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Abstract

Applications of Artificial Intelligence to Alchemical Free Energy

Calculations in Contemporary Drug Design

The work presented in this thesis resides at the interface of alchemical free energy

methods (AFE) and machine-learning (ML) in the context of computer-aided drug

discovery (CADD). The majority of the work consists of explorations into regions

of synergy between the individual parts. The overarching hypothesis behind this

work is that although areas of high potential exist for standalone ML and AFE in

CADD, an additional source of value can be found in areas where ML and AFE are

combined in such a way that the new methodology profits from key strengths in

either part.

Physics-based AFE calculations have - over several decades - grown into precise

and accurate sub-kcal·mol−1 (in terms of mean absolute error versus experimental

measures) methods of predicting ligand-protein binding affinities which is the main

driver of its popularity in project support in drug design workflows. Data-driven

ML methods have seen a similar rapid development spurred by the exponential

growth in computational hardware capabilities, but are generally still lacking in

accuracy versus experimental measures of binding affinities to support drug design

work. Contrastingly, however, the first relies mainly on physical rules in the form

of statistical mechanics and the latter profits from interpolating signals within large

training domains of data.

After a historical and theoretical introduction into drug discovery, AFE calculations

and ML methods, the thesis will highlight several studies that reflect the above hy-

pothesis along multiple key points in the AFE workflow.
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Firstly, a methodology that combines AFE with ML has been developed to com-

pute accurate absolute hydration free energies. The hybrid AFE/ML methodology

was trained on a subset of the FreeSolv database, and retrospectively shown to

outperform most submissions from the SAMPL4 competition. Compared to pure

machine-learning approaches, AFE/ML yields more precise estimates of free energies

of hydration, and requires a fraction of the training set size to outperform standalone

AFE calculations. The ML-derived correction terms are further shown to be trans-

ferable to a range of related AFE simulation protocols. The approach may be used

to inexpensively improve the accuracy of AFE calculations, and to flag molecules

which will benefit the most from bespoke force field parameterisation efforts.

Secondly, early investigations into data-driven AFE network generators has been

performed. Because AFE calculations make use of alchemical transformations be-

tween ligands in congeneric series, practitioners are required to estimate an optimal

combination of transformations for each series. AFE networks constitute the collec-

tion of edges chosen such that all ligands (nodes) are included in the network and

where each edge is a AFE calculation. As there are a vast number of possible config-

urations for such networks this step in AFE setup suffers from several shortcomings

such as scalability and transferability between AFE softwares.

Although AFE network generation has been automated in the past, the algorithm

depends mostly on expert-driven estimation of AFE transformation reliabilities.

This work presents a first iteration of a data-driven alternative to the state-of-the-

art using a graph siamese neural network architecture. A novel dataset, RBFE-

Space, is presented as a representative and transferable training domain for AFE

ML research. The workflow presented in this thesis matches state-of-the-art AFE

network generation performance with several key benefits. The workflow provides

full transferability of the network generator because RBFE-Space is open-sourced

and ready to be applied to other AFE softwares. Additionally, the deep learning

model represents the first robust ML predictor of transformation reliabilities in AFE

calculations.
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Finally, one major shortcoming of AFE calculations is its decreased reliability for

transformations that are larger than ∼5 heavy atoms. The work reported in this

thesis describes investigations into whether running charge, Van der Waals and bond

parameter transformations individually (with variable λ allocation per step) offers an

advantage to transforming all parameters in a single step, as is the current standard

in most AFE workflows. Initial results in this work qualitatively suggest that the

bound leg benefits from a MultiStep protocol over a onestep (”SoftCore”) protocol,

whereas the free leg does not show benefit. Further work was performed by Cresset

that showed no observable benefit of the MultiStep approach over the Softcore ap-

proach. Several key findings are reported in this work that illustrate the benefits of

dissecting an FEP approach and comparing the two approaches side-by-side.
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Lay summary

Drug discovery is a challenging, time-consuming and expensive process. Although

estimations vary significantly, the whole process generally takes 10-15 years and

costs £0.3-0.8B, although other estimates often extend beyond the £1B mark. In

reality, this process takes even longer because diseases are researched in academic

laboratories for decades leading up to the point that a drug discovery campaign can

be launched for the disease in question.

Despite being slow and expensive, it stands without reason that pharmaceutical

discoveries are pivotal in advancing medicine and therapeutics towards the clinic,

eventually aiding in patients’ qualities of life and in other cases eradicating diseases

altogether. Enormous amounts of global research are being done to investigate

whether the process can be sped up or whether there are aspects in the drug dis-

covery pipeline that can be made less expensive (often, these two aspects mean the

same thing).

Computational chemistry is a major field of research that sprung up in the 1970’s-

1980’s and it promised exactly this. The research in this thesis is in computational

chemistry and is ultimately aimed at aiding drug discovery: the general name for

the research field is computer-aided drug design (CADD). The main idea behind

CADD approaches is that we are able (or rather, starting to be able) to replace

costly laboratory (’wet lab’) experiments with calculations done using computers

(’in silico’). Although there exist many techniques in CADD, not all have proven

succesful and even today the vast majority of pharmaceutical research is still done

in a wet lab.

Alchemical free energy (AFE) calculations are one of the most popular CADD tech-
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niques. These work using molecular simulations (i.e. simulated using computers)

and are able to accurately predict the binding strength of a drug candidate to a ther-

apeutic target. For drug discovery this is extremely helpful as in early stages of drug

discovery there is the need for candidate molecules that can bind the therapeutic

target protein to inhibit its function: for example, ibuprofen binds the COX-1 and

COX-2 proteins in the human body which normally cause inflammation; by binding

these, ibuprofen inhibits their function and therefore reduces inflammation. Tradi-

tionally, medicinal chemists would have had to synthesise hundreds (if not more)

trial candidate molecules that were small variations of the ibuprofen molecule (and

testing how well they bind to COX1/2) before coming to ibuprofen - this process

typically requires months of work done by large teams of scientists. With AFE, all

of this can be done using computers in a matter of days given enough computer

hardware.

AFE is a fairly established technique in early-stage drug discovery campaigns, but it

is nowhere near a silver bullet and synthesis of candidate molecules is still required;

AFE is currently used to support projects and guide medicinal chemists toward

low-hanging fruit. This thesis concerns itself with the question of how AFE can

be improved using a variety of approaches. Machine learning (ML) - or artificial

intelligence - approaches have become very popular in CADD over the last decade

and the work presented in this thesis aims to profit from these recent advances. The

main research question for this work is thus:

Although areas of high potential exist for standalone ML and AFE in CADD, can

additional value be found in areas where ML and AFE are combined in such a way

that the new methodology profits from key strengths in either part?

Within this research framework I have performed several investigations which I

describe in chapters 1-4 of this thesis. 1) First, I have composed a broad introduction

to the theory behind the work in this thesis 2) I present work on a hybridisation of

AFE and ML, where I have trained ML models to predict the mistake that AFE

predictions make versus experimental measures. The aim of this work was to correct
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future AFE predictions using these mistake predictions: in scientific terms this is

called applying a correction term. 3) Because ML models require large amounts of

example data to learn from and because no such dataset exists within the field of

AFE, I set out to generate such a dataset. Using this novel dataset, I have trained

ML models to learn how precise certain AFE predictions are. This is helpful in

planning large AFE campaigns, as running AFE simulations takes some time and

it is valuable to be able to pick out ’easy to predict’ candidates from a large series

of candidate molecules. 4) finally, I have detailed investigations done during my

research placement at Cresset, the CADD software company that has co-sponsored

my studentship. This last chapter does not involve any ML science, but rather

focuses on the bowels of AFE methodologies.

In summary, this thesis describes a rather unique approach in AFE science. By

finding ways to loosely connect AFE and ML we have come to multiple additions

to the scientific body of CADD; I am confident that future research in this area will

further advance drug discovery efforts and ultimately bring medicine to patients

more effectively.
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Introduction

1.1 Foreword

The introduction to this thesis serves to provide the reader with the necessary back-

ground information to effectively parse the research outlined in the following chap-

ters. Although an attempt has been made to span as much supporting theory as

possible while remaining concise, further reading is recommended and is referenced

where appropriate.

The structure of this introduction is constructed in a top-down design: initial sub-

sections will outline the general context of the thesis research (the pharmaceutical

drug discovery pipeline and the role of computer-aided drug design therein) after

which the basic foundation theory of the binding of ligands to proteins is reflected

upon. Then, an introduction to molecular simulation is provided, after which this

is related to alchemical free energy calculations. Finally, introductory theory to

machine learning in computer-aided drug design is presented.

1.2 The modern drug discovery landscape

The discovery of novel medicines is pivotal in advancing global healthcare towards

curing disease. In most cases, the main objective of a drug discovery campaign is

to find a therapeutic agent that interacts with a therapeutic target such that it

modulates its biological function in a manner that leads to an alleviated disease

phenotype. The global research body for drug development is vast in scope in both

academic and commercial settings, resulting in a wide variety of therapeutic agent
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1.2. The modern drug discovery landscape

categories such as small-molecule inhibitors,1 monoclonal antibodies2 and vaccines.3

Because the entirety of this thesis operates in the context of small-molecule drug

discovery, the remainder of this introduction will omit other therapeutic agent cat-

egories. From here on, small-molecule drug discovery will be referred to as drug

discovery.

1.2.1 The pharmaceutical pipeline

The financial and time expenses of drug discovery are notoriously high: although

highly variable, the cost of bringing a drug to the market is estimated to range

from ∼£0.3-0.8B,4 although other estimates often extend beyond the £1B mark.

Perhaps more critical however is the slow pace of development, resulting in an esti-

mated 10-15 years5 for most pharmaceutical campaigns. This period starts at the

launch of a preclinical program and ends with a commercial, marketed drug. In the

estimates described above, basic research to untangle the foundations of the disease

phenotype are not taken into account; often these run for multiple decades across

multiple parties (primarily in the academic domain) and financial expenses for these

processes are challenging to quantify.

There exist a multitude of reasons for why this process is so intensive. There is one

core concept that underlies these, which is that designing an effective drug (i.e. a

drug that achieves its therapeutic goal while being synthesisable at scale) that is

physiologically ’safe’ (acceptable pharmacokinetics/dynamics and toxicity profiles,

etc.) is extremely challenging. This results in high failure rates (highly dependent

on disease context) with recent systematic estimates as high as 86.2% drawn across

5764 drug discovery companies.4

The pharmaceutical pipeline classically consists of sequential segments that operate

as a workflow that inputs molecular candidates and outputs marketable drugs (fig-

ure 1.1). Given a defined therapeutic target, a large number of molecular candidates

(in the order of 103 to 109) is screened both experimentally and computationally to
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Chapter 1: Introduction

produce a lead compound (early-stage drug discovery). A lead (i.e. ’leading’)

compound is defined as a compound that has reached pharmacological or biological

goal effects but requires further adjustments (in terms of structure) to either bind the

therapeutic target better or increase metabolism/toxicity profiles (see 1.2.2). Then,

the lead compound is subjected to in vivo animal experimentation to determine

physiological response prior to human testing (pre-clinical trials); subsequently

there exist three clinical trials that sequentially investigate safety (1), efficacy of

the indication (2) and efficacy in large populations (3) concluding with the regula-

tory process of allowing the developed drug to be marketed (approval). As clinical

trial phases 1-3 involve increasingly larger infrastructures of experimentation these

are associated with the bulk of the cost of developing drugs; unfortunately these

phases are also associated with the highest estimated attrition rates: 86.2%, 79%

and 41%, respectively. For this reason it is paramount that clinical candidates are

of high quality to improve the chance that they pass clinical phases. It is clear

then that any methodology that allows drug developers to save financial and time

expenses while improving drug candidate quality can have a substantial impact in

the development of novel medicinal agents.6,7
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1.2. The modern drug discovery landscape

Figure 1.1: Schematic overview of the drug discovery pipeline funnel, a commonly
used concept in visualising the end-to-end process of creating a marketed pharma-
ceutical agent. Each coloured circle represents a different drug candidate; at the
bottom of the funnel a single marketed drug is created.
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1.2.2 Early-stage drug discovery

The purpose of early-stage drug discovery (ESDD) phase is to produce compound

leads with a high chance of progressing through the following stages of the phar-

maceutical pipeline. The ESDD phase typically starts with a therapeutic target (in

some unfortunate cases, no known target is defined which forces ESDD to be re-

strained to phenotypic screening8) for which a large number of molecular candidates

are screened for hit molecules. From here on a ’target’ is assumed to be a protein

target rather than any other macromolecule. Additionally, candidate molecules are

assumed to be small-molecules.

Hit discovery stage

Historically, one of the most successful implementations of hit discovery is high-

throughput screening (HTS) for which (hardly any or) no prior knowledge is assumed

except for some initial in vitro assay with a sensible readout related to the hypoth-

esised mode of action;9 HTS involves screening a large (n=103 to 106) compound

library to the therapeutic target in vitro which requires considerable infrastructure

to allow execution in an automated manner. The hit discovery stage of ESDD is

intended to produce multiple hits that achieve some level of chemical diversity in

order to spread the chances of succeeding in the next stages of ESDD. Subsequent

stages involve only several hundreds of compounds.5

Hit-to-lead stage

The hit-to-lead (HtL) stage serves to further investigate all individual (series of)

hit molecules obtained from the hit discovery stage. The main purpose of the HtL

stage is to establish a robust structure-activity relationship (SAR) investigation

to improve hit binding affinity to the therapeutic target as well as ensuring that

selectivity is retained. At this point, it is common practice to develop a variety of

assays that allow assessment of the degrees of selectivity and other undesired effects

(CYP450 inhibitory activity, e.g.) that (optimised) hits might develop during SAR
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studies. Depending on the pharmacokinetic intention of the drug in development,

steering of SAR towards certain physicochemical properties is applied in this stage

as well. Early in vivo work can be performed on promising candidates in this stage.

Lead optimisation stage

The lead optimisation (LO) stage involves further fine-tuning of lead compounds

that succesfully passed the HtL stage. In essence the main activity in LO is fine-

tuning lead compound structures while optimising their performance in the assays

mentioned in the HtL stage paragraph as well as general toxicity work. Successfully

optimised leads are presented as pre-clinical candidates to further in vivo work.

Typically only one or two pre-clinical candidates are advanced past the LO stage.

1.2.3 Computer-aided drug discovery

As outlined in 1.2.1, the drug discovery pipeline is highly complex and contains a

vast number of (hidden) pitfalls, contributing to its costly and time-consuming na-

ture. The dawn of computer-aided drug discovery (CADD) in the late 20th century

promised a virtual form of supporting ESDD in an effort to reduce its cost and

speed up the process where possible. Although the integration of CADD has not

been as rapid as previously estimated,10 there exist many domains in ESDD (and

other phases in the pharmaceutical pipeline) that benefit from CADD approaches

at the time of writing.11–13 This section will cover a selection of major CADD ap-

proaches that have proven successful in supporting ESDD.

Discovery of therapeutic targets

Therapeutic target discovery is positioned at the onset of the pharmaceutical pipeline.

Although this stage is predominantly being executed in wet labs, some compu-

tational efforts are gaining traction. One major paradigm shift is the commu-

nity’s move away from the traditional reductionist view towards -omics approaches,

7



Chapter 1: Introduction

where the aim is to assess a set of molecules in a specific system, for example

metabolomics. Many disease-specific databases are under construction to support

computational approaches to screen these, for example using expression data anal-

yses stored within.14,15

More recently, with the rise of machine learning (ML) approaches combined with the

increased availability of digitalised experimental biological data, new methods for

target discovery have seen an increase in development and application, with several

commercial start-ups applying this technique as a result. The core principle in this

approach is that given the low computational expense of ML predictors it is now

possible to virtually screen and select novel therapeutic targets for a disease indica-

tion by referencing it to the target and ligand scaffold of interest. This screening is

done using a variety of descriptors and target labels. There are numerous examples

of research using these techniques that have shown to aggregate therapeutic targets

across protein classes for the same disease indication, hopefully paving the way to-

wards combined therapies.16,17

In the last few years, considerable advances in protein structure prediction have been

made, with the most recent leap made by AlphaFold2 developed by DeepMind.18

This most recent predictor surpasses homology modelling accuracy in most cases

and in some cases even matches experimental structure with very high accuracy

(to within experimental uncertainties). AlphaFold2 offers an attractive technique

for target identification: researchers now have the option of accurately predicting

protein structure from sequence data alone. As crystal structure determination is a

major bottle-neck in target identification and computational chemistry as a whole

(with e.g. membrane-bound protein crystallisation only becoming a possibility in

recent years19), this leap forward is set to advance the field of computational chem-

istry for years to come.20,21
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1.2. The modern drug discovery landscape

Ligand-based approaches

As with target discovery, the ongoing growth of virtual databases (often contain-

ing bioactivity information) has proven to be fertile ground for ligand-based (LB)

approaches in CADD. Primary examples of these are ChEMBL22, a large database

with over 2.1M compounds with bioactivity data at the time of writing, as well

as ultra-large readily synthesisable virtual libraries such as Enamine REAL23 and

ZINC20.24

Although a wide variety of LB approaches exist in CADD (e.g. solubility/stability

prediction, similarity searching), this section will highlight only LB approaches re-

lated to quantitative structure-activity relationship (QSAR) modelling as the thesis

theme operates in this context. LB approaches have seen a rise in popularity due to

a marked improvement in bioactivity databases such as ChEMBL; especially with

novel descriptors and more accurate endpoint representations and scoring functions

machine-learning models (section 1.6) have gained traction in QSAR modelling,

leading to numerous QSAR models that are able to support virtual screening of

large chemical databases in silico.25,26

Paired with LB virtual screening, de novo/generative modelling of candidate molecules

has seen an increase in popularity in both the academic and commercial pharma-

ceutical landscape. Although the technique has seen applications since the early

1990s,27,28 more recently with the rise of ML approaches its application has become

more widespread and has been shown to be beneficial in several drug discovery cam-

paigns. An attractive feature of this reinvigorated technique is the possibility of

exploring chemical space while steering for specific physicochemical properties to

arrive at drug candidates with desired attributes for the drug discovery campaign

in question.29–31
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Structure-based approaches

With the dawn of computational chemistry and CADD in the 1980s, the expected

key outcome was the paradigm shift of experimental QSAR studies to rational design

approaches. Although to this day SAR approaches are still the dominant method

in HtL and LO stages of the pharmaceutical pipeline, structure-based (SB) ap-

proaches have grown to be invaluable tools in support of the ligand optimisation

problem. In tandem with high-resolution crystal structures, docking approaches

are pivotal in prioritising candidate molecules for synthesis by medicinal chemists.

High-throughput docking algorithms allow rapid screening of large virtual databases

to sizes of 1011 molecules, effectively allowing rapid exploration of a large part of

drug-like chemical space in search of novel scaffolds for protein targets. A common

first step when predicting binding affinities for novel ligands is to use docking to find

reasonable ligand poses (in case the novel ligand can not be properly aligned to a

crystallised ligand pose). It should be noted that in this step docking scoring meth-

ods are occasionally used as indicators of binding affinity but extensive literature

exists that shows that these methods are insufficient in their current form. Docking

scores should thus solely serve as indicators of how well the ligand fits in the binding

pocket, and is most useful for discarding ligands/poses that will not fit at all.32,33

As with LB approaches, SB CADD has benefited greatly from the increase in vir-

tual databases that create a data-rich context for further developement of these

techniques. Primary examples of these are the protein data bank (PDB;34 180K

3D structures of which <70K are unique) which is a public repository of molecu-

lar crystal structures and the PDBBind database35 which is a collection of ligand-

protein crystal structures. More recently, the AlphaFold Protein Structure Database

was generated that builds on successes of AlphaFold 2 (section 1.2.3) which con-

tains over 360K predicted structures and has recently been expanded to cover all of

UNIPROT.36

This rapid expansion of SB virtual libraries has significantly contributed to the in-

creased development of SB physicochemical property prediction. For example, a
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variety of data-driven methods now exist that are competitive with docking ap-

proaches for ligand-protein pose prediction and combinatorial approaches have been

shown to offer benefits compared to standalone techniques.37,38

Predictions of ligand binding affinity

Whereas the previously described SB approaches are informed by static images of

(typically) crystal structures of ligand-protein systems, in reality these systems are

dynamic which reduces the applicability and accuracy of naive ”snapshot-style” ap-

proaches such as docking. Approaches that describe molecular structures across

a timescale using molecular simulation offer more elaborate representations of the

thermodynamic landscape of a ligand-protein context, allowing for more accurate

estimation of binding affinities. Although more detailed introductions to molecular

dynamics (MD) and free energy perturbation (FEP) are presented later in this in-

troduction (sections 1.4 and 1.5), this section will outline some alternatives to these

methodologies.

Although highly accurate potential energy calculation techniques such as high-level

ab initio methods are theoretically applicable to protein-ligand systems, in prac-

tice these are far too computationally expensive to handle molecular systems of

this size. Sampling potential energy landscapes of protein-ligand systems is thus

currently out of reach for these techniques. Instead, the most common physical

models used are empirical force fields that describe the physical system as a collec-

tion of charged points connected by springs (section 1.4.2). Because this method

of describing physical systems is considerably less expensive, protein-ligand sys-

tem dynamics can be simulated over timescales up to the order of milliseconds

in recent works.39,40 MD opens up the possibility of free energy calculations in a

time-dependent manner, where end-point methods such as the Molecular Mechan-

ics Poisson-Boltzmann Surface Area (MMPBSA), Molecular Mechanics/Generalized

Born Surface Area (MM/GBSA) and Linear Interaction Energy (LIE) have become
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increasingly popular. Although not strictly time-dependent (i.e. the same result

should hold when frames are scrambled), these techniques benefit from conforma-

tional sampling of the molecular system and are able to compute statistics over the

ensemble.41–43

More advanced alternatives to the aforementioned MD-based binding affinity esti-

mation such as absolute FEP44 and funnel metadynamics45,46 are set to further ad-

vance the field of accurate computational ligand-protein binding affinity estimation.

Markov state modelling (MSM) is rapidly gaining popularity and offers attractive

opportunities for the development of novel algorithms that explore ligand binding

modes, protein folding and allostery.47,48

1.3 A brief introduction to ligand-protein binding

To understand the work presented in this thesis a basic understanding of the prin-

ciples of ligand-protein binding is required. This section will outline these concepts

concisely which will serve as supporting theory for further sections that explore com-

putational ligand-protein binding affinity predictions.

1.3.1 Pharmacological foundations

In the classical sense, small-molecule drugs are designed to bind protein receptors

in some way to induce a therapeutic effect by increasing or decreasing the receptor’s

function. This can be accomplished by binding the receptor’s catalytic site (bind-

ing pocket) directly or partially (orthosteric binding) or by binding a non-active

site of the receptor (allosteric binding). Beyond this distinction, several drug-target

relationships are defined: antagonists (partially) disable function of the receptor

target, whereas agonists (partially) enable function of the receptor target (figure

1.2). Within the field of pharmacology there exist more distinctions (inverse/partial

12
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agonists; competitiveness etc.) but these are considered out of scope for this intro-

duction. The binding of a drug A with its therapeutic target receptor R can be

defined as

A+R
k+1−−⇀↽−−
k−1

AR, (1.1)

where k+1 and k−1 are the forward and reverse binding rate constants and AR is

the drug-receptor complex. At equilibrium, the strength of binding (or rather, the

tendency of the dissociation) of ligand A to receptor R can be expressed as

Kd =
k−1

k+1

=
[A][R]

[AR]
, (1.2)

where Kd is the dissociation constant which has the dimension of concentration,

[A], [R] and [AR] are concentrations of free ligand A, unbound receptor R and com-

plex AR, respectively. In practical terms, the Kd is used to express numerically the

concentration of ligand A required to occupy 50% of the receptor A population at

equilibrium.
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Figure 1.2: The distinction between drug agonism and antagonism in the context
of protein receptor activation. Shown are drugs A and B (red/blue, agonist and
antagonist, resp.) binding to target receptor R with binding rate k. In the case
of agonism, the drug-target complex is activated with rate β, resulting in activated
complex AR* which results in a biological response. Complex BR has β = 0 and
thus no biological response follows after binding. Adapted from Rang et al..49
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1.3.2 Thermodynamic contributions of ligand-protein bind-

ing

Maximising ligand binding affinity to therapeutic targets is a key focus of early-stage

drug discovery campaigns and is the ultimate goal of most of the major themes dis-

cussed in this thesis. By optimising ligand structure to decrease Kd, the therapeutic

objective (e.g., target inhibition; activation, see figure 1.1) is reached while account-

ing for other factors discussed in section 1.2.2. It is thus instructive to examine

the thermodynamic foundations of what factors increase ligand binding affinities in

ligand-protein binding. The standard state Gibbs free energy of binding of a ligand

to a protein is expressed as

∆G°
bind = −kBT lnK °

d, (1.3)

where kB is the Boltzmann constant and T is the temperature in Kelvin and the

K °
d is Kd divided by the standard state concentration. When ∆G < 0, there is a

thermodynamic favourability of the binding reaction in the forward direction, i.e.

the ligand will tend to associate. An alternative thermodynamic description of the

Gibbs free energy is

∆Gbind = ∆H − T∆S°, (1.4)

where ∆H is the change in enthalpy and ∆S° is the change in standard state en-

tropy of the system on ligand binding. Classically speaking, the entropic term

describes the change in disorder of the whole system resulting from ligand binding

or the change in translational, rotational and conformational entropy. The enthalpic

term describes the change in heat resulting from ligand binding at thermodynamic

equilibrium. Both terms are in kcal·mol−1. Although Eq. 1.3 is more relevant to

techniques discussed later in this chapter (section 1.5), the emphasis in this theo-

retical introduction will be on entropy and enthalpy as described in Eq. 1.4.
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Entropic contributions to ligand binding

From a systemic perspective, entropy is the dispersal of energy from a localised form

to a spread out form. On a molecular level, entropy relates to a system’s number

of accessible microstates. It follows that the standard behaviour of a system is to

maximise up to its limit its entropy over time.50 Binding of ligands to proteins de-

creases conformational entropy due to an increase in rigidity in both the ligand and

the protein’s binding site, thus resulting in an entropic penalty in Eq. 1.4. Com-

plexation thus results in translational and rotational entropy loss which ultimately

results in a penalty to binding affinity which can be as high as 25 kcal·mol−1.51,52

Beside the unfavourable change in conformational entropy, there exists the favourable

effect of the change in solvation entropy on ligand binding resulting from (partial)

desolvation of the ligand to the binding pocket. Both hydrophobic and polarisation

entropic rewards are gained upon desolvation as well. This is due to an increase

in accessible states of water in bulk versus water at the protein-ligand interface.53

Water organises around hydrophobic molecules (in the form of clathrate cages), so

burying hydrophobic molecules/regions contributes to disorganizing water (entropy

gain). This is one of the key phenomena driving protein folding. The higher the

degree of ’buriedness’ of the binding pocket (and the more buried the ligand is) the

higher the entropic gain upon ligand binding.

There have been some attempts at quantifying entropic contributions to ligand-

protein binding computationally,52 which revealed high variability in entropic penal-

ties that are highly dependent on the molecular system in question. For host-guest

systems, estimations are in the order of ∼20 kcal·mol−1,54 whereas for example the

entropic loss of amprenavir binding HIV protease is around 25 kcal·mol−1. For the

latter example it was found that the conformation contributed minimally to the

entropic loss, whereas the vibrational entropy - a measure of the degree to which

atoms are able to vibrate in their environment - contributed 93.2%.
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1.3. A brief introduction to ligand-protein binding

Enthalpic contributions to ligand binding

A system’s enthalpy is a measure of the total energy associated with the system

which represents thermodynamically the sum of energies of all non-covalent inter-

molecular interactions contained in the system. If energy could be decomposed

unambiguously a secondary definition would be that it is the energy ’stored’ in all

degrees of freedom in the system. On binding, enthalpy thus also involves internal

interactions. ∆H is negative in exothermic reactions and positive in endothermic

reactions.

A common strategy in ligand optimisation is to design an enthalpy-driven binding

process by minimising the entropic contribution and maximising the enthalpic con-

tribution (Eq. 1.4). An example of minimising the entropic contribution is to design

a preorganised ligand that undergoes minimal conformational change upon binding

(i.e. the ligand pose solvation is similar to that in the bound phase).55,56 Opti-

mising the enthalpic term (i.e. making ligand binding as exothermic as possible)

is generally performed by introducing additional non-covalent interactions between

the ligand and binding pocket amino acids. Any newly introduced interaction will

further decrease the enthalpic term in favour of increased binding affinity; however

the picture is not as clear-cut as ligand binding (i.e. gaining the collection of in-

tended inter-molecular interactions in the ligand-protein complex) is also associated

with loss of non-covalent interactions in the protein-solvent and ligand-solvent inter-

phases.57 Ultimately the collection of lost and newly-gained interactions constitute

the net enthalpy change.

Key intermolecular interactions in ligand-protein binding

There exists a wide variety of non-covalent interactions. Rather than involving the

sharing of orbitals (as is the case with covalent bonds), this type of interaction relies

on electromagnetism in various forms. This section will briefly outline several non-

covalent interactions that are commonly pursued in the ligand optimisation problem;
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a visual guide is provided in figure 1.3. An attempt will be made to highlight the

degree of contribution to enthalpy of each interaction mentioned, but it should be

noted that the strength is highly dependent on the structures of the molecular par-

ticipants as well as the solvent of the system in question.

Electrostatic interactions Hydrogen (H-) bonds are one of the most sought af-

ter interactions in ligand optimisation as their enthalpy contribution can be rather

large at 1-4 kcal·mol−1 in aqueous solution (even ranging up to 20 kcal·mol−1 in

some non-aqeous solutions) although desolvation costs can negate this effect.58 H-

bonds involve a dipole electrostatic attraction between a partially positively charged

hydrogen atom and a partially negatively charged electronegative element such as

oxygen, fluorine or nitrogen. Halogen bonds involve a similar electrostatic interac-

tion as H-bonds, however in this case the electron acceptor is a halogen atom instead

of a hydrogen. Ionic interactions (also referred to as salt-bridges) which involve a

direct interaction between a negatively charged atom (e.g., Cl−) and a positively

charged atom (e.g., Na+) also play an important role in ligand binding as physiolog-

ical pH often results in ionised functional groups (e.g. acids or amines). All amino

acids can be involved in H-bonding via their backbone; several also allow H-bonding

on their side-chains such as tyrosine and glutamate. An important role for H-bonds

in ligand-protein binding is in water networks, where a buried water molecule (or

multiple) can act as an intermediate for H-bonding between the ligand and protein.59

Van der Waals Non-covalent interactions that involve a dipole-dipole interaction

which are dependent on small fluctuation in electron densities are referred to as

Van der Waals interactions, which is an umbrella term for several types of weak

interactions (Keesom force, Debye force and London dispersion forces). Although

these forces are not very strong by themselves (0.5-1 kcal·mol−1), in practice they

are essential in ligand-protein binding as their abundance leads to additive effects in
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1.3. A brief introduction to ligand-protein binding

binding affinity and they are regarded as the main driving force in ligand binding.60

π-π interactions The third most abundant interaction in protein-ligand environ-

ment are π effects, with π-π stacking the most commonly sought-after in rational

design. These effects involve the interactions of π orbitals between two molec-

ular entities, of which the most classical example is between two benzene rings.

There exist multiple forms of π-π interactions: stacked/sandwiched, edge-to-face

and displaced/slip-stacked which all vary in the range of 1-2 kcal·mol−1. Slip-stacked

π interactions are the least prominent of the three types. The importance of π inter-

actions is highlighted by the abundance of aromatic moieties in drug-like molecular

scaffolds; typically π-π stacking plays a pivotal role in directing the ligand pose to

fit in the binding pocket geometry. Almost 50% of all π-π stacking interactions of

ligands are with phenylalanine; followed by tyrosine, tryptophan and histidine.59

A comparison of intermolecular interactions for drug discovery Across

the intermolecular interactions outlined in the above paragraphs there are several

relationships to be drawn that influence which interactions are sought after during

lead optimisation in early-stage drug discovery. Their strengths are one key factor

(as outlined in the above paragraphs) - interaction span (or: length) is a second.

Hydrogen bonds typically span across 2-3Å, depending on what chemical moieties

make up the acceptor/donor parties. Hydrophobic interactions usually span longer

distances, between 3.3-4Å. Although it may be attractive to favour high-strength

intermolecular interactions during drug design, it is often more favourable to aim

for a larger number of weaker interactions that span the protein binding site, for

example targeting both the catalytic centre as well as the protein backbone with

hydrogen bonding. Besides, over-emphasising certain moieties can lead to unwanted

ADMET outcomes, such as with hydrogen donors/acceptors (skewed lipophilicity)

and π-π benzene rings (metabolite toxicity).61,62
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The hydrophobic effect and desolvation The tendency of non-polar chemical

moieties to cluster with other non-polar chemical moieties (as with water-oil sepa-

ration) is likely one of the main drivers in ligand-protein binding.59 Coincidentally,

the hydrophobic effect is also under heavy investigation because it is the main driver

in protein folding.63 Upon ligand binding, non-polar sections of both molecules ap-

proach each other while H-bonded networks of water molecules dissociate from both

molecules while escaping into the bulk solution. As displaced water molecules are

able to engage in more H-bonding in the bulk solvent (often up to four), an enthalpy

gain is often achieved on desolvation. Additionally, entropy is affected favourably

by releasing water molecules from the constrictive binding pocket. However, this

entropic effect is partially compensated by the unfavourable decrease in entropy on

ligand binding.64,65 Water displacement research is in progress as there are examples

of the free energy gain being as high as ∼2kcal·mol−1 per water molecule66 whereas

other works have observed no benefit from water displacement which suggests that

this principle is highly context-specific.67,68
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1.3. A brief introduction to ligand-protein binding

Figure 1.3: A 2D interaction diagram of PDB ID 1FJS (Factor Xa with inhibitor
ZK-807834) generated using Maestro (academic). The three interactions depicted
are hydrogen bonds (magenta, top left), π-π stacking (green, top right) and solvent
exposure (grey areas, bottom). The protein backbone is shown as black thick lines
between amino acids which are numbered according to index in the original crystal
structure. The green/blue curved line indicates the binding pocket surface as a
measure of lipophilicity of its residues (blue is hydrophilic; green is lipophilic).

21



Chapter 1: Introduction

1.4 Molecular dynamics simulations

Molecular dynamics (MD) simulations act as computational techniques that allow

accurate depiction of the conformation of molecular systems over time. With ad-

vances in both computer hardware and MD algorithms, longer time scales can be

simulated up to the point of milliseconds (given extensive hardware) in macromolec-

ular systems at the time of writing. This order of simulation time allows sampling

of biologically relevant effects. MD is extremely valuable to the scientific commu-

nity in that it offers a fully quantifiable body of data on otherwise challenging to

quantify real-world experiments. Beside allowing analysis of spontaneous events

such as protein folding, MD is also widely used in the prediction/quantification of

physicochemical properties of (macro) molecular systems.69,70

1.4.1 Foundations of molecular dynamics

The aim of MD is to simulate (bio-)physical processes accurately to enable quantifi-

cation of otherwise difficult – or even impossible – measurements. To enable this,

the fundamental physics that govern motion of bodies must be taken into account.

Newton’s second law of motion defines:

Fi = miai, (1.5)

where for a given body i, the force Fi is a function of the body’s mass mi and

acceleration ai. Alternatively, the force F on body i can be expressed as the negative

gradient of the overall potential energy with respect to the change in the body’s

position:

Fi = −∇Ui = −dU

dri
(1.6)

where Ui is the potential energy of body i (e.g. computed by an empirical force

field, see 1.4.2) and ri is the change in position of body i, typically in Cartesian
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1.4. Molecular dynamics simulations

coordinates. Finally, the body acceleration ai is calculated as

ai =
dvi
dt

(1.7)

where the velocity vi is given as

vi =
dri
dt
. (1.8)

Instead of using the infinitesimally small change in time dt, a timestep ∆t is used

in MD simulations to estimate derivatives via the finite difference approximation

during simulation: this timestep is required to be of sufficiently small size to allow

efficient sampling of molecular bodies that contain three or more atoms. Because

it is not possible to reach an analytical solution to the equations of motion (Eq.

1.7-1.8) these must be solved in a discrete manner using numerical integration. Too

large values of dt would result in large fluctuations of ai leading to the frequently

observed and unintentional blowing up of molecular systems in MD. For this reason,

dt is typically defined in the order of femtoseconds - as one of the fastest molecular

motions (C-H bond stretching) takes ∼ 10 fs, a recommended value of dt is 1 fs.71,72

Timestep adjustments are frequently investigated in MD because increasing the

timestep decreases the computational expense of running simulations: for example

increasing dt from 2 to 4 fs can reduce simulation walltime by ∼50%. Although as

previously mentioned higher values of dt (towards 10 fs) are more likely to result

in unstable simulations, techniques have recently been explored that enable stable

dt = 4fs MD simulations by using for instance hydrogen mass repartitioning and

novel integrators such as the LangevinMiddleIntegrator.73,74

Controlling thermodynamic properties during molecular dynamics

Thermostats and barostats aim to ensure that the average temperature and pres-

sure of a system remain at a desired level (resp.), rather than fixing them at the

level. Thermostat algorithms work by adjusting the Newton equation of motion
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(Eq. 1.5) or by rescaling particle velocities after the timestep. For example, the

Andersen thermostat randomly selects particles and lets them collide with parti-

cles in an implicit external heat bath.75 Barostats work similarly to thermostats in

the sense that they typically have a loose connection with Eq. 1.5; through these,

pressure is maintained during molecular simulations as if a piston would be working

on the system. The Andersen barostat (used throughout chapters in this thesis)

works similarly to its thermostat counterpart by introducing an implicit pressure

bath which ultimately behaves as if the system is being acted upon by an isobaric

piston.76 There exist a wide variety of thermostats and barostats, however a detailed

overview of these is considered out of scope for this theoretical section.

Electrostatic interactions

In MD, long-range electrostatic interactions that decay with separation in space are

considered. To deal with the added complexity of these long-range interactions, all

possible interactions (i.e. all particles interacting with all particles) up to a certain

cutoff are considered. Periodic boundary conditions (PBCs) are introduced by cre-

ating identical copies of the system in a tiled manner. PBCs alleviate issues that

come with the simulation of finite-size systems and allow more accurate descriptions

of bulk properties during these simulations. Electrostatic interaction potentials can

be numerically computed using a variety of algorithms, but the most classically used

are Ewald-based methods such as Particle-Mesh Ewald methods (PME) in which a

distinction is made between a direct and reciprocal space computation of interac-

tions using a cutoff of a set distance in Å. The reciprocal interactions are typically

the rate-limiting step of PME. PME is implemented in the majority of MD engines

currently available.77,78
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1.4.2 Force fields

Because a quantum-mechanics approach to compute a system’s potential energy U

is generally too computationally expensive for MD, a simplified quantification in the

form of empirical force fields (FFs) is used which is expressed as:

UFF = Ubonds + Uangles + Utorsions + UV dW + Uelec, (1.9)

where UFF describes the total potential energy as computed by the force field by

summation of the potential energy contributions of bonds, angles, torsions, Van der

Waals and electrostatic energies. It is deemed out of scope for this thesis to describe

the broad range of available FFs extensively, but a concise description of the FFs

used in the work body of this thesis will be given together with how they relate to

similar alternatives.

Ligand force fields Accurately parameterised small-molecules in ligand-protein

simulations are pivotal in MD. Because the chemical diversity of ligands is large (as

opposed to proteins which are built up of semi-consistent building blocks), a large

amount of development is required to develop a ligand FF that accurately describes

all small-molecule patterns (i.e. moieties or functional groups), as well as all combi-

nations of them. This complexity has resulted in a wide variety of ligand FFs, some

examples of which are the General Amber FF (GAFF; the dominant ligand FF in

this thesis work due to its integration into Sire,79 and its robust handling of varied

chemical matter),80 Optimized Potentials for Liquid Simulations 3 (OPLS-3)81 and

the CHARMM General FF (CGenFF).82 More recently, ligand FF development has

seen novel directions in the form of open-sourced FF development by OpenFF83 and

bespoke QM FFs such as QUBE-Kit.84

Protein force fields To describe large (biological) molecular systems such as

proteins and DNA, protein FFs are used to compute U . Typically these force fields

describe backbone, residue and tertiary interactions additively. Because of the com-
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plexity of macromolecular systems protein FFs experience a lot of incremental de-

velopment: for example, the Amber force fields have seen incremental improvements

in the handling of dihedral angles over the last 20 years. There exist a wide range

of protein FFs such as Amber-type protein FFs (e.g., ff19SB; the dominant protein

FF in this thesis work)85 and the OPLS-All Atom FF (OPLS-AA).86

Water models As water molecules play a crucial role in ligand-protein binding

(see 1.3.2) the accurate modelling of these bodies in MD in this context is of substan-

tial importance. Waters can be modelled implicitly (as a bulk solvent presence) and

explicitly (as individual water molecules): the latter is used in the work presented

in this thesis. Water FFs (more often referred to as water models) model water to

varying detail; simpler, less expensive descriptions are 3-point (H-O-H) and 4-point

(H-OM-H; M=oxygen partial charge) geometries; more elaborate models are also

available but not often applied in protein-ligand simulation (e.g., 5-point geometry

and polarisable).87 Commonly-used water models are TIP3P (used mostly in this

thesis work),88 and the Simple Point Charge (SPC) water model.89

1.4.3 State-of-the-art methodologies in molecular dynamics

The application of MD is not a single contained simulation - rather, practitioner-

spracticioners are required to execute a number of procedures sequentially in order

to obtain reliable and accurate trajectories. There exist many MD methodologies

owing to its diversity in applications but also to its algorithmic complexity and the

requirement of balancing shortcomings in each approach. This subsection will give

a brief overview of operations in MD that are commonly applied prior to the main

MD production simulation; further reading is recommended to gain a more detailed

knowledge of the theory involved.69,90,91

Preparation of ligands and proteins is required to set up input molecules for

simulation. This step involves correction of structures as for instance with protein

crystal structure PDB files occasionally there are missing or mis-represented residues
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in the system. This step also involves charging structures using some form of pKa

estimator. Atomistic overlaps (’clashes’) are resolved in this step, either algorithmi-

cally or by visual inspection and adjustments. Most importantly, this step involves

the application of the desired FFs for the simulation (’parameterisation’).

Solvation of protein-ligand systems is performed using some form of water box.

Traditionally these water boxes used to be orthorhombic (orthogonal cube); how-

ever, because this geometry involves potentially a large number of explicit water

molecules sufficiently distanced from the biomolecule (especially toward the eight

corners of the box) such that they do not influence ligand-protein energetics, it is

worth excluding these waters in some form. For this reason triclinic (non-orthogonal

cube) and even shapes with > 6 sides are employed. In all cases, the system is con-

sidered in periodic boundary conditions that allow diffusion of particles across unit

cells between neighbouring translated copies of the unit cell.92

Energy minimisation is performed on solvated, parameterised protein-ligand sys-

tems as a crude and computationally inexpensive measure to prevent large velocities

in the initial steps of the MD simulation that result from high energies in the system.

These large velocities can result from the initial system coordinates of the setup sys-

tem that are abstracted from the crystallised protein structure. The purpose of this

step is to find a local energy minimum.93

Equilibration is a necessary technique that aims to stabilise certain properties of

the minimised protein-ligand system to obtain a thermodynamic ensemble. Espe-

cially for the work discussed in this thesis this step is important because the aim of

the handled techniques is to run MD at equilibrium, i.e. with the protein-ligand sys-

tem in a ’stable’ or ’relaxed’ state. Practically, this involves short simulations that

aim to bring the system to a desired temperature or density. The work discussed in

this thesis typically involves performing an NVT (constant temperature and volume)

simulation and then an NPT (constant temperature and pressure) simulation - the

production ensemble in this particular case is defined as an NPT ensemble (see 1.4.1).
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1.4.4 Hardware

Graphical Processing Units (GPUs) are responsible for the leap in performance in

MD methodologies. Although the first GPU was introduced in 1999, when NVIDIA

presented the high-level programming interface CUDA in 2007 scientific program-

ming for GPU hardware was democratised enormously.94 Using GPUs and CUDA

(and alternative interfaces), scientists were able to program massively parallel cal-

culations - this created an advantage over Central Processing Unit (CPU) hardware

as these are lacking in parallelisability as even multi-core CPU systems share cen-

tral memory. From 2007 on, GPUs were no longer used solely for handling of video

graphics but also for MD as well as for other applications that require large num-

bers of small calculations. MD is especially suited for this kind of hardware as

the integration calculations required for running MD (see 1.4.1) can be aggressively

parallelised. At the time of writing, the scale of protein-ligand systems simulated

in regular MD campaigns has far exceeded the applicability domain of commodity

CPU hardware.

1.5 Relative binding free energy calculations

Alchemical free energy (AFE) calculations are a group of free energy calculations

that model alchemical processes using MD simulations, i.e. processes that are not

chemically feasible (alchemy). The purpose of these calculations is to compute

the change in Gibbs free energy for a given (alchemical) process in NPT ensem-

bles. Example AFE calculations are estimating the membrane-binding free energy

of small-molecules, computing the change in free energy due to a conformational

change across a high free energy barrier and the binding free energy change on pro-

tein residue mutation.95 The remainder of this theoretical introduction will describe

relative binding free energy (RBFE) calculations. Although this introduction will

use the terminology RBFE calculations, the same technique is also sometimes de-

scribed as (relative) free energy perturbation (FEP) or simply binding free energy

28



1.5. Relative binding free energy calculations

calculations.

While simulating binding events has been used to estimate binding affinities96,97 or to

get insights into the binding pathways and kinetics of receptor-ligand systems98–102,

the computational cost of these calculations is usually dominated by the rate of disso-

ciation, which can be on the microsecond timescale even for millimolar binders97 and

reaches the microsecond to second timescale for a typical drug103,104. Depending on

system size and simulation settings, common molecular dynamics software packages

can reach a few hundreds of ns/day using currently available high-end GPUs105,106,

making these type of calculations unappealing and irrelevant on a pharmaceuti-

cal drug discovery timescale. Other methods compute the free energy of binding

by building potential of mean force profiles along a reaction coordinate107–110, but

these methods require prior knowledge of a high-probability binding pathway, which

is not easily available, especially in the prospective scenarios typical of the drug de-

velopment process.

After early development starting in the early 1980s, around a decade into the 21st

century, RBFE calculations emerged as the first popular method that is able to ro-

bustly predict ligand binding affinities with a level of accuracy that is high enough to

be able to support hit-to-lead and lead-optimisation campaigns in medicinal chem-

istry in commercial settings.111 Since then, the field has progressed further up to a

point where large numbers of calculations (in the order of hundreds of compounds)

can be run in the course of only a few days (given sufficient hardware) which enables

computational chemists to provide medicinal chemists with accurate predictions in

aid of SAR studies at a considerably faster pace than synthesising each compound.112

Setup stage RBFE calculations simulate alchemical transformations between lig-

ands (see 1.5.1 for rationale) which in practice means that for a protein target with

a series of ligands a collection of ligand ’pairs’ must be selected. Depending on the

project, these series can be small (5-15) for e.g. benchmarking purposes, or large

(15-100) for larger lead-optimisation projects. Several methods exist to propose
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which transformations to calculate and are implemented in RBFE softwares (figure

1.4A).113,114 Perturbation networks are commonly used to depict the collection of

edges proposed for a series of ligands and allow users to include/exclude transfor-

mations based on user experience (as some transformations are more likely to be

reliable than others). For larger projects with many ligands, a star-shaped network

is typically deployed with the reference ligand being the lead molecule that is being

optimised. Force field assignment (see section 1.4.2) to both ligands and proteins is

performed at this stage of the pipeline as well (figure 1.4B).

Production stage After defining the molecular transformation between the mem-

bers of each ligand transformation (i.e. edge in the perturbation network) a λ de-

coupling parameter is typically used to divide the transformation into a number of

bins, where parameters are adjusted in a bin-wise manner, each containing increas-

ingly perturbed parameters. Both λ endpoints contain the atomistic parameters

of both ligand endpoints and each λ intermediate system contains incrementally

transformed atomistic parameters. These λ windows are then simulated individu-

ally using a given molecular dynamics engine (figure 1.4C): this process typically

consumes the majority of RBFE walltime. Note that at this step both the bound

and free legs are simulated (see 1.5.1). Additionally, edges are ideally simulated in

both directions (i.e. both A→B and B→A) such that hysteresis in both directions

can be analysed on-the-fly. In some RBFE implementations the bidirectional differ-

ences are used to re-balance ∆∆Gbound predictions by pushing edge hystereses closer

to 0 kcal·mol−1. There exist several methods of representing the atomistic change

between two ligand enpoints, notably single (which involves transforming atoms to

new atom types directly as much as possible) and dual (which involves changing

atom types only to and from non-interacting dummy atoms) topology algorithms.95

Free energy estimation stage Upon completion of simulations, the relative free

energy across the λ decoupling parameter is then computed using estimators such as

Thermodynamic Integration (TI) or more recently Multistate Bennett Acceptance
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Ratio (MBAR) for the perturbation in both the bound and free phase. See 1.5.2 for

a more detailed theory outline of this estimation. In this stage a pairwise relative

binding free energy (∆∆Gbound) estimation is produced for all planned transforma-

tions of the RBFE campaign.

Analysis stage Finally, ∆∆Gbound values per ligand are estimated using the orig-

inal perturbation network, where it is common to correct for cycle closures (as a

cycle of ligands’ free energies should have a net energy of 0 kcal·mol−1 due to the

law of conservation of energy). A common strategy in correcting this is to run cal-

culations for both directions of an edge, then shifting the forward and reverse free

energy predictions involved in the cycle such that the cycle net energy is brought to

0 kcal·mol−1. Typically ∆∆Gbind values are estimated through e.g. a weighted-least

squares method where edge predictions are weighted by some form of uncertainty

quantification such as the standard error of the mean free energy prediction across

replicates or an uncertainty estimate using bootstrapped subsampling of the simu-

lation data. Using one of the ligands as reference, per-ligand ∆∆Gbound values are

estimated. These values can be compared to experimental binding measures (that

have been scaled to the same reference ligand) to allow benchmarking of the RBFE

workflow.
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Figure 1.4: Workflow of a typical relative binding free energy (RBFE) calculation
campaign. 0A-D: a reference three-dimensional protein structure is procured (D)
from homology modelling (A), crystallography (B) or machine learning (C) 1: n lig-
ands are manually positioned in the binding pocket of the protein structure through
e.g. docking algorithms. 2: a perturbation network is generated that specifies which
perturbations will be performed between the ligands in the series. 3: transforma-
tions are set up for each edge’s λ windows 4: ligand transformations are placed in a
solvated box with the reference protein 5: simulations are run on GPU hardware. 6:
given the completed λ window simulations, the relative free energy of binding can
be estimated across the transformation 7: with the perturbation network’s edges
completed, analysis is done on pairwise ∆∆Gbind values to infer ∆Gbind for each
ligand compared to a reference ligand 8: ∆Gbind predictions per ligand can be com-
pared to experimental values for benchmarking or can be used directly to guide lead
optimisation.
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1.5.1 Theoretical foundations

In many cases, the quantity of interest is the change in binding affinity between a

compound A and a related compound B (e.g., by modifying one of the drug scaffold’s

substituents) can be considered as the difference between two standard state binding

free energies (Eq. 1.3) which is given by

∆∆Gbind,AB = ∆G°
bind,B −∆G°

bind,A

≈ −kBT

(
ln

[
Z(RB)

Z(R +B)

]°

− ln

[
Z(RA)

Z(R + A)

]°
)
,

(1.10)

where −kBT is the Boltzmann constant times temperature in K, R is the target

receptor and Z(..) is a configurational partition function; these terms can be con-

sidered parallel to a likelihood variant of Ki as in Eq. 1.3. Note that the terms

involving the standard concentration cancel out when we assume that the volume

is identical for A and B. Predictions of ∆∆Gbind,AB with non-alchemical methods

generally require long simulations of both ligands, possibly through different binding

pathways. Alchemical relative free energy calculations avoid the need to simulate

binding and unbinding events by making use of the fact that the free energy is a

state function and exploiting the thermodynamic cycle illustrated in Fig. 1.5. This

is apparent after rewriting Eq. 1.10 as

∆∆Gbind,AB ≈ −kBT

(
ln

[
Z(RB)

Z(RA)

]°

− ln

[
Z(R +B)

Z(R + A)

]°
)

= −kBT

(
ln

[
Z(RB)

Z(RA)

]°

− ln

[
Z(B)

Z(A)

]°
)

= ∆G°
bound −∆G°

unbound ,

(1.11)

where ∆Gbound/unbound is the free energy of mutating A to B in the bound/unbound

state. Eq. 1.11 and Fig. 1.5 tell us that the difference in free energy of binding

between toluene (A) and benzyl alcohol (B) can be computed by running two in-

dependent calculations estimating the free energy cost of mutating A into B in the

binding pocket (∆Gbound) and in solvent (∆Gunbound), saving us the need to simu-
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late the physical binding process of the two compounds. In particular, the second

line of Eq. 1.11 is a consequence of ∆Gunbound being independent of the presence of

the receptor in the simulation box as the definition of the unbound state assumes

receptor and ligand to be at a sufficient distance for them to have no energetic in-

teractions. Note that, when A and B have different numbers of atoms, the factors

ln Z(RB)
Z(RA)

and ln Z(B)
Z(A)

in Eq. 1.11 appear both to have factors with units of volume in

the logarithms, but these factors exactly cancel between the terms.
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1.5.2 Estimation of free energies

Because it is challenging to design molecular simulations that involve alchemical

atomistic transformations, RBFE workflows use a λ decoupling parameter to di-

vide the transformation into a number of bins, where parameters are adjusted in

a bin-wise manner, each containing increasingly perturbed parameters (see 1.5 and

figure 1.4). Typically these λ windows are spaced equidistantly but other spac-

ings exist.115–119 The key consideration for choosing alchemical pathways is that the

intermediate states that a given pathway produces should sample configurational

ensembles that change as slowly as possible as λ changes, while still managing to go

from the initial state to the final state as λ goes from 0 to 1.

Common algorithms

There exists a range of functions to estimate relative energies across pathways in

alchemical free energy calculations. For the sake of pedagogy, this theoretical section

will first outline thermodynamic integration (TI) and then expand onto the more

complex (but more commonly applied) approaches Bennet Acceptance Ratio (BAR)

and Multistate-BAR (MBAR).

TI is one of the most simple estimation functions of free energy differences. In

essence, the objective is to obtain the free energy derivatives with respect to λ.

Formally, this derivative can be expressed as

dG

dλ
=

〈
dU(λ, ~q)

dλ

〉
λ

, (1.12)

where ~q is the collective variable for coordinates and momentum of the system for

the given λ state. When all λ simulations are obtained, the relative free energy

across the pathway λ can be computed as the integral

∆G =

∫ 1

0

〈
dU(λ, ~q)

dλ

〉
λ

dλ. (1.13)
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Although TI is attractive due to its ease of use, it suffers from limitations due to

its usage of singular ensemble states rather than coming to an iterative solution. TI

has the problem that the integral must be estimated via numerical integration which

requires a finite number of data points and depending on where the integrand are

taken there will be a different systematic bias in the resulting free energy estimation-

this results in TI requiring the user to have to resort to increased sampling of

transformations which can be detrimental to computational expense.120,121 BAR

offers the advantage of a decrease in bias due to the inclusion of both forward

(dUij) and reverse (dUji) potential energy differences in its analysis. The free energy

difference between two neighbouring states i and j is found by numerically solving

1

〈1 + exp[+β(dUij − C)]〉i
=

1

〈1 + exp[−β(dUji − C)]〉j
(1.14)

where C = ∆Gij + 1
β

ln(
Nj

Ni
) and β = (kbT )−1. Finally, MBAR is a direct extension

of BAR as it allows data assessment from all states in λ instead of just adjacent

ones:

f̂i = − ln

〈
exp [−ui(xn)]∑K

k=1
Nk

N
exp

[
f̂k − uk(xn)

]〉 , (1.15)

where ui and uk are the reduced potentials of thermodynamic states i and k, xn is

the nth observable configuration and K is the collection of states across λ. f̂k is a

single free energy - another free energy must be taken as reference which will result

in restoration of the estimation of relative free energies. MBAR has been shown

to have the lowest variance estimator of all free energy estimators and it allows

direct computation of prediction uncertainties which has lead to the algorithm’s

widespread use.122,123 For a concise description see e.g. alchemistry.org/wiki/

Multistate_Bennett_Acceptance_Ratio.

Phase space overlap

Another way of stating this is that intermediate states should sample molecular con-

figurations that have similar likelihoods to be observed in the sampled intermediate
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states. The more similar the configurations are between intermediate states, the

lower the statistical uncertainty is in the estimate of free energy between intervals.

This can be proven directly from the BAR and MBAR formulae123,124, though the

exact same principles apply for TI. For a ’good’ path to work and give a sequence of

states with maximally similar configurations, sufficient similarity in potential energy

distributions is required. Figure 1.6A and B illustrate this. Figure 1.6A shows in

a pictorial way a soft-core potential can be applied across different λs. Figure 1.6B

illustrates the potential energy distributions at the different λ intermediates, with

sufficient overlap between neighboring λ states to ensure that reweighting estimators

such as MBAR can be used for analysis. The actual transformation is best handled

with soft-core potentials of the form shown in figure 1.6C and B.
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1.5. Relative binding free energy calculations

Figure 1.6: Alchemical intermediates are created by making the potential energy de-
pend on an additional variable λ that interpolates between the chemical endpoints.
In (A), at ~λ = 0 the molecule is a fully interacting phenol and at ~λ = 1, a fully
interacting benzene. (B) shows an illustration of the probability distribution of the

potential energies as the switching function takes values of ~λ = 0 to ~λ = 1. Interme-
diates states are required for a sufficient overlap in potential energies to estimate a
free energy difference between ~λ = 0 and ~λ = 1. Soft-core potentials provide one of
the most efficient families of intermediate pathways, with a λ dependence. In (C)

the potential energy surface is coloured according to λ with blue being ~λ = 0 and
~λ = 1 orange. In (D) the potential is coloured according to the potential energy.
Note how as λ approaches 0, the energy smoothly approaches zero at all r, a nec-
essary requirement for efficient and stable calculations. Particle distance in these
plots is a an arbitrary distance between the atoms, one in either chemical endpoint,
that are being transformed between across λ. Figure was adapted from Mey et al.95

under the CC-BY 4.0 license.
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1.5.3 Applicability domain of relative binding free energy

calculations

Although RBFE is a relatively robust method to predict ligand-protein binding

affinities, it is not a silver bullet that can be applied to any ligand optimisation

problem. The applicability domain of FEP is limited by a number of factors. State-

of-the-art commercial RBFE software implementations are ideally deployed on small-

to-medium-sized water-soluble protein systems (1) in ligand-bound conformations

that do not have overly flexible regions (2). Protein crystal structures are typically

required to have a resolution of <2Å. Preferably, ligand binding pockets are buried

(or at least, not overly hydrophobic) and do not contain water molecules (beside

the ligand) or metal ions (3). The investigated series of ligands must be well-

aligned to an accurate (preferably crystallised) binding pose (4), and ligands must

be topologically similar (5) and have the same net charge for consistently reliable

results (6) (note that this is a major caveat for drug discovery project support

and research on this front is highly active95). Furthermore, the series’ inter-ligand

binding affinities (dynamic range) should be larger than ∼ 4 kcal·mol−1 to allow

reasonable statistical analysis for benchmarking purposes; in prospective work this

point is less relevant (7).

1.5.4 Success stories

There exists a rich collection of success stories that involve some form of RBFE.

For the purpose of this subsection, only recent highlights of the field will be dis-

cussed. Unfortunately, as most RBFE-supported hit-to-lead and lead-optimisation

is performed commercially, the majority of this work exists outside of the literature

domain.

Merck has performed a large-scale benchmarking study on FEP+ software111 per-

formance and has published a large portion of this dataset for public benchmark-

ing purposes.125 It was found that although there exist caveats in the applicabil-

ity domain of the software, the majority of projects benefit from FEP+ support.
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Schrödinger as well as its practitioners have published a wide range of publications

that outline improvements to its FEP+ engine. Victories here include protein FEP,

integration with generative ML workflows, macrocycle FEP and enhanced sampling

of water molecules using Grand Canonical Monte Carlo algorithms all of which

have further expanded the domain of applicability of FEP applications for common

practice.126–129 Recent work done by Janssen highlights how FEP can support hit-

to-lead phases by accurately predicting a stereochemical SAR switch for NIK-kinase

inhibitors in multiple myeloma.130 Additionally, ligand binding was modelled accu-

rately on membrane-bound Adenosin 2A and orexin-2 receptors in a collaboration

with Sosei Heptares and the university of Leiden.131 More recently, Jorgensen et al.

have shown how RBFE calculations are able to support drug discovery by optimis-

ing triarylpridinone inhibitors of the main protease of the SARS-CoV-2 virus.132

Here, RBFE calculations were primarily used to explore binding affinities of alter-

native heterocycles on the ligand scaffold. Also in the context of SARS-CoV-2 drug

discovery was the global COVID-Moonshot consortium which in 2021 used the Fold-

ing@home infrastructure to run RBFE calculations on up to 10,000 compounds per

week. This scale was accomplished due to the immense community effort of dis-

tributed computing contributions by the community through Folding@home which

resulted in the first reported exascale computing infrastructure for this purpose.133

Finally, a recent study has shown that using a novel form of RBFE calculations (non-

equilibrium switching134) and given sufficient hardware hundreds of compounds can

be predicted on in a matter of days.112

1.6 Machine-learning in drug discovery

1.6.1 Historical overview

Data-driven models such as machine-learning (ML) models owe their recent popu-

larity mainly due to the rapid expansion of available data over the last few decades.

These large datasets are typically open-source (e.g. bioactivity databases such as
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ChEMBL,22 a large molecular activity database with over 2.1M compounds at the

time of writing) and are essential when attempting to train ML models to predict

ligand-protein binding affinities when practicioners do not possess readily available

in-house datasets.

A wide variety of ML models exist, and a paradigm shift can clearly be observed:

whereas initial models such as support vector machines (SVMs) and random forests

(RFs) took the stage in the 90s as affinity predictors, deep neural networks (NNs)

have become increasingly popular over the last decade because of their ability to

handle large amounts of data while being supported by increasingly powerful GPUs

as well as perceived successes in other fields such as computer vision and natu-

ral language processing. The growth of NNs for drug discovery has resulted in

a large pool of available algorithms and platforms such as DeepChem.135 More re-

cently, convolutional neural networks (developed primarily for computer vision algo-

rithms) have been used to train on ligand-protein systems,136,137 de novo generation

of molecules138–140 and even proteins18,141 is set to further advance the field.

Despite their diversity, data-driven models for early-stage drug discovery ligand opti-

misation support ultimately share the same aim as physics-based models: to predict

binding affinity of ligands to protein binding pockets. In this case however they do

this through some form of featurisation (e.g. molecular properties, molecular finger-

prints, or structural information) that, given a training set, is used to fit molecular

properties such as binding affinity as either a regression (i.e. continuous) or classifi-

cation (i.e. categorical, e.g. active vs non-active). Although a promising alternative

to physics-based modelling which can be computationally expensive, occurrences

where data-driven models were able to predict ligand-protein binding affinity with

mean squared error (MSE) under 1 kcal·mol−1 on prospective tests have been rare,

rendering the technique mostly insufficient for lead-optimisation campaigns. An

additional downside to data-driven models is the general lack of explainability com-

monly referred to as the black-box problem.142,143 Pure data-driven modelling is at

this time mostly employed at hit discovery and hit-to-lead stages of the computa-
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tional drug discovery pipeline.144

Because the main requirement for training effective ML models typically is a large

training domain, these models often suffer from inadequate predictivity in cases

where data is sparse and in cases where there is insufficient contextual data to de-

scribe energy fluctuations such as with activity cliffs.145,146 Additionally, it is often

prohibitively challenging to predict binding affinities accurately for completely novel

therapeutic targets for which no/ hardly any data exists. This particular situation

is common in early drug discovery campaigns.

1.6.2 State-of-the-art

The current landscape of ML research is diverse and fast-paced. There exists a wide

variety of ML algorithms that are in active development, mainly in the fields of image

recognition, natural language processing and robotics. The last few years have seen

many of the models investigated in these fields translated into algorithms designed

to handle chemical information in novel ways. Examples of these are convolutional

neural networks and graph neural networks.147 Because of the diversity of ML al-

gorithms in the field, this thesis chapter has been constructed to only highlight the

essential theory behind the three main techniques presented in the thesis chapters,

namely NNs, RFs and SVMs (figure 1.7). Although dataset handling protocols can

be different per ML implementation, division into training and test (and in the case

of NNs, validation) sets is critical to ensure that models are trained independently

of the test data - this allows scientists to accurately depict statistical performance of

ML models that is a realistic portrayal of how these trained models would perform

in settings where they are applied to practical test sets.

Neural Networks

In neural network (NN) nomenclature, a complete pass of the training set to the

network is referred to as an epoch. In general, a NN algorithm learns by iterating
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over epochs, checking its accuracy compared to true values, and tweaking parameters

to perform better in the next epoch. NNs are made up of j neurons arranged in l

layers that each express an activation value alj:

alj =
∑
k

wlija
l−1
i + blj (1.16)

where wlij is a continuous weight variable between 0-1 that originated from the

previous neuron i, blj is the bias variable between [0-1] in cases where normalisation

is applied that is associated with neuron j and al−1
i is the activation output between

[0-1] that originated from the previous neuron k (figure 1.7A). In the case of a

regression problem, NN architectures are typically designed to converge to a single

neuron of which the activation alj will be a value between [0-1]. There exist many

types of activation fuctions, each designed to pass the activation in different patterns.

Commonly used examples are linear activation function which outputs a linear form

of alj between [0-1] and a sigmoidal activation function that biases alj towards either 0

or 1. In regression problems the output neuron typically contains a linear activation

function to allow extrapolation of a realistic prediction label. The weights and bias

variables are referred to as parameters; all other (user-set) parameters such as the

type of activation function and the number of neurons per layer are referred to as

hyperparameters. Within the NN architecture, a vector (an array of feature values,

i.e. a data point with a set of features) is supplied as the input layer, where each

neuron occupies a value of the vector. Layer-wise multiplication as dictated by

Eq. 1.16 leads to a single predicted value of alj for the output neuron by gradually

decreasing the dimensionality of l. Because the training set contains true values

(labels), these can be cross-checked with the prediction to compute some form of

error. This cross-checking is referred to as the cost function, and the mean squared

error is one of the most commonly used types:

E(X,Θ) =
1

n

n∑
d=1

(ŷd − yd)2, (1.17)
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where E(X,Θ) denotes the error for dataset X with parameters Θ (the weights

and biases for each epoch). The error is computed over n datapoints (i.e. vectors)

that are present in the dataset comparing the predicted output ŷi with the true value

yi. In a given epoch, when all neurons have forwarded their activation and E(X,Θ)

has been computed, an algorithm called back-propagation (“backward propagation

of errors”) creates a gradient of errors by calculating the error per neuron, per layer

in the inverse direction. For these errors, a partial derivative of the cost function

with respect to a weight from neuron i from previous node j in layer l is computed

as

∂E(X,Θ)

∂wlij
=

1

n

n∑
d=1

∂

∂wlij
(
1

2
(ŷd − yd)2) =

1

n

n∑
d=1

∂Ed
∂wlij

. (1.18)

This gradient is then used to adjust the weights in the NN using a gradient

descent protocol on the partial derivatives as supplied by back-propagation to update

the weights in the NN denoted as Θ:

Θt+1 = Θt − α∂E(X,Θt)

∂Θ
, (1.19)

where Θt+1 is the updated set of weights as opposed to the original set of weights

set in Θt. The learning rate α is a hyperparameter between [0-1] set by the user

that, when set to α < 1, can reduce the impact back-propagation has on the ad-

justment of the weights per epoch. The gradient descent function, often referred

to as the optimiser function in NN nomenclature, attempts to find an optimal pa-

rameter setting (Θ) to minimise the cost function. A wide range of optimisers exist

and although it remains challenging to determine which types are fit for which op-

timisation problems, the most widely used are stochastic gradient descent (SGD)

or derivatives thereof such as adaptive moment estimation (Adam). Briefly, SGD

descents the gradient efficiently by only sampling random subsets of training data.

The main bottleneck with SGD is that it can get stuck in local error minima; Adam

has been developed to counter this issue. Adam is adaptive in the sense that it
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scales α (Eq. 1.19) using the squared gradients of the cost function; it also descends

on the moving average of the gradient rather than the gradient itself as is the case

with SGD.

Specifically with NNs, overfitting is a common issue. This occurs when a model

under training is starting to exactly fit its training data, thereby reducing its pre-

dictivity on external test sets (which is after all its main purpose). Care must be

taken to avoid overfitting NNs, this can be done by for example early stopping algo-

rithms that monitor the error on the validation set and halt training once this error

starts to increase along epochs.

Random Forests

The work presented in this thesis makes use of ‘extremely randomised trees’ which

is based on the original RF algorithm by Breiman.148 In general, RFs make use

of an ensemble of decision trees which are constructed from random, independent

feature subsets of the training data - a process called bagging, short for bootstrap

aggregating. The objective is to make all trees in the ensemble as uncorrelated

as possible; the more random the bagging the lower the ensemble prediction error

(figure 1.7B). For each tree, the dataset (i.e. the subset of the training set) is split

m times along its rows from the top node A into two daughter nodes based on a

random threshold for a random feature. The split m that results in the highest

mean squared error between the first and second daughter nodes’ average values Y i
1

and Y i
2 , respectively, is found by calculating

Err(A,m) =
1

n

n∑
i=1

Y1,Y2∈m

(Y i
1 − Y i

2 )2 (1.20)

for each split where i is the number of rows in each split. Computing the error for

both the top node A and the two daughter nodes A
′

and A
′′

allows for computing
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the splitting error for the candidate split m:

I(m) = Err(A,m)− Err(A′ ,m)− Err(A′′ ,m), (1.21)

where I(m) is the compiled error of the split candidate. For each node split, the

candidate with the highest value of I(m) is chosen, and then each daughter node is

in turn considered as separate top node and so forth. More intuitively, the chosen

candidate split term for A will divide the datapoints (or rows) in A based on a

condition for a picked feature. A
′

will contain the rows for which the condition is

true, A
′′

will contain the rows for which the condition is false, or vice versa. The

growing of the tree (i.e. the downwards splitting of nodes) is continued until the

user-set parameter max depth is reached, which commonly ranges from 10-150 in

regression problems or when Err(A
′
,m) = Err(A

′′
,m) or when only one row is

present in a node. Unless the max depth is set to the number of points i in the

training set, i−maxdepth > 0 and thus leaves (i.e. final nodes) that contain multiple

data points will exist. In RFs, the labels associated with these nodes are averaged

to obtain a single label for each leaf in the tree. When training (i.e. growing all the

decision trees in the ensemble) has been completed, a test set row can be predicted

on by simply allowing the row to be passed through the splits in each decision tree;

because the features are equal to the training set’s features, the decision will be

sent into the leaf that best describes the row’s feature values. Across decision trees

in the ensemble, the prediction for the test row is averaged to produce the model

prediction.

Support Vector Machines

The support vector machine (SVM) algorithm consists of an interplay between two

components: a linear regression and a kernel trick.149 Given a training set, the

algorithm attempts to linearly separate it across a one-dimensional plane (the ’hy-

perplane’). Because datasets are rarely linearly separable in their original state, a

kernel function is used to map the dataset to a space with d+1 dimensions, and sep-
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aration is attempted again (figure 1.7C). This procedure can be repeated to infinity

up to the point where the data is linearly separable; this process is called the ker-

nel trick. Although more commonly used in classification, SVMs can also perform

regression where instead of a linear separation, a suitable linear regression is sought

using the kernel trick mapping procedure to map across dimensions R. Suppose a

training set of structure (x1, y1), .., (xl, yl) ⊂ XR, where X represents the space of

input patterns, consider a linear function f :

f(x) = 〈w, x〉+ b with w ∈ X, b ∈ R, (1.22)

in which 〈w, x〉 represents the dot product of the flatness w and vector x in a given

space Rd. The aim is to find a function f(x) that has at most ε deviation (a hyper-

parameter) from the vector yi in the training data while maximising flatness, i.e.

minimising w across X such that f(x)→ b. By minimising the norm ‖w‖2 = 〈w, x〉

to ensure flatness across X, the problem can be written as a convex optimisation

problem as originally formulated by Vapnik:

minimise
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b ≤ ε+ ξi

〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(1.23)

where ξi and ξ∗i are variables that represent the distance per point within and outside

the ε margin, respectively and thus the user-set constant C determines the trade-off

between the flatness term and the slack term. The slack term creates a soft margin

that forgives the algorithm if the points are not perfectly separable; this is added

because the optimisation problem cannot always be solved and the only method

to solve the problem is to relax the constraints (figure 1.7D). As previously stated,

(x1, y1), .., (xl, yl) is mapped across R using a kernel function. The choice of kernel
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function to use can be quite challenging, but the most frequently used in modern

machine learning problems is the radial basis function (RBF) kernel - this kernel is

used in work throughout this thesis because of its ease of hyperparameter tuning and

its documented effectiveness ’out-of-the-box’. Consider a two-dimensional dataset

with vectors x and x
′
. A third dimension could be added by simply adding 〈x, x′〉 as

a third vector; however, this becomes increasingly expensive in higher dimensions.

The RBF kernel function cheaply computes a Euclidian norm for all dimensions

contained by

K(x, x
′
) = exp(−γ‖c− c′‖2), (1.24)

where γ is a hyperparameter between [0-1]. A fourth dimension is computed by

solving the Euclidian norm for x− x′ − x′′, et cetera.
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Figure 1.7: Visual representations of the core concepts behind the machine learning
algorithms discussed in this chapter. All depicted parameters are explained in the
theory section. A: a simplified representation of a neural network where each circle
represents a neuron (i.e. node). B: a simplified representation of a decision tree
where each circle represents a split point. C: mapping the data to higher dimensions
allows linear separation of blue and red datapoints (right-hand side plot) as used by
support vector machines. D: regression performed by support vector machines.
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Hyperparameter optimisation

Hyperparameter configurations (e.g. α in NNs, maxdepth in RFs, C in SVMs) are

pivotal in machine learning model performance. In model optimisation it is common

to tune these hyperparameters to search for a seemingly optimal configuration in

hyperparameter space (i.e. all possible configurations) that minimises the machine

learning model (i.e. validation error). As with other sampling approaches, the main

challenge when sampling hyperparameter space is the trade-off between computa-

tional expense and the ability to reach a global minimum. There exist a variety of

optimisation techniques to sample hyperparameter space such as manual tuning to

fully automated but expensive methods such as grid search, which entails sampling

all possible configurations in hyperparameter space.

Neither manual nor grid search is optimal, because the first is unlikely to con-

verge to a global minimum and because the second involves sampling a vast number

of hyperparameter configurations for modern ML methods. Random search - sam-

pling n random points in hyperparameter space - greatly reduces the number of

explored configurations (and thus expense) but it is still unlikely to converge to a

global minimum. More recently, sequential optimisation methods have emerged that

sample hyperparameter space more efficiently. One of these methods is Bayesian hy-

perparameter optimisation (BHO), which attempts to predict which next sample in

hyperparameter space would decrease the function (i.e. the model’s validation er-

ror) most and thereby converges to a global minimum with minimal sampling. BHO

is summarised as a sequential function in

x∗ = arg min
x∈X

fm(Θ), (1.25)

where fm(Θ) is the validation error of a given machine learning model given a

configuration of hyperparameters Θ, x∗ is the specific configuration of hyperparam-

eters that produces the global minimum of the validation error fm(Θ) and X is the

complete hyperparameter space. Each dimension in X is assumed to be a Gaus-

51



Chapter 1: Introduction

sian process and is assumed random initially which means the uncertainty σ(Θ) is

constant. Conforming to Bayesian statistics, BHO sequentially observes a sample

and updates its prior to be its new posterior. Because there is a choice to be made

between exploitation (maintain sampling in a low area of fm(Θ) to see if there is any

further decrease to be gained) and exploration (sampling in areas of high uncertainty,

i.e. high σ(Θ)), acquisition functions are used to balance between these decisions.

The most commonly applied acquisition function is expected improvement:

EI(Θ) =


(
µ(Θ)− f(m)(Θ̂)

)
Ø(Z) + σ(Θ)ø(Z), σ(Θ) > 0,

0, σ(Θ) = 0

(1.26)

where

Z =
µ(Θ)− fm(Θ)

σ(Θ̂)
. (1.27)

Here, µ(Θ) and σ(Θ) are the mean and variance of the posterior fm(Θ), fm(Θ̂) is

the validation error of the best model so far and Ø and ø are the cumulative distri-

bution function (CDF) and the probability density function (PDF) of the standard

normal distribution of fm(Θ) values of all hyperparameters present in x at each Θ,

respectively. More intuitively, the first summation term in Eq. 1.26 represents ex-

ploitation, whereas the second represents exploration. Choosing the next sampling

point in X is then a matter of finding the maximum of the expected improvement

function:

Θnew = arg max
Θ

EI(Θ). (1.28)

Sampling is terminated when a user-set limit of samplings is reached. The proposed

global minimum in fm(Θ) is then proposed as the terminal fm(Θ̂)).

52



Chapter 2

A Hybrid Alchemical Free

Energy/Machine Learning

Methodology for the Computation

of Hydration Free Energies

53



Chapter 2: A Hybrid Alchemical Free Energy/Machine Learning Methodology for
the Computation of Hydration Free Energies

2.1 Introduction

Alchemical free energy calculations (or Free Energy Perturbation -FEP-) are in-

creasingly used in academia and industry to support ligand optimisation problems

in the early stage of drug discovery.150–153 The domain of applicability of current

alchemical methodologies has to date mainly been restricted to hit-to-lead and lead

optimisation scenarios owing to limitations in computing cost, conformational sam-

pling, and the accuracy of the potential energy functions used to compute protein-

ligand energetics154–159. There is continued interest in the development of more

accurate potential energy functions to benchmark FEP workflows on diverse well-

curated protein-ligand datasets,111,160–162 and for applications to blinded challenges

or methodological studies.163–168

The calculation of hydration free energies has historically been an important step-

ping stone towards more accurate forcefields for protein-ligand binding free energy

calculations169–171. Blinded competitions such as SAMPL (where contenders pre-

dict on datasets without experimental reference and predictions are compiled and

benchmarked by the organising committee) have also focused on hydration free en-

ergy calculations172. Forcefield parameterization is a painstaking challenge that

requires meticulous and laborious efforts to yield steady gains in accuracy. Recent

parameterization efforts from the Open Force Field, AMBER, CHARMM commu-

nities have involved multiple groups173–175. Recent work has sought to simplify the

parameterization process by direct chemical perception of hierarchical parameter

types176. Nevertheless it can be difficult to identify what modifications to introduce

to improve the accuracy of parameter sets. Ultimately fundamental limits in ac-

curacy cannot be overcome due to an incomplete description of the physics of the

process, for instance due to use of fixed-charge forcefields that neglect polarisation

effects.177 Notably this realisation has prompted the development of post-processing

methodologies based on quantum mechanical (QM) calculations to introduce cor-

rection terms for hydration and binding free energies computed by FEP methods

using a classical force field.173–175,178,179
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Data-driven machine-learning (ML) methods have witnessed a resurgence of inter-

est in drug discovery in recent years. Impressive advances have been made in the

area of machine learning of quantum chemical calculations,180,181 virtual screen-

ing,182,183 and free energies of hydration.184–187 Efforts such as DeepChem188 and

MoleculeNet189 have popularised the use of ML methods for molecular property

predictions. Recent efforts have made use of 3D convolutional neural networks or

other graph convolutional neural networks to predict binding affinities from the spa-

tial structure of protein-ligand systems.190,191 While impressive results have been

demonstrated, the performance of ML methods is limited by the requirements of

often substantial training sets, and a rapid decrease in accuracy when applying the

models to molecules that are dissimilar to those that were included in the training

set.

In previous work undertaken by our group as part of the SAMPL6 competition168

we observed that empirically correcting FEP-derived host-guest binding free ener-

gies by a linear regression model calibrated on preceding SAMPL5 submissions,192

led to significant decrease in mean unsigned error (MUE) of the predicted binding

affinities. The present study extends this approach with machine-learning regres-

sion models that act as empirical correction terms to the FEP results. That is, the

ML models are trained to predict the mistake compared to experimental values in

Gibbs free energy that alchemical calculations make, referred to from here on as the

∆Goffset (figure 2.1).

For any given alchemical prediction ∆GFEP and associated experimental free energy

∆GEXP , ∆Goffset is defined as the difference between the two; it also constitutes

the training label for the given perturbation. This method relies on the assumption

that given a training set of sufficient size, an empirical model trained on this set

will be able to estimate accurately ∆Goffset values for a new set of alchemical pre-

dictions, thereby compensating for systematic errors in the underlying alchemical

methodology.

As a proof-of-concept, we explore absolute alchemical calculations of hydration free
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energies performed with GROMACS.193 Our results show that the proposed hybrid

FEP/ML methodology leads to significant improvements in the accuracy of calcu-

lated hydration free energies, whilst only requiring modest training sets compared to

a pure machine learning approach, i.e. one using ML to directly predict hydration

free energies.

56



2.1. Introduction

Figure 2.1: Schematic of the work presented in this chapter. With a given absolute
Free Energy Perturbation (FEP) prediction and the correlating experimental Free
Energy (FE) values per ligand, this project aims to predict the ’mistake’ of the FEP
versus experimental value per prediction using a machine learning (ML) approach.
Using these predicted ∆Goffset values, FEP can be hybridised with ML by using the
correction terms to correct the standalone FEP predictions, improving the prediction
accuracy versus experimental values.
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2.2 Theory & methods

FEP/ML model generation

The present methodology describes a regression model that fits the mistake that an

alchemical calculation makes for a given molecule A, where the mistake is defined

by:

∆Goffset(A) = ∆GEXP (A)−∆GFEP (A), (2.1)

where ∆GFEP (A) is the hydration free energy of molecule A calculated by the al-

chemical method, and ∆GEXP (A) is the experimentally determined hydration free

energy for the same molecule. For a given training set with defined descriptors,

machine-learning models were used to fit the training domain using five-fold cross-

validation over 10 replicates, resulting in a total population Npop of 50 trained models

(see methods section below). All individual models in Npop are regression models

predicting their own ∆Ĝoffset value. We define our offset estimator as the arithmetic

mean of these offset values, and use the standard deviation of the mean as a measure

of the precision of the calculated offset. Thus we define a corrected hydration free

energy as:

∆GFEP/ML(A) = ∆GFEP (A) + 〈∆Ĝoffset(A)〉Npop . (2.2)

and the precision of the ∆GFEP/ML(A) estimate is determined by propagating sta-

tistical errors of the alchemical and ML terms.

Dataset acquisition

Version 0.52 of the FreeSolv database194 was downloaded from https://github.

com/MobleyLab/FreeSolv. This version contains 642 small neutral molecules. Aside

from experimentally-determined values, the database contains absolute free energies

of hydration computed from alchemical simulations using GROMACS.193 A detailed

description of the particular FEP methodology used can be found in Ramos Matos

et al. 195 FreeSolv calculations were performed using the GAFF196 force field, AM1-

BCC197 partial charges and the TIP3P water model.198,199
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A dataset split was performed by excluding the FreeSolvSAMPL4 set which

contains all the compounds (n=47) that were used in the SAMPL4 blinded com-

petition (and had been subsequently appended to the FreeSolv database after this

challenge).200 Compounds belonging to this set were extracted by filtering for the

keyword ’SAMPL4 Guthrie’ in the experimental reference column of the database’s

overview textfile. Six molecules (mobley 6309289, mobley 3395921, mobley 6739648,

mobley 2607611, mobley 637522 and mobley 172879) were added manually to the

test set because even though they were present in the SAMPL4 challenge they were

not tagged with this keyword in v0.52 of the FreeSolv database. This resulted in a

training set of 595 molecules. From here on only the training set will be described,

but all treatment of data can be considered equal between the training and test set

unless otherwise indicated. All data-handling was done in Python 3.7.4.

Feature generation & pre-processing

Features (descriptors) were generated for all compounds present in FreeSolv. The

ML models in this study were generated using RDKit 2019.03.4.0.201 Molecules were

loaded using the provided SDF files, and featurized using the following classes on

standard settings unless indicated otherwise:

• APFP : Atom-pair fingerprints were generated using

rdkit.Chem.rdMolDescriptors.GetHashedAtomPairFingerprint(); length

was set to 256.

• ECFP : Extended-connectivity fingerprints were generated using

rdkit.Chem.AllChem.GetMorganFingerprintAsBitVect(); length was set

to 1024. In order to generate fingerprints with diameters ECFP2/4/6/8, the

radius was set to 1, 2, 3 and 4, respectively.

• TOPOL: Topological fingerprints were generated using rdkit.Chem.RDKFingerprint();

length was set to 1024.

• MolProps : Molecular properties were generated using the Mordred python
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API202 with inclusion of 3D properties. Although the total number of de-

scriptors that this API generates is 1825, non-numeric columns were excluded

resulting in 1113 properties that constitute the features per compound. This

particular molecular properties generator was chosen owing to the large num-

ber of molecular properties readily computed via its API.

• X-NOISE : Noise ’fingerprints’ were generated using NumPy.random.randint();

length was set to 100 and random integers ranged between 0-100.

The ’X-NOISE’ feature was added to act as a negative control as random values

should not be able to produce a predictive model. Additionally, all fingerprints

were appended individually to MolProps features (resulting in for instance a fea-

ture set called ’MolPropsAPFP’ which was obtained by appending ’APFP’ to ’Mol-

Props’) resulting in fingerprints with a length of the sum of both feature sets (in

the case of MolPropsAPFP, 1113 + 256 = 1369). Every feature set was subse-

quently Z-normalized to zero mean and sklearn.decomposition.PCA was used to

reduce dimensionality using a principal component analysis, and retaining principal

components contributing up to 95% of the variance. Through this, the resulting

dimensions were the principal vectors rather than original features exhibiting large

enough variance.

After data pre-processing, the corresponding label (Goffset, see Eq. 2.1) was ap-

pended to each data point in order to build the final training set (named ’FEP/ML’).

Additionally, a second training set (named ’ML’) was generated by using as labels

(output variables) the experimentally-determined ∆Gexp value for each data point.

A 5-fold cross-validation approach was chosen to reduce the risks of overfitting

the training set. The training set was thus randomly split into five equally-sized

folds (of sizes 595/5=119). Training was repeated five times, rotating the folds so

that each fold acted as the validation set once for the other four training set folds.

Additionally, training was performed with 10 replicates per feature set, resulting in

a total of 50 trained models per feature set-ML model combination.
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Machine-learning models

Scikit-Learn 0.11.1203 was used to generate all ML models. The models were gener-

ated on a machine running Ubuntu 18.04.3 LTS containing 10 Inter i9-7900X CPU

cores. For Support vector machines (SVMs), random forests (RFs), deep neural net-

works (DNNs) and multiple linear regressions (MLRs), the classes sklearn.svm.SVR,

sklearn.ensemble.RandomForestRegressor, sklearn.neural network.MLPRegressor

and sklearn.linear model.LinearRegression were used on standard settings ex-

cept for DNN which used max iter=5000.

In order to choose optimal hyperparameter configurations for each ML model, a

Bayesian hyperparameter optimization routine was adopted using SciKit-Optimize

0.5.2 (SKOPT)204, which makes use of an expected improvement acquisition function

to search hyperparameter space more efficiently than a random or grid search. The

number of steps (calls in SKOPT nomenclature) was set to 50 because convergence

was observed before this point in most cases. After training a call, the cost function

(mean absolute error of predicting on the validation set) across folds is returned to

the SKOPT decorator which in turn chooses a new hyperparameter configuration

for the next call using its acquisition function to attempt to further decrease the

model’s cost function. A more detailed description of the algorithm can be found in

the online SKOPT documentation. Note that this means that for any ML model,

each of the 10 replicates had its own configuration of hyperparameters, but within

each replicate all five folds would have the same hyperparameter configuration. The

complete hyperparameter space is described in table 2.1. Approximate runtimes for

the complete training protocols were, for SVM, MLR, DNN and RF, 10h, 25h, 104h

and 134h, respectively.

The code to reproduce all key results and figures presented in this manuscript is

available at https://github.com/michellab/hybrid_FEP-ML.
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2.3 Results & discussion

Protocol optimization on training set

For all the ML models derived in this study it was observed that hyperparameters

played an important role in model validation accuracy. This is likely due to the

relatively small size of the training set (595 datapoints). Thus a hyperparameter

optimization algorithm was adopted in which hyperparameters were tuned with the

help of Bayesian optimization based on Gaussian process regression (see table 2.1).

This algorithm searches through hyperparameter space by wrapping around noisy,

expensive ML functions; after 50 calls (configuration attempts), the hyperparameter

configuration returning the lowest validation error is saved together with the corre-

sponding trained model. For SVM, RF and DNN models convergence was observed

from around 30 calls. MLR in this case does not have any hyperparameters to tune

which means that in every SKOPT call the same model is trained which results in

an equal validation error along calls.
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Table 2.1: Hyperparameter descriptions of all machine-learning algorithms used in
the study. SVM, RF, DNN and MLR are support-vector machines, random forests,
deep neural networks and multiple-linear regressions, respectively. Total configu-
rations are computed by multiplying the number of values per hyperparameter for
each ML model.

ML model Hyperparameter Range Total configurations
SVM C 1e-3, 1e-2, ..., 1e+2 216

ε 1e-3, 1e-2, ..., 1e+2
γ 1e-3, 1e-2, ..., 1e+2

RF NumEstimators 1, 2, ..., 1000 9e+4
MaxDepth 1, 2, ..., 5
MinSamplesSplit 2, 3, ..., 10
Bootstrap True, False

DNN ActivationFn logistic, tanh, relu 3.1e+6
Solver lbfgs, sgd, adam

Layers*
(100,50),(50,20),
(100,100,50), (100,50,20),
(50,20,5)

Adam-β1 0.1, 0.2, ..., 0.99
Adam-β2 0.1, 0.2, ..., 0.99
Adam-ε 10e-8, 10e-7, ..., 10e-1

MLR No hyperparameters to tune. 1

*For the ’Layers’ hyperparameter, the standard SKLearn tuple-input form is given
where the i-th element represents the number of neurons in the i-th hidden layer.
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Based on the training protocol it can be observed that random forests (RF) and

multiple linear regressions (MLR) do not fit the training set as well as support vec-

tor machines (SVM) and deep neural networks (DNN) protocols (see figure 2.2).

For MLR this is to be expected because of the relative simplicity of the model. Al-

though the RF algorithm is more complex, it is primarily designed for classification

problems rather than regression problems due to its dependence on decision trees,

which may explain its underfitting. The algorithm is included as a control in the

current study.

A range of different feature sets was used to identify efficient encodings for describ-

ing ∆Goffset. A general trend in feature set performance can be observed across

ML models. MolProps and combinatorial feature sets (fingerprints appended to

MolProps) fit the training set better than standalone fingerprints (APFP, TOPOL

and ECFP6), and X-NOISE performs worst as expected since this feature set is

generated from random data.

Because standalone MolProps generally outperform standalone fingerprints, it is

likely that the combined feature sets benefit mainly from the more predictive Mol-

Props component. The observation that MolProps appears to outperform other

feature sets suggests some of the descriptors (e.g., molecular weight and polar sur-

face area) included in MolProps correlate well with free energies of hydration. This

is reinforced by our observation that the MolProps feature set outperforms generally

other feature sets when predicting ∆G of hydration directly in our pure ML models

(see figure 2.2).
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Figure 2.2: Hyperparameter optimisation of machine-learning models fitting on
∆Goffset (top row) and ∆G (bottom row) for different feature types computed
for compounds in the FreeSolv database. These trained models are subsequently
named FEP/ML and pure-ML (ML) models in the main text body. Depicted are
the number of hyperparameter calls versus global minima of training validation mean
unsigned error in kcal·mol−1. The shaded regions indicate the standard deviation
across ten replicates. Note that in the case of MLR several lines fall above the
depicted error range.
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Although the Extended-connectivity fingerprint (ECFP)205 is used extensively

in QSAR regression problems, our training protocol suggests underfitting of the

training set for this feature type. This is likely because the used diameter of six

bonds is too large to accurately discriminate between the relatively small compounds

in the FreeSolv database (see figure 2.3); testing with smaller diameters suggests an

increase in fitting ability, however these models still underperform with respect to

other feature types (see figure 2.4).
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Figure 2.3: Molecular characteristics of the FreeSolv database (blue) with the con-
tained FreeSolvSAMPL4 set (orange). Depicted is molecular weight in daltons ver-
sus log-partition coefficient per molecule in the database. Both properties were
calculated using RDKit 2019.03.4.0.
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Figure 2.4: Hyperparameter optimisation of support-vector machine models fit-
ting on ∆Goffset for different ECFP diameter sizes computed for compounds in
the FreeSolv database. Depicted are the number of hyperparameter calls versus
cumulative minima of training validation mean unsigned error in kcal·mol−1 for
extended-connectivity fingerprint diameters 2, 4, 6 and 8. Error regions are com-
puted as standard deviation across ten replicates. The black dashed line indicates
the converged validation error for the top-performing model in the main text body
(SVM-MolPropsAPFP).
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Hybrid FEP/ML models outperform standalone FEP and ML models in

SAMPL4

The trained models were used to predict on the Freesolv-SAMPL4 test set. Be-

cause low errors in training validation do not necessarily translate into low errors

in testing validation, all trained models were tested (see figure 2.5 and table 2.2).

Top-performing models per ML model (see figure 2.6) were based primarily on the

MolProps feature set for SVM, RF and MLR, but not for DNN. It is likely that

the latter suffers from a degree of overfitting causing individual models to differ

widely in predicted offset values. This is apparent in the much larger uncertainties

in dataset metrics for DNN. It could also be that there exist several models with

comparable performance (i.e., local minima). Nevertheless the accuracy of the pre-

dictions obtained by averaging over the 50 DNN models is competitive. Overall SVM

appeared to give more consistently accurate and precise estimates of ∆Goffset values.
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Figure 2.5: Machine-learning ∆Goffset predictions versus experimental ∆Goffset val-
ues for all feature types on the FreeSolvSAMPL4 test set. Depicated are mean pre-
dictions across 10 replicates. SVM, RF, MLR and DNN are support-vector machines,
random forests, multiple-linear regressions and deep neural networks, respectively.
Standard deviations are depicted as error bars.
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Table 2.2: Key statistics for machine-learning models combined with FEP (FEP/ML
entries) and pure machine-learning models predicting ∆G directly (ML entries),
sorted by MUE in ascending order. Uncertainties per statistic are given as plus-
minus entries. For these results, the mannitol outlier (mobley 4587267) has been
removed. Uncertainties per statistic are given as plus-minus entries. MUE (mean
unsigned error) and RMSE (root mean-squared error) are shown in kcal·mol−1.

Model Featureset Type Pearson r MUE RMSE Spearman rho Kendall tau
FEP 0.92±0.0 1.07±0.04 1.9±-0.49 0.86±0.0 0.71±0.0
DNN TOPOL FEP/ML 0.94±0.12 0.75±1.09 1.07±1.03 0.92±0.17 0.79±0.21
SVM MolPropsAPFP FEP/ML 0.94±0.01 0.78±0.22 1.31±0.0 0.95±0.02 0.86±0.05
DNN MolPropsTOPOL FEP/ML 0.93±0.08 0.79±0.7 1.21±0.54 0.94±0.09 0.81±0.14
DNN MolProps FEP/ML 0.91±0.07 0.8±0.56 1.58±0.22 0.95±0.06 0.83±0.11
SVM MolPropsTOPOL FEP/ML 0.94±0.01 0.83±0.13 1.38±-0.11 0.92±0.02 0.78±0.03
DNN MolPropsECFP6 FEP/ML 0.93±0.06 0.83±0.58 1.31±0.34 0.94±0.12 0.81±0.15
SVM MolProps FEP/ML 0.91±0.03 0.87±0.23 1.68±-0.15 0.94±0.01 0.82±0.03
SVM MolPropsECFP6 FEP/ML 0.94±0.01 0.9±0.14 1.54±-0.2 0.9±0.02 0.76±0.02
SVM TOPOL FEP/ML 0.93±0.01 0.9±0.16 1.53±-0.16 0.9±0.03 0.74±0.04
RF MolPropsAPFP FEP/ML 0.93±0.01 0.93±0.19 1.53±-0.15 0.88±0.02 0.74±0.04
DNN MolPropsAPFP FEP/ML 0.91±0.06 0.94±0.58 1.76±0.1 0.94±0.09 0.81±0.13
MLR MolProps FEP/ML 0.85±0.07 0.94±0.31 2.52±-0.59 0.89±0.06 0.76±0.07
DNN ECFP6 FEP/ML 0.91±0.08 0.96±0.76 1.58±0.33 0.88±0.13 0.73±0.14
SVM ECFP6 FEP/ML 0.93±0.01 0.96±0.17 1.71±-0.28 0.86±0.02 0.71±0.03
RF MolProps FEP/ML 0.91±0.02 0.98±0.22 1.81±-0.27 0.91±0.03 0.76±0.03
RF MolPropsECFP6 FEP/ML 0.91±0.03 1.02±0.27 1.91±-0.3 0.87±0.04 0.73±0.04
RF MolPropsTOPOL FEP/ML 0.91±0.02 1.03±0.2 2.0±-0.42 0.87±0.03 0.73±0.05
DNN APFP FEP/ML 0.89±0.09 1.03±0.72 2.07±0.09 0.91±0.14 0.75±0.15
RF TOPOL FEP/ML 0.91±0.03 1.05±0.32 1.95±-0.3 0.85±0.04 0.7±0.04
RF APFP FEP/ML 0.91±0.02 1.06±0.19 1.93±-0.35 0.9±0.04 0.75±0.05
RF X-NOISE FEP/ML 0.92±0.01 1.07±0.12 2.02±-0.51 0.86±0.02 0.71±0.02
DNN X-NOISE FEP/ML 0.92±0.01 1.08±0.17 2.03±-0.47 0.86±0.03 0.71±0.03
SVM X-NOISE FEP/ML 0.92±0.01 1.09±0.1 2.09±-0.57 0.86±0.02 0.71±0.01
MLR MolPropsAPFP FEP/ML 0.89±0.06 1.11±0.49 2.42±-0.33 0.91±0.05 0.78±0.06
SVM APFP FEP/ML 0.88±0.04 1.14±0.44 2.51±-0.51 0.89±0.05 0.72±0.07
MLR X-NOISE FEP/ML 0.9±0.07 1.22±0.6 2.35±-0.3 0.81±0.1 0.65±0.1
RF ECFP6 FEP/ML 0.86±0.04 1.34±0.38 3.45±-1.18 0.81±0.08 0.65±0.09
MLR APFP FEP/ML 0.74±0.21 1.61±0.82 5.09±-1.55 0.72±0.12 0.56±0.09
MLR MolPropsECFP6 FEP/ML 0.62±0.27 1.98±1.93 7.88±-3.18 0.65±0.24 0.51±0.21
MLR TOPOL FEP/ML 0.73±0.2 2.35±2.84 13.61±-6.66 0.64±0.36 0.48±0.27
MLR ECFP6 FEP/ML 0.63±0.27 2.73±4.53 12.87±-3.97 0.6±0.19 0.44±0.16
MLR MolPropsTOPOL FEP/ML 0.78±0.01 2.82±1.97 19.44±-12.34 0.75±0.05 0.6±0.04
SVM MolProps ML 0.88±0.06 0.9±0.35 1.89±-0.19 0.89±0.04 0.73±0.06
SVM MolPropsAPFP ML 0.8±0.05 1.01±0.28 3.04±-1.11 0.87±0.06 0.71±0.07
MLR MolProps ML 0.88±0.04 1.06±0.31 2.88±-0.86 0.89±0.05 0.74±0.06
DNN MolProps ML 0.87±0.1 1.1±0.67 2.32±-0.16 0.81±0.11 0.66±0.12
DNN MolPropsAPFP ML 0.82±0.1 1.3±0.7 3.53±-0.98 0.79±0.16 0.63±0.17
DNN MolPropsECFP6 ML 0.79±0.26 1.33±0.88 3.25±-0.61 0.81±0.26 0.64±0.24
RF MolPropsAPFP ML 0.72±0.09 1.33±0.53 4.15±-1.64 0.71±0.07 0.56±0.07
RF MolPropsECFP6 ML 0.71±0.15 1.38±0.49 4.26±-1.82 0.71±0.16 0.54±0.15
RF MolProps ML 0.76±0.17 1.42±0.51 4.01±-1.59 0.79±0.15 0.6±0.17
DNN MolPropsTOPOL ML 0.78±0.21 1.46±1.08 4.43±-1.3 0.72±0.16 0.57±0.16
SVM APFP ML 0.76±0.19 1.48±1.18 4.05±-0.8 0.71±0.18 0.53±0.16
SVM MolPropsTOPOL ML 0.61±0.07 1.55±0.2 5.23±-2.83 0.76±0.25 0.54±0.19
MLR MolPropsAPFP ML 0.88±0.06 1.57±0.71 6.31±-2.95 0.9±0.03 0.76±0.06
DNN TOPOL ML 0.67±0.42 1.67±1.72 4.98±-1.09 0.64±0.43 0.47±0.32
SVM MolPropsECFP6 ML 0.6±0.06 1.69±0.13 5.98±-3.45 0.78±0.08 0.57±0.08
RF TOPOL ML 0.48±0.13 1.74±0.3 6.84±-3.99 0.54±0.14 0.39±0.13
RF APFP ML 0.7±0.18 1.75±0.37 4.93±-2.35 0.52±0.14 0.38±0.1
DNN APFP ML 0.77±0.18 1.75±1.71 6.07±-1.94 0.66±0.21 0.5±0.18
SVM ECFP6 ML 0.58±0.11 1.76±0.23 5.72±-3.17 0.64±0.18 0.45±0.14
RF MolPropsTOPOL ML 0.56±0.19 1.88±0.51 6.13±-3.09 0.55±0.16 0.41±0.14
DNN ECFP6 ML 0.59±0.59 1.88±2.1 5.63±-1.15 0.62±0.56 0.46±0.38
SVM TOPOL ML 0.57±0.12 1.89±0.42 5.82±-3.06 0.7±0.34 0.49±0.26
RF ECFP6 ML 0.4±0.18 2.17±0.49 8.12±-4.74 0.44±0.13 0.34±0.11
DNN X-NOISE ML 0.1±0.64 2.49±0.63 11.52±-7.64 -0.01±0.56 -0.0±0.4
RF X-NOISE ML -0.22±0.38 2.5±0.44 11.97±-8.2 -0.29±0.35 -0.19±0.26
SVM X-NOISE ML 0.08±0.71 2.56±0.13 12.12±-8.54 0.11±0.72 0.08±0.49
MLR APFP ML 0.73±0.12 2.94±2.26 17.08±-9.15 0.65±0.13 0.48±0.1
MLR MolPropsECFP6 ML 0.44±0.21 2.99±2.5 19.11±-12.01 0.48±0.21 0.34±0.16
MLR X-NOISE ML -0.01±0.19 3.1±1.42 15.66±-10.52 -0.08±0.19 -0.06±0.09
MLR MolPropsTOPOL ML 0.75±0.02 5.6±2.12 78.19±-67.0 0.69±0.05 0.54±0.05
MLR ECFP6 ML 0.35±0.17 7.42±10.29 116.45±-95.16 0.35±0.31 0.24±0.23
MLR TOPOL ML 0.21±0.07 8.81±5.83 178.3±-157.46 0.33±0.06 0.24±0.05
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Figure 2.6: Overview of prediction results on the SAMPL4-Freesolv test set.
A: FEP-predicted versus experimentally-determined free energies of hydration in
kcal·mol−1. The orange and light-orange areas are confidence regions for 1 and 2
kcal·mol−1, respectively. Statistical uncertainties as supplied by the authors are
shown as errorbars. B: Scatter plots of top-performing ML models predicting
∆Goffset for the FreeSolvSAMPL4 set with respective statistical intervals. Cor-

rections with correct directionality (i.e. when 〈∆Ĝoffset〉Npop and ∆Goffset values
are both positive or both negative) are shown in blue; Corrections with incorrect
directionality are shown in orange. The error bars on x-axis values denote the stan-
dard error of the mean offset value from ensembles of 50 ML models. Black diagonal
lines show the x = y diagonals. Red circles annotate the outlier discussed in the
text body.
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One compound in the test set (mobley 4587267, (2R,3R,4R,5R)-hexane-1,2,3,4,5,6-

hexol, referred to as mannitol from hereon) stands out with a free energy of hydration

significantly more negative than other compounds in the test set (∼ -24 kcal·mol−1).

This compound has a large associated ∆Goffset value of∼-5 kcal·mol−1 (figures 2.6A

and 2.6B, resp.). SVM and MLR models appear to correct this outlier better than

RF and DNN models do, and it is likely that this outlier correction skews the statisti-

cal performances of the four models to a degree (see table 2.2 for model performances

excluding the outlier); indeed, when plugging in the correction terms (figure 2.7),

FEP/ML FE predictions for mannitol appear to be close to experimental hydration

free energy measures, especially for SVM and MLR models.
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Figure 2.7: Machine-learned correction terms applied to FEP predictions. Results
are shown for both support vector machine (left column and deep neural network
(right column) ensembles. A/B: The FreeSolvSAMPL4 set FEP predictions (figure
2.6) with corrections as predicted by ML models shown with arrows. Green/red
arrows depict corrections that improve/worsen agreement with experiment. Statis-
tics for standalone FEP (blue) and hybrid FEP/ML (green) are shown. C/D: pure
machine-learning (ML) models directly predicting ∆G of hydration with statistics in
black text. E/F: contains the same data as A/B, but with a smaller range on both
axes. Model uncertainties are shown as error bars. For all statistics the uncertainties
are shown with a plus-minus sign.
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The top-performing FEP/ML model (SVM; MolPropsAPFP, Figure 2.7A) out-

performed standalone FEP in Pearson r, MUE and RMSE statistics and had higher

ranking statistics (Spearman ρ and Kendall τ) than standalone FEP (see table 2.2).

The top-performing FEP/ML DNN model achieves similar accuracy, but introduces

significant uncertainties compared to FEP (Figure 2.7B). This reflects the larger

uncertainties of the DNN-derived offset values in comparison with other ML proto-

cols (see Figure 2.6B). Even when offset predictions for a given model are of modest

accuracy, plugging in the correction term results in a FEP/ML model free energy

prediction that performs equally well than the standalone FEP component. It seems

that instead of predicting increasingly random values, the worse ∆Goffset predic-

tor models converge towards predicting the training set mean offset value (-0.32

kcal·mol−1) for all compounds (see table 2.2 X-NOISE entries). This is significant

because it implies that, given that a properly-trained model is used, the correction

term can be applied confidently to FEP datasets with minimal risk of worsening

the model performance. The exception to this observation is MLR, which appears

to occasionally predict high ∆Goffset values. This was confirmed by high training

validation values in figure 2.2 and bottom-level FEP/ML entries in table 2.2.

The top-performing ML model (SVM; MolProps, Figure 2.7C) achieves accu-

racy similar to FEP, but with larger uncertainties. This trend worsens for the

top-performing DNN model (Figure 2.7D). As noted before, mannitol contributes

substantially to model performance: a second table with statistical performances ex-

cluding mannitol can be found in table 2.2. Indeed, excluding this compound slightly

diminishes the gain in performance when comparing FEP/ML models to standalone

FEP, although ranking statistics seem to benefit equally well from correction com-

pared to when mannitol is included. This suggests that the small corrections (figure

2.7E and F) introduce primarily a correct reordering of compound ∆G values.

The top-performing FEP/ML (SVM; MolPropsAPFP)and ML (SVM; MolProps)

models were introduced in the SAMPL4 challenge retrospectively (figure 2.8) to
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correct the results of SAMPL4 submission 004 that featured a FEP protocol most

similar to the one used to generate calculated FEP values in FreeSolv. In line with

the results obtained on the FreeSolvSAMPL4 test set, FEP/ML SVM models trained

with MolPropsAPFP outperformed standalone FEP for all SAMPL4 statistics. For

all metrics the gains are significant, moving the FEP/ML prediction to 1st or 2nd

rank as judged by MUE, r or Kendall tau metrics, and from 28th to 4th position

as judged by RMSE. Many of the top-performing methods have very similar per-

formance within statistical uncertainties, so care must be taken not to overinterpet

changes in rankings. Nevertheless it is clear that the ML-derived correction terms

improve the accuracy of the FEP methodology.

ML performed broadly similarly to FEP, but the uncertainty of the metrics is

again remarkably large. This indicates that there is significant variability in the

predicted free energies of hydration of the same compound by the ensemble of ML

models. By contrast the FEP/ML predictions are of similar precision to the FEP

predictions as the uncertainties in the offset terms is comparable or smaller to the

uncertainties in the alchemical estimates.
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Figure 2.8: SAMPL4 statistical performances of top-ranked entries with inserted
pure ML and FEP/ML predictions as depicted in the original challenge. Entry
004 (standalone FEP) is shown in blue. The FEP/ML model is shown in orange,
and rank gains between standalone FEP and FEP/ML are depicted as black arrows.
Pure ML models (ML) are shown as black bars. Error bars show model uncertainties
as depicted in the SAMPL4 overview publication.200
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Influence of training set size on accuracy of correction terms

We also evaluated the impact of training set size on the accuracy of the correction

terms (figure 2.9). Hyperparameter configurations were taken from top performers

in the training phase of this study (see table 2.1), and increasingly large, randomly

sampled subsections of FreeSolv (exluding the test set) were used were used as train-

ing sets. For simplicity only SVM (trained using MolPropsAPFP) results are shown

as this model consistently outperformed all others.

It was observed that with training sets of increasing size the cost function (in this

case, MUE of FEP/ML prediction on SAMPL4 in kcal·mol−1) decreases monoton-

ically. FEP/ML models appear to outperform standalone FEP after being trained

on ca. 20 compounds in FreeSolv (figure 2.9A), and converge with training sets of

ca. 400 compounds. Strikingly, standalone ML models require much larger training

sets of ca. 450 compounds to outperform standalone FEP. In both cases the gradual

decrease in uncertainty with increase in training set size is due to higher overlap in

training sets composition between replicates as the full training set size (n=595) is

approached. Whereas the FEP/ML model seems to converge at ca. 400 compounds,

the ML model does not appear to have converged and could likely benefit from a

larger training set. This indicates that, given a sufficiently large dataset, a pure ML

model may not require any prior FEP calculations.

To put these results in perspective in the context of SAMPL4, the changes in ranks

of the FEP/ML entry was plotted as a function of training set size (figure 2.9B).

FEP/ML models outperform standalone FEP for all statistical measures, although

some variability is observed. Whereas MUE and Kendall τ already show clear im-

provements from small training set sizes (ca. 100 and 50, resp.), Pearson r and

RMSE appear to require models trained on a larger number of compounds to reach

placement in the top five ranks of the SAMPL4 challenge (250 and 500, resp.).

A top-ranked result by Pearson r is not achieved even with a full training set of 595

compounds. This is also apparent in figure 2.8, where entry 145 is shown to out-

perform the FEP/ML model. This entry consists of a quantum-mechanical-based
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method with implicit solvent and applies an empirical correction term to alcohol,

ether, ester, amines and aromatic nitrogen groups which were derived from experi-

mental data.206 It is difficult to compare correction terms in this case because these

corrections are generated from experimental measures versus Poisson-Boltzmann-

based free energy calculations.

Although FEP/ML hybridisation does not appear to benefit RMSE scores in figure

2.8, the RMSE ranking for FEP/ML models appear to approach first place in the

SAMPL4 challenge when trained on the full training set (595 compounds). The

working model in figure 2.8 is trained using a cross-validation approach which ef-

fectively limits training set sizes to 0.8 ∗ 595 = 476 compounds which suggests that

when generating a definitive ML correction term it would be preferable to use all

595 compounds as a training set.
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Figure 2.9: Effect of increasing training set size on machine-learned correction mod-
els. Results depicted are produced by support vector machines trained using Mol-
PropsAPFP and MolProps for FEP/ML and pure ML models, respectively. A:
FEP/ML model mean unsigned errors in the SAMPL4 challenge are shown with
increasingly large (randomly sampled) subsets of the FreeSolv database as train-
ing sets with uncertainties across replicates (n=10) shown as lighter-shaded regions.
Orange and blue lines are FEP/ML (FEP+ML, trained on ∆Goffset) and pure ML
(trained on ∆G) predictors, respectively. Horizontal dashed line indicates the stan-
dalone FEP MUE of the FreeSolvSAMPL4 set in the SAMPL4 challenge. B: results
for the same experiment as A but with ranking position of the FEP/ML model in
the SAMPL4 challenge on the y axis per statistical measure. Horizontal dashed
lines indicates the standalone FEP statistical measures of the FreeSolvSAMPL4 set
in the SAMPL4 challenge and solid blue lines indicate first place in the challenge
(i.e. y = 1).

80



2.3. Results & discussion

The offsets are transferable to a number of related SAMPL4 submissions

The transferability of the ML-derived offsets to related simulation protocols was

also assessed to evaluate the general applicability of the methodology. Figure 2.10

summarises changes in metric ranks for all complete submissions that featured an

FEP methodology (n=19). Overall the offsets improved/maintained/worsen the

rankings of 12/5/2 submissions for Pearson r; 10/3/6 submissions for MUE and

RMSE; 9/6/4 submissions for Kendall Tau. Importantly with one exception (see

below) the offsets do not worsen the ranks of the top-performing submissions.

As expected, SAMPL4 submission 004 is among the entries that benefit the most

from the correction terms. Several entries that used a similar forcefield (GAFF and

AM1-BCC charges, gromacs simulation engine) but a different simulation engine or

different free energy estimation protocols (e.g. 137, 168, 544, 575) also show im-

provements in metrics. This is reasonable as it has been shown that, when properly

implemented, hydration free energies computed with the same forcefield by different

simulation engines will broadly agree to within 0.2 kcal·mol−1.159

The charge model used significantly influences the transferability of the off-

sets. Submission 542, 543, 545 only differ from submission 544 in the charge model

used (RESP/HF-631G*, RESP/MP2/aug-cc-pVDZ/PCM, vCHARGE, AM1-BCC

respectively). The offsets worsen the accuracy of the RESP methods but improve

slightly the vCHARGE results. Other RESP-based submissions (166, 167, 169)

see marginal changes in ranks. Submissions based on OPLS forcefields (562, 563,

564) benefit somewhat from the offsets, but not a GROMOS (529) or an AMOEBA

(582) submission. This may be explained by the higher correlation of the AM1-

BCC/GAFF hydration free energies with the OPLS hydration free energies (Pearson

r 0.95, mean absolute deviation 1.1 kcal ·mol−1) than the GROMOS hydration free

energies (Pearson r 0.84, MUE 1.9 kcal ·mol−1) or AMOEBA hydration free energies

(Pearson r 0.86, MUE 3.5 kcal·mol−1).

A number of submissions made use of empirical correction terms that account

for known deficiencies of the GAFF force field. For instance submission 005 corrects
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the tendency of the GAFF forcefield to underhydrate hydroxyls.
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Figure 2.10: Changes in ranks of SAMPL4 submissions after application of offsets
to predicted hydration free energies. Depicted are SAMPL4 FEP entries before
(blue) and after (orange) hybridisation with the SVM-MolPropsAPFP correction
term. The version of this plot with non-FEP entries can be found in figure 2.11.
Entries were sorted by total ranks gained in ascending order. The FreeSolvSAMPL4
set corresponds to entry 004.
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Figure 2.11: Changes in ranks of SAMPL4 submissions after application of offsets
to predicted hydration free energies. Depicted are the top 20 SAMPL4 non-FEP
entries before (blue) and after (orange) hybridisation with the SVM-MolPropsAPFP
correction term. Entries were sorted by total ranks gained in ascending order.
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Table 2.3: Effects on challenge rankings for a selection of entries in the SAMPL4
challenge when applying the ML-predicted correction term. For these entries the
SVM MolPropsAPFP correction term was applied. For a given statistical measure,
the standalone rank as well as the FEP/ML rank are shown separated by a tilde.
Entries were sorted in ascending order by total number of ranks gained.

Entry Method Pearson r MUE Kendall tau
567 ZAP 35∼15 30∼15 25∼9
572 ZAP 31∼13 26∼15 26∼9
581 OPLS 17∼2 17∼1 30∼20
179 GAFF 15∼2 10∼1 16∼1
004 GAFF 16∼2 11∼1 13∼1
575 GAFF 25∼12 24∼15 21∼10
178 GAFF 14∼3 15∼7 11∼5
563 OPLS 37∼28 32∼24 40∼34
569 ZAP 40∼28 46∼45 35∼25
137 GAFF 27∼17 42∼41 20∼10
562 OPLS 19∼13 21∼15 17∼14
544 GAFF 6∼2 6∼1 6∼1
545 GAFF 42∼37 41∼35 43∼41
006 GAFF 7∼2 5∼2 5∼2
169 GAFF 34∼28 31∼27 39∼39
564 OPLS 38∼36 39∼33 45∼44
168 GAFF 47∼45 37∼33 37∼34
531 CHARMM 36∼31 36∼36 48∼48
015 KB 44∼44 40∼36 49∼49
548 OPLS 32∼29 34∼33 34∼34
167 GAFF 46∼44 35∼33 36∼36
138 GAFF 24∼24 28∼31 32∼26
570 ZAP 26∼21 43∼43 14∼16
530 CHARMM 28∼26 25∼27 46∼45
568 ZAP 11∼3 14∼20 4∼6
196 QM 49∼48 48∼48 22∼24
181 GAFF 3∼3 8∼13 10∼7
582 AMOEBA 33∼28 45∼45 24∼32
014 KB 43∼43 38∼41 50∼50
152 QM 45∼44 47∼47 44∼48
153 QM 39∼41 44∼45 38∼39
529 GROMOS 30∼30 29∼32 31∼32
166 GAFF 20∼20 19∼21 19∼21
197 QM 50∼50 50∼50 27∼32
158 QM 48∼48 49∼49 23∼28
180 GAFF 9∼8 22∼27 18∼20
534 QM 29∼30 27∼31 47∼48
005 GAFF 2∼2 3∼10 2∼2
189 QM 41∼41 33∼40 42∼43
149 KB 12∼16 12∼17 12∼12
573 ZAP 4∼3 13∼20 3∼6
566 ZAP 5∼7 1∼4 7∼12
141 MISC 18∼17 9∼12 15∼23
543 GAFF 22∼26 20∼24 29∼32
565 ZAP 8∼11 4∼6 9∼18
542 GAFF 21∼25 16∼24 28∼30
532 QM 23∼27 23∼31 41∼47
533 QM 10∼20 18∼24 33∼41
561 ZAP 13∼17 7∼20 8∼22
145 QM 1∼11 2∼20 1∼9
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2.4 Early investigations into protein-ligand FEP/ML

hybridisation

This section outlines preliminary work on applying the research theme presented

in sections 2.1-2.3 to protein-ligand systems in relative Free Energy Perturbation

(FEP) calculations. A similar approach was taken, however in the current form

instead of modelling ∆Goffset, ML models were trained to fit ∆∆Goffset because

FEP calculations involve a relative binding free energy rather than an absolute one.

2.4.1 Methods

FEP dataset generation and simulation protocol

FEP datasets were created both using both retrospective data and prospective data

(see table 2.4). For retrospective FEP datasets, only the ligand poses, protein

files, ∆∆Gbind predictions and experimental ∆∆Gbind values were collected. For

ACK1, only the structures in protocol D of the original publication were used.207

For FXR,166 only the D3R stage 1 dataset’s first binding modes were used because

no observable difference in prediction error could be found between the two binding

modes. Ligands 10, 12, 74, 76-79, 81-83, 85, 88 and 89 were excluded because

they constituted a change in net charge compared to the other ligands in the se-

ries. Water molecules were retained in all protein structures. Prospectively, BACE,

CDK2, JNK1, MCL1, PTP1B, Thrombin (PS) and TYK2 input files were adopted

from Wang et al.208 ROS1 structure files were adopted from Pérez-Benito et al.209

using only structures associated with protein 1WHTS. DPP4 ligand structures were

extracted from a Cresset in-house benchmarking set with ligands (n=73) aligned to

the ligand pose in 1X70210 using Cresset’s Forge.211 A final subset was extracted

using only ligands that included a variation on the phenyl ring (n=25).

For the prospective (PS) collections, molecular simulations were run using SOMD212

(v2018.2.0) enabling simulations to be run on a cluster of GPUs, here consisting of

16 NVIDIA GeForce GTX 980 Ti GPU cards. Prior to simulations, all systems
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were equilibrated using an NVT ensemble for 200ps at 298K and subsequently an

NPT ensemble for another 200ps at 1atm. All simulations were run for 4 ns with

9 λ windows; in cases of hysteresis or insufficient (< 3%) adjacent λ window phase

space overlap they were run again with 17 λ windows (initially) or 26 λ windows

(finally).

Training models to predict ∆∆Goffset values

Handling of molecular data was done using RDKit v2017.09.143 in python v3.5.6

unless mentioned otherwise. For each featurised perturbation A→B, the final fea-

tures were computed by subtracting the feature values of A from the feature values

of B such that each feature for the perturbation describes the change for the given

feature between the two members of the perturbation. For example, given a bi-

nary feature describing the presence of a fluorine and a perturbation containing a

defluorination, the feature would be set to -1. For all training and test sets, three

feature sets were generated to describe atom changes, molecular property changes

and changes in ligand-protein contacts, respectively:

• ∆PerturbationFingerprints were computed similarly to reaction fingerprints

using Atom-pair fingerprints set to hash down to 256 bits generated with

RDKit. Fingerprint subtraction between members of a given perturbation

thus described the change in atom pairs for the perturbation.

• ∆MolecularProperties were computed using the Mordred213 v1.1.145 python

library using a selection of descriptors (n=71). The features contained in this

set mostly describe presence of atom types, bond types, ring types, classical

molecular properties (e.g. weight; lipophilicity) and surface area descriptors.

The source-code’s VdwVolumeABC.py script lacked Van der Waals radii data

for iodine, so the correct value (189pm) had to be inserted. Additionally,

electrostatic complementarity scores, Pearson’s R and Spearman’s Rho rank

correlation coefficients (correlating the ligand’s and protein’s electrostatic sur-

faces) were computed using the python implementation of Cresset’s Flare.214
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Molecular property subtraction between members of a given perturbation thus

described the change in a given property for the perturbation.

• ∆CloseContacts were computed using the Protein–Ligand Extended Connec-

tivity (PLEC) function of the Open Drug Discovery Toolkit215 v0.648 with

ligand-depth = 1Å, protein-depth= 5Å, distance cut-off= 3.5Å, include waters

and fingerprint length set to hash down to 16384 bits. PLEC fingerprint sub-

traction between members of a given perturbation thus described the change

in close contacts for the perturbation.

After generation of each feature set, they were combined into separate training/ test

sets comprised of all possible combinations of the feature sets (i.e. individual, paired

or triple; n=7). As a negative control, an eighth ‘noise’ feature set of 256 bits was

constructed where each bit was set to a random integer between 0-100.

For a given FEP calculation, the offset (i.e. error versus its experimental measure)

can be described as:

∆∆Goffset = ∆∆GFEP −∆∆GExperimental. (2.3)

For each perturbation, the ∆∆Goffset value was used as the label to train/ predict

on, except for the null model where ∆∆GExperimental values were used as labels.

Each of the eight feature sets was handled individually. Each set was normalised

to a standard score and a SciKit-Learn principal component analysis (PCA) was

used to reduce features up to 95% of variance explained. PCA loadings for each

feature were computed by inversely transforming the PCA set which produces a

vector of covariances per feature across PCA dimensions. The cumulative covariance

per feature was considered the PCA loading for that feature. Because of the sparse

nature of the training data (perturbation sets per protein target), a cross-validation-

type learning procedure was adopted where the training set was split into folds and

an individual model was generated for each fold. Suppose a training set is built from

3 perturbation sets for protein targets A, B and C. The training algorithm would
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split the collection into three folds:

• Fold “A”: B & C as training set, A as validation set

• Fold “B”: A & C as training set, B as validation set

• Fold “C”: A & B as training set, C as validation set

Following the above example, the number of models generated was thus equal to

perturbation sets contained in the training set (n=11). After splitting, each model

was generated using a Bayesian hyperparameter optimisation (BHO) scheme (see

section 2.2). For each optimisation routine, the number of calls was set to 40 because

more calls became too computationally expensive because of the scalability of the

acquisition function. Hyperparameters set to be tuned by SKOPT differed per

machine learning algorithm and will be outlined below. Per fold, the optimisation

scheme was repeated over 30 replicates of which the top performing 10 were retained

resulting in an ensemble of models per fold of size 10. Note that each of these 10

models will have their own configuration of hyperparameters. For support vector

machines (SVMs), during BHO hyperparameters C, ε and γ were set to logarithmic

scales of -3.0 to 2.0 with 6 steps. For Random Forests (RFs), the number of trees

and max depth hyperparameters were set to range from 8 to 128 with seven steps.

Training procedures were run on twenty Intel i9-7900X CPU cards using Scikit-

Learn v0.20.0. TensorFlow-GPU v1.8.0 was used to generate feed-forward densely

connected neural networks using Keras with a rectified linear activation function.

An Adam optimiser was used in conjunction with an early stopping routine set

to monitor validation loss and halt training with a patience of 20 epochs. During

BHO, the following hyperparameters in ranges [start-end, n steps] were set: Adam

parameters (to control descent and momentum) β1, β2 in [0.8 - 0.99, 11] and ε in

[0.0001 - 0.5, 11]; batch size in [32 - 128, 7]; number of deep layers in [1 - 2] with

number of nodes in [5 - 261, 10]. The number of layers and amount of nodes ranges

were set twice to allow sampling of versatility in layer size per architecture. Training

was performed using three NVIDIA GeForce GTX 1080 cards.

89



Chapter 2: A Hybrid Alchemical Free Energy/Machine Learning Methodology for
the Computation of Hydration Free Energies

Table 2.4: Overview of the relative binding free energy (FEP) data sets used in
constructing the training and test sets for the ∆∆Gbind correction model. Used
information for each collection would consist of ligand poses, a protein file, pre-
dicted ∆∆Gbind values and experimental ∆∆Gbind values. Collections were mined
both retrospectively from earlier publications (RS) or prospectively (PS) using
SOMD/OpenMM. Methodologies for each retrospective dataset can be found in
their respective publications (see DOI). For PS collections, structures provided by
earlier publications were used where available. Note that although thrombin ap-
pears in both the retrospective and prospective collections these are two distinct
congeneric series.

Type Collection FEP dataset Number of perturbations DOI

Training
set

RS

ACK1 28 10.1101/333120
FXR 76 10.1007/s10822-017-0083-9
HSP90 24 10.1016/j.bmc.2016.07.044
Thrombin 27 10.1021/acs.jpcb.6b03296

PS

BACE 85

10.1021/ja512751q

CDK2 42
JNK1 64
MCL1 114
PTP1B 37
Thrombin 12
TYK2 33

Test set PS

ROS1 51 10.1021/acs.jctc.8b01290
DPP4 72 NA
Cathepsin S TBA NA
FXA 28 10.1021/jm0111346
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2.4.2 Machine learning models fitting ∆∆Goffset values

During BHO, the dimension-less MAE/MAD was used as a validation metric. Here,

the MAE is the mean absolute error of predicted ∆∆Goffset versus experimental

∆∆Goffset and MAD is the mean absolute variance in the dynamic range of the

congeneric series in question. This metric is useful because it shows the statistical

performance of a model normalised by the dynamic range of the congeneric series,

meaning that any metric value lower than 1.0 suggests improvement compared to

the noise associated with the intrinsic variance of the congeneric series.

It was observed that during the training phase of this protocol not all congeneric

series (both RS and PS) were fit effectively. Especially TYK2, FXR, MCL1 and

PTP1B did not show significant training validation. JNK1, ACK1 and Thrombin

(primarily PS) did show model fitting with 0.8 <MAE/MAD< 1.0. Overall it was

observed that ∆MolecularProperties outperformed other feature sets in terms of

fitting this training domain for SVMs, DNNs and RFs.
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Figure 2.12: Convergence plot for the support vector machine Bayesian hyperpa-
rameter optimisation protocol showing the number of calls against the glocal mini-
mum validation absolute error divided by the variance of the dynamic range of each
dataset. For each subject fold, all different feature sets are trained on; each feature
set is an ensemble of 10 models, i.e. per subplot each line depicts the mean vali-
dation error and the transparent region depicts the standard deviation across the
ensemble. Dotted lines depict the true feature sets whereas the continuous blue line
depicts the ‘noise’ dataset, i.e. the negative control.
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2.4.3 Application of FEP/ML hybrid to ROS1K

∆∆Goffset predictions for the ROS1 perturbations correlated with Pearson r values

of 0.46 and 0.43 for the DNN and SVM ensembles, respectively, whereas the RF

ensemble predicted significantly less accurately with a Pearson r value of 0.21 (data

shown for SVM in 2.13A). When correcting the ∆∆Gbind predictions with their re-

spective predicted ∆∆Goffset the increase in accuracy was consistent albeit modest

(figure 2.13B). Across hybrids, the FEP/SVM hybrid showed the largest benefits

compared to naive FEP. Hybrid models showed, on average, a ∼0.1 kcal·mol−1 de-

crease in mean unsigned error (MUE) relative to experimental measures. Per-ligand

∆Gbind estimations are not depicted because the modest corrections did not have

an effect on binding estimation accuracies likely because the weighted least squares

regression algorithm used in this estimation is not sensitive enough to handle the

small corrections suggested by the ML models.

One encouraging result is that the majority of corrections (∼75%) were corrections

in the correct ’direction’, i.e. positive or negative corrections when they should be

positive or negative, respectively (figure 2.13A). This suggests that with a more

rigourous training protocol the correction model could be viable. However, it ap-

pears that much larger datasets are required to effectively train ML models on this

type of data. The approaches taken in this work introduce large amounts of noise

by collecting retrospective data and prospective data where there is a large variety

in FEP methodologies (i.e. force fields, amount of sampling, versioning, etc..). Care

must be taken to stratify future datasets in a more robust way.
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Figure 2.13: The FEP/ML hybridisation scheme applied to the protein-ligand sys-
tem C-ros oncogene 1 receptor tyrosine kinase (ROS1). The correction term was
learned by a support vector machine (SVM) on a variety of protein-ligand systems
(table 2.4) using molecular properties as descriptors. A: predicted ∆∆Goffset values
versus ’experimental’ (i.e. FEP prediction mistake). Green points are perturbations
that were corrected in the correct direction (i.e. the correction is beneficial) and
orange points are perturbations that were corrected in the wrong direction (i.e.
the correction makes the FEP/ML hybrid prediction worse than standalone FEP).
B: ML correction terms (arrows) plugged in to FEP predictions (blue) to produce
FEP/ML hybrid predictions (green). Shown are Pearson r, MUE (in kcal/mol) and
Kendall τ for the standalone FEP (blue) and FEP/ML hybrid (green) predictions
versus experiment. Dashed diagonal lines indicate the 1 kcal/mol confidence bounds.
For this series only a single replicate was run so no standard errors could be esti-
mated - MBAR subsampling errors are not shown for clarity but averaged at ∼0.1
kcal/mol.
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2.5 Conclusions

This work has demonstrated that it is possible to combine ’physics-driven’ FEP

methods with ’data-driven’ machine learning methods to predict absolute hydration

free energies of small molecules. The chief advantage over FEP is that improvements

in the accuracy of the predictions are achieved without having to embark in cumber-

some forcefield parameterization efforts. When compared with ML, the FEP/ML

approach outperforms FEP with a much smaller training set size. This is significant

as it indicates that for a new dataset it is possible to make predictions without any

available experimental data initially, and switch to an FEP/ML approach once a

sufficient number of data points have been experimentally determined. This advan-

tage stems from the fact that in the FEP/ML approach the ML models only need to

learn to correct errors in the FEP calculations, whereas in a pure ML approach the

models must learn the physics of hydration. Another advantage of FEP/ML is that

the hydration free energies of individual compounds are predicted with precision

similar to that of the FEP calculations, whereas ML-based predictions by ensembles

of identical models show more significant variability. In a retrospective analysis of

all SAMPL4 submissions, the accuracy gains obtained in FEP/ML are sufficient to

propel a mid-ranked FEP protocol among the top-ranked submissions. Further, the

accuracy improvements are not limited to a single simulation protocol, and a number

of related FEP approaches benefit from the correction terms. This likely stems from

the fact that the hydration free energies predicted by a number of forcefields and

software show correlations in their outliers.159,216 However the performance of the

correction terms is expected to decrease the more the simulation protocol diverges

from that used to generate the training set.

There would be of course no need for such correction terms if more accurate force-

fields were available. Thus beyond empirically correcting forcefield errors, the ML

correction terms are useful to flag at essentially no computing cost molecules for

which predictions are likely to deviate significantly from experimental data. This

should be useful to help focus time-consuming forcefield parameterization efforts, or
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as part of automated workflows to decide whether to embark in bespoke forcefield

parameterization for a given compound. The methodology presented here could be

applied to other scenarios where FEP is used extensively, for instance relative or ab-

solute protein-ligand binding free energy calculations. This will likely require further

methodological developments to handle non negligible statistical sampling errors in

the FEP results; as well as learning of a diverse set of physical interactions present

in the more heterogeneous environment found in protein binding sites. Generating

a training domain suitable for such a machine learning problem will be challenging

as it is likely that large amounts of data are required for fitting a chemical space

this large and information-rich. Nevertheless the current growth in size and diver-

sity of protein-ligand datasets with associated FEP data should render FEP/ML an

increasingly appealing option to improve the effectiveness of FEP methods in drug

discovery.111,125,162
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Chapter 3

Data-driven Generation of

Perturbation Networks for

Relative Binding Free Energy

Calculations

3.1 Introduction

Alchemical Free Energy (AFE) calculations have seen significant increase in popular-

ity in both the academic and commercial domains of pharmaceutical development.

These types of calculations leverage an alchemical description of a molecular per-

turbation for the purpose of estimating free energies of binding of ligands to a drug

target.151,152,217,218 Absolute Binding Free Energy (ABFE) calculations are not yet

routinely used for protein-ligand systems owing to challenges in converging accu-

rate free energy estimates.219–222 As a result relative binding free energy (RBFE)

calculations remain one of the most popular types of AFE techniques, and have be-

come pivotal in modern computational chemistry approaches that support medicinal

chemistry campaigns. Its success is largely owed to recent improvements in process-

ing hardware coupled with advances in empirical force fields which has pushed the
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technique’s potential to predict ligand binding affinities with a mean unsigned error

below 1 kcal·mol−1, at acceptable computational costs.208,223–225 The field of RBFE

calculations has seen considerable progress over the last several years with both

academic and commercial developers pushing its boundaries even further using a

variety of community-curated benchmarking series and guidelines.95,208,226–228

The community’s performance across the available RBFE benchmarking sets is vari-

able due to the heterogeneity of RBFE implementations. This variability is primarily

explained by limitations in RBFE software. This results in bottlenecks that can be

shared across RBFE software, such as inaccuracies when performing scaffold hop-

ping, net charge adjustments or changes in ligand binding modes,95,229,230 as well as

bottlenecks that are unique to certain implementations due to for instance short-

comings in supported empirical force fields.85,175,224

In RBFE the free energy of binding for a series of compounds is estimated from a

set of pairwise binding free energy differences (∆∆G), which are transformed into

binding free energies relative to a common reference value (∆G) via for instance a

regression scheme. This requires the planning of a perturbation network (or graph)

that connects all N compounds in a congeneric series using n edges. To connect all

ligands to the network, at least n = N − 1 edges is required (a minimally connected

network), and up to n = N2−N
2

edges may be used (a fully connected network).

Previous work has shown that accuracy of binding free energy estimation generally

increases when the number of edges increases, but the computing expense of a fully

connected network becomes rapidly impractical as the size of the congeneric series

increases.231

If no error was made in the prediction of pairwise binding free energy differences

(∆∆G), each possible network for a congeneric series would yield the same binding

free energy estimates (∆G). In practice the choice of a network has a significant

influence on predictive power, because a given RBFE protocol makes errors of a

different magnitude for each edge. These errors arise from different sources that

reflect fundamental limitations in the technology, for instance forcefield inaccura-
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cies leading to systematic errors, and statistical errors that are introduced due to

finite sampling of configurational integrals. Additionally, the performance of free

energy difference estimation between pairs of compounds is influenced by numer-

ous implementation specific details (e.g. softcore parameters, topological coupling

methodology, λ schedule). Consequently the choice of a network that maximises

accuracy and minimises computing expense for a given RBFE protocol is not trivial

(figure 3.1). Such tasks have historically been carried out manually by practition-

ers relying on expertise in a specific RBFE implementation and intuition to select

an efficient network. However, with increased adoption of RBFE and a push for

routine applications to large datasets such an approach is increasingly impractical.

Currently it is common practice to generate star-shaped networks (where all ligands

are perturbed to a single reference ligand) for large ligand series (n > 50). Although

this style of network generation is attractive because of its simplicity, little research

has been done to investigate the impact it has on RBFE accuracy.
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Figure 3.1: The choice of edges for a perturbation network is essential for RBFE
prediction accuracy. A: given two network generators (orange and blue, these can be
humans or machines), B a number of perturbations is chosen between the eight lig-
ands in the series such that each ligand is included. For each chosen edge, and RBFE
simulation is performed. Some chosen edges will produce errors of higher/lower mag-
nitude which greatly alters the overall predictive power of RBFE. C: relative binding
free energies are transformed using for example a regression scheme to obtain per-
ligand ∆∆Gbind estimations in reference to one of the series’ ligands. D: compared
to experimental binding free energies, different perturbation network topologies have
different predictive power. In this example, the blue network outperforms the orange
because the latter has multiple outliers.
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Lead Optimization Mapper (LOMAP232) is the primary programmatic approach

to RBFE network generation and is used in diverse RBFE software implementations

including Flare.212,233 The LOMAP approach is based on the LOMAP-Score which

is a model metric for the reliability or statistical fluctuation (SF) of a given RBFE

perturbation. SF is a measure of precision, i.e. whether it is possible to get a

converged estimate with reasonable computing effort. The LOMAP algorithm in

its current form relies on expert knowledge in the form of rules that influence the

LOMAP-Score. For example, within the LOMAP-Score algorithm a perturbation

between a pair of molecules involving removal of a sulfonamide moiety would be

penalised heavily as the SF of this perturbation in the context of other molecules

has been found to be high during testing of the RBFE software in question. Con-

versely, a fluorination would result in relatively high LOMAP-Score as SFs for this

class of perturbation have been found to be low during testing. Because the col-

lection of perturbations that would ever be performed in RBFE is sufficiently large

to prohibit rule generation for all of them, LOMAP-Score models SF imperfectly,

resulting in sub-optimal RBFE network design. Additionally, the set of rules in

LOMAP-Score has been fine-tuned for years by RBFE experts in order to make it

perform acceptably for specific implementations; this has decreased transferability

of LOMAP-Score between diverse RBFE implementations.

In practice and in an effort to deal with these shortcomings retrospective RBFE

benchmarking studies often feature networks that have been adjusted manually us-

ing a LOMAP generated network as a starting point. In almost all cases there is

an opacity as to how these networks are augmented, and it is likely that additional

edges are frequently added iteratively upon examination of the initial RBFE cam-

paign’s accuracy versus experimental measures. Although it can be argued that the

augmented RBFE network is a better representation of the specific RBFE imple-

mentation’s predictiveness, this practice decreases comparability between implemen-

tation as augmentation is highly dependent on expertise. Additionally, as not all

RBFE practitioners hold expert knowledge for network augmentation, this practice
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delivers an overstated picture of the true performance of the RBFE implementation

in question when applied prospectively. This highlights the need for an objective

approach in RBFE network generation that is not based on expert knowledge.

More recently, data-driven approaches based on optimal design that offer a theo-

retically more objective approach have been proposed .234,235 Although promising

alternatives to LOMAP, these algorithms are still in active development. Notably,

NetBFE uses an iterative exploration of congeneric series using knowledge of SF

gained incrementally by processing specific edges in the RBFE network;235 an ini-

tial estimation of SF is thus pivotal in this approach. However, a robust SF predictor

is currently absent in the field of RBFE, forcing some approaches to revert back to

simpler metrics such as molecular similarity.231 Additionally, novel machine learning

(ML) techniques of describing RBFE perturbations have been proposed in the form

of siamese neural networks.190,236

The current work proposes a data-driven RBFE network generator as an alter-

native to expert-driven approaches. To accomplish this, a transfer learning ML

framework was designed that allows predictions of SF for molecular perturbations

typically handled in RBFE. Using all predicted SFs for a given congeneric series, a

data-driven RBFE network can be generated. The approach was implemented in

LOMAP to generate networks using predicted SFs as input metric instead of the

default LOMAP-Score.

This work presents several concepts novel to the field of RBFE network generation.

RBFE-Space, a transferable training domain that is composed of a large number

of RBFE perturbations (n ∼4000) was created for this work and has been made

publicly available to further drive ML research in the field of RBFE. The SF pre-

dictor leverages a novel siamese neural network architecture using graph neural net-

work (GNN) legs. The ML predictor is shown to predict SFs more accurately than

the expert-driven LOMAP-Score. Finally, a fully-connected network of the TYK2

RBFE benchmarking series was simulated; network analysis on this dataset has re-

vealed several key learning points for RBFE network generation. The prototype
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data-driven RBFE network generator already performs comparatively to state-of-

the-art network generators, is transferable between RBFE implementations and can

be objectively improved by training set expansion.
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3.2 Methods

We start by defining the error made on predicting a pairwise binding free energy

difference between a pair of compounds A-B with a given RBFE protocol as:

∆∆Goffset,A→B = ∆∆GRBFE,A→B −∆∆GEXP,A→B, (3.1)

where RBFE and EXP are relative binding free energy prediction and experimental

measures, respectively. This heuristic has been previously described by our group

and has been used to generate ML models for post-hoc correction of free energy

predictions.237

Optimal design principles suggest that networks containing many edges with low

magnitude |∆∆Goffset| values will yield ∆G estimates more accurate with respect

to experimental binding affinities than networks containing many edges with high

magnitude |∆∆Goffset| values.234,235 However |∆∆Goffset| is not a practical metric

to select an RBFE network a priori since it requires knowledge of the experimental

measure, and the prediction from the chosen RBFE protocol.

We hypothesize that edges in a RBFE network with low statistical fluctuations

are associated with low |∆∆Goffset| values. This hypothesis reflects the empirical

observation that, for a given protocol, RBFE predictions with large statistical uncer-

tainties rarely give accurate estimates of experimental measures. Of course a RBFE

edge prediction with a low SF could significantly deviate from the experimental

measure due to systematic protocol errors (for instance due to a poor description

of the energetics by the chosen forcefield), but as long as a reasonable correlation is

observed, networks selected according to this metric will approximate the optimal

choice. The chief motivation for this assumption is that it only requires estimation

of the SF of edges for a given RBFE protocol, which can be done without knowledge

of the experimental measure. Later we will show that this hypothesis is supported

by data.

However, estimating SF values for every given possible edges in a network via for
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instance calculation of the standard error of the mean binding free energy change

(∆∆Gbind SEM) would be impractically time-consuming. Our task is therefore to

find a descriptor that approximates ∆∆Gbind SEM and that can be inexpensively

computed to plan an RBFE campaign. To do so we turn to machine learning (ML)

and subsections 3.2.1-3.2.3 outline the associated methodological steps (training set

generation, model training, and model applications).

3.2.1 Generation of a training set that encompasses RBFE-

Space.

ML predictors of the SF of an RBFE calculation can in principle be derived us-

ing a sufficiently large training set that includes all possible examples of alchemical

perturbations between congeneric series. However, computing SFs for a training

set representative of drug-like chemical space is computationally intractable owing

to the size of the training set required. To address this issue we propose the fol-

lowing abstractions : 1) representative RBFE perturbations between compounds in

congeneric series reported in the literature are mapped onto a benzene ring (sec-

tion 3.2.1; figure 3.2); 2) the SF of the perturbation is estimated by computing free

energy changes in an aqueous phase environment (section 3.2.1).

Grafting of benchmarking series perturbations onto a common benzene

scaffold

To build a collection of representative RBFE perturbations, data was drawn from

all publicly available benchmarking series (n=18) as defined in recent work from the

Open Force Field Initiative and Merck.226,227 Within each series, all possible pairs

of ligands were picked. Next, perturbations that involved ten or more heavy atoms

perturbed or a change in formal charge were discarded (as these were deemed likely

to be highly unreliable with the chosen RBFE protocol).

Using primarily the python library RDKit238( 2020.09.5), R-groups were extracted

through manipulation of SMARTS-patterns generated from per-pair maximum com-
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mon substructure (MCS) analyses. The ’anchor’ atom for each R-group (i.e. the first

atom in the MCS that a given R-group is attached to) was stored. Then, for each

member ligand of all 3964 perturbations in the dataset, the R-groups were grafted

onto benzene molecules while using the anchor atom as a linker, except for cases

where the anchor atom was an aromatic carbon atom in which case no anchor atom

linker was used. The main ideas for the code of this protocol were inspired by blog-

posts by Landrum and Schmidtke.239,240 Whereas grafting a simple (e.g. chlorine

addition) perturbation is straightforward, more complex perturbations involving for

example multiple fused rings or more than six R groups were excluded for simplicity

as grafting these becomes exceedingly complex and does not add significant knowl-

edge to the training domain. Additionally, perturbations that involved a benzene

ring without other constituents were excluded as these would cause issues when

generating an MCS for the RBFE protocol, since this code largely depended on

enforcing the benzene scaffold based on its topology. After removing duplicates and

the grafting step the complete RBFE-Space dataset consisted of 3964 perturbations

saved as dual SMILES entries.
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Figure 3.2: Example grafting of a molecular perturbation onto a benzene scaffold
as applied during creation of RBFE-Space in this work. Shown is an example of a
molecular perturbation typical in RBFE between two analogues of omeprazole (left-
hand side), where the maximum common substructure (MCS) is shown in black.
Grafting R-groups 1 & 2 onto a common benzene scaffold results in a generalised
representation of the perturbation (right-hand side). In the RBFE-Space derivative,
the chlorine R-group on the first ligand (chlorobenzene) is forced to vanish from the
first carbon of the MCS towards the second ligand (benzyl fluoride): in practice this
entails changing the chlorine atom into a hydrogen atom. In the same perturbation,
the fluoromethyl group is grown on the second carbon atom of the benzene MCS.
The anchor symbol denotes the aliphatic carbon atom that is used as a bridge for the
methyl/fluorine in R-group 2. See 3.2.1 for a detailed description of the methodology.
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Molecular dynamics simulations and free energy calculations

For each pair, a RBFE protocol was set up using BioSimSpace241

(v2020.1.0 py37h9bf148f 593). For each benzene derivative pair in RBFE-Space,

SMILES for ligand 1 and ligand 2 were parsed and an MCS was found while allow-

ing ring breaking and ring size changing. After aligning ligands 1 and 2, a single,

perturbable merged ligand was created from the two input molecules that contained

the properties of both input ligands; the atom mapping used was stored to describe

which R-groups were being perturbed into which ligands. This ’merged ligand’ was

then solvated in a 3 nm3 cubic box with TIP3P waters. Simulations were set up with

the engine SOMD79,212,242 using 10000 moves, 50 cycles and a 2 fs timestep, adding

up to 1 ns simulation time per λ window. Each perturbation was set to consist in

11 equidistant λ windows (i.e. λ ∈ [0.0, 0.1, .. 1.0]). Each perturbation was run in

quintuplicate.

Simulations for this work were run using on a variety of computing clusters (Ubuntu

16.01) mostly containing Nvidia GeForce GTX 1080 and 980 GPU cards. The wall-

time per window for the above described protocol was 8-12 minutes, depending on

system size and hardware, totalling to ∼24,000 GPUh for the complete series of

runs.

For each perturbation the free energy change ∆Gsolvated was estimated using pym-

bar243 with subsampling enabled, and discarding the first 5% of the trajectories.

The statistical fluctuation of a given perturbation was computed as the standard

error of the mean across each quintuplicate in RBFE-Space:

SEM∆Gsolvated
=

σ√
n
, (3.2)

where n=5 and σ is the standard deviation across the samples of ∆Gsolvated in each

quintuplicate, calculated as

σ =

√∑n
i=1(∆Gsolvatedi −∆Gsolvated)

n− 1
(3.3)
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where ∆Gsolvated is the mean of the five predicted relative free energies of solvation

for the given perturbation. For all perturbations in RBFE-Space that were simu-

lated in both directions (i.e. both A→B and B→A), SEM values were balanced by

reporting the mean SEM value for both perturbations.

The TYK2 and TNKS2 series’ RBFE perturbations were run on the same hard-

ware as RBFE-Space simulations. Prior to system setup, proteins were prepared

using Flare V4. Ligands (GAFF2) and proteins (FF99SB) were parameterised us-

ing BioSimSpace (which uses LEaP, Antechamber and Parmchk) and solvated in

TIP3P waterboxes (10Å orthorhombic shell). Note that FF99SB is outdated - repe-

tition of these simulations should be performed with the newer FF14SB to improve

predictivity versus experimental measures. Each system (i.e. the ligand, protein

and waters) was energy minimised (250 steps) and pre-equilibrated at λ = 0.0 using

a sequence of NVT and NPT equilibration with cuda.pmemd using the BioSimSpace

API. As with RBFE-Space simulations, 11 λ windows were used for each ligand per-

turbation, but with 4ns of sampling instead of 1ns (initial tests showed that 1ns of

sampling was insufficient for systems of this complexity). For each perturbation,

relative free energies of solvation and binding in kcal·mol−1 were estimated using

pymbar with subsampling enabled, and discarding the first 5% of each trajectory to

allow for re-equilibration at each λ value.

3.2.2 Training of machine-learning models that predict RBFE

statistical fluctutations.

Given the complete RBFE-Space training domain with calculated SEM∆Gsolvated

values as per Eq. 3.2, ML models were trained to predict this value for a newly-

presented perturbation. From here on, SEM∆Gsolvated
values predicted by ML models

will be referred to as ̂SEM .

All ML code was executed using the Keras implementation of TensorFlow 2.6.0. All
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models (pre-training, transfer-learning and fine-tuning) were run using a LogCosh

loss function and Adam optimiser with an initial learning rate of 5e-7. All ML models

were run on a system running Ubuntu 18.04.4 LTS with 20 CPU cores (Intel(R)

Core(TM) i9-7900X CPU @ 3.30GHz) and four Nvidia GeForce GTX 1080 GPU

cards using CUDA 11.2.

Main RBFENN model architecture based on siamese neural networks

To model perturbations between two molecules a novel approach based on siamese

neural networks244,245 was adopted (figure 3.3). This approach has been used in

other work for image recognition in low-data regimes where the goal has been to

distinguish between images in the testing domain. Typically this approach consists

of three concepts: 1) a two-legged structure, where each ’leg’ has one input, 2)

shared weights between legs such that the legs learn the same encoding and 3) some

form of similarity (e.g. Euclidian distance) layer that computes the degree to which

encodings overlap.

In this work a modified siamese neural network (’RBFENN’) was used that adopts

concept 1 and 2, but does not let a similarity layer compute distance. The rationale

behind using shared weights is that for a given ligand perturbation, either direction

(e.g. growing or vanishing an R-group) entails roughly the same statistical fluctu-

ation in RBFE. Because the intended prediction label in this work is ̂SEM , not

similarity, a concatenation layer was used to join legs of the neural network. After

the concatenation layer, several fully-connected layers were used with decreasing

numbers of neurons leading to the final single neuron. All fully-connected layers

used in the network used ReLu activation function, whereas the final single neuron

used a linear activation function. See figure 3.4 for a more low-level overview of the

RBFENN architecture.

To encode the chemistry of input structures (ligands A and B) a per-leg message-

passing neural network (MPNN) was used. Input graphs were populated with three

inputs, namely atom features (element, #valence electrons, #hydrogen bonds, or-
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bital hybridisation), bond features (bond type, conjugation) and atom pair indices.

Whereas the MPNN architecture was based on previous work by Gilmer246 and

DeepChem247, the code implementation of this work was primarily based on exam-

ples provided by Kensert248. Based on information provided during RBFE setup,

the atom-mapping (i.e. which R-groups are transformed to which between ligands

A and B) is expressed as an array of 50 integers, where each integer index relates to

the atom index in ligand A, and the integer value relates to the atom index in ligand

B. It is assumed that the model learns atom indexing which is reasonable because

the algorithm for graph generation in the MPNN algorithm uses atom indexing to

represent bonds in each ligand encoding. Because no training ligands’ mappings

contained more than 50 atoms, all non-matched values in the mapping array were

set to 99 to represent a non-match.

Although the number of allowed epochs was set to 5000, an early-stopping callback

was set to quit training when models started overfitting by monitoring mean ab-

solute validation error; the callback was set to restore the model with the lowest

validation error.
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Figure 3.3: High-level schematic representation of the siamese Relative Binding Free
Energy Neural Network (RBFENN) architecture. A: two ligand structures are in-
put as SMILES, where each ligand represents either λ endstate of a given RBFE
perturbation. B: molecular structures are described as graphs using atom types,
bond types and bonds as descriptors. C: the bi-legged graph neural network (GNN)
component of the architecture that consists of a message-passing neural network
sequence ending in several feed forward NN layers. Training weights are shared be-
tween the two legs (orange and blue) of this component. D: A concatenation layer
merges the signal of the two input legs (orange and blue) as well as the atom map-
ping between λ endstates which has been passed through several feed forward NNS.
E: multiple feed forward NN layers with linearly decreasing numbers of neurons re-
sulting in a single neuron with a linear activation function. Note that the all layers
in section C are frozen during the pre-training stage of the transfer-learning phase
described in 3.2.2. See figure 3.4 for lower-level details on the model architecture.
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Figure 3.4: Low-level depiction of the ’RBFENN’ siamese neural network architec-
ture. Top to bottom: two (0 and 1) input legs are featurised into atom, bond and pair
descriptors. Both legs are passed into a MessagePassing layer, which together with
atom partition indices (from both legs 0 and 1) are partitioned and masked before
being passed to a TransFormerEncoder layer. After a global average pooling step,
two fully-connected feed-forward NN layers join with the encoded atom-mapping
into a concatenation layer. Finally, three dense fully-connected feed-forward NN
layers with linearly reducing numbers of parameters lead to a single-neuron layer.
All dense layers in the network use ReLu activation functions except for the last
single linear neuron. Each layer block depicted in this figure shows the indexed
layer name (as used within TensorFlow), the class name, the dtype handled as well
as the input and output dimensions.
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Transfer-learning approach

To deal with the low-data regime (n=3964, see 3.2.1) and the added model com-

plexity of an MPNN (see 3.2.2), a transfer-learning249 approach was adopted that

uses a pre-training regime to learn molecular encodings on a larger dataset with a

cheaply computed label. In this way, the RBFENN can be pre-trained on a do-

main of n=(3964/2) ≈ 3.96 points (i.e. composed of all possible pairs of molecules

in RBFE-Space); as a cheaply computed label the difference in estimated solubil-

ity250,251 (∆ESOL) was used. This property was chosen not because it is necessarily

meaningful to this work’s purposes, but because it is a complex descriptor that

pushes the RBFENN to learn a more complete understanding of chemical struc-

ture a priori ; similar approaches have been reported.252,253 Early-stopping patience

for this phase was set to 5 epochs as early convergence (70-100 epochs) was ob-

served. For the pre-training phase, 800,000 training samples and 200,000 validation

samples were used to save memory and because it was observed that larger train-

ing/validation sets did not sufficiently improve model training.

Subsequent to pre-training, model weights from the pre-training phase were loaded

and the last four fully-connected layers were replaced with re-initialised (i.e. weights

set to 0) layers. All other pre-trained layers of the RBFENN (MPNN legs and con-

catenation layer) were ’frozen’ by setting layer.trainable = False for each layer.

In this transfer-learning phase, the RBFENN that has learned to encode chemical

structure input learns to predict ̂SEM (instead of ∆ESOL) by training the newly

initialised fully-connected layers on the 2550 SEM∆Gsolvated
samples in RBFE-Space.

For this phase, a k-fold cross-validation approach was used where k=5.

For each k-fold model in the transfer-learning phase, fine-tuning was performed

by unfreezing all layers (i.e. layer.trainable = True) and training all layers in

an attempt to further minimise validation loss. Both the transfer-learning and fine-

tuning phases used a maximum of 5000 epochs with early stopping patience set to

101 epochs. Training was repeated for 9 replicates. Model predictions discussed

from here on are thus mean predictions across 5 · 9 = 45 models.
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Baseline shallow machine learning model training

A selection of non-neural-network ML models were used to benchmark the RBFENN

model performance against. Similar to previous work,237 three different descriptors

were used:

• APFP :Atom pair fingerprints as computed using RDKit with a hash length

of 256 bits.

• ECFP : Extended connectivity fingerprints as computed using RDKit with a

diameter of 6 Å and 1024 bits.

• Molecular properties as computed using Mordred213 with all 2D descriptors

enabled (n=1613) where empty fields were replaced with zeroes.

Because featurisation in this case deals with molecular perturbation and not sin-

gle molecules, a fingerprint subtraction technique was used where each bit value of

ligand B is subtracted from the bit value of ligand A.254 For each descriptor type,

the featurised RBFE-Space was normalised and dimensionalities were reduced using

principle component analysis (PCA) using the SKLearn implementation set to keep

the 100 most contributing components. Through this, the resulting dimensions were

the principal vectors rather than original features exhibiting large enough variance

Two shallow ML algorithms were trained using each of the three descriptor train-

ing sets of RBFE-Space:

• RF : Random forest regressor using default hyperparameters.

• SVR: Support vector machine regressor using default hyperparameters, with

the exception of γ which was set to 1e-8.

Normalisation data, fit PCA objects and fit ML models were pickled for testing

phases.
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3.2.3 Application of RBFE statistical fluctuation predictions

to network generation problems.

As outlined in 3.2.2, an ensemble of 10 ̂SEM -predicting RBFENNs was generated.

From here on, a given ̂SEM prediction for a perturbation between two ligands is

computed as the mean of the ensemble’s ̂SEM predictions, but is still denoted aŝSEM .

Featurising test sets for network prediction

For a given congeneric series’ collection of ligand files, a fully-connected network (i.e.

all possible pairs of ligands, mono-directional) is generated. For each input pertur-

bation, the RBFE-Space derivatives are created as described in 3.2.1. To ensure

that the correct perturbation is represented in the atom-mapping array, all atoms

of the input ligands that change AMBER atom-type in the perturbation are stored.

Then, by forcing the MCS on the six aromatic carbons of the benzene scaffold of the

RBFE-Space derivatives, and generating the AMBER atom-type changes with that

mapping, the atom-type change information is compared to the input ligands’ atom-

type information. By rotating the benzene scaffold forced MCS on one of the ligands

(e.g. where {0:0, 1:1, 2:2, 3:3, 4:4, 5:5} is the initial forced MCS mapping, a first

rotation would be {0:1, 1:2, 2:3, 3:4, 4:5, 5:0}) a second collection of RBFE-Space

derivative atom-type changes is created. By repeating this process until all five

rotations are completed and picking the mapping that matches the input ligands’

mapping atom-type changes, the picked featurised atom-mapping array is ensured

to correctly map the per-atom changes between the two ligands.
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Processing of predicted statistical fluctuations using LOMAP for network

generation

A forked version of LOMAP as developed by Cresset for Flare212 V4 was cloned and

implemented into BioSimSpace. As this version of LOMAP allows the usage of user-

input scores per ligand pair, ̂SEM values (or other values such as SEM∆∆Gbind
or

random values etc...) could be used instead of LOMAP-Score for generating RBFE

networks.

Because LOMAP is designed to build networks using the continuous LOMAP-Score

that range [0-1] (where 0 is a supposed unreliable edge and 1 is a supposed reliable

edge), user-input values needed to be transformed to fit this range. For an example

array of SEM values [SEM ] that contains all possible combinations of ligands in a

congeneric series, the array was scaled to the range [0-1] such that

[SEM ]scaled =
[SEM ]inv −min([SEM ]inv)

max([SEM ]inv)−min([SEM ]inv)
(3.4)

where [SEM ]inv is computed as

[SEM ]inv =
1

[SEM ]
. (3.5)

Equations 3.4 and 3.5 applied to SEM∆∆Gbind
, ̂SEM and |∆∆Goffset| result in

SEM scaled
∆∆Gbind

, ̂SEM scaled
and —∆∆Gscaled

offset—, respectively. These arrays offer the

ability to be ported into the LOMAP network generating algorithm as they match

the range and direction of LOMAP-Score. To avoid cumbersome notation, the scaled

upperscript symbol is excluded from here on unless otherwise specified.

Network generation and analysis

BioSimSpace241 (v2020.1.0 py37h9bf148f 593) was used to generate RBFE networks.

The main software that handle network generation internally are LOMAP (edge se-

lection; as implemented in Flare V4), RDKit 2020.09.3 (molecular manipulation),

networkx 2.6.3 (network manipulation) and matplotlib 3.4.3 with pydot 1.4.2 (net-
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work plotting). Similarities between networks (for the same congeneric series) were

computed as the percentage of edge overlap between the two networks: given the

number of overlapping edges, the percentage relative to both network sizes (n-edges)

was computed. The mean percentage was taken as the final network overlap per-

centage.

Given a set of RBFE predictions, the statistical performance versus experimental

ligand binding affinities can be estimated. Whereas a per-edge (’pairwise’) statistical

analysis is meaningful, in this work a per-ligand free energy estimation is estimated

using a weighted least squares regression method implemented in FreeEnergyWork-

flows255 with weights set as the propagated standard error of the mean values across

the replicates of each RBFE leg (solvated and bound) in kcal·mol−1. Pearson R,

Mean Unsigned Error (MUE) and Kendall τ metrics were estimated using a boot-

strapping approach set to 10,000 repeats. Further plotting methodologies adhered

to best practices.95

3.3 Results and discussion

3.3.1 Early attempts at constructing suitable training do-

mains that encompass RBFE-Space.

For the purposes of this thesis, early attempts at the generation of a suitable training

set for the work in this chapter will be highlighted. The final training domain form

presented from section 3.3.2 and on was created primarily building on lessons learned

from early generations of this dataset. There is an underlying mechanism when gen-

erating a novel dataset to describe a complex physical problem: although ideally we

would like to describe the physical process as completely as possible, generating data

for this complete physical process becomes more expensive the more information is

included (as simulated systems become larger). Additionally, the more information

is included per data point, the larger the space becomes to describe the information.
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To illustrate the latter, if we were to include protein information in simulations of

the physical systems, we would be required to run a sufficiently diverse number

of proteins to cover the whole of ’protein-space’. This exponential increase of both

computational expense and the size of context physical space is shown schematically

in figure 3.5. Data is not shown for any early attempts but an explanation as to

why they were inadequate will be provided.

Training on as much physical information as possible

The first attempt at generating a training domain aimed to include as much in-

formation as possible by simulating drug-like ligands in their corresponding targets

in water boxes (figure 3.5H). Because even a few hundred points are expensive to

generate, this data was mined retrospectively from earlier RBFE calculations per-

formed over the year, resulting in ∼2000 data points. Although training ML models

on this set of SEM values was possible, this dataset suffered from multiple issues.

Primarily, as previously mentioned the ’protein-space’ was explosively large and the

dataset’s scope only covered a small fraction of this. This resulted in poor transfer-

ability to other congeneric series. Additionally, because RBFE results were mined

retrospectively the methodology per data point (or rather, sets of data points) dif-

fered significantly. Although all simulations used SOMD, the many different force

fields, different versions of SOMD, different numbers of replicates (etc..) introduced

a significant amount of noise in the dataset. Although in theory it is possible to

correct for this by introducing descriptors for these methodological differences, this

was considered extremely challenging to do robustly and thus new approaches were

sought.

Training on as little physical information as possible

Building on prior experience237 with the FreeSolv database,194 a minimal training

set was constructed using these 643 molecules. By generating all possible combina-
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tions of molecules in this set, a dataset of 6432−643 = 412, 806 perturbations can be

selected for simulations. Because running the complete dataset is prohibitively ex-

pensive to run in quintuplicate, only a selection was taken by excluding overly large

perturbations from the set. Perturbations were run in both vacuum and solvated

phases (figure 3.5A and D, rep.). Although a large number of data points could be

generated (∼80,000 for vacuum and ∼13,000 for solvated), results suggested that

FreeSolv molecules were not suitable for generating an RBFE-Space domain. The

primary reason for this was that FreeSolv molecules are not drug-like (i.e. typically

weight < 200 Da; often composed of mostly polar groups) even though they are

organic molecules. This results in a collection of perturbation datapoints that con-

tains non-drug-like scaffolds (even though the perturbations themselves might be

representative of typical RBFE perturbations): ML models trained on this dataset

thus learn the non-drug-like scaffold which results in decreased transferability to

more drug-like test sets. Removing the FreeSolv scaffolds (by not featurising them)

is possible, although in this way a level of intrinsic noise is introduced to the train-

ing domain that is not accounted for in the descriptors that are fed to ML models.

Additionally, in the vacuum phase it was found that SEMs correlated poorly with

drug-like SEMs (in bound phase), suggesting that the solvent context plays an im-

portant role in statistical error of RBFE calculations.
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3.3.2 Creation of a training domain that encompasses RBFE-

Space.

RBFE-Space characteristics

Molecular simulations were performed for perturbations grafted onto a common ben-

zene scaffold (figure 3.2 and 3.2.1) to serve as a training set that captures the space

of perturbations that are performed in typical RBFE campaigns. To generate this

set, available RBFE benchmarking series were selected and all perturbations within

each were extracted and grafted onto benzene (figure 3.6E). Duplicate perturbations

and perturbations that involved ten or more perturbed heavy atoms were discarded

which resulted in a training set of 3964 points (starting from 16,048). Across this

set, the number of perturbed heavy atoms was uniformly distributed (frequency

of 400-500 points for n=1-9), except for single-atom substitution perturbations of

which only 46 were simulated (figure 3.6B).

SEM∆Gsolvated
values for all perturbations in RBFE-Space showed a distribution that

skewed right; the vast majority of SEM∆Gsolvated
values were under 1 kcal·mol−1,

with a peak frequency of ∼0.15 kcal·mol−1 (figure 3.6A). Although no relation is

observed between the change in molecular weight and the associated SEM∆Gsolvated

for a given perturbation (figure 3.6C), an increase in median SEM∆Gsolvated
can be

observed by increasing the number of heavy atoms perturbed, although it is clear

that there are exceptions to this rule as outliers are present in every scale (fig-

ure 3.6D). Only direct single-atom substitutions (i.e. n=0) result exclusively in

perturbations with SEM∆Gsolvated
< 0.5 kcal·mol−1. Although this relation with

the number of perturbed heavy atoms reflects favourably on state-of-the-art MCSS

rule-based methods, the noisy nature of this relation suggests that there is scope for

more accurate methods to model statistical fluctuations of RBFEs.
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Figure 3.5: Concept figure showing different possible versions of RBFE-Space (A-
H). For each version, an example molecule/system is shown to represent the nature
of the dataset (recall that each data point in each set is in fact a transformation
between two molecules). Versions with dashed circles around them are versions that
were attempted in experiments. A: FreeSolv compounds in vacuum. B: benzene
derivatives in vacuum. C: original ligands in vacuum. D: FreeSolv compounds
in water phase. E: benzene derivatives in water phase. F original ligands in water
phase. G: original ligands in molecular cage or other binding pocket abstraction. H:
original ligands in original protein systems in water solvent. By increasing the infor-
mation included per version, both the computational expense for simulating a single
point for the version and the size of the context chemical space (i.e. the number of
simulations required to cover the context chemical space) increases exponentially.
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Figure 3.6: Summary of RBFE-Space generated using 3964 molecular perturbations
grafted onto a common benzene scaffold (figure 3.2). A: histogram of SEM∆Gsolvated

values (3.2.3). B: histogram of the number of perturbed heavy atoms involved
in each perturbation. C: scatterplot showing the relation between the change in
molecular weight per perturbation in Da and the SEM∆Gsolvated

for each perturba-
tion; colouring shows density (increasing as blue→green→yellow). D: boxplots of
SEM∆Gsolvated

per perturbation binned by the number of heavy atoms perturbed;
horizontal lines in boxes show median values and black diamonds show outliers (95
CI). E: histogram that describes how many perturbations of the original congeneric
series’ were used as templates for grafting onto benzene in RBFE-Space.
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RBFE-Space derivatives correlate to their drug-like counterparts

To investigate whether RBFE-Space derivatives are sufficient placeholders to model

statistical fluctuations of their drug-like counterpart RBFEs, 214 ’original’ pertur-

bations (i.e. the perturbations from nine publicly available congeneric series) were

simulated in quintuplicate for 1ns per λ window (n=11). Subsequently, all combi-

nations of phases were compared (figure 3.7).

For perturbations that give large SEM values quintuplicates runs are insufficient

to obtain consistent results for a given edge processed in two directions (A→B or

B→A), which introduces noise in correlations of these quantities (figure 3.8, left-

hand side). To remedy this, a logarithmic scale was adopted (figure 3.8, right-hand

side) when comparing SEM (or any other type of variance) arrays, which squashes

larger deviations with respect to smaller deviations. This is justified because our

approach does not need to estimate accurately large SEM values since edges with

large SEM values will be discarded during network generation.

In the following analysis, benzene-grafted perturbations will be referred to as RBFE-

Space perturbations, whereas the template perturbation (i.e. with the original ligand

scaffolds) will be referred to as drug-like perturbations.

Drug-like solvated SEM values correlate well (R=0.86) with their bound counter-

parts, but tend to show lower magnitude (figure 3.7A). This is surprising as a bound

system has higher complexity than a solvated box - it is expected however that the

short sampling time for this analysis (1-ns/λ) was insufficient to relax the protein

topology in the simulation, thus enforcing a relatively rigid environment for the lig-

and perturbation in which only a narrow range of conformations could be sampled.

This was deemed acceptable for the present study as we are mainly interested in

correlating SEM values.

RBFE-Space SEM values also correlate well to both drug-like solvated, bound SEM

values (R=0.74 and 0.87, resp.) and to ∆∆G SEM values (R=0.75); A trend in

the number of heavy atoms perturbed increasing with higher SEM values can be

observed which reflects the trend seen in figure 3.6D.
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It should be noted that in this prototypical version of RBFE-Space there is a possi-

bility that R-groups that are separated from each other in the context of a drug-like

scaffold will interact with each other when grafted onto a benzene scaffold. We have

observed a trend for greater deviation between RBFE-Space and ligand SEM values

for cases where bulky R-groups (each of > 5 heavy atoms; see chapter 4 of this thesis

for a more detailed discussion) are being simultaneously grown and vanished in the

same perturbation. Although not investigated in depth, this issue is assumed to be

present in a small population of RBFE-Space, and will have to be resolved in future

versions of the dataset. Early solutions to this problem could for instance be placing

the second R-group on the para aromatic carbon of the benzene scaffold; however

any third (or more) R-groups will reintroduce the issue. Alternatively, larger scaf-

folds could be explored.

The main objective of this analysis is to assess whether the RBFE-Space place-

holders’ SEM values sufficiently correlate to ∆∆Gbind SEM values of their drug-like

counterparts (figure 3.7D). Although only moderate correlation has been reached,

we postulate that this is a logical effect of simplifying ligand perturbations by graft-

ing them onto a common benzene scaffold. Such simplification is necessary to obtain

a training domain that is transferable to a variety of congeneric series. Through this

simplification, several sources of information are discarded: 1) removal of protein

topology and ligand-protein interactions 2) removal of ligand scaffold (interacting

with protein, itself or solvent) 3) reduced sampling time (1-ns/λ instead of 4-ns/λ).

Whereas all of these could be included in RBFE-Space they would require a signifi-

cant increase in the size of the training domain to enable development of transferable

models.
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Figure 3.7: Correlation scatter plots of SEM values of 214 quintuplicate perturba-
tions in different phases as extracted from publicly available RBFE benchmarking
sets (n=9). The data are shown on a logarithmic scale and points are coloured
by the number of heavy atoms that are perturbed in the perturbation (see colour
range). Each panel has the data’s Pearson R and Kendall τ annotated in its bottom
right corner. A: Solvated versus bound SEMs of ligands with their original scaffold.
B: RBFE-Space derivative (solvated) versus the original scaffold’s perturbation in
solvated phase. C: RBFE-Space derivative (solvated) versus the original scaffold’s
perturbation in bound phase. D: RBFE-Space derivative (solvated) versus the orig-
inal scaffold’s perturbation ∆∆Gbind value (obtained by ∆Gsolvated - ∆Gbound).
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Figure 3.8: Comparisons of standard error of the mean (SEM) of the relative hy-
dration free energy for all ligand pairs in RBFE-Space (n∼4000) between the two
directions of a given bidirectional transformation, transforming from A→B (X axes)
and back from B→A (Y axes). Shown are data on a linear scale (left-hand side)
and on a logarithmic scale (right-hand side). Colour density shows the increase in
data density as blue →yellow.
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3.3.3 Machine-learning models can train on RBFE-Space to

predict statistical fluctuations.

To train a machine-learning model on RBFE-Space, a graph neural network (GNN)

approach was taken to describe molecular perturbations. This type of architec-

ture was chosen because of its proven potential to learn molecular structures given

enough data.256–258 One major advantage of learning directly the molecular topol-

ogy instead of pre-computed molecular descriptors is that no prior knowledge of

influential descriptors is required. However, when training complex models with

many parameters (such as GNNs) care must be taken to provide a sufficiently large

training domain to make sure that weights have been optimised to a point where an

understanding of chemical structure (or chemical perturbation, in this work’s case)

has been reached.256,259 As RBFE-Space contains only 3864 points, we have opted

for a pre-training and transfer-learning approach (figure 3.9) which is a technique

that has recently gained popularity in chemistry.253,260,261 In the pre-training phase,

a cheaply-computed label, the relative estimated solubility (∆ESOL251) was com-

puted for 1M randomly picked combinations of molecules in RBFE-Space and this

training domain was used for pre-training the RBFENN model to learn molecular

perturbations. Whereas any chemical descriptor could be picked for this application,

∆ESOL is a suitable candidate because it is a relatively complex descriptor which

prevents the RBFENN from focussing its learning on a specific chemical detail which

would likely happen when learning on simpler properties such as molecular weight or

lipophilicity. The pre-training protocol in this approach showed sufficient learning

convergence after 100 epochs of training, at which point training was interrupted;

the runtime for this step was approximately 9h.

After pre-training, the ∆ESOL training domain was discarded and the GNN layers’

weights of the RBFENN (figure 3.3C) were ’frozen’, i.e. their weights were not al-

lowed to be adjusted during training. This transfer-learning phase thus started with

a RBFENN architecture that had already learned molecular perturbations. RBFE-

Space was then used as a training domain to train the non-frozen layers in the model
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to predict ̂SEM . Whereas validation MAE varied across replicates, models were ob-

served to converge to 0.4-0.5 kcal·mol−1 MAE. In this step, global minimum training

MAE values are shown to be higher than global minimum validation MAE values

(figure 3.9B). This is likely because of the reduced number of trainable parameters

(only weights in 3.3E are trained) in combination with the low-data regime, where

the validation set (20% of RBFE-Space) results in occasional small dynamic ranges,

skewing statistics on this subset. Because the shown MAE is a global minimum the

large positive fluctuations due to these effects are not shown - these were especially

high in the validation error.

To further maximise the RBFENN ̂SEM predictivity, a fine-tuning phase was per-

formed where all weights of the RBFENN were ’un-frozen’, i.e. all weights were

allowed to be adjusted during training. The idea behind this approach is that the

GNN component of the RBFENN can further optimise its ̂SEM predictivity in uni-

son with the remaining layers of the model. Learning curves for this phase show

further training of the model, lowering the ensemble MAE to 0.1-0.2 kcal·mol−1.

Because of the high number of parameters (n=1,827,712) in this phase rapid over-

fitting of the training set was observed (training MAE rapidly lowering while val-

idation MAE started increasing); see rapidly declining gray lines in figure 3.9C -

early stopping was triggered for most replicates between 200-300 epochs because

the validation error did not show any further global decrease. For each replicate,

the best-performing (i.e. lowest validation MAE) model at epoch n was extracted

and used as the final model. In cases where fine-tuning showed no decrease in vali-

dation MAE over the best model in the transfer-learning phase, the top-performing

model of the transfer-learning phase was used.
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Figure 3.9: Learning curves of the three phases of the RBFENN training protocol
for predicting SEM values of RBFE perturbations. A: pre-training phase, where
a cheaply-computed continuous label (the relative estimated solubility, ∆ESOL251)
was used to generate a training set of 1M data points using RBFE-Space ligands.
Shown are the validation error and training mean absolute errors (MAE; blue and
orange, resp.) per epoch. B: transfer-learning phase, where the message-passing
component (figure 3.3C) weights were forced static (’frozen’), allowing the remaining
layers of the RBFENN to learn to predict SEM rather than ∆ESOL while the
chemistry-processing layers’ weights are retained. Shown in colours are validation
MAEs of predicted SEM in kcal·mol−1 for five replicates. Shown in gray are training
MAEs; all error values are reported as their global minimum value. C: fine-tuning
phase, where the message-passing component of the RBFENN architecture is allowed
to train (i.e. weights are ’un-frozen’) in an effort to further increase SEM predictivity
(panel formatting same as for panel B).
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3.3.4 Applications of the trained RBFENN.

In this section, the RBFENN will be applied to two RBFE benchmarking con-

generic series: TYK2 and TNKS2. Although these test sets are present in the

training set (figure 3.6), this is assumed acceptable for this work as the majority

of perturbations in RBFE-Space have duplicates in other congeneric series. Leav-

ing the TYK2/TNKS2 perturbations out of the training set would thus remove

a large number of perturbations that exist in any congeneric series such as (de-

)halogenations and other 1-3 heavy atom perturbations. As there is such large over-

lap in perturbation-space between congeneric series, the majority of TYK2/TNKS2

perturbation would be present in other series as well and would have to be included

in RBFE-Space in such a scheme anyway.

Increasing λ windows in RBFE decreases statistical fluctuations

Prior to network generation, λ allocations were benchmarked in the context of RBFE

statistical fluctuation (figure 3.10) in the solvated phase for six highly reliable and

six highly unreliable perturbations in RBFE-Space. The statistical fluctuation (here

expressed as SEM∆Gsolvated
of 5 replicates) was recorded at increasing numbers of

equidistant λ windows used for MBAR analysis: 3, 5, 9, 17 and 33. For both types

of perturbations an exponential decay in SEM∆Gsolvated
was observed; typically con-

vergence was reached at 15-20 λ windows, suggesting further sampling is likely not

necessary in RBFE calculations with SOMD for the solvated phase, even for highly

unreliable perturbations.

The main objective of this analysis was to determine whether the 11 λ windows

protocol used in the generation of RBFE-Space was sufficient to describe statistical

fluctuations of RBFE perturbations. Although at n=11 convergence does not seem

to have been reached in all cases, this number does offer a reasonable approximation

of the statistical fluctuation with acceptable sampling cost (note the figure’s varying

y axis limits). Notably, RBFENN ̂SEM predictions consistently show the correct

order of magnitude for all 12 perturbations described in this analysis. This confirms
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that the ̂SEM estimator can be used to discriminate perturbations with high SF

from perturbations with low SF.
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Figure 3.10: Molecular transformations and their statistical fluctuation represented
by standard error of the mean (SEM) across five replicates shown at different num-
bers of λ windows. The title of each plot shows the perturbation name (the tilde
signifies a transformation), the protein target and whether the expected statistical

fluctuation is LOW or HIGH. The horizontal dashed line in each plot is the ̂SEM
value as predicted by the RBFENN described in this work. Reported SEM values
are SEM∆Gsolvated

values in kcal·mol−1 extracted from the simulations run for the
generation of the RBFE-Space training domain.
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RBFENN-based RBFE networks are distinct from state-of-the-art RBFE

networks

RBFE networks generated by LOMAP using LOMAP-Score or RBFENN as edge

similarity metrics were compared for the entire public RBFE benchmark set (table

3.1). RBFE networks for the TYK2 series show the the highest degree of overlap

(55%) between the two methodologies. Across the dataset overlaps range from 11%

to 47% with an average value of 32%. Some overlap between the methodologies is

expected since both input metrics succeed at modelling the SF to some degree which

results in similar assumptions in generating either network. One series of note is

Thrombin (n=11) which shows 0% overlap. As the compounds in this series are

structurally highly similar it is plausible that a large fraction of possible networks

minimise equally well statistical fluctuations. However due to the low number of

compounds in the series (n=8) it is difficult to make statistically-sound comparisons

of networks performance,226.

Because of LOMAP’s cluster minimisation and connection algorithm there is typi-

cally some variance (± 3-4 edges) in the number of edges selected for a congeneric

series of Nligands. We observe in general a relationship of nedges ≈ 1.4 ·Nligands. Al-

though the number of edges suggested consistently differed between LOMAP-Score

and RBFENN networks, no methodology gave a consistently larger network. In

general the network overlap % between the two methodologies decreases with con-

generic series size (thrombin aside). This likely reflects the combinatorial explosion

in the number of distinct networks that can be proposed as Nligands increases.
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Table 3.1: Comparison of RBFENN and LOMAP-Score RBFE networks for all
publicly available RBFE benchmarking series in terms of network size (n edges) and
overlap (%). Rows were sorted by ligand series size (N ligands) in descending order.
The network overlap was computed by counting the number of overlapping edges
between the two networks and computing the mean percentage with respect to the
two networks and rounding to the nearest number. EG5 was excluded from this
comparison as benzene grafting failed for the majority of the network due to overly
complex perturbations. a-c: these ligand series are further analysed in sections 3.3.4,
3.3.4 and 3.3.4, respectively

Target
Series

size (N)
LOMAP-Score

network (n)
Network

overlap (%)
RBFENN

network (n)
SYK 44 63 25 64
MCL1 42 61 11 59
HIF2a 42 59 26 64
PFKFB3 40 57 35 60
BACE 36 52 26 51
P38(MAPK14) 34 45 23 47
CDK8 33 50 44 45
TNKS2a 21 27 23 24
SHP2 26 38 42 38
PTP1B 23 32 39 33
PDE2 21 29 35 27
Jnk1 21 27 33 27
CDK2 16 21 47 21
TYK2b 16 23 55 27
c-MET 12 15 37 17
Thrombin 11 13 0 14
Galectinc 8 10 40 10
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A visual example of the networks proposed with RBFENN or LOMAP-Score for

Galectin RBFE benchmarking series is presented in figure 3.11. Both methodologies

make reasonable suggestions, although there is only 40% network overlap between

the two network topologies. As visual comparison is a qualitative measurement of

RBFE network generation performance and because one of the main objectives of

the data-driven approach is to remove the subjective component in the field, a more

quantitative approach is pursued in this work.
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Figure 3.11: Example RBFE networks on the Galectin RBFE benchmarking con-
generic series (N=8). Shown are the state-of-the-art LOMAP-Score approach (or-
ange edges; n=10) and novel data-driven approach presented in this work (blue
edges; n=10). Edges that are present in both RBFE networks are represented as
singular black dashed lines. Ligand scaffolds were replaced with black circles for
simplification purposes. The ligand scaffold is shown in the right-hand side box
with the R-group location on the right-hand side of the structure.
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RBFENN predicts inexpensively the accuracy of RBFE calculations on

TYK2

As the performance of RBFE calculations is determined by the errors made along

each edge of the chosen network, different network topologies should result in a dif-

ference in the estimation of binding free energies (∆G). A quantitative approach for

comparing RBFE networks is thus possible by processing each edge of the networks

with the same RBFE protocol, and comparing the estimated binding free energies

with experimental data.

To carry out this assessment, the non-receptor tyrosine kinase TYK2 congeneric

series208 was chosen as it is a challenging RBFE benchmarking set of sufficient

size to allow reliable statistical analysis226. The TYK2 series also involves a mix-

ture of straightforward ligand sub-groups and more challenging perturbations that

involve ring-changes.212 Additionally, the TYK2 series has been used recently in

several RBFE works investigating network generation and machine learning poten-

tials.235,262 For this series (16 ligands), RBFE was run for all possible perturbations

in a single direction (n = 162−16
2

= 120). Monodirectional edges were chosen with

the purpose of halving computational cost. The signs of the relative binding free

energy predictions for the 120 edges in this RBFE run were inverted to obtain the re-

maining 120 RBFE predictions, resulting in a bidirectional fully connected network

with 240 edges. The validity of this assumption was supported by data generated

during creation of the RBFE-Space training set (figure 3.8).

As stated previously, an ideal RBFE network generator will contain edges with low

deviation from experimental measures. Thus edge scoring metrics that correlate

more strongly with |∆∆Goffset| values should select more accurate networks. To

verify this, the statistical performances of available heuristics were compared to the

|∆∆Goffset| values (Eq 3.1) gathered from the fully connected TYK2 network. The

data in Figure 3.12A shows that ∆∆GbindSEM correlates well with |∆∆Goffset|,

therefore supporting the hypothesis that selecting edges with lower SF will lead to

RBFE networks with lower errors. Figure 3.12B shows that this correlation is main-
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tained (albeit more weakly) with RBFE-Space SEM∆Gsolvated
values.

Table 3.2 summarises how different SF predictors correlate with offset values. As

expected ∆∆Gbind shows the strongest correlation, but this metric is computation-

ally too intensive to be of practical use for network generation. The inexpensive

SF estimators ̂SEM and LOMAP-Score show comparable correlation with offset

deviations. Surprisingly edge scoring based on ECFP6 shows no relationship with

offset deviations. This is likely because the fingerprint is relatively insensitive to the

different perturbations, with most edges assigned a similarity score of around 0.7.
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Figure 3.12: Scatter plots of |∆∆Goffset| vs (A) ∆∆Gbind SEM values for all possi-
ble edges in the TYK2 RBFE benchmarking series (n=120), B RBFE-Space SEM
values for perturbations included in RBFE-Space (n=124). The colourbar shows the
increase in the number of heavy atoms perturbed per perturbation in the scatter
plots. See table 3.2 for statistical analyses corresponding to these array comparisons
and see figure 3.13 for an extended version of this figure. C: scaffold (centre) and
analogs in the TYK2 RBFE benchmarking series annotated with ligand names used
throughout this work.
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Table 3.2: Statistical performances of various heuristics versus the |∆∆Goffset| for
all possible edges in the TYK2 RBFE benchmarking series (n=120). *: only per-
turbations included in RBFE-Space were included (n=124; see 3.2.1). See figure
3.13 for scatterplots corresponding to these array comparisons, and figure 3.14 for
distributions of these heuristics.

Pearson r Kendall τ
SEM∆∆Gbind

0.63 0.46
RBFE-Space SEM∆Gsolvated

* 0.37 0.28

RBFENN ̂SEM 0.41 0.25
LOMAP-Score 0.42 0.33
ECFP6 similarity -0.03 -0.01
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Figure 3.13: Scatter plots of various heuristics versus the |∆∆Goffset| for all possible
edges in the TYK2 RBFE benchmarking series (n=240). For RBFE-Space SEM
values (B) only transformations included in RBFE-Space were included (n=124; see
main text body). The colourbar shows the increase in the number of heavy atoms
perturbed per perturbation in the scatter plots. See table 2 (main text body) for
statistical analyses corresponding to these array comparisons.
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Figure 3.14: Array distributions using a kernel density estimation. Shown are the
distributions of a number of heuristics used throughout this work (see legend). These
represent statistical fluctuations in RBFE transformations in this case applied to all
possible edges of the TYK2 RBFE benchmarking series. The ligand series contained
240 transformations, so n = 240 for all shown input heuristics; except SEM∆Gsolvated

which contains only 124.
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Figure 3.15: Boxplots depicting the distribution of |∆∆Goffset| of edges that con-
stituted the RBFE networks generated by various input metrics to LOMAP. The
Random input metric was repeated ten times to ensure sampling of a diverse set
of networks was achieved. ECFP6 is the ECFP6 tanimoto similarity between the
original (i.e. with original scaffold) ligands. For RBFENN ̂SEM , SEM∆∆Gbind

and
|∆∆Goffset| the input values were scaled to an inverse 0-1 range to fit the LOMAP
algorithm. The horizontal dashed line denotes the median |∆∆Goffset| value of the
Random networks.
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RBFENN matches state-of-the-art for TYK2 RBFE network generation

To the best of our knowledge, this work describes the first fully-connected (FC)

RBFE network for the TYK2 series. This dataset allows enumeration of all possible

RBFE networks: given a network generator and an edge scoring heuristic the net-

work edge accuracy with respect to experimental data can be determined by looking

up edge results in the pre-computed FC network. The number of possible networks

is vast. For this dataset there are 1614=7.2·1017 minimally-connected networks (i.e.

15 edges with all nodes included in the network).263 The actual number of networks

theoretically considered by LOMAP is much greater because of additional heuristics

to introduce extra cycle closures. In this analysis, six different edge scoring heuristics

are used with LOMAP (random, |∆∆Goffset|, RFTOP, ECFP6, RBFENN ̂SEM ,

LOMAP-Score) to generate RBFE networks. The RBFE network topologies per

network type can be found in figures 3.18-3.23.

The random protocol that assigns a random score to each edge is a negative control.

Figure 3.16G-H shows that repeated applications of this protocol lead to results with

significant variability (since the network topology varies between repeats), and on

average poor correlation (R = 0.2 ±0.2,τ = 0.15 ±0.15,MUE = 1.8±0.2kcal·mol−1,

n = 20, figure 3.16G/H and 3.17). The |∆∆Goffset| protocol that assigns a score

to each edge by scaling the offset values computed for the fully connected network

is a positive control (figure 3.16F). This protocol leads to significantly more accu-

rate results with low uncertainty (R ∼ 0.9, τ ∼ 0.72, MUE ∼ 0.45 kcal·mol−1, n

= 22) and represents near optimal results that may be achieved with the RBFE

protocol used here to process each edge of the network (Figure 3.16G-H). This opti-

mal network allocated 22 edges to the TYK2 dataset. Manually augmented RBFE

networks used in previous studies for this series contain 30-40 edges.208,212 While it

could be expected that increasing the number of edges present in the network would

increases the accuracy of the results we find that this is not the case with the fully

connected network (figure 3.16A). The accuracy of the FC (n = 120 edges) network

is lower than the network proposed by LOMAP using the —∆offset— metric (R

145



Chapter 3: Data-driven Generation of Perturbation Networks for Relative Binding
Free Energy Calculations

∼ 0.67, τ ∼ 0.43 , MUE ∼ 0.75 kcal·mol−1). The reason this occurs is that the

weighted least squares regression algorithm used in this work to convert ∆∆G val-

ues into ∆G values penalises insufficiently poorly converged edges, which introduces

noise in the final free energy estimates. Example edges in TYK2 that were associ-

ated with high noise (standard error across a quintuplicate) were ejm 49→ejm 54

(∼14 kcal·mol−1), ejm 44→ejm 49 (∼7 kcal·mol−1) and ejm 44→ejm 45 (∼7

kcal·mol−1) (figure 3.12C) . This highlights the need to exclude edges with poorly

converged ∆∆G values from an RBFE network analysis.

Star-shaped networks (where all ligands are perturbed to a single reference ligand)

were also explored in this analysis. Such network topologies offer the lowest pro-

cessing cost (n=15) but it was found that for all 16 possible networks this choice

of design resulted in poor RBFE performance on this ligand series (figure 3.16G-H

and 3.17). This poor performance is likely due to the seven ligands in the TYK2

series that require growing or vanishing of cyclic structures which present difficul-

ties for the RBFE protocol used in this study.212 ejm 44 and ejm 48 are the worst

reference compounds, resulting in R ∼ 0.33&0.20, τ ∼ -0.32&-0.12 and MUE ∼

4.35&2.88 kcal·mol−1, respectively. ejm 31 is the best reference compound to use

(R ∼ 0.47, τ ∼ 0.33 , MUE ∼ 0.96 kcal·mol−1) because any R-group can be directly

grown onto it rather than having to make direct substitutions.The poor performance

of this approach compared to state-of-the-art network generators highlights the need

for increased scalability on large-scale RBFE campaigns where star-shaped networks

are frequently used.

A comparison to experiment is not shown for all shallow ML models (RF and SVM

with varying descriptors), but an analysis on |∆∆Goffset| distribution per suggested

network shows that these models generate RBFE networks as poor as random edge

scoring (figure 3.15). The top performing shallow ML model (random forest with

molecular properties as descriptors, figure 3.16B) RBFE network shows reasonable

predictive power (R ∼ 0.5, τ ∼ 0.25, MUE ∼ 1 kcal·mol−1 n=22, figure 3.16G-H).

Pure molecular similarity of the original ligand scaffolds (ECFP6 tanimoto, figure
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3.16C) shows network performance comparable to random edge selection (R ∼ 0.25,

τ ∼ 0.17, MUE ∼ 1.2 kcal·mol−1 n=23, figure 3.16G-H).

For TYK2, both the RBFENN and the LOMAP-Score RBFE networks show remark-

ably similar statistical performance (figure 3.16D and E). This is likely because 14

edges are shared between the two networks. The results (figure 3.16G-H) approach

the accuracy of the positive control (R ∼ 0.75, τ ∼ 0.55, MUE ∼ 0.55 kcal·mol−1,

n=23-27, figure 3.16G-H).

The main topological differences between the RBFENN and the LOMAP-Score net-

works is related to how each network handles ring changes. Eight ligands feature

different cyclical R-group (i.e. outside the maximum common substructure, MCS;

see figures 3.21 and 3.22). The LOMAP-Score network primarily opts for connect-

ing these to a hub ligand ejm 31 (preferring perturbations that follow the pattern

MCS-C→ MCS-C-Cycle). The RBFENN network also uses ejm 31 as a hub for

scaffold hopping, but also introduces a second hub (ejm 42) as well. The latter

perturbations exploit the pattern MCS-C-C→ MCS-C-Cycle.

Comparison of these networks with the network proposed using the |∆∆Goffset|met-

ric (figure 3.23) suggests that neither of the hub approaches are optimal: instead,

this network does not contain any hub ligands in its topology. There appear to

be occasional perturbations that are reliable that typically would not be suggested

by LOMAP-Score rule-based approaches such as ejm 50→ ejm 45 (MCS-C-OH→

MCS-C-cyclopropyl), ejm 44→ ejm 47 (MCS-isopropyl→ MCS-cyclobutyl) and

even a direct ring transmutation in ejm 49→ ejm 48 (MCS-benzene→ MCS-cyclopentane).
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Figure 3.16: RBFE predictions on the TYK2 RBFE benchmarking series versus
experimental ligand binding affinities using various RBFE network design method-
ologies. A-F: predicted ∆Gbind versus experimental ∆Gbind in kcal·mol−1 for the
fully-connected network, and networks generated using the top-performing shallow
ML model (random forest with molecular properties), ECFP6 tanimoto similarity on

original ligand scaffolds, RBFENN ̂SEM , LOMAP-Score and |∆∆Goffset| values,
respectively. Shown data is per-ligand relative binding free energy obtained using
a weighted least squares approach. Error bars depict statistical uncertainty of each
prediction (SEM) and experimental measure. Each plot is annotated with quadrant
lines and a 1/2 kcal·mol−1 confidence region (dark gray, gray, resp.). G/H: statisti-
cal performance calculated using the data shown in A-F as well as star-shaped and
random perturbation networks. In H, the number of edges per network is annotated
on each bar. Depicted error bars show the 95% CI of a bootstrapping approach with
10,000 repeats except for RANDOM and Star-shaped statistics where an average and
standard deviation is shown (10 random repeats or all 16 possible networks).
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Figure 3.17: Comparison of predictive performances for TYK2 of perturbation net-
works generated using random selection of edges and the star-shaped approach.
A/B: scatterplots of representative (i.e. n = 1) random and star-shaped networks’
RBFE predictions compared to experimental measures in kcal·mol−1. Ligands are
coloured for direct comparison of positioning between the two plots. C-E: box-
plots showing distributions of statistical performances for the complete collection of
networks for both star-shaped (n = 16) and random (n = 10) network approaches.
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TYK2 - Random Forest (Molecular properties)

Figure 3.18: The TYK2 perturbation network as suggested by LOMAP using ̂SEM
predicted by a random forest using molecular descriptors as input. Each node in
the network contains the molecular structure and the ligand name; each edge in the
network is annotated with the predicted ̂SEM value.
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TYK2 - ECFP6

Figure 3.19: The TYK2 perturbation network as suggested by LOMAP using
ECFP6 tanimoto similarities (on original ligands) as input. Each node in the net-
work contains the molecular structure and the ligand name; each edge in the network
is annotated with the similarity value.
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TYK2 - RANDOM

Figure 3.20: The TYK2 perturbation network as suggested by LOMAP using ran-
dom values as input. Each node in the network contains the molecular structure
and the ligand name; each edge in the network is annotated with the random value.
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TYK2 - RBFENN

Figure 3.21: The TYK2 perturbation network as suggested by LOMAP using the
RBFENN-predicted ̂SEM score as input. Each node in the network contains the
molecular structure and the ligand name; each edge in the network is annotated with
the RBFENN-predicted ̂SEM value that has been scaled to [0-1] to allow proper
handling by the LOMAP algorithm. Asterisks (*) indicate edges that are shared
between the RBFENN and LOMAP networks.
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TYK2 - LOMAP-Score

Figure 3.22: The TYK2 perturbation network as suggested by LOMAP using the
LOMAP-Score as input. Each node in the network contains the molecular structure
and the ligand name; each edge in the network is annotated with the assigned
LOMAP-Score value. Asterisks (*) indicate edges that are shared between the
RBFENN and LOMAP networks.
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TYK2 - |∆∆Goffset|

Figure 3.23: The statistically optimal TYK2 perturbation network as suggested by
LOMAP using |∆∆Goffset| values as input. Each node in the network contains the
molecular structure and the ligand name; each edge in the network is annotated
with the |∆∆Goffset| value that has been scaled to [0-1] to allow proper handling
by the LOMAP algorithm.
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RBFENN matches state-of-the-art performance for automated TNKS2

RBFE network generation

The TNKS2 series was selected for additional testing because: it is part of a newer

extended benchmark set that has been less studied than the FEP+ set (which in-

cludes TYK2); it involves fewer ring changes than TYK2; it contains multiple R-

group sites at different sections of the ligand scaffold. Note that six +1 net charge

ligands (8a-f) were excluded from this series as charge perturbations were consid-

ered out of scope for this work, meaning the series included n=21 ligands.

For TNKS2 only the RBFENN and LOMAP-Score network edges were simulated

in quintuplicates (see figure 3.25 and 3.26 for RBFE networks). For this series, a

’dynamic’ representation is used to investigate statistical performance when adding

replicates (figure 3.24). Similar performance was observed between the two net-

works, with a similar MUE of 0.9 kcal·mol−1 when including all replicates (figure

3.24C). This similarity is conserved when including fewer replicates, with little sta-

tistical difference between the two approaches.The same holds true for Pearson R

and Kendall τ (figures 3.24A and B, resp.).

The dynamic representation of statistical performances across replicates for TNKS2

highlights the importance of assessing protocol repeatability.264,265. It appears that

none of the statistical metrics have fully reached a plateau after 5 repeats, suggest-

ing that the RBFE protocol could benefit from an even larger number of replicates

or other optimisations. Although in this analysis no reference can be made to an

optimal network chosen according to |∆∆Goffset| values as in section 3.3.4, the

RBFENN (n=28) and LOMAP-Score (n=27) networks can be directly compared.

With an overlap of 27%, the overlap is considerably lower than with TYK2. The

eight shared edges are predominantly single-atom perturbations. The main observed

qualitative difference between the two networks is in how either handles the alkyl-

OH motifs and the (de)halogenations: it appears that in general the LOMAP-Score

network allocates more edges to (de)halogenations (e.g. 5k→5m→5i figure 3.26),

whereas the RBFENN network focuses more on allocating edges to perturbing the
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alkyl-OH motifs (e.g. 5o→5p→5i, figure 3.25). This coincides with a recent obser-

vation by Cresset developers that the default simulation protocol for SOMD fared

poorly for perturbation involving alkyl-OH motifs. This has been subsequently cor-

rected by tuning softcore parameters. These new parameter settings have not been

used for the generation of the current version of RBFE-Space which explains the

behaviour of the data-driven approach in this analysis.

Although the main aim of the TNKS2 screen was to compare directly the perfor-

mances between RBFENN and LOMAP-Score networks, SOMD performance on

TNKS2 in this work is poor compared to results published elsewhere. For exam-

ple, Schindler et al.227 and Gapsys et al.228 report MUE values of 0.62 and 0.73

kcal·mol−1, respectively. Note that these values were computed using edges on

neutral ligands only. Both of these examples contained considerably larger RBFE

networks (n=45); Schindler et al. note that these were obtained by requesting an

optimal topology from the FEP+ implementation and no manual network augmen-

tation was performed. This suggests that increased performance could have been

achieved using networks with a greater number of edges. Indeed, in-house results

from Cresset suggest that Flare FEP (which deploys SOMD as its back-end RBFE

engine) outperforms per-ligand binding affinity predictions of Schindler et al. with

a manually adjusted network (n=70 edges), giving a MUE of 0.60 kcal·mol−1 and a

pearson R value of 0.75 (tables S1 and S2).
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Figure 3.24: Statistical performances of RBFE predictions on the TNKS2 RBFE
benchmarking series versus experimental ligand binding affinities using the data-
driven approach described in this work (RBFENN; blue) versus the state-of-the-art
LOMAP-Score approach (orange) for various statistical metrics. The data is pre-
sented as a dynamic representation of replicate inclusion, where for each progression
of x all possible combinations of replicates (n=x) are included for the calculation
of the mean metric value. Depicted error bars show the standard error of the mean
metric across replicates; as for n=5 there is only one combination (all replicates),
no confidence has been depicted.
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TNKS2 - RBFENN

Figure 3.25: The TNKS2 perturbation network as suggested by LOMAP using the
RBFENN-predicted ̂SEM score as input. Each node in the network contains the
molecular structure and the ligand name; each edge in the network is annotated with
the RBFENN-predicted ̂SEM value that has been scaled to [0-1] to allow proper
handling by the LOMAP algorithm. Asterisks (*) indicate edges that are shared
between the RBFENN and LOMAP networks. For this series, the six ligands with
a +1 formal charge have been excluded.
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TNKS2 - LOMAP-Score

Figure 3.26: The TNKS2 perturbation network as suggested by LOMAP using the
LOMAP-Score as input. Each node in the network contains the molecular structure
and the ligand name; each edge in the network is annotated with the assigned
LOMAP-Score value. Asterisks (*) indicate edges that are shared between the
RBFENN and LOMAP networks. For this series, the six ligands with a +1 formal
charge have been excluded.
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Table 3.3: In-house results provided by Cresset on the neutral ligands of the TNKS2
RBFE benchmarking series. Shown are results of an RBFE run using a network
with 70 edges run using Flare V4. Columns contain data on the experimental
binding affinity, the experimental error, the RBFE-predicted binding affinity and
the absolute error between experimental and predicted binding affinity for each
ligand. Shown below the table are statistics as generated by Flare; Pearson R for
this data is 0.75. See table 3.4 for edges and methodology.

Molecule Experimental Activity Error Predicted Activity abs(err)
1a -8.55 0.3 -8.07 0.48
1b -9.93 0.28 -10.04 0.11
3a -10.99 0.22 -10.99 0
3b -11.51 0.29 -10.83 0.68
5a -10.76 0.23 -10.43 0.33
5b -10.47 0.22 -11.11 0.64
5c -9.95 0.28 -9.8 0.15
5d -10.88 0.23 -10.3 0.58
5e -10.1 0.46 -9.39 0.71
5f -10.25 0.22 -11 0.75
5g -10.8 0.3 -11.21 0.41
5h -10.05 0.28 -9.57 0.48
5i -12.07 0.31 -10.94 1.13
5j -11.07 0.27 -11.53 0.46
5k -10.96 0.28 -11.01 0.05
5l -10.09 0.25 -11.47 1.38
5m -12.68 0.33 -11.06 1.62
5n -10.7 0.45 -10.54 0.16
5o -12.03 0.69 -13.75 1.72
5p -10.5 0.29 -11.02 0.52
7 -8.39 0.76 -8.65 0.26
Pearson r2: 0.56 (95%CI 0.19-0.81)
MUE: 0.60 (95%CI 0.41-0.81) kcal·mol−1
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Table 3.4: perturbations run in-house by Cresset on TNKS2 (see table 3.3). Shown
are relative binding free energy predictions for each edge in the chosen RBFE net-
work (n = 70) in kcal·mol−1 for both the forward (A→B) and reverse (B→A)
transformation. This RBFE campaign was run using Flare V4 with a total of 754
λ windows.

Edge A→B B→A Edge A→B B→A
1a∼1b -2.15 2.14 5d∼5m -0.25 0.5
1a∼3a -3.06 3.39 5d∼5n 0.54 1.95
1b∼3a -1.1 1.03 5d∼5o -8.06 6.21
1b∼3b -1.12 0.49 5d∼5p -1.02 1.19
3a∼3b 0.24 -0.37 5d∼7 1.26 -2.06
3a∼5a 0.53 -0.5 5e∼7 0.87 -0.08
3a∼5b -0.19 0.35 5f∼5g -0.27 0.34
3a∼5f -0.06 0.25 5f∼5h 1.61 -1.84
3b∼5d 0.45 -0.54 5f∼5i 0.24 -0.04
5a∼5b -0.71 0.68 5f∼5l -0.51 0.82
5a∼5d 0.07 -0.21 5g∼5h 1.85 -2.08
5a∼5f -0.81 0.66 5i∼5l -0.74 0.9
5b∼5c 1.3 -1.45 5j∼5k 0.98 -0.58
5b∼5j -0.24 0.42 5k∼5m 0.15 -0.08
5b∼5l -0.33 0.46 5m∼5o -7.17 4.29
5c∼5l -1.65 1.72 5n∼5p -0.76 0.96
5d∼5e 0.88 -1.21
5d∼5j -1.27 1.39
5d∼5k -0.5 0.48
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3.4 Conclusions

In RBFE network generation there exist two main challenges: estimating the reliabil-

ity of RBFE perturbations that form the edge of a network a priori, and optimising

resources allocation to process a network that spans all compounds. The current

work describes research into the first problem. Investigations into optimal network

topology are actively being carried out.231,234,235 Because the accuracy of an RBFE

protocol is sensibly affected by the choice of the perturbation network this has im-

portant implications for the field. For instance, forcefield benchmarking studies with

a given RBFE implementation should ideally be carried out with the same pertur-

bation network. Benchmarking studies of different RBFE implementations should

be made with networks tuned for performance for each implementation. This work

introduces several new concepts to the field of RBFE. By grafting a large number

of RBFE perturbations onto a common benzene scaffold, a transferable training set

was created for RBFE research and development. As this set covers a diverse set of

RBFE perturbations it is highly suitable for ML work and is set to drive research

in combining RBFE and ML methodologies further. Using a siamese neural net-

work architecture with graph representation of RBFE endpoint ligands, a statistical

fluctuation predictor was trained on RBFE-Space. This SF predictor is shown to

outperform state-of-the-art heuristics in the context of modelling SF. The prototype

SF predictor (RBFENN) was used to generate the first ML-based networks for plan-

ning of RBFE calculations.

The prototype data-driven network generators are shown to match performance of

state-of-the-art rule-based RBFE network generators that have required extensive

calibration over multiple years to perform adequately with specific RBFE imple-

mentations. By contrast the data-driven method offers full transferability to other

RBFE implementations with the single requirement of running a set of prescribed

RBFE-Space simulations to recreate SF values specific to that implementation. Be-

side network generation, the RBFENN ̂SEM predictor presented in this work could

be used to ’boostrap’ adaptive sampling schemes for initial resources allocation.235

163



Chapter 3: Data-driven Generation of Perturbation Networks for Relative Binding
Free Energy Calculations

The availability of an inexpensive predictor of SFs could also be exploited by algo-

rithms that sample chemical space to identify molecules whose RBFE reliability to

a reference compound can be determined with ease.

As all heuristics depicted in table 3.2 attempt to model |∆∆Goffset| values, this

begs the question as to whether a predictor can be trained directly on this quantity

instead of statistical fluctuations. For this, instead of grafting perturbations onto

benzene (as with RBFE-Space), the original ligands must be featurised as well as

the protein system in which the RBFE perturbation takes place. This has been

attempted before and offers additional information such as pose differences between

input ligands which are highly influential to the RBFE reliability.190,236 However,

the bottleneck in this scenario is that a large number of RBFE simulations must be

run. Indeed, during early investigations of this work attempts were made to create

a training set that included original ligands, but the chemical space associated with

training such a model appeared too large with respect to the data available. For

example, the PDBbind v2020 database266 contains 19,443 protein-ligand complexes

(with experimental binding affinities) across 5316 proteins. Assuming equal distri-

bution of ligands per protein in this set brings the average size of congeneric series to

19,443
5316

≈ 3.6. Mapping all edges in each network results in (3.62−3.6) ·5316 = 49, 758

RBFE calculations, which is still a (very) conservative estimate as it is likely that

some series will be larger than others: the number of possible edges in each series

scales O(n2). Alternatively, a retrospective dataset could be generated gradually

using previously completed RBFE calculations. This in turn presents several chal-

lenges because each point in the dataset will need be standardised as in general

RBFE protocols evolve over time (thus affecting the accuracy of the results for the

same perturbation) and even within RBFE campaigns different edges may be allo-

cated different degrees of sampling (e.g. different numbers of λ windows).

Alternatively models could be trained on datasets built using ∆∆Gbind SEM values

(figure 3.7D and table 3.2): this would at least remove the requirement of experimen-

tal binding free energies for each data point, opening up the possibility of manually
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curating the chemical space in order to construct a diverse dataset rather than be-

ing restricted to congeneric series that have experimental data. Additionally, an

RBFE-Space version with original ligands (i.e. not grafted onto benzene) would en-

able faster SF predictions as this removes the need for additional MCS calculations

to map ligands onto RBFE-Space abstractions. However, this method would still

require simulations of the bound leg for each data point (to generate the training

set) which could still be prohibitively expensive. Training on ∆Gsolvated SEM values

with original ligands is possible. However this space is still large due to chemical

diversity of drug-like molecular scaffolds. We estimate that such dataset would re-

quire ∼2.5M perturbations.

Another possible future direction is to pursue an active learning approach where the

RBFENN is re-trained using newly-obtained |∆∆Goffset| values for edges while a

congeneric series is being explored in a live drug discovery project.

Overall this work has demonstrated the importance of perturbation network plan-

ning for RBFE calculations, and the potential of machine learning to automate

the generation of optimal RBFE networks. Continued efforts in this direction will

increase the robustness and effectiveness of RBFE methodologies for drug discovery.

Data availability

All python code and jupyter notebooks used in this work are made publicly available

under a GPL-2.0 license at https://github.com/michellab/RBFENN.

165



Chapter 4

Dissection of Concerted

Alchemical Free Energy

Calculations Into a Parallel

Multi-Step Approach

166



4.1. Introduction

4.1 Introduction

Relative binding free energy (RBFE) calculations are an invaluable tool in compu-

tationally supporting the ligand optimisation problem in early-stage drug discovery,

both in hit-to-lead and lead-optimisation phases.95 Although the technique’s ro-

bustness has led to a wide variety of academic implementations216,267–269 and a few

commercial packages,111,160,270 there remain technical limitations that prevent prac-

titioners from freely exploring chemical spaces without restraints.

When transforming one ligand into another in RBFE, λ is defined as a decoupling

parameter which is used to divide the transformation into a number of bins, where

parameters are adjusted in a bin-wise manner, each containing increasingly per-

turbed parameters. In ideal situations (i.e. highly reliable RBFE transformations),

the phase space overlap between λ states is high, which allows for effective statistical

estimation of the change in free energy change between λ states; ultimately resulting

in an effective relative free energy estimation between the two ligands (i.e. the λ

endstates, λ = 0.0 and λ = 1.0). Popular statistical estimators are Thermodynamic

Integration (TI271,272) and the Multistate Bennett Acceptance Ratio (MBAR).122,273

Unfortunately there exist situations where it is required to perform perturbations

that are unlikely to achieve acceptable phase space overlap such as large transforma-

tions (> 5 heavy atoms; e.g. when handling a chemically diverse congeneric series).

Larger transformations are typically handled by improving sampling through in-

creasing the used number of λ windows. This works because the charge, Van der

Waals (VdW) and bond parameter transformations are split into smaller incremen-

tal changes between adjacent λ windows - the issue however is that this approach

requires considerably more computing resources.

As perturbations in RBFE involve adjustments of multiple parameters (partial

charges, VdW, bond parameters) there exist multiple approaches to deal with these

during simulations. Arguably the most commonly deployed approach is to adjust

all parameters in a single, concerted step where all parameters are adjusted across

λ in unison. There exist some examples of implementations that use an alternative
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approach where not all parameters are adjusted in concert, but rather sequentially,

and previous analyses investigating the differences between concerted and multistep

approaches have been done.274–278 Research comparing these approaches in bound-

phase RBFE calculations is currently missing from the field. Additionally, work of

this type using MBAR as the free energy estimator or with n > 3 steps has not been

previously published to the best of our knowledge.

This work describes research done to investigate whether running Charge, VdW and

bond parameter transformations individually (with variable λ allocations per step)

offers an advantage to transforming all parameters in a single step, as is the current

standard in the current RBFE implementation by Cresset in their Flare software

package. Direct comparison of a concerted (single step) and multistep approach

(figure 4.1) offers the opportunity for novel ways of exploring RBFE shortcomings.

Although the initial rationale for this work was to investigate the effects of multi-step

approaches on the reliability/accuracy of large (i.e. > 5 heavy atoms) perturbations

(figure 4.2), lessons learned during this project resulted in multiple unexpected vic-

tories due to virtues of the ability to compare one-step and multi-step approaches

directly.

Initial results in this work qualitatively suggest that the bound leg benefits from

a multistep protocol over a concerted protocol, whereas the free leg does not show

benefit. Further work was performed by Cresset that showed no observable benefit

of the multistep approach over the concerted approach. Several key findings are re-

ported in this work that illustrate the benefits of dissecting an RBFE approach and

comparing the two approaches side-by-side. Additional observations made during

this research has led to optimised parameters in Flare V6.214
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Figure 4.1: Concept schematic of the state-of-the-art concerted (nsteps = 1) approach
and the alternative approaches (nsteps > 1) presented in this work. The example
shows computation of the relative free energy of binding of toluene to benzyl alcohol.
Each ’step’ is represented as a gray circle.
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Figure 4.2: Examples of two transformations to illustrate Flare V5 RBFE pre-
dictions that are highly reliable (left-hand side) and highly unreliable (right-hand
side). CHEMBL1088740→CHEMBL1089393 only perturbs one heavy atom, whereas
CHEMBL1089393→CHEMBL1077204 perturbs 13.
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4.2 Theory & methods

All simulations performed in this work were done using SOMD as implemented in

BioSimSpace version=2020.1.0=py37h1de35cc 97.241 Although λ window allocation

will vary per analysis, every simulation in any phase can be assumed to have been

run for 4 ns unless specified otherwise. Used force fields were GAFF2, ff14SB and

TIP3P for waters.

4.2.1 Terminologies used in this work

• hard vs soft atoms : a distinction that describes atoms part of the maximum

common substructure (MCS; hard atoms) and atoms outside the MCS (soft

atoms, i.e. atoms that are either being transformed into or from a dummy

atom) in a molecular transformation with RBFE. Intuitively, this means that

hard atoms are shared between the ligand endpoints whereas soft atoms only

exist in one of the ligand endpoints.

• nstep = N approaches : the approaches proposed in this work, where N denotes

the total number of steps in the protocol.

• MBAR: Multistate Bennett Acceptance Ratio122,124 is a modern statistical

estimator of free energies that assesses from all states (for a concise description

see e.g. alchemistry.org/wiki/Multistate_Bennett_Acceptance_Ratio)

• overlap matrix : a figure derived from MBAR that visually describes the degree

of phase space overlap between states (i.e. λ windows) used by MBAR.95

• vacuum/free/bound systems : whether a perturbation was simulated with just

the ligand (vacuum), the ligand in a 3 nm3 cubic water box (free) or the ligand

in a protein in a 10 nm3 cubic water box (bound).
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4.2.2 Creation of multistep approach

The multistep approach has been implemented using BioSimSpace on top of the

existing Sire/OpenMM-MD (SOMD) code infrastructure.216,241 The multistep ap-

proach was created as an extension to BioSimSpace and not SOMD. The multistep

approach is composed of six steps:

1. discharge soft: perturb Coulomb terms to 0.0 for soft atoms transforming

to dummy.

2. vanish soft: perturb LJ/Van der Waals terms to 0.0 for soft atoms trans-

forming to dummy.

3. change hard: perturb all Coulomb and LJ/VdW terms from lambda 0 to

lambda 1 for hard atoms.

4. change bonds: perturb all bond terms (angles, dihedrals).

5. grow soft: perturb LJ/VdW terms to lambda 1 for soft atoms transforming

from dummy.

6. charge soft: perturb Coulomb terms to lambda 1 for soft atoms transforming

from dummy.

Each step has starting parameters set to the final parameters of the previous step,

e.g. in step 2, soft atoms are already discharged at lambda 0. In multistep ap-

proaches each step represents adjustment of a certain parameter category: for ex-

ample in the case of a perturbation that involves transformation of a methyl into a

hydrogen, 1) partial charges are adjusted to 0 across ~λ1, 2) VdW parameters are set

to 0 across ~λ2, 3) partial charges are adjusted in the ligand scaffold (to account for

the removed methyl group) across ~λ3. 4) bonded terms are updated. Steps 5) and

6) are not necessary for this particular case. For each ~λn the ∆G can be estimated

using standard free energy estimation algorithms, and the overall ∆G is obtained

through summation by

∆Gmultistep =
n∑
n=1

∆G~λn
. (4.1)

Because SOMD uses the Sire molecular framework to handle perturbable molecules,

Sire molecular object functionality was directly extended. Sire perturbable molecules
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contain a method that writes out pertfiles that describe the global changes in pa-

rameters (i.e. charges, VdW, etc.). The Sire molecule object was adjusted such that

the method toPertFile() can take additional arguments referring to which step

in the multistep approach it should write a pertfile as. For example, if

toPertFile(pert type="discharge soft"), a pseudocode example of how the

pertfile atom terms will be written is as follows:

for atom in molecule do

# retrieve native atom terms for lambda 0 and 1:

LJ0 = atom.LJ0;

LJ1 = atom.LJ1;

charge0 = atom.charge0;

charge1 = atom.charge1;

# change charge1 for soft atoms, freeze all other terms to lambda 0:

if atom == dummy then

atom.LJ1 = LJ0;

atom.charge0 = charge0;

atom.charge1 = charge1;

else

atom.LJ1 = LJ0;

atom.charge1 = charge0;

end

# now write updated atom terms to file:

atom.LJ.write();

atom.charges.write();

end

Algorithm 1: pseudocode showing the atom terms written to a pertfile when

pert type is set to "discharge soft".
An added benefit of writing adjusted pertfiles is that no low-level reprogramming

in Sire will have to be done as Sire is able to read the contents of these files natively.

The 2-step protocol described in this work consists of discharge soft and the five

remaining steps merged into a single step.
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4.3 Results & discussion

As this work represents a sequential investigation into multistep approaches, we will

highlight several trial protocols. The following subsections will discuss results of

an initial simple protocol (nsteps = 2, 4.3.1) after which the final protocol will be

described (nsteps = 5, 4.3.2). In 4.3.2, instead of the nsteps = 5 notation, the protocol

will be referred to as ’multistep’.

4.3.1 nsteps = 2 approach

The initial idea of splitting the standard protocol into two steps (first discharge soft

atoms, then shrink soft atoms) was tested on a range of eg5 inhibitors as available

in the Merck benchmarking set.125 A selection of large (i.e. >10 heavy atoms) per-

turbations was made and simulations were carried out in both vacuum and solvated

systems for 4 ns per λ window. For the majority of RBFEs, the MBAR overlap

matrices for the nsteps = 1 protocol showed poor overlap, whereas the nsteps = 2

protocol showed improvements in phase space overlap in cases where the transfor-

mations consisted of removing (i.e. shrinking) of functional groups (see figure 4.3).

Of these transformations, the forward (i.e. growing) perturbation showed poor over-

lap. This suggests that when growing an atom from dummy, water molecules must

first be displaced by increasing VdW terms, and then Coulomb terms should be

set (i.e. charged). Conversely, when shrinking an atom to dummy, Coulomb terms

should first be turned off (i.e. discharged), after which Van der Waals terms can be

turned off - at this point water molecules will be able to take the moiety’s place.

This aligns with approaches presented in other work.274,277
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Figure 4.3: Free energy estimations in the free phase suggest increased phase-space
overlap of the nsteps = 2 protocol over the nsteps = 1 protocol. A: a large per-
turbation (13 perturbed heavy atoms) is simulated in the free phase across λ with
nλ = 17. B: overlap matrix where each block is a discretised colour coding of
phase space overlap between the two λ windows in question (in %, see colourbar)
for nsteps = 1. C: identical to B, but for the nsteps = 2 protocol. Dashed black lines
indicate the ninth λ window at which λ stops involving partial charge adjustments
and starts involving VdW adjustments. A phase space overlap of 0.03 or higher
(all colours other than salmon) is generally regarded as the threshold for sufficient
overlap.95
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4.3.2 Multistep approach

The idea of a bidirectional transformation suggests that instead of a nsteps = 2 ap-

proach, a nsteps = 4 approach should be taken in which a perturbation involves a

discharge, shrink, grow and charge. The first two steps of this approach would in-

volve atoms shrinking to dummies, and the final two steps would involve the growing

of dummies into atoms. However, even the nsteps = 4 approach is incomplete, as

there is added complexity that originates from partial charges and Van der Waals

terms in hard atoms which are influenced by nearby atoms - including soft atoms.

Additionally, when switching soft atoms to dummy and vice versa, bond parame-

ters (angles, dihedrals) change for the whole molecule (i.e. all soft and hard atoms

combined). For a complete approach, these two steps should also be performed sep-

arately in between the steps that take care of the soft atoms. The next sections will

contain results of our implementation of this multistep approach that contains six

steps in which we discharge, shrink, change hard atoms, change bond terms, grow

and charge (figure 4.4). In this design, for perturbations that involve only shrinking

or growing of atoms, steps 1/2 or 5/6 (resp.) can of course be omitted because no

parameters should change during these steps.

Although a protocol that involves all possible steps in a perturbation separately

would be nsteps = 6 (figure 4.4), from hereon the used protocol is ’nsteps = 5’, which

means that steps 3 and 4 were merged into one (the merged step is called ’3 flip’).

This choice was made based on the observation that during testing these two steps

showed far larger degrees of phase-space overlap compared to steps 1/2 and 4/5,

combined with the fact that it would save computing time during testing. Addi-

tionally, only perturbations which contain uniquely growing or shrinking atoms are

used, during which the redundant steps (1/2 when growing, 4/5 when shrinking)

are removed before simulation. This results in three steps per perturbation for the

multistep protocol, but the protocol will still be denoted as nsteps = 5.
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Figure 4.4: Workflow schematic of multistep approach in perturbing from ligand A
to ligand B. Shown is a pedagogical transformation where at the top-right position
a methanol moiety is removed, and at the bottom-left position a methyl moiety is
grown. See section 4.2.2 for a detailed per-step description. Red boxes show ligand
endpoints and gray boxes show the seven intermediates (of which intermediate 1
is equal to ligand A and intermediate 7 is equal to ligand B). For simplification,
hydrogens are ignored in the depiction but they can be assumed to be perturbed in
the same way as the heavy atom they are bound to.
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Validation of the multistep approach in ethane↔methanol

A validation analysis was done using an ethane↔methanol perturbation with ample

sampling (17 λ windows with 4ns per window) to test whether the multistep pro-

tocol was correctly designed. This system was chosen because of its simplicity and

previously published benchmarking work in a similar context.

This analysis provides two key observations that validate the multistep approach.

Firstly, the multistep approach (as well as the concerted approach) predictions

(±6.35 kcal·mol−1) show a high degree of agreement with previously reported rel-

ative free energy of hydration predictions (±6.23, ±6.22, ±5.99, ±6.26 kcal·mol−1

for AMBER, CHARMM, GROMACS and SOMD, respectively).224 In the case of

SOMD, it is expected that the ∼ 0.09 kcal·mol−1 is due to incremental updates in

the SOMD codebase as the referred study was conducted five years prior to the work

performed in the current study.

Secondly, the hydration free energy estimations show no hysteresis when compar-

ing ethane→methanol and methanol→ethane; the multistep and concerted estima-

tions of relative hydration free energies show a high degree of agreement (at an

error of ∼0.01 kcal·mol−1) which suggests that the steps in the multistep approach

completely encompass the parameter adjustments in the concerted approach. Fi-

nally, steps where there were no parameter adjustments across λ for perturbations

showed a relative hydration free energy of 0.00 kcal·mol−1 which confirms that

no artefact effects are occurring during these simulations (e.g., ethane→methanol

4 grow soft= 0.00 kcal·mol−1 in both vacuum and solvated phases).
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System Step Ethane→Methanol Methanol→Ethane

∆Gvacuum

1 discharge soft -0.61 0.00
2 vanish soft -0.08 0.00
3 flip 3.21 -3.21
4 grow soft 0.00 0.08
5 charge soft 0.00 0.61
multistep sum 2.51 -2.51
concerted 2.51 -2.51

∆Gsolvated

1 discharge soft -1.36 0.00
2 vanish soft -0.08 0.00
3 flip -2.39 2.41
4 grow soft 0.00 0.08
5 charge soft 0.00 1.36
multistep sum -3.83 3.84
concerted -3.84 3.86

∆∆Ghydration
multistep -6.34 6.35
concerted -6.35 6.37

Table 4.1: Validation study on a simple ethane↔methanol perturbation with ample
sampling (17 λ windows with 4ns per window) in both vacuum and solvated (solvated
in a 3 nm3 cubic waterbox with TIP3P waters) phases. Shown are free energies in
kcal·mol−1 estimated by MBAR. Key values of interest are indicated in bold. The
reported ∆∆Ghydration for this transformation in the validation study is ∼ ±6.2
kcal·mol−1.
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4.3.3 Benchmarking the multistep approach in solvated lig-

and systems

Given that the multistep protocol showed full reproduction of the thermodynamic

cycle of the concerted approach in small-system RBFE calculations, larger (> 5

heavy atoms) perturbations were tested to explore whether the two approaches

showed differences in the ability to handle these types of perturbations. For this

purpose, the Eg5 system from the recent Merck RBFE benchmarking set279 was

chosen because it contained two distinct clusters of ligands that were distinguished

by a long, highly rotatable R-group or the absence thereof (see structures in figure

4.3, e.g.), which makes this series contain many large transformations. All ligands

were neutralised before simulation.

First, an analysis was done to determine the number of λ windows needed per step

in the multistep protocol. To this end, several large perturbations were run with 30

λ windows per step and 90 λ windows for the concerted protocol. Then, equidistant

subsets of λ windows were selected to estimate relative free energies using MBAR.

This method allows analysing a number of λ arrays of varying size while only doing

simulations for the largest λ array. For clarity, an example of this approach for a

RBFE transformation run with 9 lambda windows (indices [1, 2..9]) would be ob-

taining a 5-window ([1, 3 .. 7, 9] and a 3-window ([1, 5, 9]) subselection. Because

equidistance is chosen to be retained only a limited number of subselections is pos-

sible. Thus, perturbations were run several times at different total numbers of λ

windows (e.g. 22, 25 and 33) to produce a wide range of λ arrays.

It was observed in an initial run with large transformations in the free phase that

there was no clear benefit between using a multistep and a concerted protocol; ∆G

convergence was reached at ∼15 λ windows for both the concerted and the multistep

protocols (figure 4.5). Although qualitative, these results do suggest that the ’3 flip’

step is likely to require fewer λ windows than the other two steps as it is observed

to be converging rapidly after only ∼ 5 λ windows.

Additionally, a similar transformation involving a phenyl group showed convergence
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to different values of ∆G between the multistep and concerted protocols, which

prompted a run in triplicate of this particular transformation

(CHEMBL1089393∼CHEMBL1084431) to check whether anything other than vari-

ance caused this discrepancy (see figure 4.6). As can be observed, variance is low

across replicates for all protocols - further investigation showed that CHEMBL1084431

was set up improperly (not neutralised), where a Cl− counterion was present in the

simulations (this is a standard feature of BioSimSpace which automatically intro-

duces counterions to systems in cases of non-neutral net charges). When investigat-

ing the interaction energy of this anion in these simulations it appeared to interact

with the perturbed ligand differently between each protocol (i.e., a ligand with only

charges or VdW terms interacts differently with an anion than a ligand with both

charges and VdW, non-additively). In further screens no charged perturbations were

allowed during setup.
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Figure 4.5: Plots of ∆Gfree across varying sizes of λ for the concerted
and multistep protocols in kcal·mol−1. Shown are both directions of a per-
turbation in the eg5 RBFE benchmarking series: the ’grow’ perturbation
(CHEMBL1086789→CHEMBL1089393, left-hand side) and the ’shrink’ perturba-
tion (CHEMBL1089393→CHEMBL1086789, right-hand side). The total multistep
∆Gfree values are shown as a purple, dashed, starred line and the concerted ap-
proach ∆Gfree values are shown as blue starred line. Grey horizontal lines indicate
the value of ∆G for each step at the largest number of λ windows used. Note that
the concerted λ values were divided by three to standardise them with the multistep
range.
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Figure 4.6: Plot of ∆Gfree across varying sizes of λ for the con-
certed and multistep protocols in kcal·mol−1 for a ’grow’ perturbation
(CHEMBL1089393→CHEMBL1084431) in the eg5 RBFE benchmarking series. The
total multistep ∆Gfree values are shown as a purple line and the concerted approach
∆G values are shown as blue starred lines. Grey horizontal lines indicate the value
of ∆G for each step at the largest number of λ windows used. Note that the con-
certed λ values were divided by three to standardise them with the multistep range.
Shown uncertainties are standard deviations of the mean of three replicates.
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4.3.4 Benchmarking the multistep approach in a protein-

ligand system

In an attempt to explore whether the multistep approach showed any benefit in more

complex systems, the approach presented in 4.3.3 was repeated while including the

eg5 protein (figure 4.7). Because of the large increase in system complexity and

thereby required computing resources, only a single perturbation has been analysed

in this manner (run for both 25 and 33 λ windows).

For this experiment, the multistep protocol sum ∆Gbound value converges to ∼93

kcal·mol−1 between 10 and 15 λ windows. Looking further into the individual steps,

it can be observed that steps 1 discharge soft and 3 flip converge early at ∼3 λ win-

dows, whereas step 2 converges somewhat later at ∼7 λ windows - this observation

is consistent with results in figure 4.5. Early convergence of these steps suggests

that it could be possible to develop a variable allocation protocol where each step in

the multistep protocol is run at different lengths of λ arrays. This could potentially

result in decreased computational expense when dealing with perturbations such as

the one depicted in figure 4.7; in this example a total of 13 (3+7+3) λ windows for

the multistep would have obtained the final ∆Gbound prediction for the multistep

approach, whereas the concerted approach requires 21 (7·3) λ windows to reach its

final ∆Gbound prediction.

Additionally, for large λ arrays in the concerted protocol MBAR failed to estimate

a free energy value. It appears that for these large λ arrays (lengths=[38, 50, 75,

99], x value in figure 4.7=[12.7, 16.7, 25, 33]), PyMBAR falls back on an alternative

solver (’BFGS’) because the default - more robust - adaptive solver is unable to

handle the data volume. This fallback might explain the upward drift behaviour of

the concerted ∆Gbound value for these points in figure 4.7 (final ∆Gbound values for

the sum of the multistep and the concerted protocols are 100 and 93 kcal·mol−1,

resp.). Indeed, free energy predictions using thermodynamic integration (TI) for

these large λ arrays for the concerted protocol resulted in ∆Gbound predictions of 93

kcal·mol−1 for these same arrays, which suggests that the TI free energy estimation
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approach might be more robust to larger (length>38) λ arrays.

Because binding pockets can have charged residues interacting with the ligand dur-

ing simulations, it is possible that the same discrepant energetics that were observed

in 4.3.3 could arise in this context even though the ligand has a net charge of 0. The

perturbation discussed in this section (CHEMBL1085859→CHEMBL1089393) does

not contain a perturbed phenyl R-group but care should be taken in future work as

this effect could be introduced even in the absence of counterions when the ligand

is placed in a protein binding pocket during simulations.

A more quantitative analysis of the multistep approach in protein-ligand systems

is required. As mentioned, the analysis presented in 4.3.4 is too computationally

expensive to repeat sufficiently to arrive at statistically quantifiable data. An alter-

native analysis is presented in the next section.
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Figure 4.7: Plots of number of lambdas required to reach ∆G (in kcal·mol−1) con-
vergence for a ’shrink’ perturbation (CHEMBL1085859→CHEMBL1089393). The
total nsteps = 3 ∆G values are shown as a purple, dashed, starred line and the con-
certed approach ∆G values are shown as blue starred line. Grey horizontal lines
indicate the value of ∆G for each step at the largest number of λ windows used.
Note that the concerted lambda values were divided by three to standardise them
with the multistep range.
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4.3.5 The multistep approach applied to a diverse collection

of challenging perturbations

The multistep approach was further investigated by H Loeffler and M Mackey at

Cresset. The final section of this chapter consists of analyses on the source data

by H/M. The author thanks H/M for providing this source data and for their con-

tributions to discussions on the analyses outlined below. Instead of analysing ∆G

convergence as presented in sections 4.3.3 and 4.3.4, this analysis uses predictivity

versus experimental measures as well as hysteresis which is defined as the thermo-

dynamic cycle closure error in kcal·mol−1 obtained by subtracting the ∆∆Gbind of

both directions of a perturbation.

The concerted approach outperforms the multistep approach in ∆∆Gbind

predictions

A collection of perturbations (n=50) was selected and run in triplicate using both

the concerted and multistep approaches. This set was composed of transforma-

tions present in publicly-available RBFE benchmarking series226 that were deemed

challenging based on prior experience; targets involved were CDK2 (n=16), CDK8

(n=6), EG5 (n=8), P38 (n=8) and PTP1B (n=12).

The concerted protocol outperformed the multistep protocol in terms of predicting

experimental ∆∆Gbind values for correlation (Pearson r 0.82 over 0.72), error (MUE

0.9 over 1.23) and ranking (Kendall τ 0.63 over 0.55) metrics (figure 4.8, left). For

the multistep approach there exist three outliers which are sulfonamide-growing

perturbations (figure 4.9). Whereas in older versions of the concerted approach this

particular topology was a known issue, in more recent versions of SOMD this is-

sue has largely been resolved by setting softcore parameters deltashift=1.0 and

coulombpower=0 ; this is also apparent from the concerted approach behaving nor-

mally for these outliers (figure 4.8, center). The fact that these three perturbations

were outliers even in terms of ∆∆Gbind values with respect to the other 47 pertur-
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bations in the set (figure 4.8, right) suggests that the multistep approach may not

be fully optimised to deal with this kind of molecular transformation. Sulfonamide

parameterisation is a known bottle-neck in GAFF2 which is used in this particu-

lar case; trials with alternative force fields such as OFF83 may negate this issue.

Removal of the three outliers from the concerted approach does not dramatically

improve statistical performance: the only notable difference is a reduction in MUE

from 1.23 to 0.98 kcal·mol−1.

Finally, no notable difference was observed in either approach when investigating

shrink and grow perturbations (figure 4.10). Both approaches correctly capture the

effect of shrink and grow perturbations typically decreasing and increasing (resp.)

ligand binding affinity.
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Figure 4.8: Analysis of multistep versus concerted approach ∆∆Gbind predictions
versus experimental values in kcal·mol−1. Left: RBFE-predicted versus experimen-
tal relative binding free energy for the concerted and multistep approach (blue;
orange resp.). The 1/2 kcal·mol−1 confidence region is shown as a light/dark orange
band. The table shows statistical analysis on both approaches in Pearson r, Mean
Unsigned Error (MUE / kcal·mol−1) and Kendall τ . The three outliers (A/B/C)
discussed in the main text body are outlined with red circles (see figure 4.9 for
molecular structures). Center: Relative binding free energy predictions for outliers
A/B/C (see left-hand side scatterplot) for concerted, multistep and ’Flare’ (default
Flare settings) approaches in blue, orange and green, resp. Right: Histograms of
predicted relative binding free energies for both approaches.
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Figure 4.9: Molecular structures of λ enpoints of the three outliers (A/B/C) as
reported in 4.8. For each perturbation, the protein target and perturbation name
(”ligand A”∼”ligand B”) is denoted vertically on the left-hand side.
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4.3. Results & discussion

Figure 4.10: Depiction of relative binding free energy predictions in kcal·mol−1 for
the concerted approach (left) and multistep approach (right). Shown in blue and
orange are shrink (i.e. the perturbation involves removal of heavy atoms) and grow
(i.e. the perturbation involves addition of heavy atoms) transformations, resp.
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The concerted and multistep approaches vary in ∆∆Gbind prediction hys-

teresis

As a secondary analysis, the hysteresis for each perturbation per approach was in-

vestigated. As the hysteresis is computed as the error in thermodynamic cycle

closure it is a measure of RBFE reliability, and a superior RBFE approach would

show reduced overall hysteresis (i.e. increased reliability). Hysteresis is a commonly

used marker for RBFE inaccuracies.280 Comparing the 50 perturbations present in

the set, the distributions of hysteresis for the concerted and multistep were similar

(figure 4.11, left), with the concerted approach having a slightly higher incidence of

perturbations with very low hysteresis (< 0.25 kcal·mol−1).

It appears that for some perturbations the concerted approach results in higher hys-

teresis, whereas for the other perturbations the multistep approach results in higher

hysteresis. Notably, of all perturbations, the perturbation with the highest hystere-

sis is a concerted perturbation (CDK2, 32 33, a cyclopropyl addition). In fact, four

of the five highest hysteresis perturbations in the concerted approach have some

form of cycle growing (see figure 4.12). This particular type of perturbation is a

well-known bottleneck in single topology style RBFE software.95 Each of these four

perturbations show a dramatic reduction in hysteresis in the multistep counterpart,

suggesting a more gradual (i.e. sequential) growing of these ring topologies can be

advantageous in a single topology RBFE approach, likely due to a more gentle dis-

placement of solvent molecules. This observation warrants further research to more

rigorously investigate cycle RBFEs between the concerted and multistep approaches

as the current work does not have enough (n=7) perturbations of this type to allow

meaningful statistical analyses.

The top five highest hysteresis perturbations for the multistep approach consisted

of large perturbations (figure 4.13). For four of those perturbations, the concerted

approach exhibited low hysteresis (¡ 0.65 kcal·mol−1).

Finally, to investigate the RBFE reliability related to the number of heavy atoms

perturbed in the transformation (bidirectionally), both approaches were compared
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(figure 4.14). These results show that even for larger perturbations the multistep

approach offers no benefit over the concerted approach, and for some sizes (e.g. [1-2]

and [5-7]) even increases hysteresis.
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Figure 4.11: Histograms of hysteresis values of ∆∆Gbind predictions in kcal·mol−1

for both the concerted (blue) and the multistep (orange) approach.
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Figure 4.12: Molecular structures of the five most hysteric perturbations in the
concerted approach. Shown are the λ = 0 and 1 endpoints, with the degree of
hysteresis (in kcal·mol−1) of the concerted approach shown in the λ = 0 panel; the
corresponding multistep hysteresis is shown in the λ = 1 panel. Each perturbation’s
target and perturbation name (”ligand A”∼”ligand B”) is shown beside the λ0
panel.
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Figure 4.13: Molecular structures of the five most hysteric perturbations in the
multistep approach. Shown are the λ = 0 and 1 endpoints, with the degree of
hysteresis (in kcal·mol−1) of the multistep approach shown in the λ = 0 panel; the
corresponding concerted hysteresis is shown in the λ = 1 panel. Each perturbation’s
target and perturbation name (”ligand A”∼”ligand B”) is shown beside the λ0 panel.
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Figure 4.14: Boxplots of hysteresis values of ∆∆Gbind predictions versus experimen-
tal in kcal·mol−1 for both concerted (blue) and multistep (orange) approaches for
a range of different numbers of heavy atoms perturbed in each perturbation. For
each group of boxes, the population size (i.e. number of perturbations) is annotated
on the plot. Outliers (as a function of the inter-quartile range) are shown as black
diamonds.
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4.4 Conclusions & future steps

This work outlines a succesful dissection of a concerted RBFE approach into multiple

steps. To the best of our knowledge, this is the first direct comparison between these

two approaches within the same RBFE code using a complete dissection of the

concerted protocol. Although there is no observable benefit of using the multistep

approach over the concerted approach, two key findings are reported in this work.

First, it appears that there is a discrepancy in how sulfonamide groups (and likely

other similar functional groups) are perturbed in the multistep approach. Whether

this discrepancy is caused by an algorithmic error or by systemic issues with growing

such functional groups remains to be investigated with newer versions of SOMD

and with alternative force fields. Second, the multistep approach outperforms the

concerted approach when using hysteresis as the reliability metric for perturbations

that involve perturbing a cyclical structure on the ligand scaffold. However, a larger

investigation is required to fully determine whether this effect is consistent; such a

screening would be worthwhile as cycle-growing perturbations are a common pitfall

in RBFE and a novel method of dealing with these could be invaluable to the field.
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Chapter 5

Concluding remarks

The work presented in this thesis spans a wide range of applications to AFE method-

ologies. After an introduction to supporting theory (chapter 1 ), work is presented

that shows an example of hybridisation of RBFE and ML predictions (chapter 2 ).

In this work it is shown that ML is able to support AFE by correcting for systematic

errors resulting mainly from force field shortcomings. Next, in chapter 3 a novel

data-driven method of generating RBFE perturbation networks is presented where

ML is used to more efficiently plan AFE calculations. Finally, a pure AFE study is

presented in chapter 4 that outlines investigations into whether deconstructing AFE

perturbations into composite steps is beneficial and whether this deconstruction can

lead to new discoveries regarding the underlying AFE software shortcomings.

5.1 Underlying themes in the thesis

There are several underlying themes that connect the research chapters presented in

this chapter. All chapters touch on AFE errors and how to resolve them. Chapters

2 and 3 primarily focus on (∆)∆Goffset which is a direct metric of systematic errors

versus experimental measures, whereas chapter 4 focuses primarily on the statistical

error as well as the hysteresis (the error between forward and reverse AFE transfor-

mations) as error metrics. The work presented in this thesis makes a strong case for
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increasing the emphasis on systematic and statistical error metrics in AFE research,

and shows that modelling these can effectively benefit the method.

As this thesis is one of the first examples of modelling errors in AFE, there is a signif-

icant shortage of datasets to train ML models on. Whereas chapter 2 mostly involves

dealing with this data shortage by introducing workarounds such as extensive cross-

validation and feature selection protocols, chapter 3 outlines the generation of a

novel AFE dataset that is carefully curated to represent a representative space of

RBFE perturbations. Using this novel RBFE-Space, it is shown that ML models

can be trained to learn statistical errors in AFE.

Although not extensively investigated throughout this thesis, model transferability

is a frequently occurring problem in ML fields of research. It is expected that the

majority of models presented in this work exhibit poor performance when subjected

to different AFE software (with decreasing performance when increase dissimilarity).

5.2 Reflections on the future of AFE and ML

methodologies

Hybridisation of AFE and ML methodologies has not been extensively researched

prior to the studies performed in this thesis. Fortunately, during the four years

leading to the current presentation of this thesis several peers have started doing

similar work in this area, albeit in fundamentally different ways. As with seem-

ingly all scientific fields, the future of AFE stands to benefit significantly from ML

implementations. Although for the time being it is unlikely that ML methodolo-

gies will provide a pure replacement algorithm of AFE, hybridisation algorithms

are positioned to drive the field of AFE forward by filling gaps in its methodology.

Combined with further advances in computer hardware, CADD will be propelled

forward with novel exciting methodologies that will reflect work presented in this

thesis.
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K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,

C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,

S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,

M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,

D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hass-

abis, Nature, 2021, 596, 583–589.

[19] J. Garćıa-Nafŕıa and C. G. Tate, Annual Review of Pharmacology and Toxi-

cology, 2020, 60, 51–71.

[20] K. A. Dill and J. L. MacCallum, Science, 2012, 338, 1042–1046.

[21] M. Akdel, D. E. V. Pires, E. P. Pardo, J. Jänes, A. O. Zalevsky, B. Mészáros,
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Medicinal Chemistry, 2018, 10, 2641–2658.

[27] P. Willett, Trends in Biotechnology, 1995, 13, 516–521.

[28] V. Venkatasubramanian, K. Chan and J. Caruthers, Computers &amp Chem-

ical Engineering, 1994, 18, 833–844.

[29] Y. Cheng, Y. Gong, Y. Liu, B. Song and Q. Zou, Briefings in Bioinformatics,

2021, 22, year.

[30] M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, Journal of Cheminfor-

matics, 2017, 9, year.

[31] M. Popova, O. Isayev and A. Tropsha, Science Advances, 2018, 4, year.

203



Bibliography

[32] R. Kim and J. Skolnick, Journal of Computational Chemistry, 2008, 29, 1316–

1331.

[33] T. Pantsar and A. Poso, Molecules, 2018, 23, 1899.

[34] H. M. Berman, Nucleic Acids Research, 2000, 28, 235–242.

[35] Z. Liu, Y. Li, L. Han, J. Li, J. Liu, Z. Zhao, W. Nie, Y. Liu and R. Wang,

Bioinformatics, 2014, 31, 405–412.

[36] M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova,

D. Yuan, O. Stroe, G. Wood, A. Laydon, A. Ž́ıdek, T. Green, K. Tunyasu-
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