 194 twin pairs to examine the distribution of

additive genetic variance across the three level hierarchy described by Carroll (1993). The

additive genetic variance captured by the general factor could be used to explain an average

of 31% of the phenotypic variance in each of the 12 individual tests used (Range 8 -53%).

Additive genetic factors were also found to act on g using the g-VPR model of intelligence

(Johnson et al., 2007) where they accounted for 77% of the variance in the fourth striatum g.

For the third level factors additive genetic variance accounted for 78% ofVerbal ability, 77%

of Perceptual and 75% ofRotational abilities. In the second order factors, with the exception

of content memory, additive genetic variance accounted for 33% of the variance. This finding

is consistent with the notion that genes work on cognitive abilities at the general level rather

than a separate group of genes for each ability, this evidence of pleiotropy between cognitive

abilities led to the Generalist Genes Hypothesis (Plomin & Kovas, 2005).

The heritability ofg is not static but rather it increases across the lifespan

(McCartney, Harris, & Bernieri, 1990) where in young children it increases from 30%

between the ages of 2 and 4 (Spinath, Ronald, Harlaar, Price, & Plomin, 2003) to 80% during

adulthood (Edmonds et al., 2008; Jacobs, van Os, Derom, & Thiery, 2007). Using a

combined sample of over 11,000 twin pairs drawn from 6 samples across the USA, Australia,

The Netherlands and Great Britain, Haworth et al. (2010) investigated the increase of

heritability across childhood through to early adulthood. Haworth et al. (2010) found

statistically significant increases in heritability from 41% at age 9 to 55% at age 12 and again

from age 12 to age 17 where heritability was found to be 66%. This effect was attributed to a

gene/environment correlation, which refers to the ability of individuals to select, modify and

create environments in accord with their genotypes.

Following from the finding that heritabilify is not stable across the life span, work
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has been done to examine which genetic influences have an effect on both the stability and

the changes in intelligence differences. By examining verbal ability and non-verbal ability in

over 360 twin pairs measured at ages, 5, 7, 10, 12, and 18 years of age, Hoekstra, Bartels,

and Boomsma (2007) found that the heritability of non-verbal ability increased from 64% to

74% whereas verbal ability increased from 48% to 84%; the genetic correlation between

verbal and non-verbal abilities increased from 0.62 to 0.73. The increasing heritability

(Edmonds et al., 2008; Hoekstra et al., 2007; Spinath et al., 2003) indicates the increasingly

important role of genetic factors from childhood to early adulthood.

2.3 Molecular genetics

Two classes ofmethodology exist for mapping genes to traits and to disease: linkage

and association. Linkage examines family groups and is based on the idea of Mendel's Law

ofAssortment. Using linkage methodology, variants are linked to disorders or to quantitative

traits in instances where there is a violation of the Law of Independent Assortment. This can

be seen when there is coinheritance of a specific DNA variant and a disorder or level of a

quantitative trait within the families. Linkage has previously been used successfully to link

genes to phenylketonuria and cystic fibrosis (Kerem et ah, 1989), where a small number of

genes have a very large effect. However, the low success rate of linkage when applied to

quantitative traits indicates that the alleles that contribute are of small effect or that complex

traits are highly heterogeneous and would require a greater level of statistical power to find

them. Indeed, Risch and Merikangas (1996) examined the numbers of individuals required

using linkage (affected sibling pairs) and association (the transmission disequilibrium test,

TDT) methods to attain statistical significance at a power of 0.80. The TDT uses affected

children and their heterozygous parents to test for the equality of transmission of the variant

under investigation. At a diallelic locus, under the conditions of the null hypothesis, each allele

should be present in 50% of the affected children. However, if this loci is associated with the

disorder then a statistically significant deviation from equal transmission of each allele is
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observed. They found that as the relative risk fell to 2 or below, the numbers of participants

required became unfeasibly large for linkage methods requiring 296,710 affected siblings at

an alpha level of 0.01 when compared to the 5823 required using association. Whilst these

calculations were carried out using the TDT they do generalise to other forms of association.

Additionally, it is a far more simple matter to assemble large cohorts if they do not have to be

composed of sibling pairs.

Association analysis, referred to as allelic association in the context of genetic

studies, involves correlating a marker allele with a trait. Association analysis can be used for

candidate gene designs, the fine mapping of linkage regions and for genome wide analysis.

The case-control design is one such form of association where allelic frequency between two

groups is compared. One group consists of unrelated affected individuals and the other is a

group of controls matched for age, sex and ethnicity. By controlling for these factors the

allelic frequency between the two groups can be compared. This design extends to the use of

quantitative traits such as intelligence, but rather than comparing allelic differences between

two groups, an additive linear model is used to assess if allelic variation co-occurs with

phenotypic variation. It should be noted that many of the same issues exist in the use of

quantitative designs as case control designs examining disease status as they are both

particularly vulnerable to false positives in instances where there is an underlying population

substructure known as population stratification. When examining cognitive abilities, in

instances where the frequency of a particular allele is correlated with cognitive test scores and

is attributable to the diversity in background population the study is said have population

stratification. Whilst this can be ameliorated by using a cohort design where participants are

drawn from the same population stratification can still occur.

One of the most promising uses for association methods is their application to

genome wide association studies (GWAS). GWAS combine the strengths of linkage analysis

methods to search across the genome without an a priori hypothesis regarding which areas

are more important with the increase in statistical power and resolution afforded to the
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association methods. A GWAS makes use of between 500,000 — 1,000,000 single nucleotide

polymorphisms (SNPs) which form the unit of genetic variation, where variation refers to a

single base pair change in an individual's genotype at a specific genomic region. SNPs are

spread across the genome and this single base pair substitution is the most common form of

genetic variation between individuals (1000 Genomes Project Consortium, 2010).

The low rate of success for linkage studies to find regions linked with common

diseases and traits contributed to the notion that the genetic architecture of common disorders

is quite different from the architecture of rare disorders. This idea was further cultivated by

the finding that some common variants were associated with common diseases such as APOE

with Alzheimer's disease (AD) (Corder et al., 1993). This association between the APOE e4

allele and AD was found in 234 individuals where there was a highly significant additive

trend for the e4 allele with each additional allele increasing the risk of contracting AD by a

factor of 2.84 (95% CI 2.03 - 3.96). The presence of the e4 allele was also shown to be

associated with an earlier onset of the disease and an earlier age of death again with a dose

dependent effect of the e4 allele. Also a missense variant in PPARG has been associated with

diabetes (Altshuler et al., 2000). The finding that common variants were associated with

common diseases, such as the APOE e4 allele and Alzheimer's disease, in these studies led

to the development of the common disease common variant hypothesis (CD/CV) (Reich &

Lander, 2001).

The CV/CD hypothesis states that if a disorder in the population is common, so too

must be the genetic variants responsible. This would indicate that the variants involved would

have a small effect size or penetrance as, if a common variant is defined as one where the

minor allele is present in, for example, 5% of the population, and if penetrance was complete,

every common disorder would also be present in at least 5% of the population. That is to say,

a perfect correlation between the presence of the disorder and the minor allele would mean

the disorder would be present in 5% of the population. However, should such common

variants, also have a low penetrance and only increase the propensity for disease then the
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presence of the minor allele would not be perfectly correlated with a disorder. A second

implication of the CV/CD hypothesis is that if common disorders are heritable and each

common variant responsible has low penetrance, then there must be multiple contributing

common variants.

In order to conduct a GWAS a large proportion of the genome must be interrogated,

this is made possible through the use ofDNA microarrays, referred to as chips. A chip allows

up to 1 million SNPs to be processed simultaneously reducing both the time to process and

the cost per genotype, making large sample sizes more feasible. Whilst this number of SNPs

represents only a small fraction of the 3 billion nucleotide pairs found in the human genome

the SNPs used are selected in order to best exploit the lack of independence between SNPs.

This correlation between an allele at one position in the genome and identity of a SNP in

another is referred to as linkage disequilibrium (LD). LD occurs due to recombination events

that take place during meiosis. Two SNPs on a chromosome may begin as being perfectly

correlated with each other but as multiple recombination events occur across many

generations these markers may move into linkage equilibrium, that is to say, they are no

longer correlated. Whilst this would depend on certain assumptions, primarily random mating

in a population of fixed size, it does illustrate that LD is population specific. Indeed different

human populations have very different patterns of LD. African populations, are a far older

population and so a greater number of recombination events have occurred, meaning a lower

level of linkage disequilibrium is observed in African populations when compared to European

or Asian populations. As these groups initially began as samples drawn from the original

African population, the population size would differ along with the number of generations

since their founding. The SNPs that are selected to capture genetic variation across loci are

referred to as tag SNPs and these are specific to a population. By exploiting LD over 80% of

variation in commonly occurring SNPs can be captured in European populations using a

subset of between 500,000 - 1 million tagging SNPs. The property of LD can also be

exploited to gain additional coverage of the genome as if two SNPs are correlated the
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identity of a SNP at a locus will be informative of the identity of a SNP at another locus.

This means that researchers will only have to genotype a part of the genome and from this

knowledge of the identity of the variants from a much greater portion can be known.

2.4 Molecular genetics and cognitive abilities

The search for specific variants associated with intelligence has been disappointing.

There is evidence that the e4 allele of the APOE gene has a detrimental effect on cognitive

abilities with an effect size of d = -0.05 derived from a meta-analysis of 77 studies using

41,000 individuals (Wisdom, Callahan, & Hawkins, 2011). Other than APOE, results from

candidate gene studies in cognitive ability have failed to replicate in larger more powerful

studies than those in which they were discovered (Chabris et ah, 2011; Houlihan et ah,

2009). A notable exception to this is rsl2206087, rsl 1584700 and rs4851266 which have

been found to be associated with the number of years of education in 126,559 individuals

(Rietveld et ah, 2013) which were subsequently replicated in a sample of 34,397 by

23andMe. Indeed, GWAS for cognitive ability have so far produced only a small number of

SNPs that survive correction for multiple comparisons made. The apparent lack of SNPs

associated with intelligence coupled with the finding from behavioural genetics research that

intelligence is substantially heritable has been deemed the missing heritability problem

(Maher, 2008). This problem is most noticeable in cases such as intelligence, where the

phenotype is complex and highly polygenic. Indeed in sample sizes of> 17,000 no SNPs

have been associated with intelligence using the GWAS method (Benyamin et ah, 2013).

However, in other polygenic traits such as schizophrenia sample sizes of greater than 20,000

were required before specific variants were found (Schizophrenia Psychiatric Genome-Wide

Association Study (GWAS) Consortium, 2011) and as their sample size grew larger

additional loci were discovered. This same pattern has been observed for multiple traits

including height where, as sample size increases so too does the number of significant loci
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(Visscher, Brown, McCarthy, & Yang, 2012) consistent with the notion of the CD/CV

hypothesis.

2.5 Multi-SNP analysis in GWAS

One of the issues regarding the lack of findings using the GWAS approach is the

stringent correction for multiple comparisons that needs to be made. This issue is of particular

concern as the expected effect size of any SNP in a highly polygenic trait is expected to be

small. This helps to ensure that SNPs of small effect do not cross the genome wide

-8
significance threshold of 5 X 10" . However a new method developed (Yang et ah, 2010;

Yang et al., 2011) referred to as Genome Wide Complex Trait Analysis (GCTA) can derive a

heritability estimate using SNP data from populations bypassing the need for twins and does

not rely on the equal environment assumption. This method was applied to the data drawn

from 3,511 individuals in a study by Davies et al. (201 l)to show that additive genetic effects

in LD with common SNPs could be used to derive a heritability estimate of 0.51 for fluid

cognitive ability and 0.40 for crystallised ability. This result using GCTA, has been replicated

(Chabris et al., 2011) and extended to include children (Benyamin et al., 2013). The lack of

any significant SNP combined with GCTA being able to derive a heritability estimate using

common SNPs indicates that there are common SNPs with very small effects that do not

survive correction for multiple comparisons. The heritability estimates provided by GCTA

indicate the lower bound of the full heritability estimate as GCTA uses common SNPs where

the twin method can capture any genetic variant that is passed down.

The GCTA method has also been extended to cover multivariate analysis where the

pleiotropic effects of genes associated with intelligence was demonstrated using molecular

genetic evidence (Trzaskowski et al., 2013a) to show that there are strong genetic

correlations between mathematics reading ability and general cognitive ability. In addition to

the finding that the same genes explain a substantial portion of the correlation between
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cognitive phenotypes, multivariate GCTA has also been used to show a high genetic

correlation between intelligence and educational attainment of 0.95 and between intelligence

and SES at 0.26 (Marioni et al., 2014a).

Despite the advances made by using GCTA it does not inform us which genes are

more important or what their likely function may be. Due to the highly polygenic nature of

intelligence and the small effect sizes expected to be involved, a potential strategy to increase

power using the sample sizes currently available is to sum the effects ofmultiple SNPs. This

branch ofmethodology has been used successfully by Davies et al. (2011) to show that, by

deriving a gene based statistic using every SNP located within a gene, that the FNBPL1 gene

was associated with intelligence in older adults. This finding was replicated in children

(Benyamin et al., 2013).

SNPs can also be summed across genes using a pathway design, more accurately

referred to as gene-set analysis. The goal of gene set analysis is to examine if the test

statistics from a preselected group of genes shows a consistent deviation from chance. As it is

well known that genes do not act in isolation; rather, complex networks ofmolecules act

together each under some degree of genetic influence (Schadt, 2009). Indeed, the loci so far

associated with height have been found to cluster in the Hedgehog, TGF-band growth

hormone pathways (Allen et al., 2010). Gene sets drawn for analysis can be grouped by their

biological function such as being involved in glial cells (Goudriaan et al., 2013) or specific

synaptic components (Ruano et al., 2010).

One of the limitations of gene-set analysis is that it is dependent on the accurate

definition of the sets involved, as better annotation is expected for more well studied

biological processes. Gene-set analysis has provided a valuable addition in uncovering the

mechanisms of disease using GWAS data. In a series of studies (Abraham & Cho, 2009a;

Abraham & Cho, 2009b; Dong, 2008; Yoshida, Nakaya, & Miyazaki, 2009) the pathway

(Il)-l2 and 11-23 was studied in relation to its importance to Crohn's disease. Whilst only

three genes at two loci showed genome wide significance three genes were subsequently
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replicated in the same pathway. Further studies also found that the genes in the (Il)-12 and II-

23 pathway were associated with Crohn's disease. This illustrates that multiple genes acting

to reduce the efficiency of a specific process can result in disease. It is also important to note

that the most significant gene may not be the most accessible target for therapeutic

intervention.

Whilst wide variation exists with regards to the statistical methodology used to

determine if a gene set is significantly associated with a trait they fall into two classes, self-

contained tests and competitive tests of enrichment. The difference between the two lies in

the null hypothesis being tested. The self-contained test only examines the genes in the set

under consideration. The whole set is treated as the unit of association and the test is used to

show if variation across the all of the genes in the set is associated with phenotypic variation.

This does offer a number of advantages, chiefly amongst them are only the genes in the gene

set are needed. Additionally, self-contained tests are typically extremely robust to any effects

of LD as they can use phenotype permutation where the observed phenotype for each

participant is permuted before the gene set statistic is derived after each permutation. The

observed phenotype is then compared to a null distribution made up from the permuted scores

to assess if the gene set based statistic shows a greater level of association with the observed

phenotype than the null distribution. Whilst this has the advantage of controlling for LD and

gene set size after each permutation, it does suffer from genomic inflation resulting in an

increase in type 1 error rates.

Competitive tests of enrichment determine if the gene set of interest has a greater

weight of evidence for its association with a trait than genes drawn from outside the set. It

does require, however, that a there is sufficient coverage across the genome to make such a

comparison valid. Competitive tests, whilst robust to the effects of genomic inflation, can

also suffer from an increased rate of both type 1 and type 2 errors if properties such as LD

and gene set size are not controlled for. Indeed, several authors have not controlled for the

number of SNPs in their gene sets of interest (Askland, Read, & Moore, 2009; Torkamani,
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Topol, & Schork, 2008; Walsh et al., 2008) meaning that these results should be interpreted

with caution. Failure to control for the number of SNPs can create type 1 errors when the set

of interest is composed of large genes. The more SNPs there are in a gene the more likely it

is that there will be extremely small p-values associated to the SNPs of that gene. The

implication of this is that a gene set with a large number of SNPs will have a greater weight

of evidence associating it with a trait by virtue of its size alone. LD between SNPs must also

be considered, as a gene with high levels of LD between the SNPs within it would contain

fewer points that are free to vary than a smaller gene with much lower levels of LD. These

two problems are not mutually exclusive and both gene size and LD must be controlled for

in order to avoid type 1 error inflation. The competitive test is to be preferred however as it

allows for the assessment of the contribution of a gene set against other genes and so can be

used to prioritize sets.

2.6 Summary

The results from twin estimates ofheritability provide strong evidence that an

individual's genotype is predictive of their level of cognitive ability, whilst GCTA indicates that

common SNPs, those with a minor allele frequency of>5%, tag the variants responsible.

Although, the common SNPs that tag this heritability are currently unknown, gene-set analysis

provides a method that can help prioritise common SNPs based on what genes they are located

in and, what biological mechanisms these groups of genes are involved in. General cognitive

ability was examined because, as indicated previously in this thesis, general cognitive ability is

predictive ofeducational attainment (Deary et al., 2007a), everyday decision making

(Gottfredson, 1997) and ofmortality (Calvin et al., 2011) and so finding molecular

mechanisms associated with intelligence can have implications for health and education.

Another reason for the focus on intelligence is that GWAS have shown that complex traits are

highly polygenic with the variants involved consisting of a large number of loci, each making

only a small contribution to the heritability (Munafo & Flint, 2014) this includes so called
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endophenotypes. In this context, an endophenotype is phenotype that is thought to be closely

related to the biological processes that result in the phenotype of interest so, for example,

reaction time could be used to understand intelligence. However, evidence to suggest that the

effect size is greater for variants responsible for end phenotypes is lacking (Flint & Munafo,

2007).

2.7 The current thesis

The aim of this thesis is to find associations between gene sets and cognitive abilities

with the aim of elucidating the possible mechanisms by which genetic variation leads to

variation in cognitive abilities. This will be done by examining gene sets selected according

to theoretical reasons for their involvement in intelligence. Whilst the variants considered are

selected in a similar fashion to candidate gene studies the methods contrast. In a number of

important ways. Firstly, multiple variants are considered together in order to capture a

greater proportion of variance and to increase statistical power. Candidate gene designs have

failed to replicate in larger more, powerful samples (Chabris et al., 2011; Houlihan et al.,

2009) and by capturing more variance using multiple genes this problem can be ameliorated.

Secondly, in this thesis competitive tests are used to examine if the genes selected show a

greater weight of evidence than genes that are not included in the gene set of interest.

Candidate gene designs typically assess if the variant shows a non-zero effect, however in a

genome wide data set there are more low p-values than would be expected under the null

hypothesis. Chapter 3 examines the mechanisms responsible for synaptic plasticity namely

postsynaptic density and its associated components for an enriched association with

intelligence. Chapter 4 details the analysis of another synaptic component, heterotrimeric G

proteins, which have been shown to be involved in intelligence differences (Ruano et al.,

2010). We sought to examine this claim with a greater sample size and a competitive test of

enrichment.

Chapter 5 broadens the scope of the investigation to consider functional SNPs. These
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are defined as SNPs that have been shown to produce variation in gene expression or function

either through their effect on methylation, micro RNA or their role in promoter regions.

Chapter 6 takes genes that have been shown to be associated to extreme ranges of cognitive

ability namely intellectual disability. Here we seek to determine if the genes involved in

intellectual disabilities are also involved in the normal range of human cognitive ability.

45



Chapter 3: Description of samples and methods.

This chapter will provide an overview the samples and tests along with the statistical

methods used to construct the phenotypes for genetic analysis. In addition, this chapter will

describe the methods for genotype extraction and the methods used to conduct a GWAS on

each of the samples. These GWAS form the discovery and replication data sets required to

conduct the gene set analyses found in the empirical chapters of this thesis.

3.1 Participants of the discovery cohort

The analyses conducted throughout this thesis used data from the samples of the

Cognitive Ageing and Genetics in England and Scotland (CAGES) consortium. The sample

consists of 3511 healthy middle-aged and older individuals and is composed of five cohorts;

the Lothian Birth Cohorts of 1921 and of 1936 (LBC1921 and LBC1936) (Deary, Gow,

Pattie, & Starr, 2012), the Aberdeen Cohort of 1936 (ABC1936) (Whalley et al., 2011), and

the Manchester and Newcastle Longitudinal Studies of Cognitive Aging Cohorts (Rabbitt et

al., 2004).

The cohorts of LBC1921, LBC1936 and ABC1936 were drawn from the sample of

individuals who took part in The Scottish Mental Survey of 1932 (SMS 1932) (Scottish

Council for Research in Education, 1933) and The Scottish Mental Survey of 1947

(SMS1947) (Scottish Council for Research in Education, 1949). The SMS1932 was

conducted on the 1st of June 1947 and was established to provide a measure of the level of

cognitive functioning of all individuals in Scotland who were born in 1921 and attending

school. The SMS 1932 was conducted in order to both discover the rates ofmental deficiency

and to obtain information regarding the distribution of intelligence across the population. A

total ofN = 87,498 (43,288 females) were tested. It has since been found that a number of

private schools did not participate and some individuals took the test a few days later and a

number of schools and individuals were missed to an insufficient number of papers being
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delivered.

Each individual in SMS 1932 completed the same test, the Moray House Test No. 12

(MHT) (Scottish Council for Research in Education, 1933), with the same instructions and

time limit. The MHT was a version of one in a series of tests devised by Godfrey Thomson

for school selection between primary and secondary school. Administered to 11-year-old

children, the MHT would be used to select children better suited to more academic

schooling. The MHT is composed of 71 items where a maximum score of 76 is attainable in

the 45 minutes provided for its completion. The test includes eight practice items and two

short picture tests used to assess the ability of those who could not use the MHT due to a low

level of cognitive ability. The main body of the test is composed of 12 categories of items:

following directions (14 items), same opposites (11), word classification (10) analogies (8),

practical items (6), reasoning (5), proverbs (4), arithmetic (4), spatial items (4), mixed

sentences (3), cipher decoding (2), and four other items.

Whilst the goal of SMS 1932 was to ascertain the level of cognitive ability for the

population of Scotland, the MHT was a test of verbal ability designed to indicate which

children would be most suitable for a grammar school education, as such it was not designed

to yield an estimate of a child's IQ. In order to establish the validity of the MHT as a

measure of general cognitive ability a subsample of SMS 1932 was retested the following

summer using the Stanford Revision of the Binet scale. Of the 1000 individuals (500 female)

selected, 847 were born in June, 101 in May and 52 across June and July. Whilst these

individuals were selected from across the educational areas the males of the sample scored 4

points higher than the population and the females scored 2.5 points above the average. The

MHT was shown to be a good indicator of general cognitive ability with a strong correlation

with the Stanford Revision of the Binet Scale of 0.80 (0.81 male, 0.78 female)(Scottish

Council for Research in Education, 1933).

The SMS 1947 was conducted to test the hypothesis that the average IQ of the United

Kingdom was decreasing due to low IQ individuals producing a greater number of offspring
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than those of a higher IQ bringing the average IQ down (Scottish Council for Research in

Education, 1949). The data gathered 15 years previously from the SMS 1932 enabled a

population wide comparison to be made. SMS 1947 was conducted on the 4th June 1947

where almost all children born in 1936, N= 70,805 (33,996 females), were tested using the

same instructions and test as used in SMS 1932. The results of this comparison with

SMS 1932 produced evidence contrary to the original aims and are one of the earliest

examples of the Flynn effect (Flynn, 1999) which describes the observation that tests of

cognitive ability have raised between generations.

The Lothian Birth Cohort of 1921 (LBC1921) was begun in 1999 with the aim to

find the genetic determinants of cognitive ageing. LBC1921 consists of individuals, most of

whom originally took part in The Scottish Mental Survey of 1932 (SMS 1932) (Deary,

Whiteman, Starr, Whalley, & Fox, 2004; Deary, Whalley, & Starr, 2009; Scottish Council

for Research in Education, 1933). Recruitment into LBC1921 from the individuals of the

SMS 1932 was carried out by examining the Community Health Index (CHI) for individuals

registered with a General Practitioner (GP) who were born in 1921 and living in the

Edinburgh area. Due to the National Health Service of the United Kingdom over 99% of the

population of Scotland were registered with a GP. On request the individuals who were

living independently in the community were contacted by their GP and invited to take part in

the follow up to SMS 1932. Individuals were also recruited into LBC1921 through

advertisements in the local, regional and national newspapers. A total of 1120 potential

participants were identified and contacted through the examination of CHI with 728

responding to the request to participate. Of these 501 were found to be eligible with 260

going on to take part. The advertisements placed in the media generated 423 potential

participants with 368 of these being found to be eligible to join LBC1921. From these

individuals 321 agreed to take part with 290 participating in LBC1921. Through these

methods a total of 550 (316 females) independent, healthy individuals living in Edinburgh or

the surrounding regions, were included in LBC1921 with mean age was 79.1 years (SD =
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0.6) (Deary et al., 2004). Venous whole blood was collected for DNA extraction following

informed consent. Ethical approval was granted by The Lothian Research Ethics Committee.

The Lothian Birth Cohort of 1936 (LBC1936) was started in 2004 and was

conducted to find genetic and environmental factors which contribute to cognitive ageing.

LBC1936 is composed of individuals most ofwhom originally took part in The Scottish

Mental Survey of 1947 (SMS 1947) (Scottish Council for Research in Education, 1949). In

order to locate and recruit individuals from SMS 1947 into LBC1936 the CHI was used in

conjunction with media advertising. By using the CHI 3810 potential participants were

identified and 3686 were invited to participate. A total of 2318 responded to the invitation

and 1126 were found to be eligible to join 97 ofwhich were gathered via advertisements

placed in the media. This led to a total of 1091 (543 females) mostly healthy independent

individuals from Edinburgh and the surrounding regions being recruited. Figure 3.1

illustrates the recruitment procedures used to gather LBC1936. The mean age of this cohort

was 69.5 years (SD=0.8) (Deary et al., 2007b). Venous whole blood was collected for DNA

extraction following informed consent. Ethical approval was granted by Scotland's

Multicentre Research Ethics Committee and the Lothian Research Ethics Committee.

The Aberdeen Birth Cohort of 1936 (ABC 1936) was recruited between 1999 and

2003 and was formed from the re-testing of individuals from the SMS 1947 with the aim to

determine childhood influences on future dementia risk (Whalley et al., 2011). Individuals

who sat the SMS 1947 in schools in Aberdeen and still living locally were traced using the

CHI where 664 potential participants were identified. Of these 17 were excluded due to

recent bereavement or life-threatening illness and 506 agreed to take part. The final sample

size was 498 individuals (255 females) with a mean age of 64.6 (SD = 0.9) years. Like the

Edinburgh cohort, those included in ABC 1936 are healthy older individuals. Each had

venous whole blood collected for DNA extraction following informed consent. The

Grampian Research Ethics Committee granted ethical approval.
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Figure 3.1. Illustrating a flow chart describing the recruitment process for LBC1936. Figure
taken from Deary et al. (2007b)
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The Manchester and Newcastle cohorts were created with the intent to further the

understanding of the role that individual differences play on the effects of ageing on

cognitive abilities (Rabbitt et al., 2004). Recruitment for the Manchester and Newcastle

Longitudinal studies of Cognitive Ageing began in Newcastle-upon-Tyne in 1983 and 1984

by appealing to the general public through advertisements placed in local newspapers, radio

and television. This led to an initial sample size of 2052 healthy individuals ofwhom 1539

were females aged between 46 - 92 years (M=67.4, 573=14.3) with the males age range from

49 to 86 years (M=65.2, 5X>=11.8), all of whom lived independently in the community. At

the University ofNewcastle participants took two separate batteries of cognitive tests. At

recruitment they were screened on Test Battery A and two years later they performed Test

Battery B. Following the participant's second visit Test Battery A was alternated with Test

Battery B. Testing was carried out in groups of between 5 and 20 and each test battery

required two independent 90 minute testing sessions supervised by two examiners.

The same methods as those used to recruit participants from Newcastle-upon-Tyne

were applied to Greater Manchester from 1984 to 1986. This resulted in 2193 healthy

community dwelling individuals being recruited, ofwhom 1503 were female whose ages

ranged from 50 - 92 years of age (M=64.4, 573=7.8) with the age range of the males being

from 45-93 years (M=65.6, 573=7.7). In both the Manchester and Newcastle samples

additional participants were recruited until 1994 with assessments of survivors through to

2003 occurring every two years. Venous whole blood was taken for DNA extraction from

805 of the Manchester cohort (572 females) and 758 of the Newcastle cohort (536 female)

following informed consent. Ethical approval was granted by the University of Manchester.

3.2 Participants of the replication cohorts

This study also makes use of two replication cohorts. Two were included due to their

differences in terms of both demographics and sample size. The Norwegian Cognitive

NeuroGenetics Sample (NCNG) (Espeseth et al., 2012) has an age range of 50-70 years
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which is comparable to the CAGES discovery cohort. The age range of the Brisbane

Adolescent Twin Study (BATS) is 15.4 to 29.6 years (M= 16.6, SD= 1.5 years). However,

whilst NCNG is closer in terms of age, it differs in that it is of considerably smaller size

(NCNG, N= 670; BATS, N= 2062) and thus has less power to replicate any significant

associations found.

The NCNG was established to study the normal range of cognitive ageing with

particular focus on how genetic factors, brain morphology and brain function may contribute

to individual differences. Individuals were recruited to the NCNG sample via advertisements

placed in newspapers asking for individuals from the Oslo and Bergen urban areas to

participate. Individuals with a history of psychiatric or neurological disorder or a history of

substance abuse were excluded from the sample as were those who had a score on the

depression inventory indicating undiagnosed depressive mental illness. Following testing,

individuals with a score of below 1 SD of their age norm on intelligence or memory scores

were also removed. This resulted in a final sample size of 670 healthy individuals (457

females) with an age range of 18-79 years (Mean = 47.6, SD =18.3). Participants were drawn

from and tested in Bergen (n = 171) and Oslo (n = 499). Permission to take and store blood

samples for genotyping along with cognitive and MRI data in a bio-bank and to establish a

registry for relevant information was granted by the Norwegian Department of Health.

Ethical approval was granted by the REK Sorest (Norwegian Ethical Committee), NCNG:

project ID S-03116.

The BATS sample is formed from healthy sets of twins and their siblings who were

drawn both for the Brisbane Adolescent Twin Study (Wright & Martin, 2004) along with

those individuals who were recruited for participation in cognition and imaging studies (de

Zubicaray et ah, 2008; Wright et ah, 2001). These participants were recruited from primary

and secondary schools in South East Queensland. Recruitment from the schools followed the

approval of the Department ofEducation who aided in the identification of twins and their
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non-twin siblings. Screening questionnaires were used to identify those whose health may

impact on their cognitive performance and aimed to identify episodes of psychiatric disorder,

medical illness, substance abuse, closed head injury or impairments of vision and/or hearing.

The total sample size for BATS was 2032 (1093 females) drawn from a total of 923 families

(339 MZ twin pairs, 1 set ofMZ triplets) with an age range from 15.4 - 29.6 years of age

(M=16.6, SD=\.5). The studies were approved by the Human Research Ethics Committee at

the Queensland Institute ofMedical Research, as well as the institutional ethics boards at the

University of Queensland and the Wesley Hospital.

3.3 Cognitive phenotypes

In the following studies up to four cognitive phenotypes will be utilised. These are

fluid cognitive ability (gf), crystallised cognitive ability, memory and processing speed. The

fluid-crystallised distinction was used as it captures the differential effects of ageing on

human cognitive abilities. Where gfshows a pattern of decline similar to that of physical

capabilities (Tucker-Drob & Salthouse, 2008), crystallised ability shows very little decline

into old age. Due to the older age of the majority of participants used in the cohorts here

maintaining the fluid-crystallised distinction should help to control for the differential effects

of ageing across the range of human cognitive abilities.

In each of the Scottish cohorts a score for gfwas derived by using the raw score

from each test and implementing a principal components analysis. Using regression, the first

un-rotated component was derived and indicated a single general component in each of the

three cohorts (Tables 3.2-3.9). This was then extracted before the effects of age and sex were

statistically controlled for by using a linear model with the component score being the

dependent variable with age and sex used as predictor variables. The standardised residuals

that were extracted from this model were used as each individual's gfscore adjusted for both

age and sex.

For the LBC1921 cohort, gfwas derived from the Moray House Test (Deary et al.,
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2004), Raven's Standard Progressive Matrices (Raven, Court, & Raven, 1977), phonemic

verbal fluency (Lezak, Howieson, & Loring, 2004), and Wechsler Logical Memory scores

(Wechsler, 1987). The Raven's standard progressive matrices test (Raven et ah, 1977)

involves the participant being presented with an abstract image with a section removed. The

participant is instructed to select one from the six available "pieces" that would complete this

image. The instructions are presented verbally to the participant and the first two problems

are used as examples to ensure the participant understands the task. Later tasks involve the

participant being presented with a 2x2 and later a 3x3 matrix containing abstract symbols

where, as previously, one is missing. Elements within the matrix follow a logical progression

from one to the next, meaning that the identity of the missing element can be derived by

observing the elements which are present. The participant must select from between six to

eight symbols of which, only one is the correct response. The test has no time limit and is

scored by summing the number of correctly solved problems. The maximum score is 58.

The verbal fluency test (Lezak et al., 2004) is a timed test where the participant

should name as many words as possible beginning with the letters "C", "F" and "L".

Performance on each letter is measured separately with one minute for each letter, with the

final score being the sum of the performance on each letter. Proper names are not allowed

and the score is the total number ofwords for each of the three letters.

The Wechsler Logical Memory scores (Wechsler, 1987) consist of a short story

being read out aloud to the participant. Following this the participant is to immediately recall

25 pieces of information from the story. Marks were given for each correct detail with a

maximum score of 25. Whilst this test can also be implemented with a measure of delayed

recall, only the immediate recall score was included here.

The fluid ability component for LBC1936 was formed from six non-verbal tests

from the Wechsler Adult Intelligence Scale IIIUK (WAIS-IIIUK): Digit Symbol Coding,

Block Design, Matrix Reasoning, Digit Span Backwards, Symbol Search, and Letter-number

Sequencing (Wechsler, 1998a). In the Digit symbol coding test participants are presented
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with two rows, with the upper row containing the digits 1-9 in a randomised order for a

length of 20 cells. The lower row is blank with 20 spaces provided in which the participant is

to place their answers. The participant is provided with a key whereby each digit corresponds

with a unique novel symbol. The participant's task is to place in the lower row the

corresponding symbol from the key ensuring the digit symbol pairings from the key remain

intact. The test also includes seven practice items to minimize the effects of learning to test

score. The score is the number correctly filled in within 120 seconds with a maximum of

133.

The Block Design Task involves the participant completing an increasingly difficult

series of patterns using a number of coloured cubes. The test has 14 problems to solve, the

first four ofwhich are practice trials to familiarize the participants with the test instructions.

The next five trials feature problems using four cubes with a 60 second time limit for

completion where the last five use the full complement of nine cubes. Scoring is dependent

on time taken to complete the pattern with a higher score awarded for rapid completion of

the task.

The matrix reasoning task involves the participant selecting from five possible

answers which best fits a pattern presented to them and is in keeping with the progression

from one element to the next. Participants are presented with between four and nine cells

arranged either as a line or in a typical matrix configuration. There are three practice items

and a total of 26 problems.

The Digit Span Backward test involves a series of numbers being read aloud to the

participant whereby they must repeat them back to the examiner in reverse order. A practice

trial is provided for the participant. After instruction seven items are presented to the

participant each of which contains two strings of digits, each of the same length, and each

string is presented separately. The first item contains two digits and as item number

progresses the number of digits increases by one with the final item containing eight digits.

One point is awarded for each correct string with a maximum of 14 points in total.
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The Symbol Search test involves participants being presented with a row of seven

symbols the first two are the target symbols the remaining five are the search symbols. The

participant is required to examine the row and indicate if either of the two target symbols is

presented in the search symbols by marking either the yes or the no box. The test features

three rows of sample items at which point the participant is instructed in how to complete the

test correctly and three practice rows where the examiner can gauge as to whether the

participants understand the test. There are 60 rows in total with a time limit of 120 seconds

for the completion of the test. Scoring is carried out by totaling the correct responses minus

the number of incorrect responses meaning the participant must perform the test both quickly

and accurately.

In Letter-Number-Sequencing test the examiner reads aloud a string of both digits

and numbers. The participant is instructed to repeat first the numbers, in ascending order,

followed by the letters in alphabetical order. There are two practice strings where the

participant first receives instruction and then the correct answer. This was followed by five

practice trials. The test contains seven items with 3 letter digit strings in each where the

initial item contains one letter and one number with an additional letter or digit in each

subsequent item with the final item containing an eight letter/digit combination. A correct

answer results in one point with a maximum of 21 for this test.

The measure of general fluid ability for ABC 1936 was formed from: the Rey

Auditory and Verbal Learning Test (R-AVLT) (Lezak et al., 2004), the Uses of Common

Objects (Guildford, Christensen, Merrifield, & Wilson, 1978), Raven's Standard Progressive

Matrices (Raven et al., 1977), and Digit Symbol from the Wechsler Adult Intelligence Scale

Revised (WAIS-R: Wechsler, 1981).

The RAVLT was modified for use in this study. Here, the RAVLT is a test of

cumulative recall. The examiner reads a list of 15 words to the participant, who is to repeat

as many of them as possible. After which the same list is read out again by the examiner
where the participant is instructed to repeat as many as they can including words recalled
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from previous trials. The word list is presented a total of five times to the participant and

their score is the total number of recalled words summed across the five presentations.

The Uses ofCommon Objects test involves participant's giving as many uses for

three common objects, a felt hat, a bottle, and a clip, as they could. The participants score

was the total number of correct uses for all three objects.

The measure of fluid ability in the Manchester and Newcastle aging cohort was

derived using the two parts of the Alice Heim test 4 (AHT-4) (Heim, 1970) and the four sub¬

tests of the Culture Fair Test (Cattell & Cattell, 1960). The AHT-4 test is divided into two

sections the first of which contains 65 problems which require knowledge of verbal

opposites, analogies, synonyms and basic arithmetic to solve. The participant is initially

presented with 15 practice items. This is followed by 50 scored items where one mark is

awarded for each correct answer within a 10 minute time limit. Part two is a non-verbal test

whereby the participant is presented with a test figures and a rule. They must select from a

series of five figures and indicate which one is the correct answer according to the given

rule. This test must be completed in 10 minutes and the score is the total correct in this time

period.

The Cattell culture fair test, Scale 2 form A (Cattell & Cattell, 1960) is composed of

four non-verbal tests. The first contains three images where by a rule is in place dictating the

change between images. The participant must derive the rule and select an additional image

from a choice of five. There is only one answer that is correct in keeping with the

progression of the three presented images. Three practice items are included and the time

limit for the test is three minutes. The maximum score in the series sub-test is 12. The second

part is a test of classification whereby the participant must state which of the five items does

not belong to the class of the remaining four. The time limit for this test is four minutes. The

first two are practice items and the maximum score is 14. The third is the matrices test in

which the participant is presented with a 2x2/3x3 matrix with an element missing. The

participant is instructed to select from five options which element is correct in keeping the
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logical relations between elements in the matrix. There are three examples and the maximum

score is 12. The time limit for this test is three minutes. The fourth part of the test deals with

logical conditions where the participant is presented with a series of overlapping shapes

drawn on a side of paper. In the diagram of overlapping shapes there is a dot. The participant

must select from five images, one ofwhich corresponds to the logical placement of the dot in

the first image. For example the dot maybe outside the square, but inside of the circle and the

participant would have to select from the five images one which also has the dot outside the

square, but inside of the circle. There are three test items and the maximum score is eight

with a 2.5 minute time limit.

Age at test and sex were controlled using residualisation and these standardised

residuals for each of the tests were then subjected to a maximum likelihood factor analysis

provided by Dr Mike Allerhand from the Centre for Cognitive Ageing and Cognitive

Epidemiology. A general factor was extracted using regression and missing data points were

accounted for by sampling the posterior distribution of factor scores for each subject using

Mplus (Muthen, Asparouhov, & Rebollo, 2006). Table 3.1 shows the tests used and the

number of participants by cohort for the construction of the g/variable.
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Table 3.1. The tests used for the construction of the fluid ability component/factor (g/) are
shown for each cohort of the discovery sample.

LBC1921 LBC1936 ABC 1936 Manchester Newcastle

MHT Block Design Raven's Alice Heim 4 (part 1) Alice Heim 4 (part 1)

Progressive
Matrices

Raven's Progressive Matrix
Matrices Reasoning

Logical Memory Digit Span
Backwards

Digit Symbol Alice Heim 4 (part 2) Alice Heim 4 (part 2)

Verbal Fluency Symbol Search

Uses of

Common

Objects

R-AVLT

Cattell Culture Fair

(Part 1)

Cattell Culture Fair

(part 2)

Cattell Culture Fair

(Part 1)

Cattell Culture Fair

(part 2)

Digit Symbol

Coding

Letter number

Sequences

Cattell Culture Fair

(part 3)

Cattell Culture Fair

(part 4)

Cattell Culture Fair

(part 3)

Cattell Culture Fair

(part 4)

N 517 1005 426 805 754

Abbreviations: MHT, Moray House Test No 12; R-AVLT, Rey Auditory Verbal Learning
Test.
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Table 3.2. The results of the principal components analysis for the 4 tests used to establish a

general fluid measure in LBC1921. These results show a single component can account for
55.9% of the variance indicating the tests used are a good measure of general ability.

Initial eigenvalues
Component Total Percentage of variance Cumulative percentage
1 2.237 55.919 55.919

2 0.845 21.126 77.045

3 0.650 16.244 93.289

4 0.268 6.711 100

Table 3.3. Illustrates the loadings for the tests used in LBC1921 on the first un-rotated

component.

Tests used Correlation with first un-rotated component

MHT 0.772

Logical Memory Score 0.711
Verbal Fluency 0.739
R.S.P.M. 0.741

Abbreviations: MHT, Moray House Test No 12, R.S.P.M., Raven's Standard Progressive
Matrices.

Table 3.4. The results of the Principal components analysis for the 6 tests used to establish a

general fluid measure in LBC1936. These results show a single component can account for
52.6% of the variance.

Initial eigenvalues
Component Total Percentage of variance Cumulative percentage
1 3.160 52.662 52.662

2 0.840 14.007 66.669

3 0.757 12.612 79.280

4 0.446 7.425 86.705

5 0.421 7.011 93.716

6 0.377 6.284 100
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Table 3.5. Illustrates the loadings for the tests used in LBC1936 on the first un-rotated

component.

Tests used Correlation with first un-rotated component

Symbol search 0.772

Digit Symbol 0.711

Matrix Reasoning 0.739
Letter-Number Sequencing 0.741

Digit Span Backward 0.658

Block Design 0.728

Table 3.6. The results of the Principal components analysis for the 4 tests used to
establish a general fluid measure in ABC1936. These results show a single component can
account for 48.9% of the variance indicating the tests used are a good measure of general

ability.
Initial eigenvalues

Component Total Percentage of variance Cumulative percentage
1 1.957 48.916 48.916

2 0.816 20.407 69.323

3 0.743 18.567 87.891

4 0.484 12.109 100



Table 3.7. Illustrates the loadings for the tests used in ABC1936 on the first un-

rotated component.

Tests used Correlation with first un-rotated component

R-AVLT 0.630

Uses ofCommon Objects 0.612

R.S.P.M. 0.769

Digit Symbol 0.770

Abbreviations: R-AVLT, Rey Auditory Verbal Learning; R.S.P.M., Raven's Standard

Progressive Matrices.

Table 3.8. Illustrates the loadings for the tests used in the Newcastle cohort on the first un-

rotated factor.

Tests used Factor loadings

AH41 0.819

AHF2 0.830

CF1 0.713

CF2 0.552

CF3 0.658

CF4 0.573

Abbreviations'. AH41, Alice Heim test 4 test section 1; AH42, Alice Heim test 4 test section

2; CF1 The Cattell culture fair test, Scale 2 form A section 1; CF2 The Cattell culture fair

test, Scale 2 form A section 2 ;CF3 The Cattell culture fair test, Scale 2 form A section 3;
CF4 The Cattell culture fair test, Scale 2 form A section 4.

Table 3.9. Illustrates the loadings for the tests used in the Manchester cohort on the first un-
rotated factor.

Tests used Factor loadings

AH41 1.00

AHF2 0.977

CF1 0.765

CF2 0.574

CF3 0.823

CF4 0.687
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Crystallised ability describes the level of knowledge an individual has acquired over

the life course (Horn, 1994). It is typically assessed by means of language-based tests

including reading ability or measurements of vocabulary. For LBC1921, LBC1936 and

ABC 193 6 this was represented by the score from the National Adult Reading Test (NART)

(Nelson & Willison, 1991). The NART contains a list of 50 words of increasing irregularity

which the participant must read out aloud. All of the words are irregular in the sense that

they do not conform to the Standard English rules of pronunciation. The test is untimed and

number of correctly pronounced words forms the participant's final score.

For the Manchester and Newcastle cohorts, sections A and B from the Mill Hill

Vocabulary Test (Raven, 1965) were used. The Mill Hill vocabulary test consists of a set A

and a set B. In set A the participant must select from six possible synonyms for the most

exact match to the test word. Set A consists of 34 problems with the first being an example

problem to aid the participant in how the test is to be carried out. Set B consists of the test

word alone, which the participant has to define on paper. Set B contains 34 problems where

the first is already filled in to instruct the participant in how to answer each problem. Each

set was administered without a time limit and the score was the number of correct responses

with a maximum score of 66. Parts A and B were summed.

Verbal declarative memory (memory) was measured by a single test in each cohort.

In the LBC1921 cohort, the total score from both the immediate and delayed recall sections

of the Logical Memory test from the Wechsler Memory Scale-Revised (Wechsler, 1987) was

used. In LBC1936, it was the total from the immediate and delayed recall sections from the

Logical Memory test from WMS-III (Wechsler, 1998b). In ABC 1936, the modified version

of the R-AVLT (Lezak et al., 2004) was used. In the Manchester and Newcastle cohorts, a

cumulative verbal recall task (Johnson et ah, 2008; Rabbitt et ah, 2004) was used in which

four presentations of a list of 15 six letter nouns was read aloud to the participant. A recall

phase was administered between each presentation where the participants were instructed to
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write down as many of the words as they could recall. The final score was the total recalled

across all four presentations. The raw scores from each of the tests representing memory

were subjected to a linear regression with age and sex as predictors and the test score as the

dependent variable. The standardised residuals from these models were used for all

subsequent analyses.

Information processing speed (speed) was measured in each cohort using a single

test. The digit symbol subtest of the WAIS-III UK(Wechsler, 1998a) was carried out by

LBC1921 and LBC1936, whereas in ABC1936 the WAIS-R version (Wechsler, 1981) was

used. The Savage Alphabet Coding Task (Savage, 1984) was used in the Manchester and

Newcastle cohorts. In this test, participants were presented with two rows: the top one

contains random letters, the bottom row is blank and is for the participant to answer.

Additionally, the participant is presented with a key instructing how the 15 different letters

are to be recoded into the bottom by means of substituting one letter for another ("A"

becomes "T"). Participants encode as quickly as possible the 200 letters in two minutes.

There are four sets of trials whereby the code remains constant. The score for the participant

is the total correct summed across the four trials.

The raw scores from each of the single tests representing speed were subjected to a

linear regression with age and sex as predictors and the test score as the dependent variable.

The standardised residuals from these models were used for all subsequent analyses. Table

3.10 shows the tests used to represent crystallised ability, memory and processing speed in

each of the five cohorts of the discovery sample.
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Table 3.10. Showing the number of participants available for each test by cohort.
LBC1921 LBC1936 ABC 1936 Manchester Newcastle

Crystallised NART NART NART Mill Hill Mill Hill

ability
N 515 1003 420 770 750

Memory Logical Logical R-AVLT Cumulative verbal Cumulative

Memory Memory recall verbal recall

N 514 1002 338 769 743

Processing Digit Digit Digit The Savage The Savage

Speed symbol symbol symbol Alphabet Coding Alphabet Coding
Task Task

N 301 999 380 773 729

Abbreviations: NART, National Adult Reading Test: R-AVLT, Rey Auditory Verbal

Learning Test

3.4 Cognitive phenotypes for the replication cohorts

In the replication cohorts only fluid ability was measured as this was the only

phenotype in need of a replication sample. For the NCNG sample a gffactor was constructed

using a single test, the Matrix Reasoning subtest from the Wechsler Abbreviated Scale of

Intelligence (Wechsler, 1999). The construction of the gfphenotype was performed by

collaborators in at the Department ofClinical Medicine in the University of Bergen. The

phenotype was produced by using the Matrix reasoning score as the dependent variable in a

linear regression model where age and sex were included as predictors. The standardised

residuals extracted from this model formed the gfscore for NCNG.

For the BATS sample, performance IQ was used as a measure ofg/ability. This

variable was derived by collaborators at the Genetic Epidemiology, Molecular Epidemiology

and Neurogenetics laboratories of QIMR Berghofer. Performance IQ was measured using

the scores from two tests the Spatial, and the Object Assembly from the Multidimensional

Aptitude Battery (Jackson, 1984). The Spatial subtest involves participants to mentally rotate
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figures in order to select the correct answer from 5 alternatives. There are 50 items of

increasing difficulty in this test. The object assembly test consists of 20 items which

represent pieces in a typical jigsaw puzzle presented in an incorrect order. The participant is

instructed to arrange these items into the correct order and choose the alternative illustrating

the correct series of items. Each section was administered with a seven-minute time limit

with the tests and performance IQ scores being derived according to the manual which

produces scores standardised by age and sex.

3.5 Genotyping

DNA was extracted from the 3782 participants of the discovery cohorts before it was

genotyped for 599,011 common single nucleotide polymorphisms (SNPs) using the

Illumina610 QuadVl chip (Illumina, Inc., San Diego, CA, USA). Following quality control,

549,692 SNPs were retained in 3,511 participants (2,115 females). The reasons for the

removal of individuals from the discovery cohort included unresolved gender discrepancies,

relatedness or call rate < 0.95, as well as evidence of non-Caucasian descent. SNPs were

removed from the analysis in the event that they had a call rate of< 0.98, minor allele

frequency of < 0.01 and a Hardy-Weinberg equilibrium test of P < 0.001.

In order to identify individuals who were not ofCaucasian origin multidimensional

scaling (MDS) was carried out using an Identity By State (IBS) distance matrix on the

genotyped data and incorporated unrelated HapMap samples. These analyses were

performed by Davies et al. (2011). Individuals were removed if their genotype was visibly

outside the cluster corresponding to the Utah residents with Northern and Western European

ancestry (CEU). The results of the MDS analysis indicated that a small subgroup of

individuals, particularly from the Manchester and Newcastle cohorts, were located at the

edge of the CEU cluster. Whilst this is suggestive of population stratification, the notion was

explored further by re-running the MDS using only the SNPs and individuals who had

passed the quality control. Following this, regression analysis was performed in each of the
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cohorts to measure the effect of the first four MDS components on the cognitive phenotypes.

There was a small but significant effect of stratification on the phenotype in the Manchester

cohort. In order to correct for this and any stratification in the other cohorts, the first four

MDS components were fitted as covariates in the single marker analysis.

Imputation was performed in each cohort using the MACH (Li, Wilier, Ding,

Scheet, & Abecasis, 2010) software (vl.0.16) to the HapMap phase II CEU (NCBI build 36

release 22) reference panel. Imputed SNPs were omitted from analysis if they had an

imputation quality score of< 0.3 and a minor allele frequency of < 0.005.

For the NCNG sample, DNA was extracted from blood using the Qiagen Gentra

Autopure LS system (Qiagen, Valencia, CA, USA). Genotyping took place on the Illumina

Human 610-Quad Beadchip (Illumina, Inc., San Diego, CA, USA). Quality control was

implemented using the "check.marker" function from the R package GenABEL (Aulchenko,

Ripke, Isaacs, & van Duijn, 2007). Identity-by-state (IBS) was used to assess cryptic

relatedness, with cases where IBS threshold exceeded 0.85 being removed. Population

structure was assessed using multidimensional scaling analysis where individuals who were

suspected of possible recent non-Norwegian ancestry were removed. Individuals were also

removed if the heterozygosity value was greater than two standard deviations from the

sample mean or where sex could not be determined. SNPs were excluded if the call rate was

< 0.95, a minor allele frequency of < 0.01 and a Hardy-Weinberg Equilibrium (exact test) P-

value of < 0.001. The final sample consisted of 554,225 SNPs in 670 individuals.

In the BATS sample, DNA was extracted from the blood of 2104 participants and

was genotyped using an Illumina Human 610-Quad chip (Illumina, Inc., San Diego, CA,

USA). Quality control was then implemented leading to 529,379 SNPs being retained in

2062 (1,093 female and 969 male) participants. Individuals were removed due to unresolved

gender discrepancies or evidence of non-Caucasian descent. SNPs were removed if they met

the criteria of call rate < 0.95, minor allele frequency < 0.01 and a Hardy-Weinberg

equilibrium test of P < 0.00001 (Medland et al., 2009). Multidimensional scaling analysis of
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SNP data showed three components. To control for population stratification, all three

components were entered as covariates along with age and sex in the analyses.

3.6 Genome Wide analysis and Meta-analysis of the four cognitive phenotypes.

Additional analysis carried out in in the following chapters will follow on from the

single marker analysis carried out by the author in the discovery and replication cohorts. In

the discovery cohorts single marker analysis was conducted in Mach2QTL (Li et al., 2010),

in order to use imputed genotypes, using an additive linear model to gauge the effect of

genotype on phenotype. The number of effect alleles at each locus was counted where the

range of these estimates was from 0 - 2. A separate additive model was conducted in each

cohort for each of the cognitive phenotypes. The first four multidimensional scaling

components were included as covariates in each additive model before the results were

meta-analysed using an inverse variance weighted model carried out in METAL (Wilier, Li,

& Abecasis, 2010) providing a measure of the weight of evidence for the association

between each SNP across the five cohorts. The results show that no single SNP in any of the

four cohorts attained the level of 5x10"8 to reach genome wide significance. Figures 3.2-3.5

plot these associations.
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General fluid ability in the CAGES sample
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Figure 3.2. Manhattan plot for the meta-analysis conducted in the CAGES sample for fluid

ability. Each point represents a SNP in its position along the chromosome of the x axis and
the -log 10 of the p value for each SNP is located on the y-axis. The red line indicates level
of significance required for genome wide significance. Imputed data were used.
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Crystallized ability in the CAGES sample
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Figure 3.3. Manhattan plot for the meta-analysis conducted in the CAGES sample for
crystallised ability. Each point represents a SNP in its position along the chromosome of the
x axis and the—loglO of the p value for each SNP is located on the y-axis. The red line
indicates level of significance required for genome wide significance. Imputed data were
used. The red line indicates level of significance required for genome wide significance.
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Memory ability in the CAGES sample

Chromosome

Figure 3.4. Manhattan plot for the meta-analysis conducted in the CAGES sample for

memory ability. Each point represents a SNP in its position along the chromosome of the x
axis and the -loglO of the p value for each SNP is located on the y-axis. The red line
indicates level of significance required for genome wide significance. Imputed data were
used. The red line indicates level of significance required for genome wide significance.
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Processing speed in the CAGES sample
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Figure 3.5. Manhattan plot for the meta-analysis conducted in the CAGES sample for

processing speed. Each point represents a SNP in its position along the chromosome of the x

axis and the -logl 0 of the p value for each SNP is located on the y-axis. The red line
indicates level of significance required for genome wide significance. Imputed data were
used. The red line indicates level of significance required for genome wide significance.

3.7 GWAS of the replication cohorts.

Single marker analysis was conducted separately in each of the replication cohorts

by collaborators in the University of Bergen (NCNG) and at QIMR Berghofer (BATS). For

the NCNG, PLINK (Purcell et al., 2007) was used. For the BATS sample, MERLIN

(Abecasis, Chemy, Cookson, & Cardon, 2002) was used as this allows for relatedness

between the twins and their siblings to be controlled for. Figure 3.6 and 3.7 shows that in

both NCNG and BATS cohorts no SNP reached genome wide significance.
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Fluid ability in the NCNG sample
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Figure 3.6. Manhattan plot for the GWAS conducted in the NCNG sample for fluid ability.
Each point represents a SNP in its position along the chromosome of the x axis and the -

loglO of the p value for each SNP is located on the y-axis. The red line indicates level of

significance required for genome wide significance. The red line indicates level of
significance required for genome wide significance.
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Performance IQ in the BATS sample
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Figure 3.7. Manhattan plot for the GWAS conducted in the BATS sample for performance

IQ. Each point represents a SNP in its position along the chromosome of the x axis and the -

loglO of the p value for each SNP is located on the y-axis. The red line indicates level of

significance required for genome wide significance. The red line indicates level of

significance required for genome wide significance.

3.8 Summary

The GWAS described above form both the discovery and replication cohorts for

the gene-set analyses described in this thesis. Whilst GWAS methodology has been

conducted on these cohorts before (Davies et al., 2011) the current work makes use of

imputed data. The results ofwhere, as in the original report by Davies et al. (2011), no

SNP was significant at the genome-wide level. Additionally FNBP1L was no longer

statistically significant. Where changes in this data processing pipeline are present, such

as the lack ofmeta-analysis in chapter 5 or the absence of gene based statistics in chapter

6, it will be noted in the relevant statistical methodology sections. In the next chapter, the

genes of the postsynaptic density (Bayes et al., 2010; Collins et al., 2006) will be

examined for an enriched association with cognitive abilities. Chapter 5 examines the
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genes found in the heterotrimeric g proteins as these have previously been linked to

intelligence differences (Ruano et al., 2010). Chapter 6 utilises these GWAS data sets to

examine SNPs previously linked to gene expression (Bacanu et ah, 2013; Gibbs et ah,

2010; Richardson, Lai, Parnell, Lee, & Ordovas, 2011; Tahira et ah, 2005) to assess if

these SNPs also show an enriched association with intelligence. Chapter 7 examines the

link between genes involved in non-syndromic autosomal recessive intellectual disabilities

(Musante & Ropers, 2014) to query whether genes involved in large deviations of IQ are

also enriched for quantitative trait loci involved in the normal range of intelligence

differences.
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Chapter 4; Is Intelligence influenced by genetic variation in components
of postsynaptic signalling complexes assembled by NMDA receptors
and MAGUK proteins?

4.1 Introduction

Individual differences in general cognitive ability have repeatedly been shown to be

under genetic influence where common single nucleotide polymorphisms (SNPs) tag

variants that account for between 25% to 50% of the variation (Benyamin et al., 2008;

Davies et al., 2011). Efforts to elucidate the identity of genes involved in intelligence using

the candidate gene design have been unsuccessful, as indicated by their subsequent failure to

replicate in larger, more powerful samples (Chabris et al., 2011; Houlihan et al., 2009).

However, as techniques such as GCTA have shown (Yang et al., 2010; Yang et al., 2011)

using the net effect ofmultiple SNPs may increase statistical power as a greater proportion

of variance can be captured. Gene-set analysis offers a way to examine the joint contribution

ofmultiple SNPs grouped according to their involvement in a particular process or other

criteria. In order to carry out a gene-set analysis a system must be selected that could be

involved in intelligence. In this chapter, gene-set analysis is used to examine if the genes

responsible for synaptic plasticity are also involved in intelligence. Firstly, the rationale

behind the selection of a system involved in synaptic plasticity is discussed. Secondly, the

components selected are described before a study is presented utalising gene-set analysis to

determine if variants in them are involved in intelligence differences.

4.2 Selection of a candidate system

Candidate biological phenotypes implicated in cognitive differences center on the

central nervous system, including variation in white matter integrity (Lopez et al., 2012;
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Penke et al., 2012) and brain volume (McDaniel, 2005; Stein et al., 2012). However, to

explore the genetic foundations of intelligence further, a more specific target is preferable.

The goal of this chapter is to examine the weight of evidence for a synaptic system, the

postsynaptic density (PSD) and its components, being associated with intelligence. The role

that genetic variation at the synapse plays in intelligence has been explored before using the

candidate gene design. For examine, the role that dopamine plays in intelligence can be

examined by looking for an association between allelic variation in genes such as COMT

(Barnett, Scoriels, & Munafo, 2008) and intelligence. Such designs have been criticised due

to their lack of power to detect the likely small effects attributable to a single allele in a

complex trait (Chabris et al., 2011). This chapter builds on the methodological findings

provided by GCTA and polygenic scoring analysis that, by increasing the number of variants

examined, there is the potential to increase statistical power. However, rather than utilising

all SNPs (Yang et al., 2010) or a subset which show an agreed level of association (Purcell et

al., 2009), here, groups of genes that work together to perform a specific biological function,

synaptic plasticity, formed the unit of association. The synapse, particularly the postsynaptic

density, is a rich target system both because of the large number of genes expressed and

knocking out Dlg2, Dlg3 or Dlg4 which code for the proteins of the PSD in mice have a

known effect on cognitive ability (Nithianantharajah et al., 2013). In humans the importance

of the PSD has been shown using human cortical tissue in conjunction with proteomic

profiling to show that mutations in the genes of the PSD are associated with 133 neurological

and psychiatric disorders (Bayes et al., 2010; Grant, 2012). The postsynaptic density is a

region on the dendrites that is enriched for structural proteins and signalling molecules and

glutamate receptors. The signalling proteins of the PSD include calcium-dependent kinases

(CaMKIIa, CaMKIip) as well as scaffolding proteins like postsynaptic density-95 (PSD-95)

which tether glutamate receptors to signalling complexes. The PSD also contains scaffolding

proteins such as GKAP, SHANK and HOMER, which are involved in dendritic spine

growth, the regulation of synaptic plasticity as well as those proteins which fix signalling
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complexes in place (Naisbitt et al., 1999; Sala et al., 2001; Sheng & Kim, 2011).

4.3 From single proteins to protein complexes

The notion that sensory information is processed in the brain by means of the

patterns of action potentials (Adrian, 1928) led Hebb (1949) to postulate the existence of a

mechanism capable of recognising such patterns and eliciting structural and functional

change in the neuron allowing the brain to learn. The existence of such a mechanism was

confirmed by Bliss and Lomo (1973) who used 18 anaesthetised rabbits to show that, when

the system of axons leading from the entorhinal cortex to the dentate granule cells of the

hippocampal formation (a system known as the perforant path) was stimulated with an

electrode emitting 20Hz for 15 seconds, there was an increase in the amplitude and a

decrease in the latency of subsequent population spikes. This effect, termed long-term

potentiation (LTP), lasted for between 30 minutes to 10 hours after stimulation. Further

research has shown that this ability of the neuron to alter itself also works to reduce the

efficiency of the synapse, referred to as long-term depression (LTD). Where short duration

but high frequency stimulation (100 FIz for 1 second) drives LTP, protracted stimulation at a

lower frequency (5 Hz for 10 minutes) initiates LTD (Zorumski & Izumi, 2012). By means

of LTP and LTD the brain has the ability to affect physical change in accord with

environmental input.

Crucial to LTP and LTD taking place are the A-methyl-D-aspartate receptors

(NMDAR). NMDARs are inotropic receptors where, upon binding with glutamate, the ion

channel opens. However, the NMDAR also functions as a coincidence detector which serves

to monitor activity at the pre- and postsynaptic regions. Due to the voltage dependent Mg2+

block of the calcium channel at the NMDAR, the glutamate release from the presynapse

must occur simultaneously with the depolarisation of the postsynaptic region. Once these

two events take place Ca2+ can enter the postsynaptic region where they encounter signalling

complexes within the PSD. The first piece of evidence indicating the presence of such a

78



signalling system within the postsynaptic region was produced by Migaud et al. (1998) who

examined the postsynaptic density 95 (PSD-95) protein, which normally binds with the

NMDAR, and its role in both synaptic plasticity and learning in a mouse model. Using mice

generated to lack PSD-95, Migaud et al. (1998) found that these mice produced significantly

greater levels ofNMDA induced LTP than wild type mice. In addition, the modified mice

performed significantly poorer at a water maze test. This test of spatial memory is known to

require hippocampal NMDA function (Morris, Anderson, Lynch, & Baudry, 1986; Tsien,

Huerta, & Tonegawa, 1996). Importantly, the modified mice showed no signs of

neurological abnormality, and NMDARs were present to the same extent in both wild and

mutant mice. What these results show is that the NMDAR itselfwas left intact and

unmodified by disruption to the PSD-95 protein. However, both LTP and learning were

perturbed, indicating the presence of a signalling complex within the PSD tethered to the

NMDARs requiring an influx of Ca2+ to function being located beneath the NMDAR.

Indeed, biological functions are often performed by groups of proteins acting together in

macromolecular "machines" (Alberts, 1998).

Proteomic studies investigating synaptic plasticity have used this link between PSD-

95 and plasticity to try to elucidate the other proteins involved by isolating complexes

containing NMDAR PSD-95. Early studies (Husi & Grant, 2001) using proteomic methods

showed that these complexes were between 2,000 and 3,000 kDa suggesting a higher degree

ofmolecular variation than ifNMDAR complexes were composed of PSD-95 and a receptor

channel alone. Indeed, it was shown that 77 proteins were found in these NMDAR

complexes and that these molecules fell into 5 categories of neurotransmitter receptor, cell

adhesion, adaptors, signalling enzymes, and cytoskeletal proteins (Husi, Ward, Choudhary,

Blackstock, & Grant, 2000). Furthermore, interference with any of these classes of proteins

resulted in a disruption to the induction of synaptic plasticity, indicating that the total protein

complex is the functional unit rather than any one protein captured by such groupings.

These results show that, by starting with a single molecule linked to learning and
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synaptic plasticity, PSD-95, it is subsequently possible to find the complexes that contain

PSD-95 using proteomic tools. The importance of this is that it removes the focus away from

a single molecule and exposes a greater set of components, all of which are potentially

involved in the same process. The relevance for this in intelligence research is underscored

by the finding that intelligence is a highly polygenic trait and by examining groups of

molecules with a known effect on learning and brain physiology (synaptic plasticity), it may

be possible to simultaneously increase statistical power and provide a more mechanistic

account of intelligence differences.

The NMDAR is a part of the postsynaptic density (PSD) also examined here due to

the role that mutation in genes expressed in the PSD plays in many dozens of neurological

and cognitive disorders (Bayes et al., 2010; Collins et al., 2006; Kirov et ah, 2012). The PSD

can update its own responsiveness to subsequent input on very short and long time scales

(Ernes & Grant, 2012). At the genetic level, evidence suggests that the elaboration of

complex learning involved duplication and subsequent divergence of genes in the PSD

(Ryan et ah, 2013). This was followed by strong conservation of function in the vertebrate

line, (Ernes et ah, 2008) indicative of a finely-tuned system. The PSD, therefore, is a

promising candidate for seeking genes in which variation is associated with intelligence.

4.4 The PSD and associated complexes

Among the proteins comprising the mammalian PSD, three complexes are of

particular importance in mediating neural transmission: TheNMDA-RC (A-methyl-D-

aspartate receptor complex), mGlu5-RC (the metabotropic glutamate 5 receptor complex),

and the AMPA-RC (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

complex) (Collins et ah, 2006) (See Figure 4.1).
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Figure 4.1: Schematic of a central nervous system excitatory synapse showing the

proteins in the postsynaptic terminal organised into multi protein complexes assembled with

glutamate receptors (AMPA, NMDA and mGluR receptors shown).

The AMPA-RC is the primary basis of rapid excitatory neurotransmission in the

mammalian brain (Anggono & Huganir, 2012; Shepherd & Huganir, 2007); additionally, the

induction ofLTP is induced, in part, by the summation ofAMPA mediated exciatatory

postsynaptic potentials (EPSPs) (Collingridge, 1985). Using in vivo rat models it has been

possible to show that an increase in the amplitude and duration of the excitatory postsynaptic

potentials (EPSPs), produced by AMPA-RC activation, is associated with an increase in long

term potentiation and performance in memory tasks (Staubli et al., 1994).

Synaptic plasticity is dependent on both the NMDA-RC (Zorumski & Izumi, 2012)

and mGlu5-RC (Mukherjee & Manahan-Vaughan, 2013). The mGlu5-RC, consisting of

some 52 proteins forming the metabotropic Gaq-linked G-protein coupled glutamate receptor

(Kim, Lee, Lee, & Roche, 2008), is closely associated with longer-term modulation and
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maintenance of long-term potentiation (Attucci, Carla, Mannaioni, & Moroni, 2001;

Hermans & Challiss, 2001; Jia et al., 1998; Manahan-Vaughan et al., 2003).

NMDA/MAGUK-RC is involved in rapid processing of information and updating ofAMPA-

RC responsiveness (Zorumski & Izumi, 2012). The NMDA-RC consists of neurotransmitter

receptors, ion channels and signalling proteins scaffolded at the postsynaptic membrane

where they function to convert information in patterns of action potentials into biochemical

signals underlying memory and other aspects of cognition (Pocklington, Cumiskey,

Armstrong, & Grant, 2006). Mutations in NMDA-RC have been implicated in the aetiology

of over one hundred brain disorders, including those with cognitive deficits, such as

schizophrenia, autism and intellectual disability, (Bayes et al., 2010; Frank et al., 2011;

Kirov et al., 2012; Pocklington et al., 2006; Walsh et al., 2008) this supports the linkage of

the NMDA-RC to both cognitive and psychiatric disorders.

4.5 Summary

By combining GWAS data sets on fluid cognitive ability, crystallised cognitive

ability, memory, and processing speed with gene sets assembled using experimentally-

determined sets of proteins detected in the PSD of human and mouse brains (Bayes et al.,

2010; Collins et al., 2006) it is hypothesised that the PSD gene sets will show a greater

weight of evidence for cognitive associations than genes drawn from outside these sets. To

test this, all SNPs in genes and a 50kb boundary will be mapped to genes before a single

statistic describing the weight of evidence for each gene is calculated (Liu et al., 2010). A

competitive test of enrichment, Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,

2005; Wang, Li, & Bucan, 2007b), was used to test if gene sets corresponding to these

components showed significant enrichment for the five cognitive phenotypes. The discovery

samples were those of the CAGES consortium (Davies et al., 2011). Replication of

significant findings was sought in two independent samples from Norway and Australia.
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4.6 Materials and methods

4.6.1 Postsynaptic density gene sets

The genes responsible for the expression of the postsynaptic density and its

subcomponents are available at the G2C database

(http://wvvw.genes2cognition.org/db/GeneList') see Appendix A. The size of the gene sets

used along with the degree of overlap between the gene sets is shown in Figure 4.2.

Figure 4.2. Venn diagram showing the overlap of three gene complexes and their relative

genetic overlap within the proteins of the full human PSD (hPSD). Numbers of genes in each

gene set and overlap of these are also shown. Note: The full hPSD consists of all genes

associated with proteins in the human-derived postsynaptic density (Bayes et al., 2010). The

genetic constituents of the AMPA-RC, mGlu5-RC, and NMDA-RC are taken from (Collins

et al., 2006) mouse-based proteomic experiments.
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The human postsynaptic density (hPSD) was ascertained based on experimentally

identified proteins and taken from work and analyses performed by Bayes et al. (2010).

Human postsynaptic densities were isolated from neocortical samples of 9 adults (mean age

= 47.0 years, SD = 15.74, 3 females) who had undergone a variety of medically necessary

neurosurgical procedures (Bayes et al., 2010). The protein preparations were pooled into

three samples from three individuals, each sample containing normal non-diseased tissue

from at least two of three cortical regions (Frontal, parietal, and temporal lobes). These three

samples were then subjected to proteomic profiling using liquid chromatography tandem

mass spectrometry (LC-MS/MS) (Bayes et al., 2010). The full set, consisting of 1387 genes,

details genes whose proteins were found in at least two pooled samples, whereas the

consensus set features only the 714 genes found in all three samples. Only autosomal genes

were included in the present analyses (96.1% of the full hPSD and 96.4% of the consensus

list) (Bayes et al., 2010).

The NMDA-RC, mGluR5, and the AMPA-RC gene sets were taken from previous

work conducted by Collins et al. (2006). For the NMDA-RC, MASC complexes were

isolated using affinity to a peptide derived from the carboxy terminus of the NR2B protein

and analysed by LC-MS/MS. The identified list of proteins overlapped substantially with an

NMDA receptor complex (NRSC) identified earlier (Husi et al., 2000). The earlier complex

was an amalgamation of lists derived by immunoprecipitation from mouse forebrain with an

NMDA receptor NR1 subunit antibody and the same NR2B carboxy terminal peptide. The

combined NMDA-RC list consists of 186 genes of which 181 are autosomal and were

included in this study. Genes coding for the mGlu5-RC were those identified using an

antibody against mGluR5 protein in rat brain lysates (Farr et al., 2004). Of 52 mouse

orthologues of these genes that have been identified (Collins et al., 2006), all 50 autosomal

genes were included in the present analyses. The AMPA-RC comprised a set of nine proteins

and corresponding genes isolated by immunoprecipitation using an antibody against the

GluR2 protein (Gria2) (Collins et al., 2006). The seven autosomal genes from this set were
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included in the present analyses.

4.6.2 Statistical analysis

First, gene-based statistics were derived using all markers that fell within gene

boundaries. Gene-based statistics have the potential to increase statistical power in

comparison with single marker designs. However, this depends on the underlying genetic

architecture of the trait and in instances where there are multiple causal variants within a

gene, as is likely with a highly polygenic trait such as intelligence, summing the small effects

of each marker once may enable statistical significance to be attained which would otherwise

be indistinguishable from background noise. In addition, gene-based statistics make it

possible to assess the relative importance for intelligence of each gene in the PSD gene sets.

A versatile gene-based test for genome-wide association studies (VEGAS) (Liu et al., 2010)

was used to conduct gene-based analyses of association for each of the five cognitive

phenotypes on the results of the meta-analysis described in chapter 3.

VEGAS derives a gene-based statistic by first converting the p-value associated with

each SNP into an upper-tail %2 statistic with 1 degree of freedom. Next, the yj statistics

corresponding to each SNP within a gene is summed forming the gene-based statistic. The

statistical significance for each gene is derived by simulating a multivariate standard normal

random vector with correlations equal to those found between SNPs in the gene thus

controlling for linkage disequilibrium (LD). Each vector contains as many elements as SNPs

in the gene controlling for the number of SNPs per gene. This is an important consideration

as, if the most significant SNP within a gene is used as the gene-based statistic (Wang et al.,

2007b), a bias will be introduced where genes with a greater number of SNPs will be

assigned a small p-value even in the absence of any true association between genotype and

phenotype. The component variables are then squared to give the correlated y} random

variables. This vector is then summed to give a gene-based statistic consistent with the null

hypothesis of no association. This procedure is then repeated multiple times to provide a null
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distribution against which the empirical gene-based statistic can be compared. The empirical

p-value for the gene is the proportion of simulated gene-based statistics which are greater

than the observed gene-based statistic. The number of simulations used to ascertain statistical

significance is determined using an adaptive procedure. Initially, 103 simulations is used

which is increased to 104 should an empirical p-value of <0.1 be produced. In the event that

when 104 simulations produces a p-value of <0.001 the number of simulations is increased to

106. Should a P-value of 0 be produced using 106 simulations, no more will be performed

and the 0 should be interpreted as p < 10"6. This constrains the minimum P-value that

VEGAS can produce, however it should be noted that none of the genes used in this work

attained a p-value of 0. The alpha level used in VEGAS is modified using a standard

Bonferroni-correction where the number of genes is used as the denominator

(0.05/17787=2.811 x 10~6). However, the overlap that occurs between genes means that some

of these tests will be positively correlated, and so the Bonferroni-correction is likely to be

overly conservative.

VEGAS was selected in part as it can be used on summary GWAS data and does not

require access to the raw genotype data. This is an important consideration in genetic

analysis as it allows this method to be used in the ever increasing sample sizes that are

required in GWA studies and enables replication in larger sample sizes. Despite the use of

summary rather than raw genotype data there appears to be little loss of information when

using VEGAS to derive a gene-based statistic in comparison with phenotype permutation.

Using a GWAS data set examining height in 3,611 unrelated individuals (Benyamin et al.,

2008; Cornes et al., 2005; Medland et al., 2009) Liu et al. (2010) compared VEGAS with

phenotype permutation method carried out in the PL1NK (Purcell et al., 2007). This

comparison took place using a subset of the full 17,787 genes that VEGAS uses due to the

genotype based permutation method used by the PLINK set-based method being

computationally intensive. The subset of 413 was selected from chromosome 22 with an

additional 7 genes being selected on the basis that VEGAS indicated that their P-value was
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<10"3. The p-values produced by VEGAS and PLINK were then —log10 transformed and a

Pearson's correlation showed that the two methods produced near identical results for the

majority of genes tested (r = 0.999). A Spearman's rank correlation showed that the rank

orders were highly matched (rs = 0.998).

Using VEGAS, SNPs were assigned to genes according to their position on the

UCSC Genome browser hgl 8 assembly with a gene boundary of± 50kb of 5' and 3' UTRs.

The gene-based statistic was then derived using each SNP within the specified boundary,

with VEGAS controlling for the number of SNPs in each gene and the LD between those

SNPs. Gene-based p-values were then -log(10) transformed and rank ordered for each

phenotype.

Next, the specific gene-set enrichment hypotheses were tested using a competitive

test of enrichment, GSEA (Subramanian et al., 2005; Wang et ah, 2007b). As a method of

gene-set analysis GSEA examines if the test statistic for a set of genes shows a small but

consistent deviation from what would be expected under the null hypothesis. It has been

shown that genes do not operate in isolation but rather form groups of proteins, which are

part of pathways, or networks that underlie disease status or biological processes such as

synaptic plasticity (Husi & Grant, 2001; Husi et ah, 2000; Schadt, 2009)

These pathways and networks are then used as the unit of association enabling the

weight of evidence for the association of the set, and the biological process the set is

involved in, to be quantified as well as assist in a mechanistic interpretation of statistically

significant results. GSEA is a competitive test, which contrasts with self-contained tests. The

difference between the two lies in the nature of the null hypothesis being tested (Goeman &

Buhlmann, 2007). Competitive tests compare the level of association between the gene-set

with that of gene-sets drawn from throughout the genome. In this sense the null hypothesis

tested is that the gene-set of interest displays the average level of association given the

distribution of association from throughout the genome. Self-contained tests examine if there

is a statistically significant association between the gene-set and the trait of interest, where
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the null hypothesis tested is that there is no association between the gene-set and the trait.

Whilst self-contained tests are more consistent with typical null hypothesis testing,

competitive tests are robust to sources of genomic inflation (Devlin & Roeder, 1999; Wang,

Li, & Hakonarson, 2010). In addition, self-contained tests are susceptible to an increase of

type 1 errors due to the manner in which the null hypothesis is constructed. By permuting

phenotype labels before the gene-set statistic is derived, creates a null distribution describing

no association between genotype and phenotype. However, the observed gene-set statistic is

calculated from the GWAS data where there are more low p-values than we should expect by

chance meaning that randomly selected gene sets would have more low p-values than would

be expected under the null hypothesis of no association. This problem is avoided by using

competitive tests as the gene-set is compared against the average level of association in the

same data set.

Competitive tests can be further divided into two categories: overrepresentation

analysis and enrichment analysis. An overrepresentation analysis involves generating a list

of significant genes from the observed data. This is done by selecting those genes that reach

a predetermined level of statistical significance. The proportion of genes in the a priori gene-

set that appear in the list is compared to proportion that is not. The gene-set is

overrepresented if there is a greater proportion of genes from the a priori gene set amongst

those data driven list than would be expected by chance. Enrichment methods rank all genes

by the significance of their association with the trait of interest. A gene-set is enriched if it is

ranked higher in the genome wide set than would be expected by chance. Enrichment

methods have two main advantages when compared to overrepresentation analysis. The first

is that they avoid the problem of establishing a threshold to determine which genes are

examined as the null distribution is formed using all genes in a genome wide ranked set. The

second is that they make use of the metric used to rank the genes rather than simply

including them should they pass the threshold. This means that more weight can be given to

genes in the gene-set that show a high level of association with the trait as opposed to
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overrepresentation tests where a gene in a set with a p-value of 0.049, for example, is treated

as having the same evidence for association as a gene with a P-value of 5 x 10 "8. By

retaining these data there is the potential to increase the power to detect a gene set which

influences intelligence.

As a competitive test of enrichment, GSEA uses a candidate list of gene identifiers

and a genome-wide set of genes which are ranked by the strength of their association with a

phenotype. GSEA tests whether gene identifiers in the candidate set fall higher in the

genome-wide ranking than would be expected by chance. A running-sum Kolmogorov-

Smirnov statistic weighted by the p-value from the genome-wide gene ranking set is derived.

By weighting the p-value in this way the rank order and the distance between the ranks is

used to determine if the gene-set shows enrichment for intelligence. This process is repeated,

and the final enrichment p-value corresponds to the proportion of runs in which the test gene

set ranked higher than the permuted set. Here, 15000 permutations were used. Statistical

significance for the gene sets was to attain an uncorrected enrichment P-value < 0.05 and/or

FDR-corrected q-value of < 0.25 as per the developers' instructions (Subramanian et al.,

2005; Wang, Li, & Bucan, 2007a). Whilst the use of both the p and FDR values is advised

the mGluR5-RC was retained for further testing as it had a FDR <0.25.

In order to determine the validity of setting a FDR of 0.25 gene sets that reached this

level, (the NMDA-RC and the mGlu5-RC) were compared against P- and FDR values

derived from 1000 randomly-sampled gene sets of the same length (Ersland et ah, 2012).

The observed p- and FDR values were compared to the randomly sampled gene-sets of equal

length and an empirical significance value was set for P and FDR values of the observed

gene set as being smaller than 95% of those obtained in the random gene sets. Gene sets

passing this criterion were taken forward to step six: replication in the BATS and NCNG

cohorts. Figure 4.3 illustrates the total data processing pipeline including GWAS and meta¬

analysis.
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Figure 4.3. Total data processing stages from top to bottom. As described in chapter 3, the
five cohorts from the CAGES consortium underwent single marker analysis (Li et al., 2010)

separately before the results were meta-analysed (Wilier et ah, 2010). Next, SNPs were

assigned to genes based on their position as indicated in the UCSC Genome browser hg 18

assembly and a gene based statistic was derived using VEGAS (Liu et ah, 2010). A priori
selected gene sets detailing the molecular composition of the PSD were brought in (Bayes et

ah, 2010; Collins et ah, 2006; Husi & Grant, 2001) and enrichment of these sets in cognition
was sought using GSEA (Subramanian et ah, 2005; Wang et ah, 2007b). Gene sets which
were enriched were then compared to 1000 randomly selected gene sets of the same length to
examine the strength of the enrichment found. Gene sets which survived this procedure were

then taken forward for replication in two independent cohorts.

4.7 Replication

As only the NMDA-RC gene set met the criteria to be deemed significant against
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any cognitive variable (as will be described below), it was the only set in which a replication

was sought. Following replication the enrichment P-values from each of the three cohorts

(CAGES, NCNG and BATS) were combined using Stouffer's Z-transform method

(Whitlock, 2005a; Zaykin, 2011). The discovery cohort P-value was corrected for multiple

comparisons using a Bonferroni correction for the 5 gene sets tested x 4 phenotypes; i.e., a

correction for 20 tests (0.002 x 20 = 0.04) before being combined with NCNG and BATS.

4.8 Results

4.8.2 Gene-based association

Gene-based analysis of the meta-analytic SNP association data combining

information from the five cohorts found no single gene significantly associated with any of

the four cognitive phenotypes of fluid ability, crystallised ability, memory, and mental speed.

The most significant gene-based p-values for fluid cognitive ability, crystallised ability,

memory and processing speed, respectively, were for BCAR3 (P = 4.Ox 10"6), RFFL (P =

7.0x10"5), OR4P4 (P = 4.0x10"5), and EIF5A2, (P = 4.9x10"5). The gene with most evidence

for association in the earlier GWA in this cohort (FNBP1L for gf(Davies et ah, 2011))

ranked second in these analyses (P = 1.9x10"5). This slight difference is likely to be due to

the use of imputed SNPs in the present analyses, by contrast with actual SNPs in the original

analysis.

4.8.3 Enrichment analysis of postsynaptic density gene sets

Next, we test our principal hypothesis that variation in genes that code for the

proteins in the PSD is involved in the normal range of variation of cognitive abilities. GSEA

analyses were performed on each the six gene sets for each of the cognitive phenotypes. Of

the five gene sets, the NMDA-RC was significant (P = 0.002, FDR = 0.221) for gf (Table

4.1). mGlu5-RC had an FDR also under 0.25, but had a P-value of 0.133. No significant

support for enrichment was found for any of the other three phenotypes for any other gene
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set (Table 4.1) nor was enrichment found for crystallised ability, memory, or processing

speed (Tables 4.2 - 4.4). By comparison with 1000 randomly-ascertained sets of 181 genes,

both the P-value and FDR obtained for the NMDA-RC was lower than that of 99.7% of the

random gene sets in the gfphenotype. In the case of the association of mGlu5-RC with gf,

comparison with 1000 randomly-sampled lists did not provide significant support for

enriched association as it fell below the 95% threshold (observed P-value < 83.0%; FDR <

84.1% of random gene sets).
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Table 4.1. Shows the results of enrichment analysis on five candidate gene lists from the

PSD conducted on gf in the CAGES cohorts. The replication of the NRSC gene set in both

BATS and NCNG cohorts is included.

Complex name Number of genes Empirical P-value FDR

hPSD full 1386 0.628 0.705

hPSD consensus 714 0.242 0.542

NMDA-RC 181 0.002 0.221

mGlu5-RC 50 0.133 0.203

AMPA-RC .7 0.595 0.804

Replication

Samples

NMDA-RC 180 0.012 0.012

(BATS)

NMDA-RC 180 0.371 0.371

(NCNG)

Note: FDR is False Discovery Rate hPSD, postsynaptic density; NMDA-RC, TV-methyl-D-

aspartate receptor signalling complex/membrane-associated guanylate kinase associated

signalling complex; mGlu5-RC, the metabotropic glutamate receptor complex 5; AMPA-RC,

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor complex; BATS, Brisbane

Adolescent Twin Study; NCNG, Norwegian Cognitive NeuroGenetics.
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Table 4.2. Shows the results of enrichment analysis on five candidate gene lists from the

PSD conducted on crystallised ability in the CAGES cohorts.

Complex name Number of genes Empirical P-value FDR

hPSD full 1386 0.706 0.757

hPSD consensus 714 0.821 0.851

NMDA-RC 181 0.307 0.679

mGlu5-RC 50 0.327 1.000

AMPA-RC 7 0.501 0.887

Note: FDR is False Discovery Rate hPSD, postsynaptic density; NMDA-RC, A-methyl-D-

aspartate receptor signalling complex/membrane-associated guanylate kinase associated

signalling complex; mGlu5-RC, the metabotropic glutamate receptor complex 5; AMPA-RC,

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor complex.
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Table 4.3. Shows the results of enrichment analysis on five candidate gene lists from the

PSD conducted on memory in the CAGES cohorts.

Complex name Number of genes Empirical P-value FDR

hPSD full 1386 0.450 1.000

hPSD consensus 714 0.768 1.000

NMDA-RC 181 0.441 1.000

mGlu5-RC 50 0.819 0.892

AMPA-RC 7 0.637 1.000

Note: FDR is False Discovery Rate hPSD, postsynaptic density; NMDA-RC, A-methyl-D-

aspartate receptor signalling complex/membrane-associated guanylate kinase associated

signalling complex; mGlu5-RC, the metabotropic glutamate receptor complex 5; AMPA-RC,

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor complex.
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Table 4.4. Shows the results of enrichment analysis on five candidate gene lists from

the PSD conducted on processing speed in the CAGES cohorts.

Complex name Number of genes Empirical P-value FDR

hPSD full 1386 0.837 1.000

hPSD consensus 714 0.861 0.990

NMDA-RC 181 0.817 0.819

mGlu5-RC 50 0.619 1.000

AMPA-RC 7 1.000 1.000

Note: FDR is False Discovery Rate hPSD, postsynaptic density; NMDA-RC, N-

methyl-D-aspartate receptor signalling complex/membrane-associated guanylate kinase

associated signalling complex; mGlu5-RC, the metabotropic glutamate receptor complex 5;

AMPA-RC, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor complex.

To ensure that the enriched association was not driven by a single gene, the most

significant gene from the NMDA-RC set and the mGlu5-RC set were removed. Once DNM2

was removed from the mGlu5-RC list, no significant evidence of enrichment with gf

remained. However removing the top gene from the NMDA-RC gene set — PRDX2 —

attenuated the enrichment with gfbut it remained significant (P = 0.006).

4.8.4 Replication

The enrichment of the NMDA-RC gene set in fluid cognitive ability was tested for

replication in the Norwegian and Australian cohorts using identical methods to those used

above in the discovery sample; i.e., gene-based analysis using VEGAS, followed by a GSEA

unit-weighted analysis with 15000 permutations. Enrichment testing in the BATS and the

NCNG cohorts yielded P-values of 0.012 and 0.371 respectively. The association remained
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significant in BATS after removing the top gene (RAB3A) from the set (P = 0.024),

indicating that multiple genes were contributing to the enrichment signal in both CAGES and

BATS. A meta-analysis of these results for the NMDA-RC across the discovery cohort and

two replication samples was determined using Stouffer's weighted Z-transform method

(Whitlock, 2005a; Zaykin, 2011). The probability of obtaining these results across the three

independent cohorts, corrected for multiple testing in the discovery cohort, and tested against

the null hypothesis of no association was P = 0.003. By omitting the discovery cohort the

enrichment of the NMDA-RC across BATS and NCNG remained significant (P = 0.018)

supporting the enriched association of the NMDA-RC with fluid ability.

4.9 Discussion

The present study used a hypothesis-driven approach to test the joint effect of

multiple genetic variants clustered in the same biological network on human intelligence

differences. In drawing upon the synapse proteomic datasets the results suggested that SNP

variation in the genes encoding the NMDA/MAGUK receptor complex is enriched for

association with fluid cognitive ability as measured by the tests used in CAGES and BATS

outlined in section 2.3. This finding linking NMDA-RC to fluid ability provides evidence

that genetic variation in the macromolecular machines formed by MAGUK scaffold proteins

and their interaction partners contributes to variation in intelligence.

By contrast with the NMDA-RC, other components of the PSD were not found to be

significantly enriched for variation in cognitive abilities in this study. These results raise the

question ofwhy the NMDA-RC should be preferentially involved in fluid-type intelligence.

The present results suggest that association of the NMDA-RC with gf does not simply follow

from it being a part of the synapse or playing a role in the excitatory transmission system, as

three other systems found in the synapse did not show enrichment and all are activated once

the receptors bind with glutamate or are found only at glutamatergic synapses. However, the

lack of an enriched association for the AMPA-RC or the mGlu5-RC could be due to the
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small numbers of genes involved in their expression, meaning that even greater sample sizes

would be required to detect an enrichment of these complexes.

The NMDA-RC is enriched for both learning and synaptic plasticity phenotypes in

mice (Pocklington et al., 2006), and the same proteins have been shown to be involved in

human learning disabilities (Pocklington et ah, 2006). These findings validate the utility of

rodent models for human cognitive function. Additionally, they suggest that combinations of

SNPs in LD with common SNPs found within the genes of the NMDA-RC may result in

variation in synaptic plasticity, which in turn is responsible for some of the observed

differences in human intelligence.

Variation in the NMDA-RC has been implicated in schizophrenia (Fernandez et ah,

2009; Kirov et ah, 2012) and intellectual disability (Nithianantharajah et ah, 2013; Tarpey et

ah, 2004; Walsh et ah, 2008; Zanni et ah, 2010) with mutations in individual scaffolding

molecules SAP102/Dlg2 and PSD93/Dlg3 linked to these disorders respectively. The present

finding of a link between intellectual function and variation in the NMDA-RC therefore

supports a genetic link between schizophrenia and intelligence, in keeping with behaviour

genetic (Toulopoulou et ah, 2010) research, and also with recent polygenic risk studies of a

sub-set of the present cohorts that indicated an overlap of polygenic risk factors for

schizophrenia and for cognitive aging (Mcintosh et ah, 2013). The genetic link between

schizophrenia and cognitive abilities appears to be region rather than variant specific. Where

de novo copy number variation (CNV) at the NMDA-RC is associated with schizophrenia

(Kirov et ah, 2012) it is common SNP variation, in the same region, which shows an

enriched association with the normal range of cognitive abilities. However, neither the

common SNPs, nor CNVs associated with schizophrenia have been shown to be associated

with intelligence differences in a non-elderly cohort (van Scheltinga et ah, 2013).

Enrichment was found for fluid ability and not for crystallised ability, memory or

processing speed. If gene effects directly impact on specific functions (rather than on general

ability per se), then analyses targeting these specific functions (such as speed or memory) are
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known to be significantly more powerful than are analyses of a composite or latent factor

such as fluid ability (van der Sluis, Verhage, Posthuma, & Dolan, 2010). Here, the enriched

association of the NMDA-RC was found for the fluid ability composite, rather than specific

functions. This contrasts with work (Nithianantharajah et al., 2013) finding that specific

cognitive deficits, such as visual discrimination tests of operating conditioning or attention,

co-occur with variation in the genes of the NMDA-RC. Such findings are consistent with the

current study as where Nithianantharajah et al. (2013) examined the effect of knocking out a

single gene, here normal variation in the form of common SNPs was measured across the

genes of the NMDA-RC. The finding that genetic association for the fluid ability phenotype

proved the stronger indicator, then, is compatible with generalist genetic action as opposed to

functional specificity (Plomin & Kovas, 2005).

Whereas the mGlu5-RC gene set showed weak evidence of enrichment in the initial

GSEA analysis, this did not survive permutation testing. It was shown to be due to a single

gene, DNM2, rather than an over representation ofmGlu5-RC genes in the upper portion of

the total gene list. This is in contrast with the NMDA-RC gene set where multiple genes

were involved in the enrichment signal in both CAGES and in BATS, consistent with the

notion that it is variation in the network and not in a single gene, which contributes to normal

variation in fluid ability.

There were a number of limitations with this study. Firstly, the link between genetic

variation in the NMDAR-RC and intelligence may exist for reasons other than synaptic

plasticity. Activation of the NMDA-RC can also lead to the destruction of neurons and

initiate neuronal death (Zorumski & Izumi, 2012). The use of gene-set analysis methods

would not be able to determine the reason for the association, only its existence. A related

problem pertains to the genes driving the association in the NMDA-RC set. Whilst this set

does indeed show significant enrichment in the data sets tested here it is not clear if it is

because the NMDA-RC genes set shows enrichment or if this set overlaps with other gene-

sets which contain the true association. A related issue is that the SNPs of the NMDA-RC
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may be in LD with SNPs that do not fall within the gene boundaries of the NMDA-RC gene

set. This would mean that the NMDA-RC gene set is tagging the variants responsible for

variation in intelligence. These questions can be addressed through the use of testing

additional gene sets detailing other gene-sets as well as examining both the portion

overlapping with the NMDA-RC as well as that which is unique to it. A potential solution to

both of these issues would be to assess a synaptic plasticity phenotype using human cortical

tissue. In this instance the same data processing pipeline could be used here (single marker

GWAS, gene based-statistics, gene-set analysis) but with synaptic plasticity phenotypes

rather than intelligence. Such GWAS have already been used to examine the link between

genotype and methylation levels in human cortical tissue (Gibbs et al., 2010)

A second limitation is the manner in which the gene-based statistic was derived. The

gene-based statistics derived by VEGAS and used by GSEA are assumed to be independent.

However, genes do overlap and the inclusion of the 50kb boundary is likely to magnify this

problem particularly in the presence of LD. This overlap could result in a number of genes

lying close together being given a low P-value due to a single variant mapped to them all.

This in turn could lead to the gene-set showing significant enrichment if these genes are all

part of the same gene-set. It would of course be equally true that that multiple genes could

have a high P-value for the same reasons. One solution for this would be to only map each

SNP to a single gene but the criteria to determine how to best map them is unclear.

Thirdly, whilst these results indicate that the NMDA-RC shows enrichment for fluid

abilities no effect size is included. In order to derive the proportion of variance accounted for

by the genes of the NMDA-RC, GCTA (Yang et al., 2010; Yang et al., 2011) could be

performed excluding SNPs found outside the NMDA-RC, providing a measure of the

heritability that is attributable to the genetic effects specific to the NMDA-RC. However

owing to the large standard errors reported by GCTA larger sample sizes will be needed

before this analysis becomes viable. An additional problem of using GCTA in this way

requires access to the genotyped data as it cannot currently be performed using summary
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data.

Finally, different tests were used in each cohort to derive measures ofgfwhich may

have reduced any effect found. However the fact that different cognitive tests were used in

each cohort should not be overemphasised as correlations between measures of intelligence

are high and often in excess of 0.9 (Johnson et al., 2004; Johnson et al., 2008)

In summary, large scale molecular studies indicate that intelligence is polygenic

(Benyamin et ah, 2013; Davies et ah, 2011) which is compatible with a range of genetic

models, the most extreme of which would be that all genes matter with roughly equal effect.

Here, using Gene Set Enrichment Analysis we tested the hypothesis that that some genes

matter more than others. Specifically, we found that genes in pathways related to

postsynaptic functioning are enriched. The results suggested that a major component of the

postsynaptic region, the NMDA-RC, is preferentially associated with normal variation in

intelligence. The NMDA-RC pathway appears to be specifically enriched for association

with fluid ability, providing a lead towards understanding a source of some of the variation

in human intelligence differences. Future work should include other synaptic components

such as activity-regulated cytoskeleton-associated protein (ARC). ARC has been reliably

associated with both LTP (Guzowski et al., 2000) and LTD (Waung, Pfeiffer, Nosyreva,

Ronesi, & Huber, 2008) with ARC mRNA being transported to active synaptic regions via

the dendritic spine where it is then translated and serves to modulate AMPA trafficking

(Chowdhury et al., 2006). Whilst studies using unpublished ARC gene sets exist (Kirov et

al., 2012), the validity of the list has yet to be established meaning a significant result could

indicate the ARC set containing genes also used in other synaptic components. Additionally,

a non-significant result of this ARC set being enriched for intelligence may be due to the

omission of critical genes making up the molecular constituents ofARC.
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Chapter 5: Are the genes of the heterotrimeric G-proteins associated with

cognitive ability?

5.1 Introduction

This chapter extends from the previous chapter and again takes as its rationale the

idea that genes expressed in the synapse are candidates for explaining individual differences

in intelligence. A previous functional gene-set analysis has implicated common SNPs in

heterotrimeric G-protein coding genes as being associated with differences in human

intelligence (Ruano et al., 2010). This chapter consists of an examination of this "horizontal"

approach, and a test of replication for the finding.

Aggregation of genes based on shared function has the potential to increase power,

as the focus is on the combined effect ofmultiple genes rather than examining the effect of

each SNP separately (Mooney, Nigg, McWeeney, & Wilmot, 2014), as well as to begin a

molecular-mechanistic account of human intelligence differences. This aggregation can be

performed by grouping genes according to the biological systems in which they are found,

however such pathways may not be independent, and this approach can lead to the same

genes appearing in multiple pathways. This lack of independence can be exploited for

phenotypes such as intelligence, where multiple pathways may contribute toward the

phenotype, by using an approach to examine sets of genes with the potential to influence

multiple systems, so called generalist genes (Kovas & Plomin, 2006). Gene-sets influencing

multiple pathways can be created by grouping genes according to their cellular function such

as tyrosine kinase signalling or ligand gated ion signalling, an approach termed horizontal

pathway analysis by Ruano et al. (2010). This horizontal method of grouping genes contrasts

with traditionally defined pathways, also termed vertical pathways, as illustrated in Figure

5.1A.

The biology of the synapse is well suited to the use of horizontal groupings as there
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is a high degree of overlap between the proteins in both the dopaminergic and the

glutamatergic system for example. These two systems, along with other synaptic systems

have been shown to regulate functions such as synaptic plasticity (Migaud et al., 1998; Yang

et al., 2012). This indicates that genetic variation in the synapse may lead to disruption

across multiple systems which are all involved in the same process making the genetic

architecture of the synapse a suitable candidate system for horizontal analysis.

agonist 2

functional group a]
functionalgroup b\

; functional group C

; functionalgroup D

E3 ' functionalgroup E

• functional group F

pathway 3

Figure 5.1. Section A illustrates the genes in a dopamine pathway and a glutamate pathway.
As can be seen, these vertical or linear pathways share genes. Section B illustrates 3

pathways which have been broken up into 6 functional groups (A-F). These 6 groups are

assembled according to the function of the proteins rather than the pathways they fall into.
As proteins are known to act across pathways, grouping genes according to their functional

category allows each gene-set to have an effect on multiple linear systems. (Figure taken
from (Ruano et al., 2010))

The synaptic sets used by Ruano et al. (2010) were drawn from a total set comprised
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of all genes expressed in the synapse. The 22 gene-sets taken from this total included 17

horizontal pathways and 4 vertical synaptic signalling pathways, along with a group of genes

expressed in the synapse, but whose function was unknown at the time. Among the 23

groups was a set of 27 genes coding for heterotrimeric G-proteins. Heterotrimeric G-proteins

form the internal mechanism of one of the four types of ion gate including, ligand gated ion

channels, voltage gated ion channels, second messenger ion channels and G-protein gated

ion channels. Ligand gated ion channels, such as the AMPA glutametergic ion channels, are

opened in response to the neurotransmitter (the ligand) binding to the receptor. Voltage gated

ion channels such as calcium ion channels are opened in response to the change in electrical

potential near the channel being altered. This takes place during depolarization. Activation of

the NMDA receptor, for example, along with sustained activation ofAMPA receptors,

results in an opening of the calcium channels along with a removal ofmg2+ from the ion gate

allowing ca2+ to freely enter. Both second messenger ion channels and G-protein gated

channels are metabotropic ion channels where the receptor does not form an ion channel but

rather upon binding with the appropriate ligand transduces a signal resulting in an

intracellular signalling cascade. In the case of second-messenger-gated ion channels, the

intracellular signalling cascade takes the form of the release of Ca2+or cAMP (Cyclic

adenosine monophosphate) the latter can be activated by heterotrimeric G-proteins. The

heterotrimeric G-proteins can also regulate the opening of the ion channel directly following

the activation ofmetabotropic neurotransmitter receptors including the mGlu5-R.

Heterotrimeric G-proteins consist of three subunits a, [i and y. Heterotrimeric G-proteins are

activated in response to G-protein-coupled receptor binding (Oldham & Hamm, 2008). Of

interest in accounting for general cognitive ability, as these same G-proteins are used in

numerous synaptic signalling pathways, they potentially create a processing bottleneck

which could affect a diverse range of cognition-related functions, in keeping with a role in

general cognition.

Pathways were formed by Ruano et al. (2010) for each available gene coding for the
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proteins of the heterotrimeric G-protein set (Of these 27 genes (see Table 5.2) 25 had SNP

coverage in the Perlegen chip used) based on all SNPs located within the region spanning

from 2kb upstream to 500bp downstream of the boundary of each member gene. The

resulting SNP lists were tested for association using software to test for Joint Association of

Genetic variants: (JAG: http://ctglab.nl/software/iag). This software uses phenotype

permutation to create an empirical test for significant associations between the phenotype

and the aggregated SNPs in a gene-set (Lips, Kooyman, de Leeuw, van Bochoven, &

Posthuma, submitted). Tests used to assess the combined weight of evidence from multiple

genes fall into one of two categories self-contained or competitive. Self-contained tests

evaluate the association of SNPs in a pathway against a null hypothesis of no association. By

contrast, a competitive test evaluates evidence for association in a candidate pathway against

competing random selections of genes forming a baseline level of association (Wang et al.,

2010). At the time of the Ruano et al. (2010) study only self-contained tests were

implemented in the JAG algorithms but the software now implements competitive tests (see

Lips et al. (2011)). The 23 gene-sets analysed by Ruano et al. (2010) were subjected to self-

contained testing for association with four subtests of the Wechsler Intelligence Scale for

Children in a sample of 627 children with ADHD. One gene-set - the group of 25 genes (359

SNPs) coding for heterotrimeric G-proteins - showed evidence for significant association:

with an empirical p-value of 0.0015 against an experiment-wide a of 0.0022. This

association was replicated in the UK ALSPAC cohort (n = 1,507, p = 0.047). The testing in

ALSPAC differed slightly, in that two genes available in the discovery cohort - GNB2 and

GNG11 - were omitted due to lack of coverage, with a total of 265 SNPs tested, mapped to

23 of the 25 genes used in the discovery cohort. G-protein coding genes, then, may be

causally associated with intelligence, accounting for around 3.3% of variance in general

ability (Ruano et al., 2010).

In this chapter replication of the association ofG-protein coding genes with

intelligence was sought. Additionally, crystallised ability was added along with fluid ability
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in older age. As in the original Ruano et al. (2010) method, we used the self-contained option

in JAG. In addition we used an alternative method — Gene-set Enrichment Analysis (GSEA

(Subramanian et al., 2005; Wang et al., 2010; Wang et al., 2007a)- as a complementary

analysis strategy. GSEA works with gene-level association statistics created by programs

such as Versatile Gene Analysis System (VEGAS (Liu et al., 2010))and performs a

competitive test of enrichment to determine if genes within the candidate pathway show a

greater association to a phenotype than do equivalent sets of genes selected at random from

outside the pathway. The self-contained test included here ensures that the same statistical

methods were used as per the original report (Ruano et al., 2010), however significant results

from a self-contained test should be followed up with competitive testing where deviation

from the average level of association in the data set is sought. This is because in a GWAS

data set there are more low p-values than would be expected under the null hypothesis of no

association, meaning that randomly selected genes are more likely to have low p-values.

These genes are then compared to a true null distribution where the link between genotype

and phenotype has been broken by permuting the phenotype between participants. This

means that the self-contained test used in JAG is sampling from a non-uniform distribution

and assessing it against a uniform distribution for significance, resulting in an inflation of the

type 1 error rate. As such their use without a competitive test should be interpreted with

caution. The use of both self-contained and competitive methods of analysis provides a

robust test of the original hypothesis that variation in heterotrimeric G-proteins is associated

with intelligence. Gene-level statistics were also included to quantify the contribution made

by each gene to both the fluid and crystallised phenotypes. In addition, due to the

longitudinal nature of the Lothian and Aberdeen cohorts (Whalley et al., 2011) we were able

to test for association both with current cognitive ability in older adults in five independent

samples, and also for childhood (age 11) IQ scores in two of these samples.

5.2 Summary
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By using horizontal gene grouping to assemble gene-sets coding for heterotrimeric

G-proteins self-contained and competitive gene-set tests were performed on the CAGES data

sets. Self-contained tests were used to determine if this gene-set showed association with

fluid ability, crystallised ability, or age 11 IQ whereas competitive testing was used to

determine if the weight of evidence for the heterotrimeric G-protein gene-set was greater

than the average level of association for all genes. With a set at 0.05, a simulation-study of

the power of JAG to detect the original reported-effect of 3.3% of total variation in our five-

cohort meta-analysis lay between 0.78 and 0.87 depending on assumptions about the

distribution of effects across the total set of SNPs in the pathway (see figures 5.3-5.7). Of

course, given the winner's curse, the likely true effect of the gene-set, if replicable, is likely

less than this.

5.3 Materials and methods:

5.3.1 Phenotypes

The original report detailed a statistically significant result between genetic variation

in the heterotrimeric g proteins and general ability in a sample of 627 individuals whose ages

ranged from 5 -19. As the samples used for discovery in the thesis are in middle to old age,

the fluid and crystallised phenotypes were examined to take into account the differential

effects of the ageing process on cognitive abilities (Tucker-Drob & Salthouse, 2008). An

additional cognitive phenotype was added (age 11 IQ) to also explore the effects of ageing.

See section 5.3.3 for full details.

5.3.2 Including covariates in self-contained tests.

The JAG method of analysis conducted to determine if there was a significant

association between the heterotrimeric g-protein gene-set and cognitive ability uses

phenotype permutation. As such the level of association between each SNP in the gene-set

and cognitive ability is recalculated after each permutation. However, JAG does not offer the
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user the ability to include covariates in these analyses. To solve this problem the 4

multidimensional scaling factors, used as covariates in the previous chapter for use with

Mach2QTL, were used here along with age and sex in producing the standardised residuals

for use from the factor and component scores.

5.3.3 Additional cognitive phenotypes

Due to the large age difference between the samples of the CAGES consortium and

the discovery and replication samples used in the original discovery by Ruano et al. (2010)

age 11 IQ was included in the analyses here. Age-11 IQ was assessed using the Moray

House Test number 12(MHT) for both LBC1921 and LBC1936. The score on the MHT was

corrected for age at the time of testing before being converted into an IQ-type score (mean =

100, SD = 15). Following this, sex and population stratification was controlled for by

extracting standardised residuals as described in the other phenotypes presented here.

5.3.4 Candidate gene-set

A total of 33 genes in the human genome are responsible for the Heterotrimeric G-

proteins of which 27 are ubiquitously found to be expressed at the synapse. The candidate

gene-set tested by Ruano et al. (2010) consisted of 25 of the 27 synapse expressed

heterotrimeric G-proteins. The cohorts in the present chapter were genotyped on a different

platform that, whilst not including coverage ofGNB2, nevertheless had significantly higher

coverage of the remaining genes, with a total of 473 SNPs available for testing. For GSEA,

imputed SNP data was used and coverage of all 27 genes was achieved. The analyses thus

achieved better overall coverage of the theoretically relevant trait variants in G-protein

genes.

5.3.5 Statistical analysis

In order to test for an association between the gene-set and the cognitive phenotypes
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JAG was used. JAG is an example of a self-contained test where only the gene-set of interest

is examined in order to test the null hypothesis that the gene-set is not associated with

intelligence. As mentioned, this class of tests is more prone to false positives particularly in

the presence of population stratification. JAG determines if there is a significant association

between the gene-set and the trait in the following manner. Firstly, the p-values for each SNP

in the gene-set are -log 10 transformed before being summed. This forms the gene-set based

statistic. This statistic is affected by the number of SNPs in the gene-set in that gene-sets

which contain a greater number of genes will also have a higher £-logl O(p-value). In

addition to this there is the problem that the £-loglO(p-value) will be high if there are

multiple SNPs in the gene-set that are in strong linkage disequilibrium (LD) and have low p-

values. These issues are dealt with in the second phase where the phenotype score is

permuted across the participants before the level of association for each SNP with the

phenotype is recalculated. The p-values for the same genes are then -log 10 transformed and

summed to create a null distribution for the gene-set, where the link between phenotype and

genotype has been broken. The number of times the permuted gene-sets £-loglO(p-value)

was greater than the observed gene-set based statistic was divided by the number of

permutations to derive a p-value describing the statistical significance for the gene-sets

association with intelligence. By using phenotype permutations in this manner linkage

disequilibrium and number of SNPs in the set is controlled for as the same SNPs, with the

same haplotype structure, is included in each permutation. See Figure 5.2 for graphical

representation of the JAG method for a self-contained test.
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Association between SNP and trait derived

Phenotype permuted across
participants

2 -loglO(p-value) for the gene-set

4 I
X = Empirical 2 -loglO(p-value) for

gene-set

Y = Each permuted E-loglO(p-value)
for gene-set

I
Gene-set p-value = 2 (X<Y)/n permutations

Figure 5.2. Illustration of the process used by JAG to derive a gene-set statistic and assess

this for statistical significance. Firstly PLINK was used to derive the level of association
between each SNP in the gene-set with the phenotype. The p-values for these SNPs are then

-log 10 transformed then summed to create the gene-set based statistic, labelled here as X.
The phenotype is then permuted across participants breaking the link between genotype and

phenotype. The level of association was then re-calculated from the permuted data set before

being -log 10 transformed then summed to form Y, the permuted gene-set statistic. Here,
10,000 permutations were used. The number of times Y was greater than X was summed
before being divided by the number of permutations to derive the empirical p-value for the
gene-set. As a self-contained test, JAG uses the same genes from the empirically derived

gene-set statistic ( 2 -loglO(p-value)) in the null distribution, thus controlling for LD and the
number of SNPs in the gene-set statistic.
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For processing by JAG, a total of 473 SNPs were assigned to 24 genes based on their

position in the UCSC Genome browser hgl 8 assembly with a 2kb upstream and 500bp

downstream boundary, following the procedure in Ruano et al. (2010). The analysis was

conducted with 10,000 permutations of the phenotype and an empirical p-value was derived.

The cognitive phenotypes examined using GSEA were derived using the same procedures

outlined in Chapter 3 with enrichment being examined using the data processing pipeline

described in Chapter 4. Briefly, gene-based association statistics were computed on the

combined GWAS using VEGAS which controls for both LD and the number of SNPs within

a gene through simulation (Liu et al., 2010). SNPs were assigned to autosomal genes

according to their position on hgl 8 Genome Browser assembly with a ± 50kb boundary

around each gene used to capture regulatory elements. The full complement of 27 genes

considered to form the heterotrimeric G-protein horizontal pathway were available in this

analysis, which is two more than were available in the original paper due to insufficient

coverage on the Perlegen chip (Ruano et al., 2010). GSEA was then used to determine if the

27 heterotrimeric G-protein genes were preferentially distributed in the upper portion of each

genome wide ranked gene-set using a running-sum Kolomogorov-Smirnov (K-S) statistic

weighted by the p-values of the gene-association statistic. These genome wide ranked sets

were permuted 15,000 times to derive an empirical likelihood of association, describing the

proportion of observed pennuted K-S tests smaller than the original weighted K-S test

statistic.

5.3.6 Power

Power was calculated for the JAG self-contained test through simulations. As the

parameters required to accurately compute power would require prior knowledge of the

genetic architecture of intelligence, a series of simulations were run to explore how power
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fluctuates as a function of the number of SNPs the effect is distributed across and the total

amount of variation this effect contributes toward. Simulations were carried out by assuming

a non-zero effect for 10, 30, 100 and 300 SNPs. The percentage of variance explained by

these effect SNPs was also varied where an effect size of 1, 2, 3, 4, 5 or 10% of the total

variance was simulated. For the each of the SNPs with a non-zero effect an effect size was

allocated by randomly sampling a normal distribution of effect sizes (mean = 0, SD = 1). A

predicted phenotype was then calculated for each individual in each cohort using the effect

sizes allocated to the effect SNPs. Next, 1000 phenotype vectors were generated within each

sample by adding normally distributed noise with variance such that the predicted phenotype

accounted for required percentage of total phenotypic variance (1,2,3,4,5 or 10%). For each

of the 1000 phenotypes JAG was then used to calculate the gene-set based p-value in each

cohort. These were then meta-analysed using Stouffer's weighted Z score to derive one p-

value describing the strength of the association across the five cohorts. Power was calculated

as the number of the 1000 phenotypes in which the meta-analytic p-value was less than 0.05.

New effect sizes were allocated to the effect SNPs 100 times as illustrated in Figures 5.3-5.6

with Figure 5.7 showing the mean power for each condition simulated. These simulations

indicate that there are only negligible fluctuations in power attributable to the number of

SNPs the effect is spread across. Rather, power is largely a function of the total amount of

variance explained by the SNP set. The article by Ruano et al. (2010) indicated that 3.3% of

the variance explained could be attributed to the G-protein SNP set meaning that the present

study would have between 0.775 and 0.867 power to detect the effect if it was present. The

scripts used to derive the power calculations were provided by Christiaan de Leeuw of

Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam,

Complex Trait Genetics, VU University Amsterdam, Amsterdam, The Netherlands, Institute

for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The

Netherlands.
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Power simulation for effect spread over 10 SNPs Power simulation for effect spread over 30 SNPs

2 3 4 5 10
Percentage of total variance explained

1 2 3 4 5
Percentage of total variance explained

Power simulation for effect spread over 100 SNPs Power simulation for effect spread over 300 SNPs

Percentage of total variance explained
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1 2 3 4 5 10
Percentage of total variance explained

Figure 5.3-5.6 Simulations exploring how power fluctuates as a function of total variance
explained and the number of SNPs the effect is spread across. For each effect size (1,2,3,4,5
or 10% of the total variance) 100 simulations were carried out. The mean power from these
100 simulations is shown with error bars depicting ±1 standard error. Figure 5.3 shows the

power calculation if the effect was spread over 10 SNPs where figures 5.4-5.6 show power if
the effect is spread over 30, 100 and 300 SNPs respectively.
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Figure 5.7. The mean power is plotted against variance explained for the number of SNPs the
effect is spread over.

5.4.1 Results

5.4.2 JAG results

None of the SNPs from the G-protein groups reached genome wide significance in

any of the cohorts examined. Using JAG, tests for association between SNPs in G-protein

genes and either fluid or crystallised cognitive ability were non-significant in all five cohorts

considered (See Table 5.1). Using Stouffer's Z, weighted by the square root of the sample

size (Whitlock, 2005b; Zaykin, 2011) a single meta-analytic p-value was derived for

evidence of association between the gene-set and the phenotype across the five cohorts. This

revealed no significant evidence for association for either fluid ability (p = 0.43) or

crystallised ability (p = 0.98).
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Table 5.1. Association between fluid and crystallised ability and the G-protein gene-set for
each of the five CAGES cohorts.

Fluid ability Crystallised ability
Cohort N N SNPs Empirical p-Value N N SNPs Empirical p-Value
Lothian Birth Cohort 1921 505 468 0.68 515 468 0.66

Lothian Birth Cohort 1936 989 468 0.76 1003 468 0.97

Aberdeen Birth Cohort 1936 350 470 0.62 420 470 0.63

Newcastle 754 469 0.18 750 469 0.90

Manchester 805 469 0.20 770 469 0.57

5.4.3 GSEA results

We next conducted gene-set enrichment analysis of the 5-cohorts using GSEA.

These analyses also showed no significant enrichment for either fluid ability (p = 0.30) or for

crystallised ability (p = 0.42). The gene based statistics conducted using VEGAS indicate

that one gene was nominally significant for crystallised ability and three for fluid ability.

However, these did not survive correction for the 27 tests performed (see Table 5.2). These

results indicate, then, that variation in the genes which code for heterotrimeric G-proteins are

no more associated with variation in cognitive abilities than expected by chance.

We next tested for association with age-11 IQ in the two Lothian cohorts where this

phenotype was available. These tests were conducted using the self-contained test in JAG.

No significant evidence for association was present for either LBC1921 (n = 464, n SNP =

468, p = 0.90) or for LBC 1936 (n = 947, n SNP = 468, p = 0.70). Combined using

Stouffer's method, these p values for age 11 IQ yield a meta-analytic p-value of p = 0.88.
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Table 5.2. Gene based analysis results for Crystallised and fluid cognitive ability.

Gene based P-values

Gene name N SNPs Start position (bp) Stop position (bp)
crystallised Ability

Fluid

Ability
GNA11 69 3045407 3072454 0.280 0.340

GNA12 228 2734266 2850485 0.214 0.521

GNA13 54 60437294 60483216 0.844 0.705

GNA14 311 79228367 79453043 0.950 0.568

GNA15 88 3087190 3114766 0.640 0.561

GNAI1 186 79602075 79686661 0.251 0.049

GNAI2 32 50248650 50271790 0.541 0.684

GNAI3 102 109892708 109939975 0.804 0.937

GNAL 258 11679264 11871919 0.178 0.002

GNAOl 241 54782751 54948857 0.151 0.070

GNAQ 271 79525010 79836012 0.638 0.412

GNAS 127 56848189 56919645 0.717 0.752

GNAT1* 34 50204046 50208953 0.235 0.588

GNAZ 138 21742668 21797221 0.038 0.807

GNB1 52 1706588 1812355 0.815 0.795

GNB2** 35 100109310 100114728 0.677 0.956

GNB3 72 6819635 6826818 0.286 0.768

GNB4 94 180596569 180652065 0.946 0.027

GNB5 137 50200414 50270857 0.973 0.794

GNG10 130 113463681 113472347 0.236 0.907

GNG11 121 93388951 93393762 0.505 0.533

GNG12 239 67939736 68071730 0.611 0.725

GNG2 392 51396799 51506268 0.884 0.308

GNG3* 38 62231708 62233246 0.922 0.186

GNG4 148 233777607 233880677 0.751 0.755

GNG5 136 84736593 84744850 0.836 0.953

GNG7 143 2462217 2653746 0.440 0.210

Note: * indicates genes without coverage in Ruano et al. (2010) ** Due to the use of imputed
data the GNB2 gene was incorporated into the GSEA analysis, but was not tested the JAG
replication (Table 5.1). Nominally significant genes are in bold.
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5.5 Discussion

We attempted to replicate an association between variation in genes coding for G-

proteins and human intelligence differences (Ruano et al., 2010). Strengths of the present

report include increased coverage of the G-protein genes than was available for the original

report, and wide range of samples, two assessed both in youth and in old age, and also use of

a competitive test of association using a distinct methodology, that of gene-based gene-set

enrichment analysis (GSEA). The phenotype is highly similar to that used in the original

report, with an identical analysis strategy and the same software. In no cohort was any

significant association found, and this remained the case under meta-analysis.

Age effects are unlikely to have led to a discrepancy between the original report and

those of the current study, for three reasons: first, there is a high genetic correlation, between

childhood and old age measures ofg (0.62) (Deary et al., 2012); second, we had available

crystallised ability measures which are robust to ageing effects; and, third, we were able to

directly test for association in participants using their IQ at age 11 in two samples. The null

finding at both ages in the current study would indicate, then, that, across the life course,

variation in heterotrimeric G-proteins does not contribute more than a slight degree to

individual differences in intelligence.

The original replication sample had a genetic background similar to that reported

here (UK Caucasian (Ruano et al., 2010). Differences in genetic background between the

present samples and those in the original report could alter the direction of association of

individual SNPs. This genetic heterogeneity, however, would not affect our power to detect a

significant pathway, as pathway analysis derives the sign of association for each SNP freshly

in the new samples.

One significant difference between the discovery cohort and the present samples is

that the discovery sample consisted of children and adolescents diagnosed with ADHD.

However, the ALSPAC validation sample was not drawn from a clinical population (Ruano

et al., 2010). Sample differences, then, appear not to be able to account for the null finding in
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the present report. The initial discovery sample was very small (N = 627) and although there

was replication in the much larger ALSPAC sample, this replication was only just significant

(p = 0.047). Given the null result in the current study, the original finding was likely due to

failure to control for population stratification in the replication sample. In addition the

original report makes use of only self-contained tests, rather than competitive tests.

Competitive tests are to be preferred over self-contained tests due to them being less

susceptible to the effects of genomic inflation and due to the conservative nature of testing

against genes drawn from outside the pathway. Indeed, as shown in Table 1 of Ruano et al.

(2010), prior to controlling for stratification a gene-set consisting of 900 genes and 22,325

SNPs detailing all synaptic genes was also statistically significant. Once the corrections had

been implemented this group was no longer significant, demonstrating that controlling for

stratification can affect the results of a self-contained test. However, no such steps were

taken to control for the effects of genomic inflation when replication was sought in an

independent sample of 1,507 individuals, and where the final p-value for the heterotrimeric

G-proteins is stated as 0.047 it is unlikely to remain significant should any corrections need

making.

Whereas SNP variation in heterotrimeric G-proteins appears unrelated to cognitive

abilities, the grouping of genes according to their cellular function, rather than in vertical

pathways nevertheless has the potential to elucidate genetic mechanisms which act in, and

potentially disrupt, multiple systems (Ruano et al., 2010). In addition, while G-protein

variation appears unrelated to normal variation in cognitive ability, the postsynaptic density

per-se is rich in proteins - excitatory synapses of the human brain express over 1,500 genes

and over 130 neurological and psychiatric disorders have been shown to arise from

mutations in post-synaptic density genes (Bayes et al., 2010; Collins et al., 2006). Indeed,

subsets within this large number of genes, form supramolecular complexes such as the N-

methyl-D-aspartate receptor complexes (NMDA-RC) (Collins et al., 2006), which is

preferentially involved in rapid processing of information and updating ofAMPA
I
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responsiveness (Zorumski & Izumi, 2012) and which has been associated with normal

variation in human intelligence (Hill et al., 2014a). As knowledge of biological pathways

increases, so too does the ability to utilise this information to aggregate the many thousands

of small SNP based effects underlying intelligence (Benyamin et ah, 2013; Davies et ah,

2011; Trzaskowski, Yang, Visscher, & Plomin, 2013b) will increase, allowing testing for

associations between psychological traits and candidate mechanisms.

The limitations of this study include heterogeneity of the phenotype both between

the cohorts of the CAGES consortium used here as well as between the samples used by

Ruano et ah (2010). The high correlations between g factors extracted by different tests

(Johnson et ah, 2004; Johnson et ah, 2008) indicates that this is unlikely to have led to the

failure to replicate the association here. A more problematic issue is the use of a single test in

LBC1921 and LBC1936 to represent IQ at age 11. Whilst the MHT test does span multiple

aspects of ability it has been described as a test of verbal ability in contrast with the WISC-

III (Wechsler, 1991) used in the discovery sample ofRuano et ah (2010). The use of multiple

disparate tests is to be preferred as this serves to reduce test specific variance and captures a

greater proportion of common variance, provided the tests used assess multiple aspects of

cognitive ability. However, despite the MHT being a test of verbal ability, it has been shown

to correlate with the Stanford Revision of the Binet scale, a test of IQ, at 0.80 (0.81 male,

0.78 female) (Scottish Council for Research in Education, 1933).

Some methods of gene-set analysis, including JAG, can produce positive results if

only a few genes or SNPs are strongly associated with the trait of interest which may be the

reason for the initial association between the G-proteins and intelligence reported by Ruano

et ah (2010). In the present study this was explicitly tested for by including gene-based

statistics allowing for the quantification of each genes level of association to each phenotype

to be quantified. In Table 2, GNAL shows no effect of association once multiple testing has

been controlled for. It does however have a p-value of 0.002 associating it with fluid ability

in these samples. This may indicate that GNAL is a part of a system that shows a true
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association with fluid ability but that including it as part of the heterotrimeric G-protein set

only serves to dilute this signal and that due to sample fluctuation this drove the initial

finding of association between G-proteins and intelligence. However, it is equally probable

that the seemingly low p-value for GNAL is simply a product of testing multiple genes.

Another limitation lies in the manner in which power was estimated. Whilst the

original report indicates an effect size of 3.3% this is likely to be an over-estimation due to

the winner's curse. The winner's curse describes the tendency for underpowered samples to

yield inflated estimates of effect size when a statistical threshold must be crossed. This

indicates that the present study may lack the required power to detect the effect. This is

however still a relevant finding as it strongly suggests that if heterotrimeric G-proteins are

involved in intelligence then the effect is less than 2.5% according to the power simulations

run indicating 0.80 power to detect an effect between 2.5-3%.
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Chapter 6: Do SNPs implicated in regulating protein expression show an

enriched association with intelligence?

6.1 Introduction

This chapter continues the previous work in examining the aggregate effect of

multiple SNPs selected according to their biological role. However, in contrast to the idea of

selecting SNPs that fall within genes that are part of a known system, such as the NMDA-RC

or genes that express heterotrimeric G proteins, the SNPs examined here were selected as

they have been shown to be associated with regulating gene expression (Gibbs et al., 2010;

Richardson et ah, 2011; Tahira et ah, 2005). Several of these gene-sets (the promoter SNP-

set and the messenger RNA (mRNA) and methylation SNP-sets) have also been shown to be

enriched for association with bipolar disorder and schizophrenia (Bacanu et ah, 2013),

indicating that they are relevant to GWA studies examining quantitative traits. In addition

there is a known genetic overlap between schizophrenia and intelligence (Lencz et ah, 2013)

indicating that gene-sets relevant to one of these traits may be relevant to the other.

The ten SNP-sets included in this study are known to affect gene expression through

a variety of mechanisms including SNPs found in promoter regions, SNPs found in

microRNA seed sites, SNPs associated with methylation status, and SNPs associated with

mRNA expression. Eight of the SNP-sets were taken from genome wide studies conducted

using human cortical tissue where the phenotype being investigated was either methylation

status or mRNA expression. Methylation is a mechanism that can alter gene expression and

is an example of an epigenetic modification. Epigenetic modifications are defined as changes

in the function of a gene which occurs without an alteration of the DNA sequence and can

provide a means by which the transcription of a gene can be regulated beyond what would be

expected from the DNA sequence alone (Egger, Liang, Aparicio, & Jones, 2004). DNA

methylation, cytosine-5 methylation, within CpG dinucleotides, is an important mediator of
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gene expression and the link between expression and methylation has been shown to be

strongest in regions of the genome that have a high density ofCpG sites, referred to as CpG

islands. These CpG islands when found proximal to promoter regions show a negative

relationship with gene expression, meaning the greater the level ofmethylation, the lower the

level of gene expression. In order to assemble SNP-sets that could alter methylation and gene

expression in the human brain, the results of a previously conducted GWAS examining the

link between genetic variability, methylation and gene expression was used (Gibbs et al.,

2010). The study utilised human cortical tissue taken from 150 individuals and across 4

regions, the frontal lobe, the temporal lobe, the pons, and the cerebellum. These SNP-sets

were used in this chapter as the unit of association in an enrichment study carried out using

the GWAS on fluid ability in the CAGES consortium. Eight SNP-sets were assembled from

the work ofGibbs et al. (2010). Four of these sets were taken from the SNPs showing a

significant association between genotype and level ofmethylation in the four cortical

regions, the frontal lobe, the temporal lobe, the cerebellum, and the pons.

The other four SNP-sets taken from the study by Gibbs et al. (2010) consisted of

SNPs showing a significant association between genotype and the level ofmRNA. mRNA is

part of the family ofRNA molecules which moves genetic information to the ribosomes

from the DNA. It is a crucial part of the central dogma ofmolecular genetics. The central

dogma of molecular genetics describes the flow of genetic information from the protein

coding genes in the DNA to the formation of proteins. Genetic information is stored in the

DNA by the configuration of the four bases present (adenine, thymine, guanine, and

cytosine). DNA molecules are double stranded and adenine will always pair with thymine

whereas guanine will always pair with cytosine. In protein coding genes the information

pertaining to each protein is stored in a series of three bases referred to as a codon. The first

stage in protein formation involves the transcription ofDNA to mRNA where the double

stranded DNA molecule parts, to become single stranded. This single stranded section of the

DNA molecule then pairs with amino acids to form mRNA (but with uracil replacing
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thymine which binds with adenine), named messenger RNA due to its function of

transporting the genetic information from the DNA molecule. The final stage is that the

mRNA is then translated into a sequence of amino acids which form proteins. mRNA levels

indicate the rate at which the gene is expressed and so the use of the SNP-sets used here

detailing SNPs that are associated with mRNA levels provide a way of examining if this

expression change is linked to fluid ability. Methylation has been shown to affect gene

expression, which may mean that a variant associated with methylation would also be

associated with mRNA levels. This would result in gene sets which overlap considerably and

could reduce the power to find an association by increasing the burden of testing multiple

hypotheses. However, only 4.8% of all SNPs with either a significant effect on methylation

or mRNA were significant for both (Gibbs et al., 2010).

The ninth SNP-set consists of SNPs found in microRNA seed sites. MicroRNAs

(miRs) are non-coding RNAs between 20 and 24 nucleotides in length. MiRs bind to their

targets, miR recognition elements (MREs), which are found in the three prime untranslated

regions (3'UTR) that follow the termination codon. By binding to the MRE's, miR can

decrease the transcription of mRNA or degrade the transcript itself (Bartel, 2009). Within the

MREs however, are areas that are more important for the binding ofmiR and as consequence

of this, more important for down-regulating mRNA. These are the microRNA recognition

element seed sites (MRESS) located in the 2-7 position of the MRE. The importance of the

MRESS can be seen as the binding ofmiR to a single 7mer seed site has been shown to be

able to repress translation, and miR repression of translation can be abolished with a single

point mutation to areas within the MRESS (Brennecke, Stark, Russell, & Cohen, 2005). As

these MRESS have been shown to be important for gene expression, genotypic variation in

these regions may have the ability to produce variation in a phenotype by altering how the

MRESS performs. In the current chapter SNPs that fell into regions that have been shown to

be MRESS were taken as a functional SNP-set. The SNP-set was assembled based on the

work of Richardson et al. (2011) who conducted a genome wide survey by combining the
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SNP data taken from dbSNP build 132 from the 1000 genomes project with the

bioinformatics resource http://microRNA.org detailing predicted MRESS. SNPs were

assigned to the microRNA SNP set if they were located in a predicted MRESS. Using these

data, 1 SNP-set detailing 26,708 SNPs was assembled for enrichment analysis with fluid

ability in the CAGES sample.

The final functional category examined here was SNPs that were located within

promoter regions. Promoter regions are found upstream of genes and RNA polymerase binds

to these regions which then begins the process of transcription. SNPs in promoter regions

may therefore be able to alter the transcription rate of a gene and so may explain some of the

inherited variance of human cognitive abilities. Promoters are located near the start of the

transcriptional start sites toward the 5' region and are between 100 and 1000 base pairs in

length. SNPs in these transcriptional promoter regions have been proposed as candidates for

cis-acting gene expression (Pastinen & Hudson, 2004). In order to assemble a SNP-set

detailing the SNPs that fell in to promoter regions the database dbQSNP was used

(http://qsnp.gen.kvushu-u.ac.ip/). This data base was assembled by utilising sequencing or

single-strand confirmation polymorphism. By taking the SNPs that featured in this database

a set of 6,411 SNPs was included.

6.2 Summary

The hypothesis examined here was that SNPs which can affect gene function and

expression are more likely to be responsible in the creation of phenotypic variation than

SNPs which do not appear to be functional. As the phenotype of interest here is intelligence,

8 of these sets were included as they have been shown to be associated in measureable

changes, be it methylation or mRNA expression differences, in human cortical tissue. Using

two complimentary methods of SNP-set analysis we aim to determine if these functional sets

show an enriched association for intelligence using the GWAS data set of the CAGES

sample. These SNP-sets and this data processing pipeline have already been used to show
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that SNPs in promoter regions are enriched in schizophrenia and bipolar disorder in addition

to showing that the SNPs associated with methylation and mRNA expression in multiple

cortical regions are also enriched for schizophrenia (Bacanu et al., 2013). Here these

methods are applied to the study of intelligence differences by utilising the GWAS on fluid

ability phenotype described in chapter 3 to determine if these SNP-sets show evidence for

enrichment for fluid ability.

6.3.1 Materials and methods

6.3.2 Phenotype.

Due to the large number of SNP sets examined in this chapter (10) only the fluid

ability phenotype was examined in order to maintain statistical power.

6.3.3 Samples

These 10 SNP sets were examined for enrichment of fluid ability. The CAGES

sample was used in conjunction with the GWAS carried out by the author.

6.3.4 Functional SNP sets

In total 10 SNP-sets were examined. The functional SNP-sets were taken from

previous literature (Gibbs et al., 2010; Richardson et al., 2011) and existing bioinformatics

resources http://qsnp.gen.kvushu-u.ac.ip/ (Tahira et al., 2005) and have been examined for

enrichment for schizophrenia, bipolar disorder and major depression (Bacanu et al., 2013).

6.3.5 Methylation and mRNA expression QTL SNPs

The methylation SNP sets and the eQTL SNP sets were taken from the work of

Gibbs et al. (2010). These sets were derived using human cortical tissue samples taken from

the frontal lobe, the temporal lobe, the cerebellum, and the pons of 150 (47 female)
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neurologically normal Caucasians who had donated their brains for medical research. This

tissue was sourced from the University ofMaryland Brain Bank, Baltimore (n = 114) or

from the Department ofNeuropathology, Johns Hopkins University, Baltimore (n= 36). Of

the samples taken from the Department ofNeuropathology, Johns Hopkins University,

Baltimore, 10 were taken during routine autopsies and the remaining 26 as part of the

National Institute on Aging-sponsored Baltimore Longitudinal Study ofAging.

Each of the subjects had four samples consisting of 5 grams of cortical tissue taken

from the cerebellum, the frontal cortex, the temporal cortex and the caudal pons. Separate

samples were taken for SNP genotyping, RNA extraction and to assess methylation. Each of

the four cortical regions (Frontal lobe, temporal lobe, pons, and cerebellum) were analysed

separately and by either mRNA expression profde or CpG methylation. This led to 8

genome-wide association analyses being performed. In each case, an additive linear model

was carried out at each loci correlating allele dosage with phenotype variation. Corrections

were made to account for the large number of tests per trait by using a phenotype

permutation method carried out in PLINK. Here, a genome-wide empirical p-value was

derived for each SNP using 1,000 permutations of the sample label for each trait using the

max(T) function in PLINK. The max(T) function provides a method by which the large

number of SNPs tested can be controlled for by comparing the observed test statistic for a

SNP with the permuted distribution thus controlling for family-wise error rate. In contrast

to the Bonferroni method the max(T) does not assume independent p-values between SNPs

as phenotype permutation retains the pattern of LD between SNPs. In addition permutation

based methods of this sort are not dependent on the phenotype being normally distributed.

In order to control for the number of traits examined in each cortical region, the

fwer2fdr function in R was used to derive the false discovery rate threshold for the

empirical p-values derived from the max(T) method. SNPs which exceeded this false

discovery rate were however retained if there r2 LD value was >0.7 with a SNP that did

not exceed the false discovery rate. The SNPs found to be significant were examined for
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association in the CAGES cohort of fluid ability as described in chapter 3.

See Table 6.1 for details on the total number of SNPs tested by (Gibbs et al., 2010)

and the total sample size used in their GWAS on methylation status and mRNA expression.

See table 6.2 for the number of significant SNPs in each SNP-set.

Table 6.1. Illustrates the full sample sizes, number of probes and SNPs per assay type by
tissue source. These are the final number after quality control.

Methylation CpG mRNA expression
Frontal

lobe

Temporal
lobe

Cerebellum Pons Frontal

lobe

Temporal
lobe

Cerebellum Pons

Sample
size

Probe

SNPs

133 127 108 125 143 144 143 142

27532

1624830

27538

1607740

27310

1540472

27476

1607740

8984

1653451

9372

1655958

8984

1653451

8722

1650475

Table adapted from Gibbs et al. (2010).

Table 6.2. Illustrating the number of significant quantitative trait loci (QTL) by tissue type
for both CpG methylation and mRNA expression. The SNPs that were found to be

significant were examined for enrichment in CAGES providing the SNP passed quality
control in CAGES. The final number included in the association analysis for fluid cognitive

ability is included below.

Tissue type Methylation QTL Methylation SNPs
found in CAGES

GWAS

mRNA expression

QTL

mRNA expression
SNPs found in

CAGES GWAS

Frontal lobe

Temporal
Lobe

Pons

Cerebellum

12135

16734

11374

12102

10596

13658

9473

10542

5515

5335

3415

5244

5177

4039

3274

4379
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6.3.6 MicroRNA SNP-set

The SNP set representing SNPs that could disrupt or create microRNA seed sites

were taken from Richardson et al. (2011) whose work is described below. This study was

carried out to determine which SNPs fell in known or predicted microRNA seed sites. In

order to address this question all SNPs from dbSNP build 132 were retrieved (retrieval date

31/11/2010) through thelOOO genomes home page (1000 Genomes Project Consortium,

2010). Only SNPs that were reported as bi-allelic were retained in order to exclude those that

were indels or copy number variants. A subset consisting of all 210,042 3'UTR SNPs was

extracted and used in subsequent analyses to search against both known and predicted

microRNA seed sites.

The full record of validated microRNA seed sites was downloaded from the

miRecords database (Xiao et al., 2009). These were then pruned to include only those that

had evidence of a loss of function by manually checking the literature, leaving 606 validated

MicroRNA recognition elements. The genomic DNA co-ordinates for the microRNA

recognition elements were then retrieved from Ensembl and, using the genomic DNA co¬

ordinates from dbSNP132, SNPs that fell in those regions were extracted. This led to a total

of 31 SNPs being extracted.

In order to identify SNPs in conserved microRNA seed sites a genome-wide survey

for SNPs that fell in computationally predicted conserved microRNA recognition elements

was performed. Firstly, the data fde "good mirsvr_score conserved microRNA" from

http://microRNA.org was used to recruit a collection ofMir-mRNA interactions. This

database was assembled using an algorithm which incorporates the most recent MiR

prediction guidelines including seed-site pairing, site context, free energy as well as target

conservation across multiple vertebrate species (Betel, Wilson, Gabow, Marks, & Sander,

2008).The fde itself contains all predicted mRNA target motifs belonging to conserved
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microRNA families. This was selected as whilst the conservation signal is used to predict

which MREs are functional, the conservation signal being greater than the background signal

for the most recent non-conserved mammalian specific miRNA families was unlikely to

have been caused by the relatively short time between the emergence of the miRs and the

occurrence of the new MREs within 3 'UTRs (Friedman, Farh, Burge, & Bartel, 2009).

Therefore the use of the "good mirsvr_score conserved microRNA" data file enabled the

number of false positives to be reduced as only conserved miR families are contained within

it. An additional measure of conservation was also included by implementing a conservation

score cut-off of Phastcon score >0.57 for the predicted miR targets. This cut-off is estimated

to match the level of conservation across the mammalian genome (Betel et al., 2008; Siepel

et ah, 2005; Stark, Brennecke, Russell, & Cohen, 2003). The Phastcon scores were taken

from the http://microRNA.oro database. A mirSVR score of < -0.6 was used to select the top

12% of all predictions. The genomic DNA coordinates of these 197287 predicted MRESS

were then compared to the genomic DNA coordinates taken from dbSNP132 and SNPs

found in these regions were extracted. Using this method a total of 2723 SNPs interrupting

mircoRNA recognition element sites were found.

In order to identify SNPs that fell in regions capable of creating new microRNA

seed sites Ensembl variation Perl API tools (Build 61) was used to retrieve the 22 bases

flanking the 5' and the 3' regions of each 3'UTR SNP from dnSNP132. Using this

information the reverse complement for the mRNA transcribed from the negative strand was

generated. The miRanda target prediction algorithm was with these data and a pairing score

cut off of >150 and an energy cut off of <-20 was implemented to limit the discovery of false

positives. Predicted MRESS that were created by SNPs were identified by filtering hits on

the position of the target prediction on the mRNA and every SNP was located at position 23

of 45. This led to set of 22295 SNPs being derived that were predicted to create new

microRNA seed sites.
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6.3.7 Promoter SNP-set

SNPs in promoter regions were taken from http://qsnp.gen.kvushii-u.ac.ip/ (Tahira et

al., 2005). The promoter regions in this database are defined as the regions that are 1 .Okb

upstream and 0.2 kb downstream of the transcriptional start regions. The transcriptional start

regions have been previously defined experimentally as the 5' ends of full length

complementary DNA (cDNA) clones. The SNPs within these regions were then found using

sequencing or single-strand conformation polymorphism analysis (SSCP) and were taken

from the database of transcriptional start sites (http://dbtss.hgc.jp/ (Tsuchihara et al., 2009;

Yamashita et al., 2011; Yamashita, Wakaguri, Sugano, Suzuki, & Nakai, 2010). This led to a

total of 6411 SNPs being downloaded.

6.3.8 Statistical analysis

The ten gene sets were used to perform two complementary analyses to determine if

they contained a greater number of low p-values than would be expected under the null

hypothesis. Professor Silviu Bacanu performed the analyses described below at the Virginia

Institute for Behavioral and Psychiatric Genetics. The two tests used are modifications of

programs designed to yield a gene-based statistic by combining the weight of evidence from

across multiple SNPs located within a gene boundary. However, rather than using gene

boundaries to determine which SNPs were included, here only SNPs from within the

functional SNP-sets were included making each SNP-set the unit of association. Each of the

tests used here tests for significance against the background level of association of the

GWAS rather than 0. This is an important consideration, as a large GWA study has more

low p-values than would be expected under the null hypothesis, meaning randomly selected

SNPs will have a significant level of association more than 5% of the time if they are tested

against 0. In order to prioritise candidates it is therefore important that the sets tested show a

greater level of association than the average level of association found in the same GWAS.

The first test used was a modified Simes test (Li, Gui, Kwan, & Sham, 2011) which
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operates as an extension to the Bonferroni method to control for the number of tests

performed. Whilst this test does suffer from being overly conservative in situations were

highly correlated tests are combined (such as when testing SNPs that are in high LD with

each other), this issue is reduced here as SNPs were selected from cross the genome reducing

the level of LD between them. The modified Simes test was included as a method to detect a

small number of large signals. Whilst it should be noted that genetic variants for intelligence

are well thought to be of small effect, each functional category here may only have a small

number of SNPs that contribute toward intelligence meaning that the signal would be diluted

by the inclusion of SNPs which are not involved in intelligence. The Simes test here would

detect these signals from amongst the SNPs not involved. The Simes test performed was a

Simes combination test. Here, if p(l),...p(n) are the n ranked p-values in the set, from

smallest to largest, then the Simes test of the set is the min(n*p(l),n/2*p(2),n/3*p(3),...,n/(n-

l)*P(n-l),p(n)).

The second test used is a VEGAS like (Liu et al., 2010) sum of squares test. This

test is most suited to the detection ofmultiple small effects within each SNP set. However

the inclusion of SNPs not involved in intelligence would serve to make these signals

undetectable using the sum of squares test. A SNP-set statistic is derived for the sum of

squares test by converting the beta weights from the GWAS describing the effect of the SNP

on intelligence. Each beta weight is divided by the standard deviation of the beta weights

estimated using the linkage disequilibrium information provided by the 1000 genomes

project. Following this all the squared Z scores are summed to give the SNP-set statistic.

Statistical significance for this statistic was derived through 50,000 permutations. SNPs from

across the genome were selected for the permuted sets with LD being controlled using the

1000 genomes project data

6.4 Results

The ten functional SNP-sets were examined using both the Simes test to determine if
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there were a small number of relatively large effects in each set, as well as a sum of squares

test to find multiple, small effects. The Simes test did not detect any evidence of a small

number of large signals coming from any of the ten functional gene sets. The use of the sum

of squares test provided weak support for multiple small signals being found in the SNP-set

corresponding to the promoter regions p = 0.058 but none of the other nine categories

showed evidence of enrichment. See Table 6.3.

Table 6.3. Shows the details of each of the 10 functional SNP sets examined for enrichment

using both the Simes test and the sum of squares test.
Functional SNP set nSNPs in set nSNPs in p-value Simes p-value sum of squares

data test test

Promoters 6411 2643 0.164 0.058

MicroRNA 26708 2857 0.195 0.773

(eQTL) Temporal Cortex 5335 4039 0.994 0.895

(eQTL) Pons 3415 3274 0.991 0.971

(eQTL) Frontal Cortex 5515 5177 0.890 0.868

(eQTL) Cerebellum 5244 4379 0.885 0.734

(Methylation) Temporal
Cortex 16734 13658 0.424 0.531

(Methylation) Pons 11374 9473 1.000 0.924

(Methylation) Frontal
Cortex 12135 10596 1.000 0.978

(Methylation) Cerebellum 12102 10542 1.000 0.924

Abbreviations: eQTL, expression quantitative trait loci; SNP, single nucleotide
polymorphism.

6.5 Discussion

None of the functional SNP-sets examined here attained a nominal level of

significance. The lack of significance for the Simes test indicates that there are no SNPs
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showing a large effect, whilst the sum of squares test indicates that none of the sets

considered here contain multiple small signals of association above the background level of

association. These findings give rise to the question ofwhy SNP-sets with a known effect on

gene expression, eight sets with a known effect on genes expressed in human cortical tissue,

do not appear to contribute toward intelligence. The reasons for this finding are discussed

below.

This lack of statistical significance contrasts with the work performed by Bacanu et

al. (2013) using the data sets assembled by the Psychiatric GWAS consortium (PGC) where

by using the same SNP-sets and the same data processing pipeline enrichment was found for

multiple SNP-sets. One of the reasons for this could be due to the difference in statistical

power indicated by the larger sample sizes used in studies of psychiatric conditions. Whilst

the PGC data sets contained 9240 cases and 9519 controls for depression (Ripke et al.,

2012), 7,481 cases and 9,250 controls for bipolar disorder (Sklar et al., 2011) and 9,394

cases and 12,462 controls for schizophrenia (Schizophrenia Psychiatric Genome-Wide

Association Study (GWAS) Consortium, 2011) in the present study data from 3,507

individuals was used. This indicates that the present study could be underpowered to detect

enrichment using this method. Indeed, in the study by Bacanu et al. (2013) the phenotypes

with the greatest number of subjects also had the most significant SNP-sets whilst

depression, the smallest study had no hits at all supporting the notion that the current study

may be underpowered. It should be noted that there has been less success in finding genes

associated with depression than for schizophrenia or bipolar disorder and so the lack of

enrichment in the study by Bacanu et al. (2013) may simply reflect the idea that these SNP-

sets are not associated with depression.

In the current study the promoter region SNP-set was the closest to attaining

statistical significance which may indicate that an increase in sample size and the

corresponding increase power, enrichment for fluid ability may be detected in this SNP-set.

This promoter SNP-set also showed the greatest evidence for enrichment in previous studies
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examining schizophrenia and bipolar disorder (Bacanu et al., 2013) in addition, there is a

known genetic overlap between schizophrenia and bipolar disorder (Purcell et ah, 2009) and

between schizophrenia and cognitive ability (Lencz et ah, 2013) this indicates that there may

be SNPs in common with these three phenotypes and adds to the weight of evidence that the

lack of significance found in the promoter SNP-set may be due to a lack of power. It may

also be the case however the failure to attain statistical significance is due to the SNPs in the

promoter region playing no role in cognitive abilities.

Another possibility is that the SNP-sets tested here do not accurately capture what

could be considered functional. Both the mRNA expression and the methylation SNP-sets

were assembled using the results of a GWAS using mRNA expression and methylation as

the phenotype being investigated. Whilst these analyses were carried out using stringent

statistical methodology of phenotype permutation to establish statistical significance the

sample size (n= 150) was modest by current standards. This raises the possibility that these

SNP-sets contain false positives and omit true positives, meaning that should a signal be

contained within these sets it will be too small to detect. The results attained by the Bacanu

et al. (2013) indicate these SNP-sets do contain signal for psychiatric conditions and across

schizophrenia, bipolar disorder, and depression and there is a trend for an increase in

enrichment signal as sample size increases indicating the validity of the mRNA expression

and methylation SNP-sets. However, whilst these sets may contain true positives for

psychiatric conditions this may not be the case for intelligence as the variants missed by the

initial GWAS conducted to assemble these sets (Gibbs et al., 2010) may have included some

of the more crucial variants. It is also possible that the results of Bacanu et al. (2013)

represent type 1 errors as the results have not been replicated in either schizophrenia or

bipolar disorder.

A different method to examine the relevance of the methylation and mRNA

expression SNP-sets would be to utilise a polygenic score test using methylation and mRNA

expression phenotypes. Originally performed to show the level of genetic overlap between
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schizophrenia and bipolar disorder (Purcell et al., 2009) the beta-weights of significant SNPs

from one GWAS are used to predict a separate trait in another GWAS. The polygenic score

test can be used here to derive a methylation and mRNA polygene score and by

implementing different p-value cut offs it may be possible to include false negatives from

these GWAS on methylation and mRNA expression. This would provide an additional

method to test the importance of these sets with regards to intelligence differences.

The microRNA SNP-set was not found to be enriched for fluid ability here or for

schizophrenia, depression or bipolar disorder (Bacanu et al., 2013). This set was also the

largest SNP-set containing 26708 SNPs of which only 2857 were present in the CAGES

GWAS. This discrepancy between the full set and the set that could be tested may mean

important variants had to be omitted from the analysis as they failed quality control or were

rare variants appearing less than 5% of the time. This lack of coverage was also present in

the study by Bacanu et al. (2013) where no enrichment was evident after correcting for

multiple comparisons for the microRNA SNP set for schizophrenia p = 0.0893, bipolar

disorder p = 0.0329, or depression p = 0.1968. Additionally, the full set ofmicroRNA SNPs

was examined by (Richardson et al., 2011) to determine if the SNPs in this set were in LD

with the SNPs found in GWA studies of disease. A data set consisting of 4817 GWAS

associations were collected which included 3943 unique SNPs (p <1 x 10"5). It was found

that 87 of these SNPs were in LD (r2 >0.8, CEU population) whilst this overlap was found to

be statistically significant it does however indicate that only a small number of the

microRNA SNPs appear to be relevant to GWA studies.

Whilst the results of this study do not support the conclusion that loci where SNP

genotype co-varies with gene expression are enriched for intelligence other bioinformatics

resources are available for use to test this hypothesis. The Allen Brain Atlas (Hawrylycz et

al., 2012) fhttp:/Avww.brain-map.oru/) is one such resource and provides an atlas of gene

expression both across the cortex and of subcortical structures. The Allen Brain Atlas has

been combined with GWAS data before where it was used to follow up the results of a
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GWAS examining the surface area of the visual cortex (Bakken et al., 2012). The most

significant SNP associated with the surface area of the visual cortex was located in GPCPD1

using the Allen Brain Atlas it was possible to show that this gene was expressed to a greater

extent in the visual cortical regions than elsewhere in the human brain.

However it may be possible to adopt the opposite strategy by beginning with genes

which are preferentially expressed in cortical regions associated with intelligence, such as

the areas indicated in the Parieto-Frontal Integration Theory (PFIT) of intelligence which

includes the dorsolateral prefrontal cortex, inferior and superior parietal lobe (Jung & Haier,

2007). These sets could then be examined for enrichment in a GWAS conducted on human

intelligence. By combining human brain maps of gene expression with imaging data on

human intelligence it would be possible to prioritise genes based on their level of expression

in the most trait-relevant areas of the brain.

6.9 Summary

None of the 10 SNP-sets examined here attained nominal statistical significance for

enrichment in the CAGES GWAS for fluid ability. This result may be due to a lack of power

or a failure to test SNP-sets relevant to the biology of intelligence as discussed above. Future

studies should utilise larger sample sizes and draw upon additional bioinformatics resources

describing the function of genes and their distribution across the cortex.
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Chapter 7: Are genes associated with intellectual disability enriched for

quantitative trait loci involved in intelligence differences?

7.1 Introduction

This chapter builds on the idea that it is possible to capture a greater amount of

variance in a GWAS of intelligence by summing the effect of multiple SNPs with the aim of

assisting in the elucidation of the genetic underpinnings of intelligence differences. The

gene-set analysed in this chapter is composed of genes previously associated with

intellectual disabilities and examines the notion that genes which are involved in the extreme

range of intelligence differences are the same as those that underlie variation across the

distribution of intelligence.

The notion that the underlying genetic architecture of intelligence can give rise to

both the normal variation of intelligence differences and to the extremes of this distribution

reflects a high degree of pleiotropy between the genetic aetiology of average ability and of

low ability. This pleiotropy, referred to as, generalist genes, has been shown to be a

ubiquitous finding in quantitative genetic studies (Plomin & Kovas, 2005), and contrasts

with the notion of single gene disorders which produce phenotypes that are not the tail end

extremes of the normal distribution but rather a deviation from normality.

Intelligence is both a highly heritable and polygenic trait, which along with the

known pleiotropy between disability and ability in the normal range indicates that common

variants underlying one may also be involved in the other. The present study uses a

competitive test to examine SNP variation in sets of genes, along with an established method

of text mining to examine the biological relationship between genes, in order to assess

whether the genes responsible for non-syndromic autosomal recessive intellectual disabilities

(NS-ARID) are enriched for QTLs associated with variation in the normal range of

intelligence.
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Intellectual disabilities (ID) are defined as a significant impairment in cognitive

abilities. For a diagnosis of ID to be made the symptoms should be present before the age of

18 years and the individual, will have an IQ of less than 70, constituting a score of two

standard deviations below the population mean (mean = 100, SD = 15)(American Psychiatric

Association, 2000). Whilst a clear distinction is not always possible, ID can be further

divided into syndromic ID and non-syndromic ID. Whereas in syndromic ID, the cognitive

deficits are accompanied by a medical problem such as Phenylketonuria or fetal alcohol

exposure, which could potentially cause ID, non-syndromic ID is characterised by the lack of

any such pathology.

Parental consanguinity has been shown to place an individual at an elevated risk for

ID (Bittles, 2001). As the offspring produced from consanguineous pairings will have a

greater proportion of homozygous DNA, relative to the offspring produced from outbred

individuals, there is an elevated risk of inheriting rare recessive disease causing variants. The

effects of inbreeding are not, however, limited to the large shifts in IQ as seen in ID, but

appear to also encompass variation in the normal range (Bashi, 1977). The finding that

consanguineous pairings increase the risk of ID and appear to lower the normal range of IQ

indicates that recessive variants in the population can alter intelligence. This makes genes

containing known non-syndromic autosomal recessive intellectual disability (NS-ARID)

associated variants, possible candidates for understanding normal variation in intelligence as

they represent genes which, when mutations arise, can produce variation in cognitive ability

without the presence of neurological disease. Forty such genes have been implicated in NS-

ARID and these genes taken from Musante and Ropers (2014) formed the unit of

association. Eight of these genes, PRSS12, CRBN, CC2D1A, GR1K2, TUSC3, TRAPPC9,

ZC3H14, MED23 were all found by examining consanguineous families suffering with NS-

ARID (Basel-Vanagaite et al., 2006; Garshasbi et ah, 2008; Hashimoto et ah, 2011; Higgins,

Pucilowska, Lombardi, & Rooney, 2004; Mir et ah, 2009; Molinari et ah, 2002; Motazacker

et ah, 2007; Pak et ah, 2011). With the remaining 32, ADK, ADRA2B, ASCC3, ASCL1,
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Cllorf46, TTI2, RABL6, CASP2, CCNA2, COQ5, EEF1B2, ELP2, ENTPDl, FASN,

HIST3H3, INPP4A, MANIB1, NDST1, PECR, PRMT10, PRRT2, RALGDS, RGS7, SCAPER,

TRMT1, UBR7, ZCCHC8, ZNF526, CRADD,KIAA1033, ST3GAL3, and ZNF526 being

identified using Next-generation whole exome sequencing and this group of 40 genes were

used as the unit of association (£ali§kan et al., 2011; Hu et ah, 2011; Najmabadi et ah, 2011;

Ropers et ah, 2011).

We examined whether common genetic variation in genes associated with NS-AR1D

were enriched for quantitative trait loci associated with intelligence. These 40 NS-ARID

genes were also considered as a gene set to determine if, in a GWA study of intelligence, the

most significant SNPs were preferentially located in the NS-ARID gene set. It should,

however, be noted that genes do not act in isolation, but rather operate in concert as a part of

a network or a pathway (Schadt, 2009). By incorporating knowledge of which genes work

together into our study we may better placed to elucidate the mechanisms involved in

complex traits (Lee et ah, 2012b) such as intelligence. Indeed, this is part of the rationale

behind gene-set analysis that to examine genetic variation across groups of genes with a

shared function can be more informative than testing single variants.

The large effect sizes of 2 standard deviations or 30 IQ points associated with the

NS-ARID gene set (Musante & Ropers, 2014) may indicate that it is composed of genes in

which functional variation is constrained due to the crucial role they play. This would mean

that, although mutations can produce a large deleterious effect on intelligence, they might

not be involved in variation in the normal range. However, the mutations in the genes

responsible for NS-ARID can also be viewed as causing variation in the function of the

biological systems they are a part of. Whilst mutations in the genes of the NS-ARID set lead

to a large effect in the biological mechanisms they are in, common genetic variation

throughout the rest of the system could result in more minor perturbations, which may

underlie smaller shifts in cognitive ability. To quantify the biological relationships between

the 40 genes in the NS-ARID set, a statistical text-mining analysis was used, Gene
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Relationships Across Implicated Loci (GRAIL) (Raychaudhuri et al., 2009). This

information was used to mine Gene Ontology (GO) (Ashburner et al., 2000) to extract gene

sets indicated by relationships between the genes of the NS-ARID set. By prioritizing gene-

sets linked to the shared function of the 40 NS-ARID gene-sets statistical power can be kept

high as only sets presumed relevant to intelligence would be tested.

There were four goals to this series of analyses. Firstly, the common SNPs in the

genes of the NS-ARID set were analysed to determine if there was an association with the

normal range of intelligence in a GWAS data set. Secondly, the effects ofmultiple SNPs

were combined into a gene-based statistic to explore the possibility of individual members of

the NS-ARID gene set showing an association with fluid and crystallised ability. The third

aim was to determine if in our GWAS of intelligence the most significant SNPs are

preferentially found in the NS-ARID gene set. The fourth aim was to examine additional

gene sets created using the relationships between the genes of the NS-ARID gene set and to

test these additional sets for an enriched association with intelligence.

7.2.1 Materials and Methods

7.2.2 Phenotypes

The gene set under investigation were selected as mutations in these genes have been

shown to produce large IQ deficits in childhood. Here the role of these genes in middle and

old age was explored and fluid and crystallised ability were examined to account for the

differential effects of ageing on cognitive abilities (Tucker-Drob & Salthouse, 2008)

7.2.2 Samples

The 40 genes of the NS-ARID gene-set were examined for enrichment of fluid and

crystallised ability using the phenotypes from the CAGES sample described in sections 3.3.

Replication for fluid ability was sought using the performance IQ phenotype measured in the

BATS sample also described in sections 3.3
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7.2.3 NS-ARID Gene set

The 40 genes (found in Table 7.1) that were examined for an enriched association

with cognitive abilities have each been previously linked with NS-ARID (Musante &

Ropers, 2014) indicating that mutations in these genes have a large and deleterious effect on

cognitive abilities where a loss of 30 IQ points is required for a diagnosis of ID to be made.

Whilst a sharp distinction between syndromic and non-syndromic ID is not always possible,

the reduction in cognitive ability associated with the mutations in these genes is not merely

the result of these mutations playing a causal role in other neurological disorders. Eight of

these genes were identified from microsatellite based homozygosity mapping of large

consanguineous families. These were followed up with mutation screening to identify the

most likely gene responsible (Musante & Ropers, 2014). The remaining 32 were identified

using Next-Generation Sequencing (NGS) methods including Whole Exome Sequencing

(WES) and the enrichment and sequencing of exons from homozygous linkage intervals in

consanguineous families (Musante & Ropers, 2014).
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Table 7.1. Shows the 40 members of the NS-ARID gene-set and any disorder they have been
associated with as well as the method used to discover the association.

Chr Gene ID Disorder

1 HIST3H3 NS-ARID
1 RGS7 NS-ARID, ASD
1 ST3GAL3 NS-ARID, MRT
2 ADRA2B NS-ARID
2 EEF1B2 NS-ARID

2 INPP4A NS-ARID
2 PECR NS-ARID, ASD
3 CRBN NS-ARID, MRT
4 CCNA2 NS-ARID
4 PRMT10 NS-ARID
4 PRSS12 NS-ARID, MRT
5 NDST1 NS-ARID
6 ASCC3 NS-ARID
6 GRIK2 NS-ARID, MRT
6 MED23 NS-ARID
7 CASP2 NS-ARID
8 TTI2 NS-ARID
8 TRAPPC9 NS-ARID, MRT
8 TUSC3 NS-ARID, MRT
9 RABL6 NS-ARID
9 MAN1B1 NS-ARID, MRT
9 RALGDS NS-ARID
10 ADK NS-ARID, ASD
10 ENTPD1 NS-ARID
11 Cllorf46 NS-ARID
12 ASCL1 NS-ARID
12 COQ5 NS-ARID
12 CRADD NS-ARID, MRT
12 KIAA1033 NS-ARID
12 ZCCHC8 NS-ARID
14 UBR7 NS-ARID, ASD
14 ZC3H14 NS-ARID
15 SCAPER NS-ARID
16 PRRT2 NS-ARID
17 FASN NS-ARID
18 ELP2 NS-ARID
19 CC2D1A NS-ARID

19 TECR NS-ARID
19 TRMT1 NS-ARID

19 ZNF526 NS-ARID

Abbreviation: NS-ARID, Non-syndromic autosomal recessive intellectual disability. ASD,
Autism Spectrum disorder. MRT, Mental retardation. Note mental retardation is defined in
the same way as NS-ARID (IQ <70) but is referred to here as mental retardation in line with
the terminology used when first discovered.
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7.2.4 Statistical analysis

Using data from the GWAS on fluid and crystallised ability described in chapter 3,

single marker analysis was conducted examining the 5438 SNPs that were found within NS-

ARID genes and within ±50kb of the known gene boundaries. To assess significance an

alpha level of 9.194557e-06 (i.e., 0.05/5438) was used.

Secondly, a gene-based statistic was derived by combining the effect of each SNP

within a gene and the 50kb boundary. Combining the effect of multiple SNPs has the

potential to capture a greater proportion of variance which will lead to an increase in power

(Hill et al., 2014b; Liu et ah, 2010). Gene-based statistics were calculated using VEGAS

(Liu et ah, 2010) where a test statistic is calculated from the sum of test statistics within a

gene region with Linkage disequilibrium (LD) being taken into account using the HapMap

phase II CEU (NCBI build 36 release 22) reference panel for each gene and the 50kb

boundary. The statistical significance of this statistic is calculated using simulations (see

chapter 4 for full details of this method). With 40 genes in the NS-ARID set the alpha level

was 0.00125 (0.05/40).

Thirdly, in order to examine the NS-ARID gene-set as the unit of association the

gene-set analysis method INRICH (Lee, O'Dushlaine, Thomas, & Purcell, 2012a) was used.

INRICH is an example of an over-representation test which are characterised by the use of a

predetermined p-value threshold to extract the significant SNPs or genes from a GWAS.

These significant hits are then compared to an a priori gene-set to determine if the most

significant hits from a GWAS consistently fall within the regions described by the gene-set.

The hypothesis tested by overrepresentation tests is if the SNPs that survive the p-value cut

off are predominantly found in the genes of the a priori gene-set.

INRICH is used to examine independent genomic intervals generated using the

genome wide data set selected according to SNPs where the p-value is below a
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predetermined threshold. The use of independent intervals controls for the effects of

overlapping genes as well as for linkage disequilibrium. The small number of genes in the

NS-ARID set enabled the use of INRICH, as large gene-sets, defined by INRICH as being

those consisting of over 200 genes, such as the postsynaptic density gene-sets examined in

chapter 4 are unsuitable to test using INRICH as they expected to yield inaccurate p-values

(Lee et al., 2012a). The regions around these index SNPs are extended to include additional

SNPs which pass a second p-value threshold and are in LD with the index SNP. The result of

this is a number of genomic intervals which show evidence of association which is

independent of the association found in the other intervals. This contrasts with gene-based

statistics as LD can extend across multiple genes and the same SNPs can be mapped to

multiple genes leading to correlations between genes if gene-based statistics are used.

Additionally, overlapping genes in each of the candidate gene-sets are merged in order to

avoid multi-counting physically clustered genes belonging to the same gene-set. The number

of times these LD independent intervals overlap with the merged genes in the candidate

gene-set is counted. This count or number of times the gene-set overlaps with the LD

independent intervals is used as the gene-set statistic. In order to assess the statistical

significance of the overlap between the intervals and the gene-set, interval based permutation

is used. The intervals derived using the p-value and LD cut offs are matched for the number

of SNPs, SNP density, and the number of genes that they overlap with in each permutation.

These matched intervals are created across the genome and the number of times these

intervals overlap with the gene-set is counted (Figure 7.1 illustrates the matching criteria).

An empirical p-value for the gene-set is defined as the proportion of permuted statistics that

are equal to or exceed the observed gene-set statistic.
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Figure 7.1. Illustrating how the intervals are matched using INRICH. Red indicates genes

and yellow indicates the LD independent intervals whilst each blue diamond indicates a

SNP. On the top illustrating the observed intervals on chromosome two, the LD interval

overlaps three SNPs and with two genes, one of which is part of the gene-set. On the bottom
on chromosome five, is an example of an interval that fulfils the genomic criteria for being
included as part of the permuted intervals. The interval on chromosome five overlaps with
three SNPs and two genes as per the observed interval on chromosome 2. The interval
assembled on chromosome 12 does not fulfil the matching criteria as only two SNPs and

zero genes overlap with the interval. This interval would therefore not be used as part of the
null hypothesis. Figure adapted from (Lee et al., 2012a).

The hypothesis tested by INRICH would be that the most significant SNPs found in

the CAGES GWAS aggregate in genes known to be involved in non-syndromic autosomal

recessive intellectual abilities. Here, significant genomic intervals were identified using the

clump function in PLINK (Purcell et al., 2007). Clump was used to form intervals by

selecting index SNPs with a P-value of less than 0.0005, the region around each index SNP
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was then extended across a 250kb range and included other SNPs if they were both

nominally associated (p<0.05) with the cognitive phenotype and in moderate LD (r2> 0.5)

with the index SNP according to the HapMap2 CEU reference panel. A total of 407 index

SNPs were used for the fluid phenotype and 403 were found for crystallised ability. Genomic

intervals were excluded from subsequent analysis if they did not overlap within 20kb (5' or

3') of any known gene according to the UCSC human genome browser hg 18 assembly. The

statistical significance of any overlap between the genes of the NS-ARID gene set and the

LD independent regions identified here was determined by creating permuted LD

independent intervals matched with the intervals produced using the association p-value for

the number of genes, SNP density and LD. 10,000 permutations were used to establish

statistical significance.

The fourth analysis carried out here aimed to quantity the biological relationship

between the genes of the NS-ARID set and to use this knowledge to test the systems and

pathways that reflect these processes for an association with intelligence. Here, Gene

Relationships Across implicated Loci (GRAIL) (Raychaudhuri et ah, 2009) was used to

examine the 40 genes of the NS-ARID gene-set and identify common cellular process or

pathways. This was carried out using a text mining algorithm to derive a set of statistically

significant keywords describing relationship between the 40 NS-ARID genes. Using the a

priori gene-set GRAIL can be used to identify a subset of genes that are more related than

chance as well as assign statistically significant keywords suggesting a pathway or system

that unites the members of the gene-set. Importantly this metric is derived without the use of

the phenotype, meaning that potentially biased ideas about which pathways or biological

functions influence the phenotype cannot dominate the analysis. Additionally, undocumented

or distant relationships between the members of the gene-set can be derived. Each of these

abstracts was converted into a vector ofword counts and for each gene a vector consisting of

averaged word counts is derived. The relationship between any pair of genes is derived as

the correlation between the two vectors of averaged word counts. This means that if two
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genes are described using the same words they will receive a high similarity score however,

they do not need to be mentioned in the same abstract in order to be classed as similar. After

the relationship between the members of the gene-set has been examined keywords are

derived. These keywords are defined as those that have the greatest weight across all of the

text vectors for the genes of the gene-set. Keywords are restricted to those that appear in

>500 abstracts and contain >3 letters and no numbers.

These keywords were derived using a database of 259,638 abstracts taken from

PubMed before December 2006. This date was selected as it is prior to the mainstream

application ofGWAS, as abstracts detailing the regions identified by GWAS would be

expected to confound the analysis by describing the NS-ARID gene set as being associated

with NS-ARID. The GRAIL parameters applied were as follows release 22 / HG 18;

HapMap population: CEU; Functional Data source PubMed Text (December 2006); Gene

size Correction on; Gene lists; All human genes within the database.

Following the generation of the keywords, Gene Ontology (GO) (Ashburner et al.,

2000) was mined. Here the keywords derived by GRAIL to suggest pathways or systems

common to the NS-ARID gene-set were used as search terms in GO. All gene-sets with at

least five human genes were extracted and examined using INRICH to determine if these

showed significant overlap with the intervals generated from the GWAS data. As multiple

gene-sets are being tested in this section of the study the p-value generated for each gene-set

will need to be corrected for the number of tests made. As the gene-sets are not independent

corrections such as the Bonferroni or false discovery rate will yield an overly conservative

estimate of significance (Holmans et al., 2009) and so bootstrap approach was used. Firstly,

one of the 10,000 permuted interval sets was selected at random to serve as the observed

interval set. Secondly, the statistical significance for the interval set serving as the observed

data was derived as before by generating intervals across the genome and comparing the

overlap with the gene-sets. Finally, the proportion of bootstrapped samples where the

minimum gene p-value over all the gene-sets is at least as significant as the p-value for the
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gene-set being corrected for forms the corrected p-value. The hypothesis tested here was that

the genes responsible for NS-ARID are found in pathways where common SNP variation can

explain variation in intelligence.

7.3.1 Results

7.3.2 Single marker analysis

Single marker analysis indicated that no single SNP in either the fluid ability or

crystallised cognitive phenotypes was statistically significant using the alpha threshold of

9.194557e-06. See Table 7.2 and Figure 7.2.

7.3.3 Gene-based analysis

In order to examine the contribution each gene in the NS-ARID gene-set made to

both fluid and crystal ability VEGAS (Liu et ah, 2010)) was used. No single gene-based

statistic was significant at the adjusted alpha level of 0.00125 (see Table 7.3). With three

nominally significant genes for gfand three in crystallised ability, these results are consistent

with what would be expected under the null hypothesis.

7.3.4 Gene-set analysis

In order to conduct a gene-set analysis of the NS-ARID set using INRICH (Lee et

ah, 2012a), a series ofLD independent genomic intervals were created. Using the clump

function for the fluid phenotype, 407 genomic intervals were created, ofwhich 248

overlapped within 20kb of a known gene. Overlapping intervals were then merged leaving

176 LD independent intervals to be analysed for enrichment. For the crystallised ability, 403

intervals were produced with 221 overlapping known genes and the 20kb boundary. Once

overlapping intervals had been merged for the crystallised ability phenotype, 166 non-

overlapping intervals were created and tested for an enriched association with the NS-ARID

gene set. 10,000 permutations were used to assess statistical significance.
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For gf one member of the NS-ARID gene set, TTI2, overlapped with one of the LD

independent genomic intervals on chromosome 8 spreading from 33398369 to 33503864.

This overlap was not significant, p = 0.520. For crystallised ability none of the most

significant regions in the GWAS overlapped with the NS-ARID gene set, p=l.

7.3.5 Gene-set analysis of gene-sets functionally related to the NS-ARID set

In order to assemble a list of gene sets that were most likely to be involved in

variation in intelligence GRAIL was used to derive 18 keywords describing the relationship

between the 40 NS-ARID genes, see Table 7.4. These keywords were then used as search

terms to mine Gene Ontology, producing 180 gene sets which were then tested for an

enriched association with gfand crystallised ability. Table 7.5 shows the most significant

pathways for fluid ability. The overlap between the most significant LD regions in the

GWAS and G0:0006814, sodium ion transporters, was statistically significant after

controlling for multiple tests. Table 7.6 shows the results for crystallised ability. Whilst the

overlap with the 180 gene sets produced using GRAIL and Gene Ontology did not survive

multiple correction, G0:0006354 is nominally significant in both gfand crystallised ability

and this is partly due to the same genes, POLR2B on chromosome 5 and POLR2E on

chromosome 19 being tagged by the LD independent intervals for both the fluid and the

crystallised phenotypes.
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Table 7.2. The top 20 SNPs for both fluid ability (gf) and crystallised ability are shown

below.

Fluid ability Crystallised ability
Gene SNP Beta Std P-value Gene SNP Beta Std P-value

Beta Beta

TUSC3 rs2604364 -0.0671 0.0216 0.0019 GR1K2 rs2579931 0.1169 0.0378 0.0020

GR1K2 rs 1465169 0.0645 0.0210 0.0021 ST3GAL3 rs2906457 -0.0804 0.0264 0.0023

GR1K2 rs2579924 -0.0645 0.0210 0.0021 ELP2 rsl7739785 -0.1708 0.0563 0.0024

CRADD rs3858606 0.0651 0.0220 0.0030 ST3GAL3 rs6665014 -0.085 0.0283 0.0027

PRSS12 rsl0016452 0.1030 0.0351 0.0033 GR1K2 rs2852515 -0.1141 0.038 0.0027

RGS7 rs7545872 0.7330 0.2532 0.0038 GRIK2 rsl856307 -0.1149 0.0384 0.0028

TTI2 rs7833337 -0.2105 0.0727 0.0038 TRAPPC9 rs6999767 0.0736 0.0249 0.0032

RGS7 rsl2064291 0.7323 0.2532 0.0038 ST3GAL3 rs803675 0.0837 0.0284 0.0032

PRSS12 rs6850687 0.0662 0.0229 0.0038 ST3GAL3 rs803679 0.0837 0.0284 0.0032

GR1K2 rs2787554 -0.0619 0.0214 0.0039 ST3GAL3 rs2527776 0.0777 0.0265 0.0034

GR1K2 rs6914311 0.0621 0.0216 0.0040 ST3GAL3 rs4660261 0.0751 0.0259 0.0037

GRJK2 rs9404105 0.0620 0.0216 0.0040 ST3GAL3 rs2906458 0.0778 0.027 0.0039

RGS7 rs7548485 0.7296 0.2538 0.0040 ST3GAL3 rs6429638 -0.0742 0.0257 0.0040

RGS7 rs7548577 0.7296 0.2538 0.0040 ST3GAL3 rs4660260 -0.073 0.0254 0.0040

RGS7 rs7550902 0.7232 0.2536 0.0044 CRADD rsl2825691 0.0735 0.0256 0.0041

RGS7 rs7556401 -0.7232 0.2536 0.0044 CRADD rsl1107212 0.1892 0.0659 0.0041

RGS7 rs7548582 0.7225 0.2538 0.0044 CRADD rsl1107211 0.1892 0.0659 0.0041

ELP2 rsl7739652 -0.0778 0.0275 0.0047 ST3GAL3 rs2485996 0.077 0.027 0.0043

GR1K2 rsl465168 -0.0600 0.0214 0.0049 ST3GAL3 rs3791041 -0.0733 0.0257 0.0044

TRAPPC9 rs4736144 0.0723 0.0258 0.0051 ST3GAL3 rs304303 -0.0725 0.0255 0.0044
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Figure 7.2. These qq plots show the full complement of 5,438 SNPs in both fluid

ability (left) and crystallised ability (right). These plots indicate that, for both phenotypes,
there is not an increase in the amount of low p-values in the NS-ARID gene set.
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Table 7.3. Gene based analysis results for the 40 NS-ARID genes.

Chr Gene ID nSNPs Start Stop Fluid P-value Crystal P-
value

1 HIST3H3 48 226679168 226679649 0.203 0.734
1 RGS7 804 239005439 239587101 0.983 0.997
1 ST3GAL3 233 43945804 44169418 0.378 0.025
2 ADRA2B 29 96142349 96145615 0.091 0.599
2 EEF1B2 67 206732562 206735898 0.747 0.444
2 INPP4A 117 98427844 98570598 0.138 0.89
2 PECR 130 216611355 216654777 0.221 0.379
3 CRBN 132 3166695 3196390 0.883 0.299
4 CCNA2 74 122957048 122964538 0.016 0.054
4 LOC90826 55 148778982 148824730 0.482 0.116
4 PRSS12 134 119421864 119493370 0.06 0.404
5 NDST1 99 149880622 149917966 0.661 0.185
6 ASCC3 404 101063328 101435945 0.128 0.575
6 GRIK2 868 101953625 102624651 0.435 0.775
6 MED23 104 131936798 131991056 0.982 0.598
7 CASP2 69 142695523 142714907 0.885 0.502
8 C8orf41 109 33475777 33490245 0.014 0.313
8 NIBP 738 140811769 141537860 0.732 0.851

8 TUSC3 490 15442100 15666366 0.105 0.441

9 C9orf86 57 138822201 138855460 0.979 0.822

9 MAN1B1 41 139101199 139123460 0.947 0.809

9 RALGDS 104 134962927 135014409 0.893 0.995

10 ADK 376 75580970 76139066 0.983 0.312

10 ENTPD1 220 97461525 97627013 0.642 0.455

11 CI lorf46 110 30301224 30315741 0.680 0.663

12 ASCL1 11 101875581 101878424 0.950 0.05

12 COQ5 66 119425464 119451347 0.553 0.397

12 CRADD 239 92595281 92768662 0.485 0.239

12 KIAA1033 159 104025621 104087036 0.567 0.265

12 ZCCHC8 41 121523387 121551471 0.549 0.204

14 UBR7 91 92743153 92765314 0.751 0.886

14 ZC3H14 71 88099066 88149606 0.904 0.292

15 SCAPER 298 74427591 74963247 0.298 0.051

16 PRRT2 17 29730909 29734703 0.393 0.471

17 FASN 52 77629502 77649395 0.514 0.276

18 ELP2 144 31963884 32008605 0.044 0.123

19 CC2D1A 35 13878051 13902692 0.657 0.722

19 GPSN2 68 14501381 14537792 0.074 0.223

19 TRMT1 32 13076714 13088332 0.633 0.811

19 ZNF526 16 47416331 47424193 0.509 0.595

Three genes were nominally associated with fluid ability and one was nominally associated
with crystalised ability. Start and end positions do not include the ±50 kb boundary. Bold
indicates nominally significant (p <0.05) genes.
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Table 7.4. Shows the statistically significant keywords describing the shared biological
functions of the NS-AR1D genes. This set was ascertained through an automatic literature
search implemented in GRAIL. Note two keywords were removed as they yielded 0 gene-

sets when used as search terms in Gene Ontology.

Keywords Gene symbols

Synthase (2 genes)

Reductase (3 genes)

Mitochondrial (7 genes)

Apoptosis (7 genes)

Methyltransferase (1 gene)

Elegans (11 genes)

Complex (12 genes)

Death (4 genes)

Genome (10 genes)

Histone (2 genes)

Enzyme (12 genes)

Trna (3 genes)

Adenosine (1 gene)

Elongation (5 genes)

Fatty (3 genes)

Saccharomyces (9 genes)

Cerevisiae (9 genes)

Yeast (13 genes)

ST3GAL3, ELP2

FASN, ENTPD1, ADK

CASP2, ECR, CRADD, RABL6, TECR, ADK, FASN

RABL6, ELP2, FASN, ENTPD1, HIST3H3, MED23, ADK

HIST3H3

CASP2, TRMT1, TUSC3, SCAPER, RABL6, ASCC3, TRAPPC9, ADK,
PRSS12, CRADD, EEF1B2

MED23, EEF1B2, CRADD, HIST3H3, CASP2, SCAPER, TRAPPC9,
TECR, ASCC3, MAN1B1, RALGDS, TTI2

TRAPPC9, FASN, ENTPD1, NDST1

TRAPPC9, ELP2, TECR, RABL6, TRMT1, COQ5, EEF1B2, PRSSJ2,
TUSC3, MED23

CC2D1A, MED23

ADK, TUSC3, ST3GAL3, PECR, PRSS12, MAN1B1, FASN, ENTPD1,
CASP2, TECR, SCAPER, HIST3H3

ELP2, TUSC3, TECR

NDST1

ELP2, PECR, MED23, RALGDS, TUSC3

PECR, ADK, CASP2

ELP2, ASCC3, MAN1B1, COQ5, EEF1B2, TECR, ADK, NDST1,
MED23

TRMT1, ASCC3, MAN1B1, COQ5, EEF1B2, TECR, ADK, NDST1,
MED23

COQ5, EEF1B2, TRMT1, ASCC3, RABL6, TECR, MAN1B1, MED23,
RALGDS, SCAPER, HIST3H3, TRAPPC9, NDST1

Abbreviation: NS-ARID, Non-syndromic autosomal recessive intellectual disability. Trna,
Transfer Ribonucleic acid
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Table 7.5. Displaying the five most significant Gene Ontology gene sets for the functional
gene group analysis and their association with fluid ability.

GO term Name

G0:0055029

G0:0030880

G0:0006354

G0:0016591

Nuclear DNA-directed
RNA polymerase
complex
RNA polymerase
complex
DNA-templated
transcription,
elongation
DNA-directed RNA

polymerase II,
holoenzyme

Number of

genes

G0:0006814 Sodium ion transport

Total N hit

165 11

97

98 4

85 3

86 3

P-value

Enrichment Corrected

7.9e" 0.014

0.015

0.015

0.023

0.059

0.685

0.695

0.810

0.958

Genes in LD

independent intervals

SLC10A7, SLC8A1,
SLC5A1, SLC4A5,
SLC4A10, ACCN1,
SLC9A10, SLC9A9,
SLC17A8, NEDD4L,
SLC34A2

SUPT3H, POLR2E,
POLR2B, POLR3F

SUPT3H, POLR2E,
POLR2B, POLR3F

POLR2E, POLR2B,
POLR3F

POLR2E, POLR2B,
POLR3F

Number of genes total pertains to the full number of genes in the gene set. Number of genes
N hit indicates how many of the independent intervals overlapped with the genes of the gene

set. Abbreviations: GO, Gene Ontology
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Table 7.6. Displaying the five most significant Gene Ontology gene sets for the functional
gene group analysis and their association with Crystallised ability.

GO term Name Number of

genes

P-value Genes in LD

independent intervals
Total N hit Enrichment Corrected

G0:0032781 Positive regulation of 19 3 0.002 0.174 TPM1, RYR2, UHRF1
ATPase activity

G0:0006353 DNA-templated 82 4 0.003 0.218 DHX38, CCNH,
transcription, POLR3B, POLR2E
termination

G0:0006354 DNA-templated 85 4 0.004 0.299 CCNH, POLR3B,
transcription, elongation POLR2E, POLR2B

G0:0043462 Regulation ofATPase 29 3 0.004 0.302 TPM1, RYR2, UHRF1
activity

G0:0006368 Transcription elongation 65 3 0.012 0.569 CCNH, POLR2E,
from RNA polymerase POLR2B

II promoter
Number of genes total pertains to the full number of genes in the gene set. Number of genes
N hit indicates how many of the independent intervals overlapped with the genes of the gene

set. Abbreviations: GO, Gene Ontology

7.3.6 Replication

In order to try and replicate the overrepresentation of the genes from the Sodium ion

transport gene-set, the performance IQ phenotype from the BATS cohort was used. The

same data processing pipeline was used to assemble independent intervals. Observed

intervals from the BATS cohort overlapped with three genes from the Sodium ion transport

gene-set, SLC6A5, SLC6A6, and SLC9A9. This overlap was not statistically significant p =

0.551. None of the other nominally significant gene-sets contained genes which overlapped

with the intervals of the BATS cohort and so no p-value could be derived.

7.4 Discussion

Four analysis strategies were used to examine whether genes involved in large
deficits of cognitive ability are also involved in the small fluctuations which characterise the
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normal range of intelligence. The first test examined each SNP using single marker analysis

and found no evidence for a role in intelligence for any single SNP examined. The second

strategy adopted was to sum the effect ofmultiple SNPs into a gene-based statistic using

VEGAS (Liu et al., 2010). Here, none of the 40 genes tested withstood correction for

multiple comparisons. The third test examined theNS-ARID gene-set as the statistical unit

of association. INRICH was used for this test to show that the most significant hits in the

GWAS did not overlap with the genes found in the NS-ARID set more than would be

expected by chance. This does not provide evidence that the genes involved in major

deleterious deviations in cognitive ability also account for intelligence differences.

The lack of association between the NS-ARID SNPs, genes and gene-set raises the

possibility that intellectual disability is genetically distinct from the normal variation of

intelligence differences. Evidence to support this comes from a study conducted examining

the siblings of children affected by severe mental retardation, classified as those whose IQ

was <50, and those with mild mental retardation, IQ 50-69 (Nichols, 1984). It was found that

the siblings of those affected by severe mental retardation had an average IQ when compared

to the population (mean = 103.4, SD = 12.1) and none of the siblings were suffering with any

form of mental retardation. This contrasts with the siblings of children with mild mental

retardation whose mean level fell below that of the population (mean = 84.8, SD = 18.1). In

addition, 20.7% of these siblings also suffered with mental retardation. Whilst the sample

size used to test this hypothesis (Nichols, 1984) was small (n=58) this trend has been

replicated in much larger samples Plomin, Cederlof, & Lichtenstein (unpublished conference

talk, ISIR 2013) showed data drawn from 370,000 sibling pairs and 9000 twin pairs who, as

part of their military conscription, had undergone cognitive testing. By linking these

individuals to the Swedish National Patient Register 813 were identified as having a sibling

with mild mental retardation (or an IQ 50-70) and they themselves were shown to have a

lower IQ than the population average. In addition to this, 308 individuals were identified as

having siblings who had severe mental retardation. However, despite having a sibling with
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severe mental retardation these individuals did not have a significantly different mean IQ

from the population average of 100. Whilst the cut offs in IQ used to define the NS-ARID

gene-set used here were <70 and so should include variants encompassing the mild mental

retardation range used in the studies by Nichols (1984) and Plomin, Cederlof, and

Lichtenstein (2013) should include the variants that could contribute toward variation in the

normal range, it would also include genes responsible for major retardation introducing noise

into the analyses. Whilst this remains plausible it should also be noted in the study by

Nichols (1984) 72% of those with severe mental retardation also had central nervous system

pathology (including Down's syndrome, central nervous system malformation, cerebral

palsy and epilepsy), which was only present in 1.2% of those with mild mental retardation.

As the gene set considered here included only genes resulting in non-syndromic intellectual

disability, the contamination of the NS-ARID gene-set by genes responsible for these

maladies should be minimal. Future work could perform the same analysis but omit genes

where variants have been shown to be associated with an IQ below 50.

Future research using this method or genes associated with cognitive impairment

may benefit from examining males and females separately. As males are at greater risk from

intellectual disabilities as children and adults (Maulik, Mascarenhas, Mathers, Dua, &

Saxena, 2011) as well as from mild cognitive impairment in old age (Roberts et al., 2012) it

may be that genes responsible for large deviations primarily in males also exert small effects

more often in males than females.

The fourth analysis was conducted using GRAIL (Raychaudhuri et ah, 2009) to

quantify the relationship between the genes of the NS-ARID set with the goal of using this

knowledge to examine the systems and pathways that reflect these processes to find a gene-

set associated with intelligence. Whilst the genes of the NS-ARID gene-set (Musante &

Ropers, 2014) may not be directly involved in the normal range of intelligence differences

they may reflect hub genes and should variation occur here it may have deleterious

consequences for any system that they are a part of. The goal of the GRAIL analysis was to
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identify the systems and process they are a part of as these may be more tolerant of

functional variation and so may be involved in intelligence differences. The results of

GRAIL identified 180 systems and processes and gene-sets were assembled from Gene

Ontology (Ashburner et al., 2000) and examined for overrepresentation. One gene-set,

Sodium ion transport, G0:0006814 remained significant for fluid ability after correction for

the 180 gene-sets examined. This gene-set is involved in the directed movement of sodium

ions across the boundary of a cell by means of a transporter or a pore (Ashburner et ah,

2000). Such actions are found in the nervous system in the form of the sodium-potassium

pumps of the neuron. These pumps are responsible in establishing the resting potential of

neurons where they serve to keep the concentration of sodium within the neuron low by

moving against the gradient of electrostatic pressure. By the same means, but involving a

greater degree ofmetabolic effort, they also re-establish this gradient following

depolarisation. This indicates a role for genetic variation of the neuron being involved in

fluid cognitive abilities. However, this association failed to replicate in the BATS cohort

indicating that that the initial significant result may be a type 1 error. It is also possible that

due to winner's curse (Ioannidis, 2008) the replication sample lacked the statistical power

needed for replication.

Another finding was that the DNA-templated transcription, elongation gene-set

(G0:0006354) was nominally significant in both the fluid and the crystallised phenotypes.

Whilst gene set analysis does not require for the same genes to show an effect across two

phenotypes for significance of the set to be established in this instance two genes POLR2B

on chromosome 5 and POLR2E on chromosome 19, were found to tag SNPs with low p-

values indicated by their presence in the LD independent intervals. The DNA-templated

transcription, elongation gene-set is described by Gene Ontology as being involved in the

extension of the RNA molecule following the initiation of transcription and promoter

clearance at DNA dependent RNA polymerase promoters through the inclusion of

ribonucleotides catalyzed by an RNA polymerase. Whilst this may indicate that the
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mechanisms involved in transcription, particularly elongation, are involved in cognitive

abilities. It should be noted that in the BATS sample none of the genes from the DNA-

templated transcription, elongation gene-set overlapped with any of the LD independent

intervals.

The limitations of this study include the use ofGene Ontology. Whilst mining Gene

Ontology for gene-sets using GRAIL represents a method to eliminate a number of the gene-

sets found in gene ontology it could be omitting potential causal pathways as unknown

relationships cannot be considered. In addition in using INRICH a boundary is placed around

the gene in order to capture regulatory regions. Whilst 95% of common genetic variation that

can effect transcription is found within these region (Veyrieras et al., 2008) this is likely to

vary by gene.

In conclusion this study found no evidence that the genetic architecture ofNS-ARID

involves the same genes as those responsible for the normal range of intelligence differences

indicating they may be genetically distinct. In addition there was tentative evidence that the

sodium ion transporters may underlie genetic variation in fluid ability. Future studies should

involve an increase of statistical power in order to overcome the winner's curse in order to

establish if the failure to replicate is indeed a lack of power or if the initial significant finding

is best explained as a type one error.
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Chapter 8: General discussion

The aim of this thesis was to make a contribution to understanding the molecular

genetic basis of human intelligence. This chapter will begin by summarising the main

findings of the thesis before moving on to discuss the strengths and limitations of the studies,

and the broader implications of the work carried out. The final section will outline additional

work that can be conducted to build upon the current findings with the continued aim of

identifying genetic variants responsible for human intelligence differences.

8.1 Overview of findings

The work presented in this thesis focused on the use of gene-set analysis to examine

the joint effect of multiple genes and their role in intelligence differences. A number of new

results were found.

Firstly, in chapter 4, proteomic data on human and animal cortical tissue was used to

derive 5 gene sets, two ofwhich detailed the molecular constituents of the postsynaptic

density (Bayes et ah, 2010) and three sets contained the genes in the AMPA-RC, NMDA-RC,

and mGlu5-RC (Collins et ah, 2006). These sets were examined for enrichment in fluid

cognitive ability, crystallised ability, memory, and mental speed where the NMDA-RC was

found to be enriched for fluid ability in sample of 3,403 older individuals. This finding was

replicated using a performance IQ phenotype in 2,062 young Australians (mean age = 16.6,

SD = 1.5). This finding coupled with the lack of significant SNP or gene-based statistics is

consistent with the notion that phenotypic intelligence arises as a result of a large number of

variants being involved, each ofwhich has only a small effect (Plomin, 1999). This explains

why the association between fluid ability and the NMDA-RC has not been found before as,

by combining the signal from groups of SNPs rather than examining each SNP separately, as

in candidate gene studies and GWA studies, provides the power required. The association
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between the NMDA-RC and fluid ability also indicates that the function of the NMDA-RC,

be it synaptic plasticity or neuronal death, plays a role in creating these differences.

In chapter 5 a novel method of grouping genes for analysis, horizontal or functional

gene-group analysis, was combined with a self-contained test (Lips et al., submitted) in an

attempt to replicate the finding that the genes which express the heterotrimeric g proteins are

associated with differences in cognitive ability (Ruano et al., 2010). Horizontal grouping

describes gene-sets assembled to include genes which are involved in the same cellular

process such as heterotrimeric g protein genes. This grouping strategy exploits the fact that

some proteins act across pathways meaning that they can exert an effect in multiple systems,

such as the glutamatergic and dopaminergic systems. The original study used self-contained

testing and phenotype permutation to show that, in a sample of 627 children with attention

deficit hyper activity disorder (ADHD) (mean age in years = 11, SD = 2.7, 13.3% female), a

significant association existed between 359 of the SNPs found in 25 of the 27 genes which

express the heterotrimeric g proteins and IQ (Ruano et al., 2010). This was subsequently

replicated in the same paper using a sample of 1507 non-ADHD children drawn from the

Avon Longitudinal Study ofParents and Children (ALSPAC) (Golding, Pembrey, & Jones,

2001). Whilst differences in genotyping platform led to only 265 SNPs from 23 genes being

tested the replication was statistically significant. However, this result did not replicate in this

thesis where it was sought using the 5 samples of the CAGES consortium using both fluid

ability and crystallised ability. In addition, replication was sought using the age 11 IQ scores

of both LBC1921 and LBC1936 where again no significant association was found. These

results highlight two important issues regarding the use of self-contained tests.

Firstly, it is well known that self-contained tests are more susceptible to the effects of

population stratification than competitive tests. This is because all of the SNP based statistics

can be become inflated in the presence of stratification and each of these incremental effects

will be summed along with the signal from each SNP. As self-contained tests test against 0,

or no association, this can lead to false positives and large gene-sets are at increased risk of
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this. Competitive tests, whilst still affected by stratification, ameliorate the issue somewhat as

they test against the average level of association found in the GWAS data set, meaning that if

population stratification has the same effect across gene-sets then by testing against the

average level of association found, the effect would be cancelled out. However, there may be

instances where genes in the set are highly conserved, meaning there may be very little

difference in allele frequency between any two populations. This contrasts with gene-sets

including much less conserved variants which may have very different allele frequencies

between populations (Fridley & Biernacka, 2011). This known effect of stratification

inflating the alpha level, particularly for self-contained tests, can explain the replication in the

ALSPAC sample (Ruano et al., 2010) as no method to control for the effects of stratification

were employed in contrast to other GWAS performed on the ALSPAC sample (Benyamin et

ah, 2013; Spycher et ah, 2012). In addition to this issue self-contained tests should be

followed up with competitive tests if a gene-set is found to be significantly associated with a

trait. The reason for this is that in a GWAS data set there are already a greater proportion of

low p-values than would be expected under the null hypothesis of no association leading to

an inflation of the type 1 error rate. The findings from chapter 5 show that there is no

evidence for an association between the genes of the heterotrimeric g protein gene-set and

cognitive abilities and highlight the importance of using competitive tests with GWAS data

sets.

In chapter 6 functional SNPs, defined as those that can affect gene expression or

function, were examined for a greater level of association with fluid cognitive ability than the

background level found in a GWAS using two complementary statistical procedures. A

variant of the Simes test (Li et al., 2011) was used to determine if any of the sets contained a

small number of SNPs with effects larger than those they were grouped with, and a sum of

squares test to detect many SNPs of small effect. A total of 10 SNP-sets were tested and

corresponded to the functional categories of SNPs found in promoter regions (Tahira et al.,

2005), SNPs found in micro-RNA seed sites (Richardson et al., 2011), SNPs associated with
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methylation in the frontal lobes, the temporal lobes, the pons, and the cerebellum (Gibbs et

al., 2010), and a SNP-set associated with mRNA levels in the same four cortical regions as

the methylation SNP-set. Using the data processing pipeline of Bacanu et al. (2013) the

results indicated that there was no significant enrichment for fluid ability found in any of the

SNP- sets tested using either the Simes test or the sum of squares test. This indicates that any

signal that may be coming from these sets is too small to detect with the sample size used

here. Alternatively, these sets may not represent the underlying biology of intelligence and

may include many SNPs that should not be included in the set due to type 1 errors or do not

contain crucial variants, type 2 errors.

Chapter 7 examined genes that have previously been associated with non-syndromic

autosomal recessive intellectual disability (NS-ARID) (Musante & Ropers, 2014) for an

enriched association with fluid ability. In addition these genes were analysed using the text-

mining software Gene Relationships Across Implicated Loci (GRAIL) (Raychaudhuri et al.,

2009) in order to determine what processes these genes were involved in. This analysis

produced a set of statistically significant keywords describing the relationship between the

members of the NS-ARID gene set. Each of these words was used as a search term in Gene

Ontology (Ashburner et al., 2000) and gene-sets corresponding to these sets were retained

and tested for enrichment. One gene-set consisting of 165 genes corresponding to the sodium

ion transport (G0:0006814) remained statistically significant after corrections were made for

the 180 gene-sets tested. This sodium ion transport gene-set is involved in the directed

movement of sodium ions across the boundary of a cell by means of a transporter or a pore

(Ashburner et al., 2000). This finding, as with the finding of the NMDA-RC being

significantly enriched for fluid ability, indicates a role for the genetic variation of the synapse

being involved in intelligence differences. Sodium ion transportation can be seen in the

nervous system where sodium potassium pumps are used to maintain the low concentration

of sodium within the neuron by moving sodium ions against the gradient of electrostatic

pressure. Unlike the result in chapter 4, the finding of an enriched association between the
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sodium ion transport gene-set and fluid ability did not replicate in the BATS sample. This

raises the possibility that the initial finding of association between fluid ability and the

sodium ion transport reported in the CAGES sample was inflated. The use of p-value cut off

to define significance in conjunction with an underpowered discovery sample is known to

result in an inflated estimate of a true association (Ioannidis, 2008). The consequence of

having an inflated estimate of the effect is that should replication fail it will be attributable to

the initial discovery being a type 1 error rather than larger sample sizes being sought in the

replication sample. It is also possible that the initial discovery of enrichment for the sodium

ion transport was a type one error but replication in a larger sample would be help to

differentiate between these two possibilities.

8.2. Implications for Theory

8.2.1 Non-random distribution of causal variants

Gene-set analysis is predicated on the notion that the underlying cause of phenotypic

variance is, at least partly, the result of variance in an underlying biological system (Pedroso

& Breen, 2011; Wang et al., 2007a). The goal of gene-set analysis is to test sets of genes

grouped by the biological function they perform in order to capture the collective variance of

the system they are a part of, rather than to test each component separately. The results of this

thesis indicate that causal variants are not distributed randomly across the genome, but rather

cluster in genes that are part of a greater system such as the NMDA-RC. This indicates that

gene-set analysis could be used to elucidate other systems like the NMDA-RC, where genetic

variation is linked to phenotypic variation in intelligence.

8.2.2 The use ofAnimal models for cognitive ability

The NMDA-RC gene set was sourced from proteomic studies of mice (Collins et al.,

2006). The genes found in the NMDA-RC, notably DLG2, DLG3 and DLG4 have been

shown to be involved in the cognitive abilities of mice (Migaud et al., 1998; Nithianantharajah
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et al., 2013) with copy number variations in DLG2 in humans producing similar deficit on

tests of attention, visuo-spatial learning and memory as knock-out mutations in mice. This

coupled with the high degree of similarity in the composition of the human and mouse PSD

where 70% of the proteins in the human postsynaptic density genes are also present in

the mouse postsynaptic density (Bayes et al., 2012) led to the hypothesis that these genes

and, more broadly, the PSD and the associated complexes may be involved in human

intelligence differences. The success here of showing that the mouse derived NMDA-RC was

enriched for fluid ability in humans indicates that future work using mouse models could be

fruitful. As general cognitive ability has been shown to exist in mice (Matzel et al., 2011)

and that it is heritable (Galsworthy et al., 2005) future work using mouse models could utilise

this general factor rather than specific cognitive abilities (Migaud et al., 1998;

Nithianantharajah et al., 2013), the greater similarity between the phenotypes, particularly if

the same or highly similar tasks are used (Nithianantharajah et al., 2013), would assist in

making comparisons between species.

8.2.3 Use of GWAS data to indicate biological process involved in intelligence

differences.

Gene-set analysis, when compared with single SNP or single gene methods, has the

advantage of being able to provide ground for a biological explanation of any significant

results found as the functional relationship between the genes in the set is typically known

(Subramanian et al., 2005; Wang et al., 2010). Whilst some applications of gene-set analysis

do not utilise genes grouped according to their role in biology, such as chapter 7 where genes

previously associated with NS-ARID were used, such studies are in the minority. This known

relationship between the unit of statistical association, the gene-set, and its function allows for

hypotheses regarding the biological mechanisms involved in intelligence to be tested. Chapter

4 examined the postsynaptic density and its associated components provide an example of

this as these gene-sets contain genes known to be involved in synaptic plasticity. Additional,
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mechanistic theories of intelligence, such as speed of processing, could be examined by

looking at gene sets containing genes known to be involved in the expression of proteins

underlying myelin formation and/or integrity can be tested with gene set analysis.

8.3 Strengths

The strengths of this thesis include the combined use of statistical genetic techniques

of GWAS and to incorporate them with findings from proteomics to help elucidate possible

biological mechanisms underlying variation in intelligence as found in chapters 4 and 5. The

methods used in chapter 4 where gene-based statistics were combined with gene-set analysis

to interrogate the postsynaptic density has now begun to be used by other groups exploring

different phenotypes (Focking et al., 2014). In addition to this for any significant findings

an attempt to replicate in an independent sample was made. This is an important point as

attempts to find variants associated with intelligence have often been met with failure

(Houlihan et al., 2009). hideed, the basis of chapter 5 was to investigate a previous association

between the genes of the heterotrimeric proteins and intelligence (Ruano et al., 2010). Using

5 separate samples and intelligence data gathered in youth and old age the data presented in

this thesis indicates that this initial finding was likely to be spurious or at least inflated in

the original discovery cohort used by Ruano et al. (2010). Other strengths include the

examination of non-coding regions of the genome for an association with intelligence

extending gene-set analysis to regions outside of genes. In addition the genetic links

between intellectual disabilities and intelligence in the normal range was explored. Here,

evidence was found that the genes involved in intellectual disabilities are found in the same

systems, the sodium ion transporters, which may influence intelligence differences although

this did not replicate.
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8.4 Limitations

8.4.2 Common SNPs in protein coding regions

One limitation to the use of gene-set analysis is that it is limited to protein coding

genes and the areas around them. As many GWAS hits fall outside of protein coding regions

(Edwards, Beesley, French, & Dunning, 2013) these variants would not be included even

though they may have an effect on protein expression. Future work should aim to incorporate

such variants into gene-set analysis as measures based on distance (such as VEGAS (Liu

et al., 2010)) or linkage disequilibrium may miss them. Rare variants have also been

examined using gene-set analysis (Fromer et al.,2014; Kirov etal., 2012; Purcell etal., 2014).

Future work could examine the gene and SNP-sets examined here but examine the role of

rare variants and copy number variants in these regions.

8.4.3 Sample size

A second limitation is that the sample sizes are modest when compared with large

scale psychiatric GWAS on disorders such as schizophrenia where 36,989 cases and 113,075

control participants was used to identify 108 associated loci (Schizophrenia Working Group

of the Psychiatric Genomics Consortium, 2014). As the GWAS performed in this thesis

contained no genome wide significant hits statistical power is lacking. Indeed, should

intelligence have a similar genetic architecture to schizophrenia then relatively few

associations will be found before a sample size of 20,000 is reached. Although, there were

significant finding of enrichment for the NMDA-RC in chapter 4 and the sodium ion transport

in chapter 7 the addition of a well powered sample would mean a more accurate measure of

the effects of each SNP, and in turn would mean greater accuracy in establishing an

association for any gene set. Indeed once large numbers of SNPs are found to be reliably
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associated with intelligence the problem of establishing how these genes operate will still

exist and this problem can also be tackled by examining genes grouped by a common

function (Subramanian et al., 2005).

8.4.4 The focus on common SNPs

The work carried out in this thesis focused on aggregating the effects of

common SNPs as the combined effect of many SNPs has been shown to capture variants

responsible for intelligence differences (Davies et ah, 2011). However, rare variants are also

thought to play a role (Penke, Denissen, & Miller, 2007). Although the total burden

or rare variants in protein coding genes does not show association with cognitive ability

(Marioni et ah, 2014b), their position in the genome may be more important than the total

quantity of rare variants. Future work should examine gene-sets for burden to examine this

hypothesis.

8.5 Future directions

The results of this thesis have indicated that gene-set analysis can help in the search

for genetic variants involved in cognitive abilities. The finding that variants are non-

randomly distributed across the genome indicates that future work using gene-set analysis

methods can be a fruitful method for the additional analysis of GWAS data sets. This next

section explores ideas for the future application of gene-set analysis to find additional

variants involved in intelligence.

8.5.2 Further investigation of synaptic plasticity.

As the NMDA-RC has shown significant enrichment for fluid ability this raises the

question ofwhether other processes also linked with synaptic plasticity show enrichment.

This would also help to address the issue ofwhether the enrichment found for the NMDA-RC

was due to its role in plasticity rather than its involvement with neuronal death. The activity-
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regulated cytoskeleton-associated (ARC) protein, has also been associated with long term

potentiation (Guzowski et al., 2000) as well as long term depression (Waung et al., 2008).

Following plasticity inducing activity ARC mRNA is transported to these active synaptic

regions via the dendritic spine where it is then translated and serves to modulate AMPA

trafficking (Chowdhury et al., 2006). In addition to being involved in plasticity, variation in

ARC has been shown to be associated with psychiatric phenotypes in humans where de novo

mutations in the ARC protein have been implicated in schizophrenia (Kirov et al., 2012), a

disease in part predicted by a low premorbid cognitive ability (Khandaker, Barnett, White, &

Jones, 2011), which may be due to a shared genetic component between the two traits

(Toulopoulou et al., 2010). High quality gene-sets, comparable to the NMDA-RC, PSD,

AMPA, or mGlu5-RC, detailing the genes of the ARC are not yet available. As the ARC set

currently available is likely to contain both genes which do not belong in the set (type 1

errors) and be missing genes that should be included (type 2 errors) the meaning of finding

enrichment in the ARC set for intelligence is unclear.

The role that genetic variation in other synaptic components, particularly those that

can modulate NMDA activity can also be examined for enrichment with cognitive abilities.

In addition to the components of the glutamatergic system, the gamma-aminobutyric acid

receptors (GABA) can contribute toward synaptic plasticity. For the NMDA receptors to

allow the entry ofCa2+, critical to the initiation of synaptic plasticity, a sufficiently large

depolarisation of the postsynaptic region must co-occur with glutamate release from the

presynaptic neuron. Following GABA release from the presynaptic neuron the postsynaptic
2+

neuron becomes hyperpolarised, which serves to intensify the voltage dependent Mg block

preventing Ca2+ intake (Dingledine, Hynes, & King, 1986). This role for GABA in synaptic

plasticity also makes it a viable candidate gene-set to study for being enriched in intelligence.

Stimulation of the muscarinic acetylcholine receptors (mAChRs) are also known to

result in an increase in the level ofNMDA receptor activity (Markram & Segal, 1990). One
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way in which mAChRs facilitate NMDA activity, and with it synaptic plasticity, is by

depolarizing the postsynaptic neuron by inhibiting K+ channels. This indicates that synaptic

plasticity can be modulated indirectly by altering the activity of non-glutamatergic

transmission. Whether common genetic differences in these systems result in variation in

synaptic plasticity or intelligence has yet to be shown.

Non-neuronal cells can also mediate synaptic plasticity (Han et al., 2013) and so

should also be considered as potential targets to test the notion that genetic variability in the

systems that can modulate synaptic plasticity also are responsible for intelligence differences.

Human astrocytes, a subtype of glial cell, have been shown to be structurally and functionally

different from those of non-primate mammals as they are larger, more complex, and produce

a more rapid calcium signalling (Oberheim et al., 2009). Han et al. (2013) experimentally

tested the idea that this increase in the complexity of human astrocytes contributed towards

greater cognitive abilities by producing mice with a chimeric central nervous system

(Windrem et al., 2008) by engrafting them neonatally with human glial progenitor cells. As

the mouse developed these human glia cells integrated themselves into the brain of the mice

and upon reaching adulthood, a large proportion of the forebrain of the mice was replaced

with human glial cells. This had neuro-physiological effects in that long term potentiation

was increased in these mice and this was not through modulation of activity of the NMDA

receptors. This increase in long term potentiation was accompanied by an increased ability to

perform cognitive tasks including auditory fear conditioning, where a tone is paired with a

painful electrical shock to the feet, and a spatial learning task where the mice had to

successfully navigate a maze, and tests of recognising a familiar object in a novel location.

These findings indicate that the astrocytes contribute toward species differences in cognitive

abilities and further work utilising gene-set analysis could be performed to determine if they

are also involved in individual differences within species.
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8.5.3 Gene-set analysis and white matter

Intelligence has been associated with a number of neurological correlates such as

increased brain size (McDaniel, 2005), but its association with white matter tract integrity

makes for a particularly appealing target for gene-set analysis. This is because of the

functional role white matter integrity appears to play in intelligence through its role in

processing speed (Penke et al., 2012). A sample of 420 individuals taken from the Lothian

Birth Cohort of 1936 were subjected to diffusion tensor magnetic resonance imagery as well

as cognitive testing (Penke et ah, 2012). Three complementary imaging methods were used to

provide a measure of white matter integrity and a latent component for each was derived

using a principal component analysis carried out on 12 white matter tracts, with the first

unrotated component being extracted. Participants' scores on each of these principal

components were found to predict their level of intelligence. This link, however, was broken

by adding a latent component for information processing speed. Together this indicates that

white matter integrity, through processing speed, underlies a portion of the variance in

intelligence that is measureable with the sample sizes currently available. Studies have also

shown that white matter integrity is heritable (Jahanshad et al., 2013). A viable strategy to

build on the results of this thesis would be to use existing gene- sets containing genes for

oligodendrocytes, the cells responsible for the myelination of the central nervous system, and
examine them for enrichment using white matter phenotypes as well as both processing speed

and general cognitive ability. By examining white matter integrity, processing speed and

intelligence using gene-set analysis there is the potential to find genes involved in

intelligence and to understand one of the mechanisms responsible for variation in

intelligence.

8.6 Summary

The results of this thesis have indicated that gene-set analysis can be included in an
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analysis pipeline to complement single SNP and single gene analysis. This can be done in

order to test a specific group of genes as carried out in chapters 4 and 5 or as in the case of

chapter 7 gene-sets can be constructed from genes showing association to a potentially

related phenotype. In chapter 6 groups of SNPS formed the unit of association and represent

another variant of the gene-set analysis approach. The collection of studies presented as the

body of this thesis support the existing notion of the genetic architecture of intelligence being

highly polygenic. This is extended by indicating the causal variants involved in intelligence

cluster in genes, which themselves work together as components in biological systems as

indicated by the significant enrichment of the NMDA-RC in chapter 4 and to a lesser extent

the significant enrichment of the sodium ion transporter (G0:0006814) in chapter 7.

Genome wide analysis in conjunction with GCTA has expanded our understanding of the

genetic architecture of human intelligence by showing that common variants tag causal

variants. Genome wide analysis in conjunction with gene-set analysis has the potential to

both identify these common variants and connect them with a known biological process. By

capitalising on the ever increasing sample sizes available in modern GWA studies along with

bioinformatics resources such the Allen Brain Atlas (Hawrylycz et al., 2012) or proteomic

work on the human synapse conducted by the genes to cognition group

(https://www.genes2cognition.org/) gene-set analysis will continue to make contributions to

the field of intelligence differences.
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Appendices

Appendix A.

Details the full set of genes for the postsynaptic density and its associated components

PSD Full total genes = 1433

AAK1, AARS, AASDHPPT, ABCB8, ABCD1, ABCD3, ABCF3, BAT5, ABI1, ABI2, ABLIM1,
ABLIM2, ABLIM3, ABR, ACAA1, ACACA, ACAT1, ACBD5, ACLY, AC02, THEM2, ACOT7,
ACOT8, ACPI, ACSL3, ACSL4, ACSL6, ACTB, ACTN1, ACTN2, ACTN3, ACTN4, ACTR1A,
ACTR1B, ACTR2, ACTR3, ACYP2, ADAM22, ADAM23, ADD1, ADD2, ADD3, ADRBK1,
AFG3L2, CENTG2, CENTG1, CENTG3, AGK, AGL, AGPAT5, AHCY, AHCYL1, AHNAK,
AHSA1, AIFM3, AIP, AK1, AK3, AK5, AKAP12, AKR1A1, AKR1C1, AKR1C2, AKR7A2,
ALDH16A1, ALDH1L1, ALDH2, ALDH3A2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1,
ALDOA, ALDOC, AMPD2, AMPH, ANK1, ANK2, ANK3, ANKFY1, ANKRD24, ANKS1B,
ANXA1, ANXA11, ANXA2, ANXA5, ANXA6, ANXA7, AP1B1, AP1G1, APIMl, APISI,
AP2A1, AP2A2, AP2B1, AP2M1, AP2S1, AP3B1, AP3B2, AP3D1, AP3M2, AP3S1, AP3S2,
APC, APOD, APOE, AP0L2, APOOL, APPL1, APPL2, AQP1, AQP4, ARCN1, ARF5,
ARFGAP2, ARFGEF2, ARHGAP1, ARHGAP21, ARHGAP23, ARHGAP26, KIAA1688,
R1CH2, ARHGDIA, ARHGEF2, ARHGEF7, ARPC2, ARPC3, ARPC4, ARRB1, ATAD1,
ATAD3A, C6orfl34, ATIC, SPG3A, ARL6IP2, ATP12A, ATP13A1, ATP1A1, ATP1A2,
ATP1A3, ATP1A4, ATP1B1, ATP1B2, ATP2A1, ATP2A2, ATP2B1, ATP2B2, ATP2B3,
ATP2B4, ATP4A, ATP5A1, ATP5B, ATP5C1, ATP5D, ATP5F1, ATP51, ATP5J2, ATP5L,
ATP50, ATP6V0A1, ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D,
ATP6V1E1, ATP6V1E2, ATP6V1G1, ATP6V1G2, ATP6V1H, ATP8A1, ATP8A2, ATXN10,
AUH, B3GAT3, BAG3, BAG5, BAT3, BAI1, BAIAP2, BASP1, BCAN, BCAS1, BCKDK, BCR,
BEGAIN, BIN1, BLVRB, BRSK1, BSG, BSN, LGALS3BP, C10orf35, Cllorf2, Cllorf41,
C14orfl56, C14orfl59, C17orf61, C1QBP, C1QC, Clorfl98, Clorf95, C22orf28, C2CD4C,
C2orf55, C2orf72, C3, C6orfl54, C8or/55, C9orf46, C9orf5, CA1, CA2, CA4, CACNA2D1,
CACNA2D2, CACNB1, CACNB3, CACNB4, CACYBP, CAD, CADPS, CALCOCOl,
CAMK2A, CAMK2B, CAMK2D, CAMK2G, CAMKK1, CAMKK2, CAMKV, CAND1,
CAND2, CAP1, CAP2, CAPG, CAPN1, CAPN5, CAPZA2, CAPZB, CASK, CASKIN1, CBR1,
CBR3, CC2D1A, CCDC124, CCDC127, CCDC22, CCDC93, CCNY, CCT2, CCT3, CCT4,
CCT5, CCT6A, CCT6B, CCT7, CCT8, CD59, CD9, CDC42, CDC42BPA, CDC42BPB,
CDC42EP4, CDH10, CDH13, CDH2, CDH4, PCTK3, CDK5, CDK5RAP3, CDKL5,
CEND1, CFL1, CFL2, CHCHD3, CHCHD6, CHL1, CHMP1A, CHMP4B, CISD1, CIT,
CKAP4, CKAP5, CKB, CKMT1B, CLASP1, CLASP2, CLIP2, CLIP3, CLTA, CLTB, CLTC,
CLU, CMC1, CMPK1, CNDP2, CNP, CNTN1, CNTN2, CNTNAP1, CNTNAP2, COASY,
COG3, COPA, COPG, COQIOB, C0R01A, COROIB, COROIC, C0R02A, C0R02B,
C0X4I1, C0X5A, C0X5B, C0X6B1, COX6C, COX7A2L, CPNE5, CPNE6, CPT1A, CRAT,
CRIP2, CRKL, CRMP1, CRTAC1, CRYAB, CRYM, CRYZ, CS, CSE1L, CSNK1D, CSNK1E,
CSNK2A1, CSNK2A2, CSRP1, CST3, CTBP1, CTNNA1, CTNNA2, CTNNB1, CTNND1,
CTNND2, CYB5R1, CYBRD1, CYCS, CYFIP1, CYFIP2, CYLD, PSCD2, PSCD3, DAAM1,
DAAM2, DAB2IP, DAD1, DARC, DARS, DBN1, DBNL, DBT, DCAKD, DCLK1, DCLK2,
DCTN1, DCTN2, DCTN3, DCTN4, DCX, DDAH1, DDOST, C20orfll6, DDX1, DDX17,
DDX3X, DDX6, DECR1, DECR2, DES, DGKB, DHX30, D1P2B, DIRAS2, DLAT, DLD,
DLG1, DLG2, DLG3, DLG4, DLGAP1, DLGAP2, DLGAP3, DLGAP4, DLST, DMWD,
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DMXL2, DNAJA1, DNAJA2, DNAJA3, DNAJB1, DNAJB2, DNAJB4, DNAJB6, DNAJC11,
DNAJC13, DNAJC19, DNAJC6, DNM1, DNM1L, DNM2, DNM3, D0CK1, DOCKIO,
D0CK2, D0CK3, D0CK4, DOCK5, D0CK9, DPMI, DPP6, DPYSL2, DPYSL3, DPYSL4,
DSP, DST, DSTN, DTNA, DUSP3, DYNC1H1, DYNC1I1, DYNC1I2, DYNC1LI1,
DYNC1LI2, DYNLL1, DYNLL2, DYNLRB1, DYNLRB2, PECI, EDARADD, EEA1, EEF1A1,
EEF1A2, EEF1D, EEF1G, EEF2, EFHD2, EFR3A, EFR3B, EHD1, EHD3, EHD4,
EIF2AK2, EIF2S1, EIF3C, EIF4A2, EIF4G1, ELFN2, ELM02, EN01, EN02, EN03,
ENPP6, EPB41, EPB41L1, EPB41L2, EPB41L3, EPB42, EPB49, EPHA4, EPPK1, EPRS,
EPS15L1, EPX, ERBB2IP, ERC1, ERC2, ERLIN1, ERLIN2, FAM62A, FAM62B, ETFB,
EVL, EXOC1, EXOC2, EXOC3, EXOC4, EX0C5, EXOC6, EXOC6B, EX0C7, EX0C8,
EZR, FAAH, FABP3, FABP7, FAM107A, FAM123A, FAM171A1, FAM18A, FAM49A,
FAM49B, FAM82A2, FARP1, FARSA, FARSB, FASN, FBX02, FBX041, FDPS, FGB,
FGF2, FGG, FH, FIS1, FKBP15, FKBP1B, FKBP4, FKBP8, FLU, FLNA, FL0T1, FLOT2,
FMN2, FMNL1, FMNL2, FMNL3, FN3K, FRYL, FSCN1, FSD1, FTH1, FXR2, FYN, G6PD,
GABARAPL2, GABBR1, GABBR2, GABRA1, GABRA4, GAK, GAP43, GAPDH, GAPVD1,
GAS7, GBAS, GDAP1, GDAP1L1, GDI1, GDI2, GFAP, GGA3, GIPC1, G1T1, GJA1, GK,
GLG1, C9orfl9, GL0D4, GLS, GLUD1, GLUL, GNA11, GNA13, GNA14, GNA11, GNAI2,
GNAI3, GNA01, GNAQ, GNAS, GNAZ, GNB1, GNB2, GNB4, GNB5, GNG12, GNG2,
GNG3, GNG7, GNL1, GNPAT, C10orfl32, GOLGB1, GOT1, GOT2, GPC1, GPD2, GPHN,
GPI, GPR158, GPRC5B, GPRJN1, GPSM1, GPX1, GPX4, GRHPR, GRIA1, GRIA2, GRIA3,
GRIA4, GR1N1, GRIN2A, GRIN2B, GRIN2D, GRLF1, GRM2, GRM5, GSK3B, GSN,
GSTK1, GSTM2, GSTM3, GST01, GSTP1, GUK1, HADH, HADHA, HADHB, HAPLN1,
HAPLN2, HARS2, HCK, HDLBP, HECW1, HECW2, HGS, HIBCH, HIGD1A, HIP1, HIP1R,
HK1, HM0X2, HNRNPA1, HNRNPK, HNRNPM, HOMER1, H0MER2, HOOK3, HPCA,
HSD17B12, HSD17B4, HSDL1, HSDL2, HSP90AA1, HSP90AB1, HSP90B1, HSPA12A,
HSPA2, HSPA4, HSPA4L, HSPA5, HSPA8, HSPA9, HSPB1, HSPB8, HSPD1, HSPH1, HTT,
IARS, ICAM5, IDH2, IDH3A, IGHM, IGSF21, IGSF8, IMMT, 1MPA1, INA, INF2, IP05,
1P07, IQGAP1, IQSEC1, IQSEC2, IQSEC3, IRGQ, ITSN1, ITSN2, JUP, KALRN, KANK2,
KARS, KBTBD11, KCNAB2, KCNQ2, KCTD12, KCTD16, KCTD8, KIAA0090, KIAA0174,
K1AA0196, KIAA0284, KIAA0408, KIAA0513, KIAA0528, KIAA0776, KIAA1033,
KIAA1045, KIAA1468, K1AA1543, KIAA1549, KIAA1598, K1F1A, MPHOSPH1, K1F21A,
K1F2A, K1F2B, K1F2C, K1F3A, KIF5A, K1F5B, KIF5C, KLC1, KLC2, CCDC128, KPNA1,
KPNB1, KRAS, KTN1, LICAM, Cllorf59, LANCL1, LANCL2, LAP3, LASP1, LCP1, LDHA,
LDHB, LETM1, LGALS8, LG11, LIMA1, LIMCH1, LIN7A, LIN7B, LIN7C, LINGO1, LIFE,
LLGL1, LMNB2, LM07, LMTK2, LMTK3, LONP1, LPHN1, LPHN3, LRP1, LRPPRC,
LRRC40, LRRC47, LRRC57, LRRC59, LRRC7, LRRC8A, LRSAM1, LSAMP, LY6H, LYN,
LYNX1, MACF1, MACROD1, MADD, MAG, MAGI2, MAOA, MAOB, MAP1A, MAP1B,
MAP1LC3A, MAP2, MAP2K1, MAP2K2, MAP4, MAP6, MAP6D1, MAP7D1, MAPK1,
MAPK3, MAPK8IP3, MAPRE1, MAPRE2, MAPRE3, MAPT, MARCKSL1, MARK1,
MARK2, MARS, MBP, MCCC2, MDH1, MDH2, MFF, MFN2, MINK1, MLLT4, MOG,
GCS1, M0SC2, MPH0SPH1, MPO, MPP2, MPP6, MPP7, MPRIP, MRAS, MSN, MT-C02,
MTCH1, MTCH2, MTDH, MTHFD1, MTHFD1L, MTX1, MVP, MYCBP2, MYH10, MYH11,
MYH14, MYH9, MRLC2, MYL6, MYL6B, MY018A, MY01B, MYOIC, MYOID, MYOIE,
MYOIF, MY05A, MY06, NAP1L4, NAPA, NAPB, NAPG, NCALD, NCAM1, NCAM2,
NCAN, NCDN, NCKAP1, NCKAP1L, NCKIPSD, NDRG1, NDRG2, NDUFA10, NDUFA12,
NDUFA13, NDUFA2, NDUFA4, NDUFA5, NDUFA7, NDUFA9, NDUFB10, NDUFB4,
NDUFB6, NDUFB7, NDUFB8, NDUFB9, NDUFS1, NDUFS2, NDUFS3, NDUFS6,
NDUFS7, NDUFV1, NDUFV2, NEBL, NEFH, NEFL, NEFM, NEGRI, NEOl, NFASC,
NINJ2, NIPSNAP1, NLGN2, NME1, NME3, NNT, NOMOl, NPEPPS, NPM1, NPTN,
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NPTX1, NRAS, NRCAM, NRN1, NRXN1, NRXN3, NSF, NSFL1C, NT5C1B, NT5E, HNT,
NUDCD2, NUMBL, OGDH, OGDHL, OGT, 0LA1, OLFM1, OMG, OPA1, OPCML,
OXCT1, 0XR1, PABPC1, PABPC4, PACS1, PACSIN1, PACSIN2, PADI2, PAICS, PAK1,
PALM, PALM2, COR07, PARK7, PARP1, PBXIP1, PC, PCBP1, PCBP2, PCCA, PCDH1,
PCLO, PCMT1, PDCD6IP, PDE1A, PDE2A, PDE8A, PDHA1, PDHB, PDFFX, PDIA3,
PDIA6, PDK3, PDPK1, PDXK, PDXP, PEA15, PEBP1, PEX11B, PFKL, PFKM, PFKP,
PFN1, PGAM1, PGAM5, PGD, PGK1, PGM2L1, PHACTR1, PHB, PHB2, PHGDH,
PHLDB1, PHYHIP, PI4KA, PIN1, PIP4K2A, PIP4K2B, PIP5K1C, PITPNA, PKM2, PKNI,
PKP4, PLCB1, PLCB4, PLCD1, PLCD3, PLCG1, PLD3, PLEC1, PLEKHA1, PLEKHA5,
PLEKHA6, PLLP, PLP1, PLXNA1, PLXNA2, PLXNA3, PMVK, PNKD, PNPLA6, POR,
PPAP2B, PPFIA1, PPFIA2, PPFIA3, PPFIA4, PPIA, PPIB, PPID, PPIL1, PPP1CA,
PPP1CB, PPP1CC, PPP1R12A, PPP1R7, PPP1R9A, PPP1R9B, PPP2R1A, PPP2R5D,
PPP3CA, PPP3CB, PRAF2, PRDX1, PRDX2, PRDX5, PRDX6, PREX1, PRKACB,
PRKAR1A, PRKAR2A, PRKAR2B, PRKCA, PRKCB1, PRKCE, PRKCG, PRKDC, PRKRA,
PRMT5, PRODH, PROSC, PRPH, PRPS1, PRR7, PRRT1, PSD, PSD3, PSMB6, PSMC1,
PSMD11, PSMD14, PSMD2, PTK2, PTK2B, PTPLAD1, PTPN11, PTPN23, PTPRD,
PTPRF, PTPRS, PTPRZ1, PURA, PURB, PYCRL, PYGB, PYGM, QARS, QDPR, RAB10,
RAB11B, RAB11FIP5, RAB13, RAB14, RAB15, RAB18, RAB1A, RAB1B, RAB21, RAB35,
RAB3A, RAB3C, RAB3GAP1, RAB3GAP2, RAB4B, RAB5A, RAB5B, RAB5C, RAB6A,
RAB6B, RAB7A, RAB8B, RAC1, RALA, GARNL1, RANGAP1, RAP1A, RAP1GAP,
RAP1GDS1, RAP2C, RAPGEF2, RAPGEF4, RAPH1, RARS, RASAL1, RASAL2, RASGRF2,
RBX1, RDX, REEP5, REPS2, RFTN1, RGS7, RHOA, RHOB, RHOG, RHOT1, RHOT2,
R1C8A, RIMBP2, R1MS1, RIN1, ROCK1, R0CK2, ROGDI, RPH3A, RPL10A, RPL12,
RPL13, RPL13A, RPL18A, RPL24, RPL3, RPL30, RPL35, RPL36, RPL38, RPL4, RPL6,
RPL7, RPL7A, RPL8, RPL9, RPLPO, RPN1, RPN2, RPS11, RPS13, RPS14, RPS15A, RPS16,
RPS17-2, RPS18, RPS19, RPS25, RPS27, RPS3, RPS3A, RPS5, RPS8, RRBP1, RTN1, RTN3,
RTN4, RTN4RL2, RUFY3, RYR2, SACM1L, SACS, SAMM50, SAR1A, SARS, SBF1, SBF2,
C9orfl26, SCCPDH, SCFD1, SCIN, SCRIB, SCRN1, SDCBP, SEC13, SEC14L2, SEC22B,
SEC23A, SEC24C, SEC31A, SEPT10, SEPT11, SEPT2, SEPT3, SEPT4, SEPT5, SEPT6,
SEPT7, SEPT8, SEPT9, SESTD1, SFN, SFXN1, SFXN3, SFXN5, SGCD, SGIP1, SGSM1,
SH3GL1, SH3GL2, SH3GL3, SH3GLB2, SH3PXD2A, SHANK1, SHANK2, SHANK3,
SHISA7, SHMT2, SIPA1L1, SIRPA, SIRT2, SKIV2L, SLC12A2, SLC12A5, SLC17A7,
SLC1A2, SLC1A3, SLC25A1, SLC25A11, SLC25A12, SLC25A13, SLC25A18, SLC25A22,
SLC25A26, SLC25A3, SLC25A31, SLC25A4, SLC25A46, SLC25A5, SLC27A1, SLC27A4,
SLC2A1, SLC3A2, SLC4A1, SLC4A4, SLC8A2, SLC9A3R2, SLK, SNAP25, SNAP91, SND1,
SNPH, SNTA1, SNTB1, SNTB2, SNX1, SNX12, SNX2, SNX27, SNX3, SNX4, SNX5, SNX6,
SNX9, SORBS1, SORBS2, SPECC1, SPIRE1, SPTAN1, SPTB, SPTBN1, SPTBN2, SPTBN4,
SRC, SNIP, SRGAP3, SRI, SRPK2, SRPR, SRPRB, SSBP1, STAT1, STIP1, STK32C,
STK38L, STK39, STOM, ST0ML2, STRAP, STRN4, STUB1, STX12, STX1A, STX1B, STX4,
STX7, STXBP1, STXBP3, STXBP5, SUCLA2, SUCLG1, SV2A, SYNI, SYN2, SYN3,
SYNCRIP, SYNE1, SYNGAP1, SYNGR3, SYNJI, DMN, SYNPO, SYP, SYT1, SYT5, SYT7,
TACC1, TAGLN2, TAGLN3, TALDOl, TAOK1, TA0K2, TARSL2, TBC1D17, TBC1D24,
TBCB, TBCD, TBK1, TCP1, TCP11LI, TFAM, TIMM50, TJP1, TJP2, TKT, TLN1, TLN2,
TMEM126A, TMEM85, TMOD1, TM0D2, TNC, TNPOl, TNR, TOLLIP, TOM1L2,
TOMM20, TOMM34, TOMM40L, TOMM70A, TPI1, TPM1, TPM3, TPM4, TPP1, TPPP,
TRAP1, TRAPPC3, NIBP, TRIM2, TRIM3, TRIO, TSC2, TSC22D4, TSG101, TTC35,
TTC37, TTC7B, TUBA 1A, TUBA1B, TUBA4A, TUBB2A, TUBB2B, TUBB2C, TUBB3,
TUBB4, TUFM, TWF1, TXNL1, UBA1, UBC, UBE2M, UBE2N, UBE2V2, UBE3C, UBE4A,
UBL4A, UBR4, UBXD1, UCHL1, UGP2, UNC13A, UPF1, UQCRB, UQCRC1, UQCRC2,
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UQCRFS1, USMG5, US01, USP14, USP15, USP5, USP9X, VAC14, VAMP2, VAMP3,
VAPA, VAPB, VARS, VAT1, VCAN, VCL, VCP, VCPIP1, VDAC1, VDAC2, VDAC3, VGF,
VIM, VPS11, VPS16, VPS18, VPS29, VPS33A, VPS35, VPS39, VPS45, VPS4A, VPS52,
VPS53, VPS8, VSNL1, VTA1, WASF1, WASF2, WASF3, WASL, WDR1, WDR37, WDR47,
WDR48, WDR7, WDR91, WFS1, WIPF2, WNK1, XPOl, XP07, YARS, YES1, YWHAB,
YWHAE, YWHAG, YWHAH, YWHAQ, YWHAZ.

PSD consensus, total genes = 737,

AAK1, AARS, ABCD3, ABI1, ABI2, ABLIM1, ABR, ACBD5, ACLY, AC02, ACPI, ACSL3,
ACSL6, ACTB, ACTN1, ACTN2, ACTN4, ACTR1A, ACTR1B, ACTR2, ACTR3, ADD1,
ADD2, ADD3, AFG3L2, CENTG1, AHCYL1, AHNAK, AK1, AK5, AKR1A1, AKR7A2,
ALDH2, ALDH6A1, ALDH7A1, ALDOA, ALDOC, AMPH, ANK1, ANK2, ANK3, ANKFY1,
ANKS1B, ANXA2, ANXA5, ANXA6, AP1B1, AP1S1, AP2A1, AP2A2, AP2B1, AP2M1,
AP2S1, AP3B2, APOD, APOE, AP0L2, AQP4, ARF5, ARHGAP21, ARHGDIA, ARHGEF2,
ARPC2, ARPC3, ATAD3A, C6orfl34, ATIC, SPG3A, ATP1A1, ATP1A2, ATP1A3, ATP1B1,
ATP1B2, ATP2A2, ATP2B1, ATP2B2, ATP2B3, ATP2B4, ATP5A1, ATP5B, ATP5D, ATP51,
ATP50, ATP6V0A1, ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D,
ATP6V1E1, ATP6V1G2, ATP6V1H, ATP8A1, BAG3, BAIAP2, BASP1, BCAN, BCAS1,
BIN1, BLVRB, BRSK1, BSN, C10orf35, Cllorf41, C1QC, CA2, CA4, CACNA2D1,
CACNB4, CACYBP, CADPS, CAMK2A, CAMK2B, CAMK2D, CAMK2G, CAMKK1,
CAMKV, CAND1, CAP1, CAP2, CAPG, CAPN5, CAPZA2, CAPZB, CASK, CASKIN1,
CBR1, CBR3, CC2D1A, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT7, CCT8, CDC42BPA,
CDC42BPB, CDH13, CDH2, CDK5, CEND1, CFL1, CHCHD3, CHCHD6, CHMP4B,
CISD1, CIT, CKAP4, CKAP5, CKB, CKMT1B, CLASP2, CLIP2, CLTC, CLU, CNDP2,
CNP, CNTN1, CNTN2, CNTNAP1, COROIA, COROIC, C0R02B, COX5A, COX5B,
COX6B1, COX6C, COX7A2L, CPNE5, CRIP2, CRMP1, CRTAC1, CRYAB, CRYM, CS,
CSE1L, CST3, CTNNA1, CTNNA2, CTNNB1, CTNND1, CTNND2, CYBRD1, CYFIP1,
CYFIP2, PSCD2, PSCD3, DARS, DBN1, DBNL, DCLK1, DCTN1, DCTN2, DDAH1, DDX1,
DDX3X, DIP2B, DLAT, DID, DLG1, DLG2, DLG3, DLG4, DLGAP1, DLGAP2, DLGAP3,
DLST, DMXL2, DNAJA1, DNAJB4, DNAJB6, DNAJC11, DNAJC13, DNM1, DNM1L,
DNM2, DNM3, DOCKIO, DOCK9, DPYSL2, DPYSL3, DPYSL4, DST, DSTN, DYNC1H1,
DYNC1I1, DYNC1LI2, DYNLL1, DYNLL2, DYNLRB1, DYNLRB2, EEF1A1, EEF1D,
EEF1G, EFHD2, EHD1, EHD3, EIF4A2, ELM02, ENOl, EN02, EN03, ENPP6, EPB41,
EPB41L1, EPB41L3, EPB49, EPHA4, EPPK1, EPRS, EPS15L1, ERC1, ERC2, FAM62A,
EVL, EXOC1, EX0C2, EXOC3, EXOC4, EXOC8, EZR, FAM18A, FAM49A, FAM82A2,
FARP1, FARSA, FARSB, FASN, FBX041, FKBP8, FLNA, FLOT1, FLOT2, FMN2, FMNL2,
FMNL3, FSCN1, FSD1, FTH1, FYN, GABBR2, GABRA1, GAP43, GAPDH, GBAS, GD12,
GFAP, GIT1, GJA1, GLUD1, C9orfl9, GLUD1, GLUL, GNA13, GNAI2, GNAOl, GNAS,
GNAZ, GNB1, GNB2, GNB4, GNL1, GNPAT, C10orfl32, GOT1, GPFTN, GPI, GPR158,
GPRC5B, GPR1N1, GR1A1, GR1A2, GRIA3, GRIN1, GR1N2B, GRTN2D, GSN, GSTM3,
HADHA, HADHB, HAPLN2, HCK, HK1, H0MER1, HSD17B4, HSP90AA1, HSP90AB1,
HSPA12A, HSPA2, HSPA4, HSPA4L, HSPA5, HSPA8, HSPA9, HSPB1, HSPD1, HSPH1,
ICAM5, IDH2, IGSF21, IGSF8, 1MMT, INA, IPOS, IQSEC1, IQSEC2, 1RGQ, ITSN1,
KBTBD11, KCTD12, KCTD8, KIAA0284, KIAA0408, KIAA0528, KIAA1045, KIAA1543,
KIF1A, KTF21A, KIF2A, KIF5A, KIF5B, KIF5C, KLC1, KLC2, KPNB1, KRAS, LICAM,
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CIlorf59, LANCL2, LDHA, LDHB, LIMCH1, LIN7B, L1N7C, LLGL1, LM07, LMTK3,
LPHN1, LRPPRC, LRRC47, LRRC7, LSAMP, LYN, LYNX1, MACF1, MAOA, MAOB,
MAPIA, MAPIB, MAP1LC3A, MAP2, MAP2K1, MAP4, MAP6, MAP6D1, MAP7D1,
MAPK3, MAPRE2, MAPRE3, MAPT, MARK2, MBP, MDH1, MDH2, MINK1, MLLT4,
MOG, MPP2, MSN, MT-C02, MTCH2, MTDH, MTHFD1, MYH10, MYH11, MYH14,
MYH9, MRLC2, MYL6, MYL6B, MY018A, MYOID, MY05A, MY06, NAPA, NAPB, NAPG,
NCAM1, NCAM2, NCAN, NCDN, NCKAP1, NCKJPSD, NDUFA13, NDUFA2, NDUFA4,
NDUFA7, NDUFB10, NDUFB6, NDUFB7, NDUFS1, NDUFS2, NDUFS3, NDUFS7,
NDUFV2, NEFH, NEFL, NEFM, NEGRI, NFASC, NIPSNAP1, NLGN2, NME1, NNT,
NPEPPS, NPTN, NRCAM, NRXN1, NSF, NSFL1C, HNT, OGDH, OCT, OMG, OPA1,
OPCML, 0XCT1, 0XR1, PABPC1, PACS1, PACSIN1, PAICS, PAK1, PALM, PALM2,
PBXIP1, PCBP2, PCLO, PCMT1, PDCD61P, PDE2A, PDHA1, PDHB, PEA15, PEBP1,
PFKL, PFKM, PFKP, PGAM1, PGD, PGK1, PHB, PHB2, PHGDH, PI4KA, PIN1,
PIP4K2A, P1P4K2B, PKM2, PKP4, PLCB1, PLD3, PLEC1, PLP1, PLXNA1, PPFIA1,
PPFIA2, PPFIA3, PPFIA4, PPIA, PPP1CA, PPP1CB, PPP1R12A, PPP1R7, PPP1R9B,
PPP2R1A, PPP3CA, PPP3CB, PRDX1, PRDX2, PRDX5, PRKAR1A, PRKAR2A, PRKAR2B,
PRKCG, PRKDC, PRPH, PSD3, PTK2B, PTPN11, PTPN23, PTPRD, PTPRS, PTPRZ1,
PURA, PYCRL, PYGB, QDPR, RAB10, RAB13, RAB15, RAB1A, RAB1B, RAB35, RAB3A,
RAB3GAP2, RAB5B, RAB5C, RAB6A, RAB6B, RAB7A, RAC1, RALA, RAP1A, RAP1GDS1,
RAPGEF2, RAPGEF4, RASAL1, RBX1, RGS7, RHOG, RIMBP2, RIMS1, ROCK2, RPH3A,
RPL12, RPL38, RPL7, RPL8, RPLPO, RPN1, RPS13, RPS14, RPS18, RPS19, RPS25,
RPS27, RPS3, RTN1, RTN4, RUFY3, RYR2, SACM1L, SAMM50, SBF1, C9orfl26,
SCCPDH, SCFD1, SCRIB, SCRN1, SEC22B, SEPT10, SEPT11, SEPT2, SEPT3, SEPT4,
SEPT5, SEPT6, SEPT7, SEPT8, SEPT9, SFN, SFXN1, SFXN3, SFXN5, SGIP1, SH3GL1,
SH3GL2, SH3GLB2, SHANK1, SHANK2, SHANK3, SIRPA, SLC1A3, SLC25A11,
SLC25A12, SLC25A13, SLC25A18, SLC25A22, SLC25A26, SLC25A3, SLC25A4, SLC25A5,
SLC27A4, SNAP25, SNAP91, SND1, SNTA1, SNTB2, SNX27, SNX4, SORBS1, SORBS2,
SPECC1, SPIRE1, SPTAN1, SPTB, SPTBN1, SPTBN2, SPTBN4, SRC, SNIP, SRI, SRPR,
STIPI, STOM, STX1A, STXIB, STX7, STXBP1, STXBP3, SUCLA2, SYNI, SYN2, SYN3,
SYNGAP1, SYNGR3, SYNJ1, SYNPO, SYP, SYT1, SYT5, SYT7, TAGLN3, TA0K1, TAOK2,
TBC1D24, TBCB, TCP1, TFAM, TJP1, TJP2, TLN1, TLN2, TM0D1, TMOD2, TNC, TNR,
TOLLIP, T0M1L2, TOMM20, TOMM70A, TPI1, TPMl, TPM3, TPM4, TPPP, TRAP I,
TRAPPC3, NIBP, TRIM2, TRIM3, TTC7B, TUBA1A, TUBA1B, TUBA4A, TUBB2A,
TUBB2B, TUBB2C, TUBB3, TUBB4, TUFM, TXNL1, UBA1, UBC, UBE2N, UBE2V2,
UCHL1, UNCI3A, UQCRC1, UQCRC2, VAMP2, VAPA, VAPB, VCAN, VCL, VCP, VDAC1,
VDAC2, VDAC3, VIM, VPS11, VPS35, VPS52, VSNL1, WASF1, WASF3, WASL, WDR7,
YES1, YWHAB, YWHAE, YWHAG, YWHAH, YWHAQ, YWHAZ.

NMDA RC, total genes =181

ABLIM1, AC02, ACTN2, ACTN3, ACTN4, ADAM22, AKAP5, AKAP9, AKT2, ALDOC,
APPL1, ARC, ARF3, ARNT, ARPC2, ARPC3, ARPC4, ATGJ6L1, ATP1A1, ATP1A3,
ATP2B4, ATP5A1, ATP5C1, ATP6V0D1, ATP6V1A, BAD, BSN, CACNG2, CALB2, CALM1,
CAMK2A, CAMK2B, CAPZA2, CAPZB, CDH2, CIT, CLTC, CSE1L, CTNNB1, CTTN,
DBN1, DLAT, DLG1, DLG2, DLG3, DLG4, DLGAP1, DNM1, DPYSL2, DSG1, DUSP4,

177



EHMT2, FABP5, FAM171A1, FGD4, FLNC, FUS, GAP43, GAPDH, C21orf66, GLUL,
GNAS, GNB1, GNB2, GNB2L1, GNB4, G0T2, GRB2, GR1K2, GRIN1, GRIN2A, GRIN2B,
GRM1, GRM5, GSK3B, GSN, HOMER1, HRAS, HSPA1B, INA, IRS1, KALRN, KLC2,
LICAM, LCA5, LDHA, LDHB, LGI1, LIN7A, LMNB1, MAP2, MAP2K1, MAP2K2,
MAP2K3, MAP2K7, MAPK1, MAPK10, MAPK3, MAPK8IP1, MBP, MOG, MPP2, MPP3,
MYH10, MYH11, MYH6, MYH9, MYL6, R0CK1, MYOIB, MY05A, NDUFV2, NEFL,
NEFM, NF1, NOS1, NSF, PDPK1, PFKL, PHB2, PIK3CA, PKLR, PLA2G4A, PLCB1,
PLCG1, PLP1, PPP1CC, PPP2CA, PPP2R1A, PPP3CA, PPP5C, PRDX1, PRDX2, PRDX6,
PRKACB, PRKAR2B, PRKCB1, PRKCE, PRKCG, PTK2B, PTPN11, PTPN5, RAB2A,
RAB37, RAB3A, RAB6A, RAC1, RAF1, RALA, RAN, RAP2A, RPL13, RPL13A, RPL7,
RPS6KA3, RTN1, SERPINA3, SHANK1, SHANK2, SLC1A2, SLC25A12, SLC25A22,
SLC25A4, SLC25A5, SLMAP, SNAP25, SPINK5, SPTBN1, SRC, STK39, STX1A, STXBP1,
SYNGAP1, SYNGR1, SYT1, TJP1, TP53BP1, TP11, TUBA1A, VDAC1, VDAC2, VEGFA,
YWHAE, YWHAG, YWHAH, YWFLAZ.

mGluR5, total genes = 50,

SEPT5, SEPT7, ACAN, ADD1, ADD2, ALDOA, ALDOC, AP2B1, ATP1A1, ATP1A2,
ATP1A3, ATP1B1, ATP2B1, BSN, CACNA1A, CALB2, CALM1, CIT, CLTC, CSNK2A1,
DNM1, DNM2, GDI1, GNA01, GNAQ, GRIN2A, GR1P1, GRM5, HOMER1, ITPR1,
LICAM, MAPIA, MAPIB, MAP2, NSF, PLCB1, RAB10, RAB3A, RPH3A, SHANK1,
SLC12A5, SLC4A4, SP140, SYNGRI, SYNJ1, SYNPO, VAMP2, YWHAB, YWHAG, YWHAH,
YWHAQ, YWHAZ.

AMPA RC, total genes = 7,

ATPIAI, DSP, GRIA1, GRIA2, GR1A3, GRIA4, PLP1, STXBP1, TUBA1A
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