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Abstract

This dissertation examines the problems of planning automated guided vehicle (AGV)

movement schedules in an automated factory. AGVs are used mainly for material

delivery and will have an important role in linking "islands of automation" in

automated factories. Their employment in this context requires the plans to be

generated in a manner which supports temporal projection so that further planning in

other areas is possible. Planning also occurs in a dynamic scenario—while some plans

are being executed, planning for new tasks and replanning failing plans occur.

Expeditious planning is thus important so that deadlines can be met. Furthermore,

dynamic replanning in a multi-agent environment has repercussions—changing one

plan may require revision of other plans. Hence the issue of limiting the side effects of

dynamic replanning is also considered. In dealing with these issues, the goals of this

research are: (1) generate movement plans which can be executed efficiently; (2) develop

fast algorithms for the recurrent subproblems viz. task assignment and route planning;

and (3) generate robust plans which tolerate execution deviations; this helps to

minimize disruptive dynamic replanning with its tendency to initiate a chain reaction of

plan revisions.

Efficient movement plans mean more productive utilization of the AGV fleet and this

objective can be realized by three approaches. First, the tasks are assigned to AGVs

optimally using an improved implementation of the Hungarian method. Second, the

planner computes shortest routes for the AGVs using a bidirectional heuristic search

algorithm which is amenable to parallel implementation for further computational time

reduction. Third, whenever AGVs are fortuitously predisposed to assist each other in

task execution, the planner will generate gainful collaborative plans. Efficient

algorithms have been developed in these areas. The algorithms for task assignment and

route planning are also designed to be fast, in keeping with the objective of expeditious

planning.
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Robust plans can be generated using the approach of tolerant planning. Robustness is

achieved in two ways: (1) by being tolerant of an AGV's own execution deviations; and

(2) by being tolerant of other AGVs' deviant behaviour. Tolerant planning thus defers

dynamic replanning until execution errors become excessive. The underlying strategy is

to provide more than ample resources (time) for AGVs to achieve various subgoals. Such

redundancies aggravate the resource contention problem. To solve this, an iterative

negotiation model is proposed. During negotiations, AGVs yield in turn to help

eliminate the conflict. The negotiation behaviour of each is governed by how much spare

resources each has and tends towards intransigence as the bottom line is approached. In

this way, no AGV will jeopardize its own plan while cooperating in the elimination of

conflicts. By gradual yielding, an AGV is also able to influence the other party to yield

more if it can, therein achieving some fairness. The model has many of the

characteristics of negotiation acts in the real world (e.g. skilful negotiation,

intransigence, selfishness, willingness to concede, nested negotiations).
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Chapter 1

Introduction

Material delivery is a problem which needs to be solved in all factories. Raw materials

must be moved into the factory. Work-in-progress items must be moved from one

location to another within the factory. Semi-finished or manufactured products must be

moved out of the factory. These items can be transported automatically by various

means ranging from highly inflexible systems such as conveyor belts, to the most

flexible means, the automated guided vehicle (AGV) which is an unmanned truck.

Inflexible material delivery systems are more suited to factories which have rather

permanent production or transfer lines and which do not require frequent changes, as in

the case of manufacturing items in large quantities with long product lifespans. In

contrast, AGVs are highly flexible means of transportation which allow greater control

over the paths of material delivery. They are better suited to factories employing

flexible manufacturing concepts, as in situations characterized by high variety, low

volume, demand responsiveness and short product lifespan.

This dissertation examines the problems in automatic planning ofAGV movements in a

factory. In particular, I shall be considering the problems of task assignment, route

planning, traffic coordination, and task collaboration. Since AGV movement planning
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occurs during execution (i.e. some AGVs are already enroute to accomplish their tasks)

as well as before, the implications of a dynamic scenario will also be taken into account

in examining these problems.

This research on the problem of automatic planning of AGV movements is motivated by

the important role of AGVs in modern factories as a vehicle for material delivery as well

as for other specialized functions. This motivation will be further explained in the next

section. The scope of this research is discussed in section 1.2 and section 1.3 gives a

guide for the reader.

1.1 Motivation

The factory of the future will undoubtedly be highly if not fully automated because

automation is the key to manufacturing responsiveness, productivity and reliability;

these are major determining factors of survivability in a highly competitive trading

world. The signs of the automation spur are clearly visible. At the forefront is the use of

robots. Also evident is a wave of new manufacturing concepts—computer-integrated

manufacturing (CIM), flexible manufacturing systems, flexible assembly systems,

manufacturing automation protocol, etc. On the eastern front we see the emergence of

modern manufacturing practices from Japan: just-in-time or JIT (Burgam, 1984) and

Kanban (Gunn, 1982). Many of these concepts are dependent on automation and have

enabled significant inventory and cost handling savings. Adding support to this

modernization movement, Bradt (1984) states:

... we are at the front end of a virtual revolution—not an evolution, but a

revolution—in batch manufacturing operations, and an understanding of that
revolution is essential for the success and, indeed, the survival of United States
manufacturing companies ...
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And Critchlow (1985) writes:

... it is necessary to use JIT and other techniques—robots, precision tooling, and
interfacing transportation systems—to provide higher-quality products, savings
through inventory reduction, and the flexibility to fabricate parts as needed. ...

there will be an increasing demand for small quantities of a large number of
different models of items, ... only through the flexibility of the future factory
concept will it be possible to produce them economically and of high quality.

The factory of the future which many envisage as a "lights-out" type of CIM plant with

its computers and much of the robots and computer-controlled machinery in

communication using a standard specialized protocol, is a concept which has been taken

seriously. Governments and corporations are committing huge sums of money in

support of it. In an excellent survey article on the factory of the future, Valery (1987)

gives the figures—MITI, Japan: $130 million over the next five years; EEC: $120

million since 1982 and has in the pipeline proposals for CIM research totalling $1.3

billion over the next five years; USA: $50 billion was spent from 1981 to 1986 installing

flexible manufacturing tools. There has been some concerted effort on the academic

front as well. Only recently, the Institute for Manufacturing Automation Research

(IMAR) was established by a consortium of universities and corporations in USA

(Schlesinger and Tiersten, 1987). IMAR is a research and development centre for

advanced manufacturing technologies with a focus on integration—how to link islands

of automation into a CIM system.

AGVs, already in use extensively in modern factories of today, will feature even more

prominently in future factories. Between 1960 and 1980, 360 AGV systems (AGVS) with

a total ofabout 3,900 AGVs were in operation in Europe (Muller, 1983). Since AGVs will

take on a key role in linking the islands of automation in the future factory (Valery,

1987), we can expect AGVs to be introduced in greater numbers and with higher levels

of sophistication. Apart from automation, new applications engendered by technological

progress will also increase the usage of AGVs. For example, AGVs give mobility to a

mounted robot and this opens up a vast range of application possibilities. Furthermore,
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in semiconductor industries, AGVs are suitable for clean rooms where the presence of

humans would make it extremely difficult to maintain the very low particulate density

essential for the fabrication ofVLSI devices with sub-micron feature sizes.

The four main problems which have to be confronted in implementing any AGV system

are:

• Task assignment. Task assignment concerns the selection of an AGV to

undertake a given task. For example, if something at location P needs to be

moved somewhere else, the system might simply select the available AGV

nearest to P at that time.

• Route planning. In route planning, a specific path, usually the shortest

trafficable path, is determined for an AGV to move from its starting position

to where its load has to be fetched, and from there to the destination. The

shortest path can be found using one of several algorithms such as the A*

(Hart et al, 1968, 1972) and Dijkstra's (Aho et al, 1974) algorithms.

Whichever is used, it is necessary to have a map representing the route

network in some appropriate data structure (e.g. a graph) within the

computer.

• Navigation. Given a route to traverse, the AGV must be able to navigate its

way along it. There are several systems of navigation which can be used.

Floor-bound AGVs are restricted to following a network of cables or painted

lines in/on the floor of the factory. If cables are used, the AGVs are guided

inductively; and if painted strips are used, then an optical guidance system is

used. For further information, the reader can refer to Mviller (1983) and Todd

(1986). Free-ranging AGVs unlike their floor-bound cousins have their

geographical limits restricted by trafficability alone. These face a more
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difficult navigation problem and thus rely on more sophisticated systems

with some incorporating a multiplicity ofmeans. Typical approaches are: use

of beacons (active and passive) for position fixing by triangulation;

dead-reckoning using an odometric system; path identification or route

following using an optical TV camera (McTamaney, 1987; Tsuji and Jiang,

1987); and sonar-based systems.

• Traffic control. Traffic control coordinates the movements of AGVs such that

they do not collide into one another. The most common method of

coordination is the blocking method (Todd, 1986). In this method, not more

than one AGV is allowed in a block (path segment in the network) at any

time. This guarantees no collision. Alternatively, or as a supplementary

means, contact-sensitive bumpers are installed at both ends of AGVs. When

an impending collision is detected, the AGV is abruptly stopped and it

remains stationary until reactivated or when the cause of activation is no

longer sensed. This also serves as a safety measure to avoid serious mishaps

involving humans.

The problem with conventional AGV systems is that they do not fully meet the needs of

the automated factory. For example, task assignment and execution may not be

optimized from a global perspective. Sub-optimal plans do not utilize AGVs as

efficiently as they should. Consequently, a larger fleet of AGVs may be necessary. More

serious is the ad hoc nature of traffic control; this does not admit temporal projection of

when an AGV is expected to complete its delivery. Although simulation may be used to

forecast future events, the results can be highly misleading. For instance, if two AGVs

approach the same block at the same time according to the simulation, there is no way to

tell which will actually be admitted into the block. In reality, one of the AGVs will gain

control of the block just before the other, but this cannot be predicted due to limitations

ofsimulation accuracy.
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Factory automation requires planning and integration. Plans of subsystems which are

expected to work in concert must be dovetailed in order to satisfy various dependency

constraints. Hence material delivery plans should tie in with the job shop schedules. A

hierarchy of related plans would exist and all are designed to meet production objectives

which are defined according to market demands and forecasts. Many of these plans have

time constraints, and based on expected deadlines of some preceding operations, further

operations can be planned. This means that temporal projection is necessary. It would be

near impossible to plan further time-dependent operations in advance if there is no

information on when prerequisite operations will complete. Even if possible with

whatever scant information is available, the predictions of when future plans will

complete can only be made with large margins of uncertainty. Such plans would make

poor use ofproduction resources. AGV movement plans are one such type ofplans in the

hierarchy of plans which have deadline constraints and need to be planned in a manner

which admits temporal projection.

1.2 The Scope

This dissertation examines the problems in automatic generation of AGV movements in

an automated factory. Specifically, I shall consider the problems of task assignment,

route planning, traffic coordination and the construction of collaborative plans. The

problem of navigation will not be addressed since this is a major research issue in its

own right. Hence, it is assumed that AGVs have some means of navigating from one

position to another.

1.2.1 Planning in a Dynamic Context

The approach to solving these problems will be largely influenced by the fact that the

factory scenario is dynamic. Changes and new requirements arise as plans are
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generated and executed. Changes are likely to occur since certain aspects of the real

world were inadequately considered or not considered at all in the model used by the

planner. Consequently, problems arise when the situation in the real world does not

match the expected outcomes in the plan. When this occurs, replanning is necessary to

salvage a failing plan. Such replanning situations generate new planning goals. New

requirements (e.g. from new orders) may also arise during execution. Rather than defer

consideration of these new requirements until the current set of plans have run their

course and then repeat the plan-and-execute cycle afresh, it may be advantageous to

exploit current circumstances and attempt concurrent execution of the new plans.

The implication of planning within a dynamic scenario is that plans must be computed

in good time to meet deadlines. Expeditious planning is thus necessary and this calls for

the use of fast algorithms, especially for problems which have to be repeatedly solved

during planning. Also, since dynamic planning needs to be prompt, it helps if its

preoccupation is with new tasks rather than with salvaging failing plans. An approach

to meeting this objective is to produce robust plans which tolerate minor execution

deviations. Tolerance of execution errors allow replanning to be deferred and reduces

the frequency of disrupting the dynamic planner. A larger proportion of the processor's

time is then available for planning new tasks. Hence plans for new tasks can be

generated more rapidly.

A second factor to consider in dynamic replanning within a multi-agent environment is

the effect of plan revision of one AGV on the plans of other AGVs. The modifications of

an AGV's plan may impinge on the plans of other AGVs, and the affected AGVs'

accommodations may in turn affect other AGVs, and so on. A need thus arises to prevent

or at least reduce the likelihood of a chain reaction of plan revisions. Robust plans which

reduces the need for dynamic replanning also help in this respect.
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1.2.2 Efficient Employment ofAGVs

Efficient usage ofAGVs means that the effort required to achieve the given tasks should

be economical. This is desirable for several reasons. First, less energy is expended if a

task is efficiently executed. Since AGVs are battery-powered and recharging is a

time-consuming process, it is desirable to have more tasks executed by the AGVs before

they turn in for long unproductive periods to recharge their batteries, t Second, AGVs
can be made available for their next tasks earlier, and this faster turnaround of AGVs

implies a smaller AGV cohort than required otherwise.

The effort involved in execution is tied closely to the distance which has to be travelled.

Hence the approaches I adopt in aiming for efficient usage of AGVs are centred on

distance minimization or reduction. The key question is: how can the overall distance of

travel be minimized? Or if minimization is too costly or not possible because of

mathematical intractability, what can be done to reduce it as far as possible in a

practical way?

Economy of effort will be achieved in three ways:

• Optimal task assignment. The assignment of tasks will be optimized from a

global perspective. This means that for a given set of tasks, the AGVs will be

assigned the tasks individually, one per task, such that the total of the

distances travelled to fetch and deliver the loads is minimized. I will propose

a fast and novel implementation of the Hungarian algorithm which was

originally described formanual application.

t A remedy to unproductive recharging spells is to replace the weak batteries instead of
recharging them. This requires human intervention or some mechanical means to
replace the batteries automatically. As far as I know, recharging and not replacement is
the method commonly used.
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• Optimal route planning. The planner will always select the shortest

trafficable routes. Although several algorithms are available to solve the

shortest path problem, I shall propose a bidirectional heuristically guided

search algorithm which is amenable to parallel implementation. This allows

concurrent development of the two search trees and may yield a search time

reduction of up to half the time it takes on a uniprocessor. Further time

reduction will also be achieved by exploiting routes learned previously. The

speed-up from route learning comes from: (1) instant availability of previous

solutions which matches the current problem exactly; and (2) use of learnt

partial solutions to reduce the search space and hasten termination.

• Collaborative planning. The second approach exploits the possibility of task

sharing. If one AGV can solve two tasks using the same route as it would take

if it set out to solve only one of the tasks, why use two AGVs? Collaborative

planning is the problem of generating plans in which AGVs assist each other

in task execution when the opportunity arises. Collaborative plans exploit

existing movement plans in planning for new tasks such that economy of

effort accrues. I shall be proposing efficient algorithms which search for

collaborative opportunities from among the set ofcurrently tasked AGVs.

1.2.3 Movement Planning

Movement planning involves generating a set of AGV movement schedules which

define the paths and the movement timings of the AGVs. The plans or schedules

generated must be safe i.e. conflict-free. Temporal projection is straightforward if plans

are generated prior to execution. All that is needed for temporal projection is an

interpolation of timings specified at waypoints along the route. Often this is not

necessary since the information required—when a load collection will occur and when a
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task can be expected to complete—can be looked up from the schedule of the movement

plan.

Besides temporal projection, how can movement planning produce robust plans which

will continue to be viable despite minor execution deviations? The approach taken is to

generate interval-based schedules instead of the usual point-based schedules. This

means that AGVs reserve intervals of time for its presence at various locations along its

route. During execution, it will plan to arrive and depart well within the reserved

intervals so that adequate leeway for deviations exists. If the actual arrival/departure

time differs from the planned time, it is nevertheless possible to arrive/depart within the

next downstream interval provided the deviant arrival/departure time remains within

the current interval. Hence replanning is not immediately warranted. By not incurring

dynamic replanning as often as would be the case if plans are less tolerant of execution

deviations, the dynamic planner can be free to devote its time to what really needs its

attention—planning for new tasks. This improves the likelihood of generating plans in

good time.

Interval-based planning means redundant allocation of resources. In the case of AGV

movement planning, the resource is time at a place. Redundant allocation aggravates

the conflict resolution problem—resource contention becomes more frequent. Two time

intervals which are not far apart in time are more likely to overlap than two time

instances. If two intervals overlap, then a potential conflict exists since no more than

one AGV can be at the same place at the same time. Resolving such conflicts necessarily

entails some compromise. The overlap between the intervals must be eliminated either

by shrinking or shifting the intervals. Shrinking reduces plan robustness and shifting

moves the planned arrival/departure time away from its initial ideal. The compromises

should be made in an equitable manner. If one AGV has to compromise much more than

another, then its plan would be relatively brittle and it is more likely to invoke dynamic

replanning, possibly leading to a chain of plan revisions. An auxiliary issue in the
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design of the AGV movement planner is thus to design a conflict resolution scheme

which achieves fairness. The iterative negotiation model will be proposed for this

purpose. In the model, AGVs are modelled as intelligent agents with negotiation skills

and they haggle over disputed resources until the conflict is resolved or in the event of a

negotiation impasse, a plan failure is reported and a new plan (e.g. using a different

route) will be sought.

1.3 Reader's Guide

This section describes the structure of the dissertation and gives a guide for the reader.

The chapters are presented in a bottom-up order. Hence the modules of the planner are

described first and then the planner itself.

Figure 1-1 gives the reader a guide at a glance. It describes briefly the contents of the

chapters and the orders in which chapters may be read. A more detailed description of

the contents of the main chapters follows:

• Chapter 2. Assigning tasks to AGVs is the first problem to be solved in planning

AGV movements. In distributed AI (DAI), this is similar to the task distribution

problem. The usual approach to this problem in DAI is based on a greedy

algorithm: assigning the tasks one at a time to the agent which can best undertake

each task. Although fast and simple, this approach leads to suboptimal

assignments. A better alternative is to use polynomially time-bounded optimal

assignment algorithms from combinatorial mathematics or graph theory. This

chapter describes a novel implementation of one such algorithm based on the

Hungarian method. I will show how the techniques of problem transformation,

reduction and decomposition can be applied, resulting in improved running time

by as much as 60% and yet without incurring extra memory costs. The algorithm

meets the planner's requirement of fast computation and efficiency.
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Figure 1-1. A quick guide for the reader.
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• Chapter 3. Following task assignment, the planner must compute the best routes to

be traversed by the AGVs to achieve their tasks. The main objectives here are to

minimize the time and energy required to achieve the tasks. It is assumed that

shortest paths meet these objectives. This chapter begins by surveying various

shortest path algorithms, discussing their relative merits and demerits. A case is

then established for bidirectional heuristic search which has the potential of

computing the shortest path fastest. A novel algorithm BS* is then described. BS*

is by far the most efficient bidirectional admissible search algorithm. It is also the

first search algorithm which prunes the search tree without sacrificing

admissibility. Empirical results will be presented to show that it performs better

than the previous best algorithm in the same class by about 30% in both time and

space. When implemented in a dual processor machine it can be expected to return

solutions in half the time A* takes and with only nominal penalty in memory

utilization.

• Chapter 4. Route planning can be made more efficient by exploiting previously

computed shortest paths. In order for exploitation to be possible, known shortest

routes must be remembered. Rather than record only the shortest route just

computed, all shortest paths embedded in the search trees should be extracted and

stored. This chapter describes efficient extraction algorithms and show how learnt

information can be used to achieve earlier termination in subsequent searches.

• Chapter 5. All planning systems make use of representations (models) of some sort.

For pragmatic reasons, the models are incomplete and simplified, and thus not

wholly accurate. Consequently, the outcomes during execution may not correspond

exactly to prior expectations. Such execution deviations may invalidate the

remainder of the plan. The conventional solution is to monitor the execution and

perform run-time replanning if necessary. These actions are not only costly but

may require a more complicated planning system. In some instances, replanning
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may not be achieved in time to salvage a failing plan. Tolerant planning is a way of

making plans more tolerant of execution deviations, not only of the executing

agent itself, but also of other agents in the same environment. This has two

important advantages: monitoring may be relaxed and less dynamic replanning

may be invoked. However, tolerant planning aggravates the resource contention

problem. To counter this, the iterative negotiation model is proposed. It seeks to

resolve conflicts fairly by mimicking negotiation acts in the real-world. Its main

merit is conceptual and representational simplicity—it does not require agents to

model any aspects of other agents, and thus escapes the logical intricacies of such

an approach.

• Chapter 6. This chapter describes how the AGV movement planner is implemented

based on the ideas discussed in preceding chapters. It argues a case for

interval-based plans and then describes: (1) how the concept of tolerant planning

can be applied to generate robust movement schedules; and (2) how the traffic

coordination problem can be solved using the iterative negotiation model.

• Chapter 7. The efficient utilization of AGVs can be further improved by using

opportunities for currently tasked AGVs to assist in the execution of new tasks.

This requires opportunities to be first identified and then realized in the new set of

plans. The chapter shows how a subset of these opportunities can be identified by

searching a collaboration graph. Patching in a collaborative plan can then be

achieved using the same techniques of tolerant planning and negotiation.
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Chapter 2

Task Assignment

2.1. Introduction

The task assignment problem is to determine how best to match a set of given tasks to

the available AGVs such that each AGV is assigned not more than one task. There are

two approaches to solving the task assignment problem in some optimal sense—local

and global optimization. This chapter proposes the global optimization approach since it

enables the tasks to be achieved with greater economy of effort. The main emphasis of

the chapter is on a novel implementation of the Hungarian method to achieve a globally

optimal assignment of tasks. I will show how some problem-solving

principles—problem transformation, reduction and decomposition (Nilsson, 1980)—can

be applied to solve the optimal assignment problem more efficiently than the

conventional approach.

Section 2.2 points out the importance of economy of effort in accomplishing tasks in this

specific AGV application. Section 2.3 describes a local optimization approach used by

Davies and Smith (1983) in their contract net metaphor. Whereas this is a greedy

algorithm which seeks to optimize for one task at a time, the other approach is to seek a
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global optimization (section 2.4) over the set of tasks. The latter can be achieved using

the Hungarian method (Kuhn, 1955; Anderson, 1974) described in section 2.4.2, or the

network flow method (Carre, 1979; Ford and Fulkerson, 1962). The network flow

method will not be described since it is similar in many ways to the Hungarian method

and both have similar worst-case orders ofcomplexity. Section 2.4.3 describes briefly the

Kuhn-Munkres algorithm (Munkres, 1957) which is the conventional implementation

of the Hungarian method. In section 2.4.4, I will describe a novel implementation of the

Hungarian method. A comparison is then made along with experimental results in

section 2.4.5 to show the superiority of the new implementation over the Kuhn-Munkres

algorithm.

2.2 Motivation

In every feasible assignment, a clear objective for the assignment procedure is to

minimize the distance which must be traversed to achieve the given tasks. This is

important because distance determines largely how much time an AGV must commit to

a task. The shorter the distance, the less time it needs to commit and hence can be

available earlier for other tasks. By this, the overall utilization of AGVs is made more

efficient.

Another reason why shorter distances are desirable is that one can expect less

occurrences of movement conflicts with other AGVs than if longer distances are

involved. Less conflict means less conflict resolution work for the planner. More

importantly, since conflict resolution results in other AGVs compromising their

preferred movement timings, shorter routes help AGVs to stick as close as possible to

their initial ideal plans. The impact of route length on conflict resolution will become

clearer in chapter 6 where conflicts between AGVs' movement plans are addressed.
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Efficiency is also improved in another sense. Energy is expended whenever an AGV

moves. Moving short distances helps conserve energy. With some AGVs having gross

weights of a ton or more it is certainly a plus to conserve energy. Energy conservation

also allows an AGV to undertake more tasks before it has to turn in to recharge its

batteries.

2.3 The Local Optimization Approach

The local optimization approach seeks to find the best way to assign one task at a time

and hence belongs to the class of greedy algorithms. The chief advantage of greedy

algorithms is speed, but at the expense of a globally optimal solution. The local

optimization algorithm (LOA) can be outlined as:

Algorithm 2-1:

procedure LocalOptfTaskList, Agents)

/* Assign the tasks to the candidates using a local optimization criterion.

*/

1. foreach x in TaskList do

2. Get the list of candidates from Agents capable of undertaking x.

3. Assign x to the candidate in the list which is best able to perform x.

endforeach

endprocedure

A simple way to implement the LOA in a distributed AI context is to adopt the

announce-bid-award sequence which Davies and Smith (1983) employ in the contract

net metaphor for task distribution. In this metaphor, task distribution begins when an

agent, known as the manager, has a task which it wants to delegate to one or more

agents known as the contractors. The manager will typically decompose the task into
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several subtasks and assign these to the contractors. If task decomposition is

unnecessary, it only needs to assign the task to one contractor. Any contractor assigned

a task or subtask may in turn repeat the task distribution process by assuming the role

ofa manager and seeking subcontractors.

The assignment of a task begins with the manager broadcasting an announcement

message. This step is analogous to a tender invitation in the business world. A

modification of it could be a kind of selective invitation wherein the tender is open to

some but not all of the possible contractors. Agents in receipt of the announcement

message evaluate their ability to undertake the task and, if possible and desirable, will

make a bid for the task by responding with a bid message to the manager. Bids have an

associated "cost" tag to indicate how much it would cost the manager to commission that

contractor for the task/subtask. When all the bids have been received or when the

bidding deadline has expired, the manager evaluates the bids according to some

criterion and awards the task/subtask to the best or least costly bidder. The assignment

process is completed by an award message sent to the successful bidder.

Greedy algorithms are often employed when the only known algorithms to produce a

globally optimal solution are of exponential complexity. For example, the travelling

salesman problem and others in the NP-complete class are sometimes solved by greedy

algorithms (Aho et al, 1983). However, in assignment problems, algorithms to produce

globally optimal solutions exist which are polynomially bounded in time and space.

Under what circumstances then is an LOA justified? Possible justifications are:

• When it is not possible to implement a globally optimal algorithm (GOA). For

example, if memory limited dedicated microprocessor systems are used, it may

not be possible to accommodate the more space-consuming GOA.
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• When tasks arrive at different times and the assignment of a task cannot be

held back till enough tasks have been accumulated for a more global approach.

However, this alone is no justification as we shall see.

• The economy ofa globally optimal solution is insignificant.

• The time to compute a globally optimal solution is nevertheless excessive.

In the AGV scenario, we can disregard the first point—inadequate memory space—since

task assignment should be solved by the central computer. Such a computer can be

safely assumed to have sufficient memory to meet the space requirements of a GOA.

The second consideration—urgency of tasks—is apparently valid since tasks may arrive

in batches as well as singly. But when only one task is to be assigned, a GOA is also

applicable: in this case, LOA and GOA return the same result.

AGVs

Tasks

1 2 3 4 5

1 9 9 11 17 19

2 8 9 18 12 10

3 7 19 11 18 14

4 9 11 13 12 5

5 1-4 15 9 16 14

LOA (worst case when task assignment
order is (2, 3, 5, 4, lib-

Solution: {(1,4) (2, 1) (3,3) (4,2) (5,5)}
Total cost: 61

Computation time: 0.01 sec.

GOA:-
Solution: {(1,2) (2,4) (3,1) (4,5) (5,3)}
Total cost: 42

Computation time: 0.2 sec.

Solution element (ij) refers to that in the ith row (task) and jth col. (AGV).
Value of each element is the cost of the corresponding task-AGV pair.

Figure 2-1. Comparison of LOA and GOA solutions.

The last two points—insignificant gain and excessive computational time—can be

refuted by way of an example. Figure 2-1 compares the solution quality and the time it

takes to assign five tasks. The matrix shows the costs of various AGV-task pairings. In

applying the LOA, unless task priorities are given, tasks are arbitrarily assigned

19



sequentially. In the example, the worst case assignment sequence is used. The LOA's

assignment solution has an overall cost of 61 units (e.g. metres). A GOA based on the

author's implementation of the Hungarian method has an overall cost of 42 units and

required only 0.2 second to compute. If the problem was scaled up to 10 tasks, the GOA

would typically require less than a second. Clearly, the time factor is insignificant, but

the cost savings can be significant and more so for larger task sets.

Although global optimization is computationally more expensive than local

optimization, the overheads can be easily afforded if implemented by a central

computer. Noting that for any assignment problem solved by an LOA, a GOA can solve

it at least as well, it is clear that the task assignment problem should be solved to meet

the global optimization objective.

2.4 The Global Optimization Approach

The global optimization approach seeks to solve the assignment problem such that the

total cost of the solution is minimized. This can be achieved without recourse to the

naive way of first enumerating all the possible solutions and then selecting the best.

Efficient ways of solving the optimal assignment problem are based on the Hungarian

method with its origin in combinatorial mathematics, and the network flow method

(Carre, 1979; Ford and Fulkerson, 1962) from graph theory.

2.4.1 Problem Representations

In general, the number of available AGVs differs from the number of tasks to be

assigned. The possible pairings of AGVs to tasks can be represented with a bipartite

graph (see Figure 2-2). In the graph, one set of nodes represents the available AGVs and

the remaining nodes form the other disjoint set representing the tasks to be assigned.

An arc linking an AGV node to a task node indicates that the AGV is capable of
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Tasks

Figure 2-2. A bipartite graph showing AGV-task pairings.

AGVs

1 2 3 4

1 3 5 9 5

Tasks 2 6 6 7 4

3 4 8 4 7

Figure 2-3. Matrix representation ofbipartite graph

undertaking the task. Arcs are also labelled with associated costs. Whereas the bipartite

graph representation is suited to the network flow method, we shall use a matrix data

structure (see Figure 2-3) to represent the bipartite graph in the Hungarian method. In

general, there will be some impossible AGV-task pairings. These impossible pairings

can be represented in the matrix with a large number much greater than any real arc

cost.
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2.4.2 The Hungarian Method

The foundations of the Hungarian method can be found in the works of Konig (1931),

Egervary (1931) and Hall (1935). Interestingly, these early researchers did not address

directly the problem of optimal assignment but established theorems in pure

mathematics which eventually led to the discovery of efficient algorithms of practical

importance. In particular, the first efficient algorithm to solve the optimal assignment

problem is credited to Kuhn (1955) who named his algorithm the Hungarian method in

honour ofKonig and Egervary, two Hungarian mathematicians who jointly developed a

theorem which played a vital role. Before I describe the Hungarian method, some

definitions are needed for clarity and conciseness ofelaboration.

2.4.2.1 Preliminary Definitions

G is a finite graph < V,E > where V is a finite set of vertices and E is a set of

edges = {eij | eij = (vi,vj), vi, vj € V}.

G is a bipartite graph ifV can be partitioned into two disjoint subsets X and Y

(i.e. XUY = V, XHY = 0) and none of the edges in E are such that both

vertices of the edge are in X or both in Y.

A path P is a sequence of edges.

P is a simple path if no vertex occurs more than once in it.

M is a matching ifM C E and all vertices in V are incident with at most one edge

in M.

The matching cost ofM is the total cost of the edges in M.

|M| denotes the the number of edges in M i.e. its cardinality.

M is a maximal matching if there is not another matching M' such that

|M'| >|M|.

M is an optimal assignment if G is bipartite and M is a maximal matching such

that there is not another maximal matching with a lower matching cost.
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A system ofdistinct representatives (SDR) in relation to a family of sets Si, S2,

Sn, is a set of elements such that all elements are dissimilar and each element

is in at least one set Si, i € [l,n]. Alternatively, for an nxn matrix, the SDR is

any n elements such that no two are in the same row or column. Such

elements are also called independent elements.

A line in a matrix is either a row or a column.

A minimal covering (MC) in relation to amatrix with some 0 elements is the

smallest set of lines which crosses out all the Os.

2.4.2.2 Description of the Hungarian Method

In this section, the description of the Hungarian method is based on Anderson's (1974)

elegant account of it. The method makes two assumptions: (1) the cost matrix is square;

and (2) all elements have positive non-zero cost values. The reason for the matrix being

square and a way to deal with rectangular matrices will be explained shortly. The

reason for the second assumption will become obvious in the following paragraphs. The

second assumption can be easily satisfied—simply increase every element by the same

constant value (say k) which makes all elements non-negative. This is allowed because

the relative costs of elements are unaltered and hence it does not affect the optimal

solution. Its only side-effect is to increase the total cost of the optimal assignment by nk

where n is the cardinality of the maximal matching. Knowing this, determining the

actual total cost is a trivial step.

Given a nxn cost matrix, a feasible solution to the optimal assignment problem must

satisfy two constraints. First, it must be a system of distinct representatives (SDR). In

the matrix representation, an SDR is equivalent to a maximal matching M. Hence we

may use the terms SDR and maximal matching interchangeably. Viewed another way,

the SDR or maximal matching problem is similar to the problem of placing n-rooks on a

nxn board such that no rook attacks another. The second constraint is that the matching
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cost of the SDR representing the solution is not greater than that of any other SDR.

(Where the context clearly refers to matching cost, the shorter term "cost" will be used.)

A naive approach to the optimal assignment problem is to exhaustively enumerate the

n! different SDRs and select that with the least cost. Fortunately, there are some neat

tricks to overcome this combinatorially explosive situation. These tricks become

obvious when certain observations are made.

The first observation is that the constraint of no two distinct representatives being on

the same line implies that if every element on a line is changed by x, then every SDR's

cost will also be changed by x. This relationship holds for both incremental and

decremental changes. Since the cost of every SDR is changed by the same amount, a

least costly SDR before the change was made retains its least costly status after the

change. This invariant line operation can be used to increase the number of 0 elements

in the matrix.t The way to do this is to take a line with elements which are all greater

than zero, and subtract the minimum value in the line from every element in it. This

will produce at least one more 0. Applied repeatedly, sufficient 0s will appear such that

we can pick n distinct 0 representatives. The selected 0s are also called independent 0s.

What has happened is that the optimal assignment problem has been reduced to a

simpler maximal matching problem which is to find n independent 0s. Since all

elements are non-negative, such an SDR having a zero cost is a least costly SDR and

thus qualifies as a solution. The actual cost of the optimal assignment is the sum of the

original costs of these independent 0s.

The reason why the Hungarian method only works with square matrices should be

evident now: if the matrix is not square, the above line operations do not possess the

invariant property. In other words, some line operations may alter the cost of an SDR

more/less than the other SDRs. Nevertheless, this limitation does not pose a problem for

t In this chapter, "0" refers to an element in the matrix with zero value whereas "zero" is
used in the numerical sense.
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rectangular matrices since these can be augmented with rows/columns to make them

square. In doing so, all the elements in the extra rows/columns must have the same

value which is greater than any cost value in the original matrix. Obviously, the

optimal assignment will contain extra elements from these fictitious rows/columns.

Omitting these extraneous elements gives the real optimal assignment. Although this

circumvention incurs extra computational effort, the Hungarian method is so fast that

the wastage is insignificant.t

The Hungarian method has two main phases. Recapitulating, phase I is to produce

sufficient Os to transform the optimal assignment problem into a maximal matching

problem, which is then solved in phase II. Phase I will be illustrated by two examples to

show how two different cases should be dealt with.

Phase I begins by applying the line reduction operation to every row and column which

does not already contain a 0.

In the first example, the initial cost matrix as shown in Figure 2-4a is transformed by

row reduction operations to that shown in Figure 2-4b. Since all elements are initially

non-zero, all five rows were reduced. Examining the columns next reveals that only the

second and last columns are free of 0s. Reducing these columns gives the final result

shown in Figure 2-4c. By inspection, we see that it has a set of 0s from which an SDR

(indicated by the bold 0s) can be chosen.

In the second example a different initial cost matrix is used (Figure 2-5a). Following the

initial row reductions (Figure 2-5b), only the second column should be reduced. When all

applicable lines have been reduced (Figure 2-5c), we find that there are still insufficient

0s to obtain an SDR.

t It takes on the average, about 13 seconds to work on a 50x50 matrix using the
NewHungarian procedure (section 2.4.4.9) implemented in Interlisp-D in a Xerox 1186
workstation.
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1

2

Tasks 3

4

5

AGVs

1 2 3 4 5

12 19 7 20 11

11 10 5 13 10

6 14 10 6 20

9 15 11 11 18

18 8 17 7 12

Figure 2-4a. Initial cost matrix.

5 12 0 13 4

6 5 0 8 5

0 8 4 0 14

0 6 2 2 9

11 1 10 0 5

5 11 0 13 0

6 4 0 8 1

0 7 4 0 10

0 5 2 2 5

11 0 10 0 1

Figure 2-4b. After row reductions.

AGVs

Figure 2-4c. After row and column reductions.

Tasks

1 2 3 4 5

1 12 19 7 20 11

2 11 10 5 13 10

3 6 14 10 6 20

4 9 10 9 11 18

5 19 11 18 11 8

5 12 0 13 4

6 5 0 8 5

0 8 4 0 14

0 1 0 2 9

11 3 10 3 0

Figure 2-5a. Initial cost matrix. Figure 2-5b. After row reductions.

5 11 0 13 4

6 4 0 8 5

- 9 - ■ -7- - - ■ - 9- -14

- 9 - ■ -O - - -0- • - 2- -9

-1-1- • -3- - - to ■ - 3- -0-

1 7 0 9 0

2 0 0 4 1

0 7 8 0 14

0 0 4 2 9

11 2 14 3 0

Figure 2-5c. After row and column reductions. Figure 2-5d. After matrix modification.
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Obviously, more Os must somehow be introduced. Having exhausted the line reduction

technique, a different procedure must be attempted. Such a procedure must also possess

the invariant property i.e. applying it does not change the status of the least costly SDRs

inherent in the initial matrix. This procedure shall be called the matrix modification

procedure. Its first step is to derive a minimal covering (MC) of the matrix because the

MC is related to the maximum number of independent Os which one can select from the

matrix. This fact comes from the Konig-Egervarymax-min theorem which states:

Theorem 2-1:

In a mxn matrix K, the maximum number of independent Os which can be

selected from K is equal to the minimum number of lines (rows or columns) which

together cover all the Os.

For a proofof this theorem, the reader is referred to Anderson (1974). The theorem gives

us a decision procedure for the question of when a matrix is saturated with sufficient Os

to produce an SDR, or when the matrix has been sufficiently reduced to the simpler

maximal matching problem. Note that it does not tell us how to compute an MC in the

first instant. It assumes that one can find an MC by inspection. We shall return to the

minimal covering problem in section 2.4.4.1.

If an MC is found to be inadequate, then it can be used to generate more Os via the

matrix modification procedure. This procedure has three main steps:

Algorithm 2-2:

procedure ModifyMatrix(K)

/* Generate more Os in the matrix K. Assumes that the MC is accessible

from a global variable. *1

1. Get the smallest number, s, not in the MC.

2. Subtract s from all the uncrossed columns.

3. Add s to all the crossed rows.
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endprocedure

In step 1, s will be greater than 0 since all values in K are non-negative and all Os are

within the MC. Step 2 will introduce negative values at affected Os. Observing that

these Os lie on crossed rows, we can return the negative values to 0 by applying a row

increment operation to these rows. This is what step 3 does. Alternatively, if in step 2,

the uncrossed rows are decremented by s, then in the step 3 the crossed columns should

be incremented by s.

The matrix modification procedure also possesses the invariant property because steps 2

and 3 which modify the matrix are invariant line operations. The effects of the

procedure are:

• All uncrossed elements are decremented by s.

• All elements crossed out once in the MC are unchanged.

• All elements crossed out twice in the MC are incremented by s.

Progress has been made in generating more promising Os in the matrix since at least

one new 0 has been introduced somewhere outside the previous MC. Notice that Os

which were doubly crossed have been lost. This is not a regressive event because such Os

are redundant—removing them does not change the MC required to contain the

remaining singly crossed Os. The new Os now allow the possibility of increasing the size

of the MC, which brings it a step closer to the final solution.

Returning to the second example, an MC for the matrix after row and column reductions

is shown by the dashed lines in Figure 2-5c. The minimum value of the elements outside

the MC is 4. Applying steps 2 and 3, we obtain the resultant matrix (see Figure 2-5d)

which now has enough well disposed Os to yield an SDR as shown by the bold Os. We

shall refer to any MC which covers an SDR as a complete MC.
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We can now outline the Hungarian method more formally as follows:

Algorithm 2-3:

procedure Hungarian(K)

/* Given a nxn matrix K, return an optimal assignment. */

vars N, C; /* local variables */

1. Let N be the number ofpairings in the optimal assignment.

2. Reduce all applicable rows and columns.

/♦ Phase I. */

3. Obtain a minimal covering C.

4. if |C| < N then

5. ModifyMatrix(K)

6. Go to step 3.

7. else Compute an SDR. /* Phase II. */

endif

8. Return the SDR

endprocedure

Without defining the computational procedures for steps 3 and 7, one can only apply the

Hungarian method manually with inspection. Even so, it would be difficult to inspect

large matrices. In fact, the conventional implementation of the Hungarian method does

not follow exactly the steps just outlined.

2.4.3 Conventional Implementation of the Hungarian Method

First, a few more definitions are needed. These are relative to a matching M.
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A matched vertex is one which is in some edge ofM; otherwise it is an unmatched

or free vertex.

A matched edge is an edge in M; otherwise it is an unmatched edge.

P is a simple path if no vertex occurs more than once in it.

P is an alternating path if it is simple and for every pair ofconsecutive edges in

P, only one of them is matched.

P is an augmenting path if it is an alternating path and its first and last edges

are unmatched.

The augmented matching M' = M©P where © is the symmetric difference

operator. © is also the exclusive or operator.

The conventional implementation of the Hungarian method is attributed jointly to

Kuhn (1955) and Munkres (1957). Originally developed to solve the optimal assignment

problem for bipartite graphs, it was later extended by Edmonds (1965) to cope with

general graphs. The following outline of the bipartite graph version is a variation of the

Hungarian theme:

Algorithm 2-4:

procedure Kuhn-Munkres(K)

/* Given atixn matrix K, compute an optimal assignment. */

vars N, M, P; /* local variables. */

1. Let N be the number ofpairings in the optimal assignment.

2. Reduce all applicable rows and columns in K.

3. Obtain arbitrarily an initial matching M.

4. if |M| =N

5. then return M as the solution; exit

endif

6. Find an augmenting path P relative to M.
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7. ifPis found

8. thenM <-M©P

9. Go to step 4.

else /* the process of finding an augmenting path also enables an

MC to be identified. */

10. Apply the matrix modification procedure using the MC found.

11. Go to step 6.

endif

endprocedure

Whereas the original Hungarian theme emphasizes the development of a complete MC

which specializes the original problem to a maximal matching instance, the

Kuhn-Munkres procedure emphasizes the use of augmenting paths to boost the

matching size.

The procedure maintains a matching at every iteration of the main loop (steps 4 to 11).

At each iteration, an augmenting path is sought. If found, the matching is augmented

and the termination test is applied. Otherwise, the matrix modification procedure is

applied to generate more promising 0s. (It happens that the labelling procedure (Ford

and Fulkerson, 1962) for identifying augmenting paths also yields an MC if no

augmenting path can be found. This is one advantage of the conventional approach; it

does not require a separate procedure for finding an MC.) Following this, the search for

an augmenting path is resumed afresh.

The complexity of the Kuhn-Munkres procedure is 0(n2v2) (Bondy and Murty, 1976,

pg. 90).t The more general algorithm of Edmonds has a complexity of 0(v4). Gabow

(1973) gives a 0(v3) algorithm applicable to general graphs. It is also based on

t In this chapter, complexity terms such as O(nv) refer to time complexity, with n and v
denoting the cardinality of the maximal matching and the number of vertices in the
graph respectively.
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augmenting paths. However, Gabow's algorithm does not guarantee that the solution

will be of maximal cardinality although its overall cost is optimal. This is a serious

limitation for the AGV movement planner—some tasks may be left unassigned!

2.4.4 A Novel Implementation of the Hungarian Method

In the preceding two sections, we have seen how the Hungarian method can be

manually applied to derive an optimal assignment. The conventional computational

implementation (the Kuhn-Munkres procedure) was also outlined. A point was

emphasized that the conventional approach does not strictly follow the main steps of the

Hungarian procedure (Algorithm 2-3).

The absence of a strict implementation for the original elegant form of the Hungarian

method motivated me to seek an efficient implementation for it. This section describes

an original contribution to this quest.

A strict implementation of the dual phase Hungarian method can take advantage of the

strategy of problem transformation—the original optimal assignment problem is

translated to a simpler maximal matching problem. The novel implementation

described in this section follows this course. It emphasizes the use of an ideal or

preferred MC in phase I. Such an MC enables the application of the problem

decomposition strategy so that the ensuing maximal matching problem in phase II can

be solved more efficiently. Instead of subjecting a matrix of size nxn to the maximal

matching problem, the ideal MC yields two submatrices from the original matrix which

can then be examined more expeditiously for their component SDRs. A third submatrix

can also be identified as non-contributory to any SDR being sought. Narrowing the

search space in this way is an example of the strategy ofproblem reduction,t Another

t Problem reduction differs from problem decomposition. The latter refers to the case of
a problem P which can be split into two or more subproblems which can then be solved
independently; their solutions constitute P's solution. The former refers to the case of a
problem P which can be scaled down to a smaller problem P\ and solving P' solves P as
well.
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feature in this implementation is that a nonempty subset of the independent Os is often

found in phase I in the course of computing an ideal MC. Consequently, phase II only

needs to search for the remaining independent Os instead of all of them—another

manifestation of the problem reduction strategy.

I will first elaborate in section 2.4.4.1 on the notions of ideal and preferred MCs. These

play a central role in the new implementation. Section 2.4.4.2 explains the matrix

marking scheme used in the course of finding independent Os and lines forming an MC.

Section 2.4.4.3 shows how to identify an obvious subset of the independent Os, a step

which narrows the scope of the problem. Sections 2.4.4.4 and 2.4.4.5 explain the use of

a- and P-lines to form an MC. A procedure to construct an MC is described in section

2.4.4.6. In section 2.4.4.7, I will show how the procedure can be modified to construct a

preferred MC. Section 2.4.4.8 shows how a preferred MC enables the remaining

independent Os to be found more efficiently by splitting the problem into smaller

independent subproblems. It also outlines two maximal matching algorithms, either of

which can be used to find the remaining independent Os. Finally, section 2.4.4.9

presents the main algorithm.

2.4.4.1 Ideal and Preferred Minimal Covering

In general, for a given disposition of Os in a matrix, several MCs exist. The number of

elements (Os and non-Os) within one MC may be different from that of another. Since

the maximal matching phase has to seek out independent Os from among these

elements, the smaller the number of elements the less will be the search effort. This

suggests that we should use an ideal MC which has the least number of elements. The

term spread will be used to refer to the number of elements which are crossed out only

once in the MC. Doubly crossed elements are excluded because they cannot contribute to

any SDR (inherent in the MC) and thus need not be searched (section 2.4.4.8). Note that

spread differs from the size of the coveringwhich refers to the number of lines in the MC.
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In order to compute an ideal MC, its composition must be quantified. This is given in the

following theorem:

Theorem 2-2:

For a nxn matrix, a complete minimal covering of r rows and c columns is ideal if

r= Ln/2J.t

Proof:

Since the minimal covering is complete, r+ c=n.

Let S be the spread of the covering.

The MC is ideal if S is minimal.

S= nr + nc - 2rc

= n2 - 2rc

= n2 - 2r(n - r)

dS/dr = 4r -2n

= 0 when r = n/2.

Therefore, S is minimal when r = n/2.

Note that r must be an integer.

When n is even, an integer value for r which minimizes S is n/2 = Ln/2J.

Consider next the case of n being odd.

n/2 must take an integer value which minimizes S.

Since S is monotonically decreasing with r when r < n/2, and S is monotonically

increasing with r when r > n/2, the two integer values for r which can possibly

minimize S are Ln/2 J and fn/21.

Since Ln/2J + Tn/21 = n,

when r = Ln/2J, c= n - Ln/2 J = Tn/21.

and when r = Tn/21, c= Ln/2J.

t L J and fl are the integer floor and ceiling functions respectively.
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Either way, rc= Ln/2Jrn/21, and the minimal S = n2-2Ln/2 J rn/21. [1]

Hence either r = Ln/2J or r= fn/21 minimizes S.

Corollary 2-2-1:

The spread ofan MC is minimal if:

r = c when n is even;

or |r - c| = 1 when n is odd.

The economy of search using an ideal MC is highly significant. This is evident from the

ratio Smin:n2 where Smin is the spread of an ideal MC and n2 is the total number of

elements which would have to be searched without the benefit of an MC to constrain the

search, as would be the case in the conventional application of a maximal matching

algorithm. From [1] in the preceding proof, it is clear that Smin:n2= 0.5. Hence we can

expect about 50% reduction in the time phase II takes. If an ideal MC is indeed

obtainable, the reduction is even greater when some of the independent 0s have already

been found in phase I.

12 3 4

Ideal MC requires 2 rows and 2 columns to be crossed.
But crossing any 2 rows leaves 0s in at least 3 columns.
This disposition of 0s does not yield an ideal MC.
However, a preferred MC (rows 1, 2, 4 and col. 3) exists.

0 0

0 0 0

0

0 0

Figure 2-6. Non-existence of an ideal minimal covering.

In practice, an ideal MC may not exist because the set of MCs is constrained by the

disposition of the 0s. For example, the 0s in Figure 2-6 cannot be contained in any ideal

MC comprising 2 row and 2 column crossings. (In most of the matrices illustrated in this

chapter, only the 0s are shown.) The best recourse then is to aim for an MC which is
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closest to the ideal. We shall refer to such an MC as a preferred MC. It can be found by

selecting an MC comprising r rows and c columns, and satisfying the criterion:

min(|r-c|).

In subsequent sections, a preferred MC should be taken to mean a preferred if not ideal

MC.

2.4.4.2 Marking Scheme

Initially, all rows, columns and Os in the matrix are labelled unmarked. A 0 element

can be selected as a member of an SDR only if it is unmarked. When an unmarked 0 is

selected, it along with other Os in the same row and column are marked. We also mark

that row and column. This marking scheme is necessary to ensure that no two selected

Os appear in the same row/column.

2.4.4.3 Primary and Secondary Singular Os

1 2 3 4 5

1

2

3

4

5

-©
1 1

0

0 0

0 ■

0 0 ■

; 0

; : 0

Singular Os are shown as big bold Os.
The only primary singular 0 is boxed.
Secondary singular Os are unboxed.
Partial MC defined by the a-lines
depicted by dashed lines.

Figure 2-7. Primary and secondary singular Os.

The possibility of phase I terminating with the discovery of some independent Os which

must be in a feasible solution depends on the presence of singular Os. A singular 0 is one

which appears as the only unmarked 0 in a line. Note that even if an unmarked 0 is

alone in the row it occupies but not so in the occupied column, it is considered singular.

Singular Os can also be classified either as primary or secondary. The former are those
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which appear alone in a line; no other Os, marked or unmarked share that line. All

other singular Os are secondary; they are the result ofmarking the other Os sharing the

line. For example, the singular Os in Figure 2-7 are shown in bold with the primary

singular 0 shown boxed as well.

Singular Os are important for two reasons. First, they form the set of independent Os

which is a partial SDR at the end of phase I—if row (column) i has only one unmarked 0,

there is no alternative but to take that 0 as the row's (column's) representative. Second,

an initial partial covering for the singular Os can be trivially found, reducing the scope

of the minimal covering problem. Thus phase I can be split into two subphases: la, which

is to compute the set of singular Os and its partial covering Cl, followed by lb, which is to

compute the remaining or complementary minimal covering C2. The complete minimal

covering C is C1UC2. Phase la can be implemented along the following lines:

Algorithm 2-5:

procedure SingularOs(K)

/* Phase la: Given a matrix K, compute the set SingZ of singular Os and its

partial cover Cl which is represented by RowCoverl and ColCoveri */

vars SingZ; /* local variable */

1. Label all Os, rows and columns as unmarked.

2. SingZ <— RowCoverl *— ColCoveri <— { } /* RowCoverl and ColCoverl are

global variables */

3. until no line has a single unmarked 0 in it do

4 Choose an unmarked 0 which appears alone in a line;

5. SingZ «- SingZU{(i, j)} /* i and j are the row and column positions of

the unmarked 0. */

6. if it is the only unmarked 0 along its row

7. then ColCoveri *- ColCoveriU{j}

8. else RowCoverl <— RowCoverlU{i}
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endif

9. Mark that 0 and all other Os in row i and column j.

10. Mark row i and column j.

enduntil

11. Return SingZ.

endprocedure

In steps 6 to 8, it is the line orthogonal to the singular direction which is selected as a

member of the covering. The reason is that for a covering to be minimal, any line which

is constrained to pass through a singular 0 must eliminate the maximum possible

number of 0s. For example, if row 1 in Figure 2-8, being the direction of singularity, is

included in the covering the other 0 must be crossed out by another line. This covering

comprising 2 lines is not minimal since column 2 alone suffices.

1

2

Figure 2-8. Minimal covering is simply column 2.

2.4.4.4 a- and [J-lines

The lines in the partial covering Cl found in phase la are called a-lines to distinguish

them from the fi-lines which will be found in phase lb to complete the MC. This

distinction is useful because the remaining unknown members of the SDR are

determined from the [Mines. It is unnecessary to search among the a-lines because

these have yielded the partial SDR represented by the variable SingZ.

For example, the a-lines in Figure 2-7 are columns 1, 3 and 4 and SingZ = {(l,l), (2,4),

(3,3)}.

1 2

0

0
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Note that at the end of phase la, the elements outside the marked lines form a

submatrix of size (n-|SingZ|)x(n-|SingZ|). This is the resultant submatrix after deleting

from the original matrix the rows and columns marked in phase la. We shall refer to

this submatrix as K{3. Note also that all its lines have at least two Os. There cannot be

any 0-free line because the preliminary row and column reduction operations prior to

phase la guarantee that every line has at least one 0. There cannot be any line with a

single 0 in it because it would have been marked in phase la and therefore excluded

from the submatrix. The good news is that instead of searching for a preferred MC over

a matrix of size nxn, we now have a smaller submatrix to work on in phase lb—the

strategy of problem reduction. Correspondingly, the final phase II only needs to search

among a smaller set of (Mines.

2.4.4.5 Flippable Sets of (J-lines

1

2

3

Figure 2-9. A minimal covering of (Mines.

Suppose we have the set of (Mines defining an MC for the submatrix as shown in Figure

2-9. The {Mines along rows 1 and 2 can be replaced by {Mines along columns 1 and 4

without affecting the size of the MC. (The terms fi-row and column will be used to refer

to the horizontal and vertical (Mines respectively.) These two sets of (Mines are said to

be flippable since they are interchangeable. The importance of this notion will become

clear in the next section.

12 3 4

-0- - 0

-0- - -0

. 0- ■ -0-
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2.4.4.6 Constructing Minimal Coverings Recursively

The algorithm which derives an MC is based on the recursive construction of MCs—the

strategy ofproblem decomposition. To find the MC of a nxn matrix K, we split K into two

submatrices K1 and K2 with dimensions lxn and (n-l)xn respectively. Repeat the

procedure on K2 until the base case is reached in which the new K2 is just a row. The

problem then is twofold: (1) determine an MC for the base case; and (2) determine an

MC for K given that ofK2 and the disposition of Os in Kl.

The base case can be solved easily. Since there are at least two Os in that row (recall

that the submatrix passed on to phase lb has at least two Os in every line), the MC for

the base case must be the row itself.

1 2 3 4 5

0 0

■ -0 - - -0- ■

-0- • -0 -

•0- - -0- - - 0

Kl

K2
$-rows 1 and 2 can be flipped
to cross out the Os in Kl.

Figure 2-10. Contriving the coverage ofOs in Kl.

1 2 3 4 5 6

0 0 Kl

1 -0- - - 1 - "

•

- r - -0 - - -0- ■ - 0-

2 0 0

3 0 0

4 o 0

5 -O -
. J . . . L . -0 - - -0- - - 0-

K2 ^-columns 2 and 3 also
cover the Os in Kl.

Figure 2-11. Fortuitous covering of Os in Kl.
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The construction of an MC for K is more subtle. Either a new P-line is needed to cover

the Os in Kl, or a fortuitous event may happen such that the Os ofK1 are covered by K2's

P-columns. The latter event may also be contrived by flipping a set of P-rows in K2. As

long as fortuity and contrivance are allowed to pre-empt the introduction of a new

P-line, the construction process will guarantee that K's covering is minimal. Examples

of the contrived and fortuitous cases are shown in Figures 2-10 and 2-11 respectively.

The strategy of recursive construction begs the question of how to determine when a

new P-line is unnecessary, or when will fortuity or contrivance be pre-emptive in the

way described above. The first step is to mark all Os in Kl which are crossed by K2's

P-columns. If no unmarked Os are left in Kl then fortuity has taken its course.

If the situation is not fortuitous, we have to look for a flippable set ofP-rows in K2 which

if flipped will cross out the remaining unmarked Os. If such a set exists, then we contrive

a fortuitous state by flipping these P-rows. The problem of finding a flippable set is best

solved by a goal-directed approach using Algorithm 2-6.t It is more intuitive and

elegant than the alternative approach ofexamining K2's P-rows directly.

Algorithm 2-6:

procedure FindFlipSet(Kl,K2)

/* Given row Kl and matrix K2, compute the set TP of tentative P-columns

and the set Fp of P-rows made redundant by the tentative P-columns.

Returns a stack containing the results. */

vars TP, Fp; /* local variables */

1. TP <-Fp <— { }
2. foreach column c ofKl containing an unmarked 0 do

3. Tp<-TpU{c}

^ In the following algorithms, it is assumed that the sets of a- and P-lines are globally
accessible.
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endforeach

4. foreach r in the fi-rows ofK2 until |TfJ| = |Fp| do

5. if all the singly crossed Os in r are covered by TP

6. then F0 Fpu{r}
endif

endforeach

7. Return {|Tp|-|Fp|,FP, TP)
endprocedure

Having set the stage, the recursive algorithm to compute an MC can now be defined:

Algorithm 2-7:

procedureGetMinCover(KMat)

/* Given a matrix KMat, find a set of P-lines which comprises a minimal

covering for KMat. */

vars Kl, K2, Stack, N, Fp, TP, SubCoverSize; I* local variables */

1. ifKMat is a row /* base case */

2. then Add the new P-row which crosses out KMat's Os.

else

3. Arbitrarily split KMat into a row Kl and a rectangular matrix K2.

4. GetMinCover(K2)

5. Mark every 0 in Kl which is crossed by a P-column.

6. if all Os in Kl are marked

7. then exit procedure I* fortuitous event */

endif

/* Kl has some unmarked Os. We should then check whether a

flippable set ofP-rows can be flipped to cover the unmarked Os ofKl.

*/

8. Stack <-FindFlipSet(Kl,K2)
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9- N«- pop(Stack) /* JJ denotes the shortfall of P-rows to form a

flippable set. */

10. FP «- pop(Stack) /* FP denotes the potential flippable set ofP-rows. */

11. TP ^-pop(Stack) /♦ TP denotes the tentative P-columns */

12. ifN = 0

13. then /* Fp and TP are flippable sets and a fortuitous state can

be contrived by flipping Fp. */

14. Delete all P-rows in Fp.

15. Confirm as P-columns those in Tp.

16. else Add the new P-row which crosses out Kl's 0s.

endif

endprocedure

An example illustrating the recursive construction ofan MC is shown in Figure 2-12.

Instead of splitting the matrix KMat along a row, we could alternatively split along a

column. However, the procedure requires that every recursion usefthe same direction of

split.

2.4.4.7 Constructing Preferred Minimal Coverings

This section describes how procedure GetMinCover can be modified to find a preferred

MC.

The main idea is to increase whenever possible and desirable the number of P-columns

so thatAdifference between the number ofP-rows and the number ofP-columns in the MC

is minimized. Recall that this is the condition for an ideal MC which has to be searched

for independent 0s (see end of section 2.4.4.1). This deliberate increase of the number of

P-columns supplements the compulsory P-columns (due to fortuity and contrivance) so
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Figure 2-12. Recursive construction ofan MC.
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that a better proportion of P-rows and P-columns is obtained. For example, an ideal MC

for a 4x4 submatrix Kp has two P-rows and two P-columns. Ifat some intermediate stage

of the GetMinCover procedure, the number ofP-rows found thus far is two, and there is a

choice of a new j3-line being either a row or a column, it is better to use a P-column since

this gives a preferred (in fact, ideal) MC.

The strategy to construct preferred MCs poses two questions: (1) when is it desirable to

increase the number of P-columns apart from necessity due to fortuity and contrivance?

(2) when is it possible? The question of desirability has been answered in the preceding

paragraph when the rationale for the strategy was explained. The other question of

possibility needs to be tackled under two circumstances.

1 2 3 4 5

0 0

2 6 6

3 ■J - ■ - 9 - • -0 - .J.. - 9

4 0 0

5 r - - 0- ■ - r " -0

K1

K2

Kl's 0 at (1,4) is covered by a P-column.
Its only unmarked 0 at (1,2) can be covered
by a new P-row at row 1
or a P-column at column 2.

Figure 2-13. Possibility ofa new P-column at column 2.

The first is when there remains only one unmarked 0 in K1 i.e. it is the only 0 not

covered by the existing P-columns. Since this 0 can be crossed by either a P-row or

P-column passing through it, an opportunity thus exists to increase the number of

P-columns by one. Figure 2-13 shows an example.

Secondly, even when there is more than one unmarked 0, it is still possible to increase

the number of P-columns if the addition of q new P-columns at the positions of the

unmarked 0s of K1 makes q - 1 P-rows in K2 redundant i.e. the 0s which these P-rows
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cover, are now covered by the new P-columns instead. The event occurs when at the end

of procedure FindFlipSet, |T(3| - |Fp| = l. This point is expanded in the proof of the

following theorem and also by way ofan illustration in Figure 2-14.

0 0

2 -0- -
- -0-

3 . .0. . . 0.

4 - -0- - - 0- -0

K1

K2

When procedure FindFlipSet returns,
the set of tentative P-columns in TP is {1, 4},
the set ofP-rows in Fp is {2}.
The condition |Tp| - |FP| = 1 allows an MC
to be formed by adding the P-columns in Tp
and deleting the redundant P-row in Fp.

Figure 2-14. Possibility ofnew P-columns at columns 1 and 4.

Theorem 2-3:

If at the end of procedure FindFlipSet, |Tp| - |Fp| = 1, then the new set of P-lines,

formed by deleting the P-rows in Fp, and adding the P-columns in TP, constitutes

an MC for KMat.

Proof:

Suppose n is the cardinality of the MC of K2 and |Fp| = k.

Since procedure GetMinCover invoked FindFlipSet, a fortuitous event has not

occurred (see lines 6 to 8 ofAlgorithm 2-7).

A fortuitous event cannot be contrived since this requires |Fp| - |Tp| = 0 (lines 12

and 13 ofAlgorithm 2-7).

Since fortuity and contrivance did not pre-empt the need for a new P-line, the

cardinality of KMat's MC must be n -I-1.

If the tentative P-columns in TP are accepted, then the k - 1 redundant P-rows in

Fp can be deleted without leaving any 0 in K2 uncovered.

Since the Os of K1 are covered by the new P-columns, all the Os in KMat are

therefore covered.
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Since the new P-columns exceed the deleted P-rows by 1, there are now n + 1

[Mines which thus constitute an MC for KMat.

Theorem 2-3 gives a decision procedure for introducing a new P-column in place of a

P-row across Kl. Another way of viewing this is to observe that when |T[5| - |Fp| = 1, a

P-row across Kl teams up with those in Ffl to form a flippable set and it is this set which

has been flipped.

Theorem 2-3 is central to the algorithm which finds not just an MC but one which is also

preferred. It gives us a way to avoid increasing the number of P-rows which would

otherwise increase the spread of the MC of submatrix K{5.

Finally, here is how procedure GetMinCover can be modified to find a preferred MC.

Simply replace line 12 in Algorithm 2-7 with the following:

if N = 0 or (N = l and increasing the number of P-columns, by

including those in TP and deleting P-rows in Fp, reduces the

spread of the MC of the submatrix Kp)

The modified procedure will always attempt to find a preferred MC. But this is not

necessary because it is the final complete MC which should be preferred. Intermediate

MCs serve only to generate more Os via the matrix modification procedure. So it seems

that efficiency has been impaired by prematurely looking for the preferred MC. The

solution, then, is to apply the unmodified version of GetMinCover until a complete MC

surfaces. The P-lines are then reconstructed, this time using the modified version of

GetMinCover. Thus there is a trade-off: in an attempt to avoid unnecessary search for a

preferred MC, an additional construction ofP-lines is necessary. The worth of it depends

on the problem size. With large matrices we can expect more intermediate coverings

will be computed before reaching phase II and the changes will be more worthwhile.
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2.4.4.8 Phase II: Maximal Matching

When a preferred MC of sufficient size is found to guarantee (according to Theorem 2-1)

that enough Os exist for an SDR to be found, phase II is entered. Recall that phase la will

typically have found some of the independent Os which must be in any SDR. Phase II

only needs to look for the remaining independent Os among the ji-lines specially

constructed to give the least possible spread so that the search effort in this phase is

minimized.

1

2

3

4

5

6

Figure 2-15. Problem reduction and decomposition via J3-lines

There is another important advantage of this special combination of (5-lines: it gives

another opportunity for the strategies of problem decomposition and reduction to be

applied within phase II. Figure 2-15 illustrates this point. The P-lines are rows 4, 5 and

6, and columns 5 and 6. The elements covered can be represented with the 3

submatrices P, Q and R. Os in R are doubly crossed; picking any one will mean that no

other Os along the two J3-lines through it can be selected. If we are to have as many

independent Os as there are {5-lines, any selected 0 must "consume" only one P-line.

Hence phase II can disregard Os in R, thus reducing the scope of its problem to P and Q.

Now observe that picking any 0 in P does not affect selection of Os in Q (and vice-versa)

since P and Q have no common rows or columns. P and Q are thus independent and

phase II can be applied twice, once to P and then to Q. Effectively, the original problem
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has been decomposed into two smaller independent problems which can be solved more

readily.

The final step is to compute the component SDRs of P and Q. Their union with SingZ

(the component SDR from Cl, the covering of a-lines discovered in phase la) is the

complete SDR. We can use either of two existing methods for computing an SDR given

any O-saturated matrix which has sufficient Os to guarantee the existence of a solution.

The first method is attributed to Hall (1935). It is based on a constructive proof of his

theorem on systems of distinct representatives which is more commonly known as the

marriage theorem (given a set ofmen and women, and each man has a set of women he

finds acceptable, then every man can be married to an acceptable woman if and only if

for any k sets, their union contains at least k distinct women). The proof is constructive

because it derives a maximal matching as a result of the proof. Here is the algorithm to

compute a maximal matching:

Algorithm 2-8:

procedure MaxMatch(KMat)

/* Compute a maximal matching (SDR) for KMat. */

vars M, P; /* local variables */

1. M «- { } /* any matching can be used initially. */

2. Find an augmenting path P relative to M. /* see Christofides (1975) */

3. M *-M®P /* augmented matching now has one more member */

4. ifM is not maximal

5. then Go to step 2.

endif

6. Return M.

endprocedure
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Figure 2-16c. Augmented match MffiP.

The key to procedure MaxMatch is to find an augmenting path relative to amatching M.

If M is not maximal then such a path must exist according to a theorem later established

by Berge (1957). The significance of the augmenting path is that it can be used to

increase the current matching by an additional member. For example, Figure 2-16a

shows the bipartite graph which is represented by the submatrix Q (Figure 2-15). Os in

the matrix appear as edges in the graph. A current matching is shown as a set of edges

in bold. An augmenting path relative to it is shown in Figure 2-16b. Applying the

symmetric difference operator © means that the new matching is constructed by

deleting the edges in M which are in P and adding the unmatched edges of P to M (see

Figure 2-16c). Since P's unmatched edges exceed the matched edges by one, the

cardinality of the new matching is increased by one. Repeating the augmenting process,

the maximal matching is bound to be found eventually.
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The second algorithm also relies on augmenting paths. Developed by Hopcroft and Karp

(1973), it uses a maximal set of vertex-disjoint shortest augmenting paths relative to M,

instead of just any one augmenting path. It can be implemented by replacing steps 2

and 3 in Algorithm 2-8 with:

2. Let L be the length of the shortest augmenting path relative to M.

Find a maximal set ofaugmenting paths {Pi, P2,..., Pr} such that:

a. Vi€[l,r],|Pi| = L.

b. all the Pi's are vertex-disjoint.

3. M*-M©Pl©P2© ... ©Pr

Although this modification has a better complexity order—0(n2-5) against 0(n3) of the

original algorithm—it is more complicated. Computing the maximal set of

vertex-disjoint shortest augmenting paths is not at all a trivial step. Its practical

efficiency remains to be gauged by empirical evidence. This is important because

efficiency also depends on the complexity's constant of proportionality. If this is large,

theoretically less efficient algorithms with smaller constants of proportionality may

turn out to be more efficient in reality (Aho et al, 1983, pp. 20-21).

2.4.4.9 The New Implementation

Here is the outline ofhow the new implementation of the Hungarian method is coded:

Algorithm 2-9:

procedure NewHungarian(K)

/* Given a matrix K of cost values, compute an optimal assignment.

Assumes a- and P-lines are globally accessible. */

vars N, K{5, P, Q, SingZ, SI, S2; /* local variables */

1. Let N be the number ofpairings in the optimal assignment.

2. Reduce all applicable rows and columns in K.



/* Phase la: compute the initial partial MC and SDR defined by the a-lines

and SingZ respectively. */

3. SingZ *- SingularOs(K)

4. if number ofa-lines < N

then/* Phase lb: compute rest of the MC. */

5. Form submatrix Kp by removing from K all rows and columns

marked in phase la.

6. GetMinCover(Kp) /* GetMinCover computes the P-lines for Kp

*/

7. if total no. ofa- and P-lines < N

then /* matrix is not saturated with independent Os. */

8. ModifyMatrix(K)

9. Go to step 6.

endif

/* Phase II: complete MC has been found; proceed to find the

other independent Os. */

10. Construct independent submatrices P and Q from Kp.

/* P and Q contain the elements in Kp which are crossed only

once by a P-column and P-row respectively. */

11. Si MaxMatch(P)

12. S2 <— MaxMatch(Q)

endif

13. Return SI U S2 U SingZ.

endprocedure

As far as I can ascertain, there is no other computational implementation strictly

following the main steps ofAlgorithm 2-3; NewHungarian is the first. The conventional
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Kuhn-Munkres implementation described in section 2.4.3 is a variation of the original

Hungarian theme.

The reader can refer to appendix A for a proof of NewHungarian's termination and that

it has a complexity of0(n4).

2.4.5 Comparison of the NewHungarian and Kuhn-Munkres

Procedures

The main differences are:

• NewHungarian being a strict implementation of the Hungarian theme has two

main phases; Kuhn-Munkres has only one phase. A single phase implementation

loses the intuitive clarity of the Hungarian theme, but it gains two advantages:

(1) it is easier to code—for example, it does not require code to compute a

maximal matching as in phase II; and (2) it does not require a special procedure

to find an MC since this can be derived from the same labelling procedure for

finding an augmenting path.

• NewHungarian makes use of augmenting paths in phase II after a complete MC

has been found whereas Kuhn-Munkres uses augmenting paths before such an

MC has been found. NewHungarian is thus able to derive an SDR with zero or

more successive augmentations of the suboptimal matching. In Kuhn-Munkres,

augmentation will typically involve several interludes of the matrix modification

procedure.

• The matrix modification procedure serves different roles. In NewHungarian, it

serves to increase the size of the MC. In Kuhn-Munkres, it serves to produce an

augmenting path.
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• NewHungarian emphasizes the identification of a preferred MC as its first

objective whereas Kuhn-Munkres emphasizes augmentation of its suboptimal

matching as its sole objective; the MC appears as an incidental by-product in its

pursuit ofaugmenting paths.

• NewHungarian's complexity is 0(n4) whereas it is 0(v2n2) for the

Kuhn-Munkres algorithm.

NewHungarian and Kuhn-Munkres are similar in that minimal coverings, augmenting

paths, and matrix modification feature in both, although in different order and

emphasis.

Given the above differences and similarities, it would appear that the conventional

implementation should be more efficient since it does not involve a separate maximal

matching phase. However, experimental data bear out the opposite. Both algorithms

were implemented in Interlisp-D in a Xerox 1186 workstation. Randomly generated

square cost matrices with size ranging from 10 to 200 at increments of 10 were used. For

each size, a set of 20 different matrices were generated. The running times (with

garbage collection time excluded) for NewHungarian and Kuhn-Munkres to solve each

set were measured accurately using a system-provided function.

Figure 2-17 shows a plot of running times against the matrix sizes. It reveals that

NewHungarian is more efficient and its superiority improves with increasing problem

size. A more quantitative illustration of this point is given in Figure 2-18 which shows

the running times of NewHungarian as a proportion of those of Kuhn-Munkres. Note

that the reduction of running times rapidly exceeds 40%. We can also derive the

expected time complexity by estimating the complexity function using a least squares fit

on the function k*nx. In the case of NewHungarian, the estimated function is 0.14n196,
and for Kuhn-Munkres, it is 0.08n2-24.
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The difference in the constants of proportionality is due to the greater overheads of

NewHungarian and it explains why, for small problem sizes, NewHungarian's

superiority is not highly significant. But as the problem size increases, the strategies of

problem transformation, reduction and decomposition which NewHungarian adopts, by

seeking preferred MCs, begin to be highly effective in improving efficiency.

2.5 Summary

In this chapter, I have argued that AGV-task assignment should meet the global

optimality criterion since the benefits—better overall utilization of AGVs; more tasks

achieved between recharging; less conflict resolution; and less compromising of AGVs'

plans—far outweigh the nominal computational demands. It is shown that a global

optimal assignment algorithm—the Hungarian method—yields significantly better

overall assignment costs than a local optimization algorithm; and yet with extremely

short computation time.

The main contribution of the chapter is a novel implementation of the Hungarian

method which has been found to be more efficient than the conventional

implementation. The conventional approach emphasizes the use ofaugmenting paths to

increase the size of a suboptimal matching while the cost matrix is unsaturated with

independent Os. This approach is a variation of the original Hungarian theme. In

contrast, the new implementation follows the dual phase Hungarian method strictly

and thus preserves its elegance and intuitive clarity.

The dual phase approach first modifies the cost matrix till it is saturated with

independent Os. This transforms the optimal assignment problem to the simpler

maximal matching problem which is solved in the second phase. A difficulty in the

original approach has been the computation of the minimal covering which is central to

the matrix modification procedure. I developed an algorithm which directly computes

the minimal covering by decomposing the minimal covering problem to two
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subproblems—finding the obvious set of a-lines, followed by the not-so-obvious set of

0-lines. The latter is derived by an elegant recursive decomposition technique. I have

also shown how a preferredMC can be found which provides the key to improving search

efficiency. The preferred MC achieves its effect by yielding (in general) three

submatrices, one of which can be disregarded, thereby reducing the scope of the

maximal matching problem to the remaining two submatrices. These two submatrices

can then be searched independently and more expeditiously for their contributions to

the final solution. Besides contributing a new and more efficient algorithm to the

optimal assignment problem, I have also shown how certain general principles of

problem solving can be applied to good effect.

The motivation for this novel implementation initially came as a challenge to develop a

strict implementation. Along the way, an important observation was made that the

structure of the minimal covering affects greatly the subsequent effort to find the set of

distinct representatives. This observation led to the discovery of the ideal minimal

covering. In the elaboration of the new implementation, I have tried to highlight the

underlying problem solving strategies rather than a mere exposition of the contents.

This approach of reflecting on how a problem is solved while focussing on the solution, is

both interesting and helpful in revealing problem solving insights.
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Chapter 3

Route Planning

3.1. Introduction

In motivating the need for optimal assignment of tasks (section 2.2) the advantages of

economy of effort—better overall utilization of AGVs; more tasks performed between

recharging; less conflict to resolve; and less compromise of individual AGV plans—were

established. Optimal assignment satisfies the objective of economy of effort by

minimizing the total distance which has to be traversed to achieve a set of tasks. The

same objective also requires that every AGV minimize the route taken to achieve its

assigned task. Basically, the shortest path problem needs to be solved.

The shortest path problem occurs frequently and in different circumstances in the AGV

planner. For example, whenever a new fetch-and-deliver task appears, every available

AGV must plan two routes for each of the alternative pick-up points. If a route segment

is obstructed during execution, another shortest route must be computed, this time with

new restrictions in force. The problem also appears as a subproblem in collaborative

planning (see Chapter 7), and in the maximal matching subproblem in Chapter 2 if one

wishes to use the theoretically more efficient Hopcroft-Karp algorithm. Its frequent

occurrence means that an efficient algorithm for it is desirable. Efficiency in this
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context means computational speed and conservative memory requirements. Speed is

especially important during dynamic replanning; an alternative plan should be found as

fast as possible if matters are not to be overtaken by failing circumstances. Hence an

efficient and admissible algorithm for the shortest path problem is needed for the AGV

movement planning application.

The theme of this chapter is that admissible AGV routes can be found efficiently using

bidirectional heuristic search. We first review the many existing search algorithms and

show how these fall short in the AGV application. The review uncovers several key

issues in search theory which are examined in section 3.3. A better and novel algorithm

(BS*) which is bidirectional, admissible and informed is then described in section 3.4.

Section 3.5 compares its performance with algorithms in the same class, as well as with

A*. BS*'s performance is shown to be superior in its class. BS* is also comparable to A*,

but BS* has an important advantage over A*—it is amenable to parallel

implementation which means that its running time can be potentially reduced further

by as much as 50%.

3.2. Review of Search Algorithms

3.2.1 Search Characterization

Graph searching algorithms abound in the literature. The algorithms can be

characterized broadly by three aspects: search direction; admissibility; and use of

heuristics. Search direction can be unidirectional from the start node to the goal node or

vice-versa. If there is a function for retrieving the parents of a node and the goal node is

known a priori, then the search can be bidirectionally pursued starting from the start

and goal nodes. A search algorithm is admissible if it returns the optimal solution if a

solution exists. Otherwise it is non-admissible. Search algorithms may or may not make

use of heuristic information to guide their search. Heuristically-guided or informed

search considers the estimated remaining path cost of unexpanded nodes in the search
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tree. This information is included in the overall rating of a node's promise in leading

toward the goal node. Algorithms which are not heuristically guided are classified as

uninformed. Under certain conditions, heuristic search algorithms may also be

admissible.

Search algorithms are also classified as breath-first, depth-first, best-first or some

combination of these; a good account of these can be found in Winston (1984). Of these,

an admissible algorithm must follow the best-first policy in selecting the next node to

expand.

3.2.2 Unidirectional Algorithms

3.2.2.1 Moore's Algorithm

The earliest admissible search algorithm was developed by Moore (1959). It assumed

that all arcs in the graph have the same cost. It labels the start node with the value 0

and then expands it, giving the first generation of nodes whose members are its

immediate successors. Until termination, search proceeds by choosing arbitrarily an

unexpanded node from the most recent generation, say the i-th generation. The

immediate successors which have not been generated before are labelled with the

integer i+1. Nodes generated also have an associated pointer to their parent. The

search terminates when the goal node is found or no nodes can be further expanded.

When the goal node is found, its label gives the minimum cost in terms of the number of

arcs which must be traversed to reach the goal from the start node. The shortest path

can be constituted from a trace of the parent pointers starting from the goal node. Where

the real arc costs may differ and the true shortest path is required, Moore's algorithm is

inapplicable.
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3.2.2.2 Dijkstra's Algorithm

Dijkstra (1959) formulated an algorithm which computes the shortest paths from a node

to all the other nodes in a graph with positive arc costs. Hence the first shortest path

algorithm can be credited to Dijkstra. His algorithm uses two disjoint lists of nodes: the

list S of expanded nodes and V of unexpanded nodes in the graph. It begins by placing

the start node, labelled 0, in S and all the other nodes in V. The nodes which are not

successors of the start node are labelled with infinity or a number greater than the

largest arc cost. Successor nodes are labelled with their respective arc cost from the start

node. Until V is empty, the algorithm selects the node in V with the smallest label and

transfers it to S. Ties are resolved arbitrarily. The labels of the remaining nodes in V are

then revised (if necessary) to reflect the shortest path from the start to the

corresponding node in V subject to the constraint that the path passes only through

nodes in S.

Dijkstra's algorithm can be adapted to compute the shortest path to a particular goal

node by terminating the search when the goal node is placed in S. A more efficient

implementation is to restrict the consideration of nodes during the label updating phase

to the unexpanded successors of the node just transferred to S. This is correct because

only such nodes can possibly be updated with a lower value label. In fact, this modified

Dijkstra algorithm is the same as the popular A* algorithm (section 3.2.2.5) when the h

function returns 0 always.

Whereas Moore's algorithm follows the breadth-first search strategy, Dijkstra's follows

the best-first strategy. Both are instances of uninformed search. If all arc costs are the

same or deemed as such, then Dijkstra's algorithm is similar to Moore's.

Dijkstra's algorithm has the advantage of easy implementation, but if a particular

shortest path is required, it is inefficient. Lacking heuristics to guide its search, it tends

to be wasteful in exploring unpromising avenues.
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3.2.2.3 Floyd's Algorithm

Floyd (1962) developed an uninformed search algorithm (a 9-line Algol program) to

compute the shortest path between every distinct pair of nodes in a graph. It is more

elegant than the obvious alternative of repeating Dijkstra's algorithm using a different

start node each time. However, its simplicity incurs an inefficiency in having to

examine all nodes in the graph during each label update phase. It can be improved by

considering only the remaining unexpanded nodes. An even better modification is to

consider only the unexpanded successors of the node just expanded—as in the improved

Dijkstra algorithm.

Floyd's algorithm is appropriate if all the shortest paths in the problem graph should be

pre-computed. A particular shortest path can subsequently be found by looking up a

matrix of pointers along with its associated distance. However, this is impractical for

large graphs. Besides, many of the shortest paths will not be required. Pre-computed

paths may also be invalidated by path segments which later become impassable for

some reason. Hence much of its computation along with the memory to hold information

may be useless.

3.2.2.4 Graph Traverser

Doran and Michie's Graph Traverser (1966) is the progenitor of heuristic search

algorithms. In it, every expanded node has an estimate of the remaining path cost from it

to the goal node. These cost estimates are used to guide the search. In considering which

node to expand next, it does not take into account the path cost so far (i.e. from the start

node to the current node). Consequently, it cannot be guaranteed to be admissible. This

is acceptable if the search objective is not to find the best solution path from the initial to

the goal state, but to find what seems to be the best path from the current to the goal

state. For example, in some computer games such as chess, the history of moves is
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irrelevant^ and what matters is the best way of forcing a checkmate from the current

state ofplay.

3.2.2.5 A and A*

These algorithms developed by Hart et al (1968) overcome the weaknesses of the Graph

Traverser by a more comprehensive consideration of the estimated total cost of a path

constrained to pass through a node. Both algorithms use an evaluation function fin) for

each node n which is the sum of two terms: gin), the minimum cost so far from the start

node to n; and h(n), which is the estimated remaining cost from node n to the goal node.

A* differs from A in that h(n) is a lower bound to the true remaining cost in A* but not so

in A. The composite evaluation function fin) combines a breadth-first influence via gin)

with a depth-first influence via hin), and pursues search in a best-first manner.

A significant contribution of A* is its supporting proof that its admissibility is

guaranteed by using underestimated remaining path costs. Because its performance is

generally superior to previous uninformed admissible search algorithms, it has become

one of the most popular search algorithms in AI. This explains why latter informed

algorithms, both unidirectional and bidirectional, are based on A*. It thus deserves a

closer examination, which will be given in sections 3.3.6 and 3.3.7.

3.2.2.6 HPA and HPA +

Pohl's (1970, 1977) HPA+ (heuristic path algorithm) is yet another A-like algorithm. It

differs from A only in that the g and h terms in the /"function have non-negative weight

coefficients which add to 1. In A, these coefficients are always 1. HPA+ belongs to the

class of informed unidirectional search algorithms. Its admissibility depends on the

weightings and the h function.

t This assumes that a player does not consider the likely moves of the opponent on the
basis ofapparent tactics induced from previous moves.
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Pohl's account of HPA is inconsistent. In Pohl (1970), HPA is described as a simplified

variant of HPA + in that nodes visited (open or closed) are ignored. In Pohl (1977), he

allows for open nodes to be revisited. Whichever version is used, HPA is generally

non-admissible.

Pohl showed that in the absence oferror in the h estimates, the search effort in terms of

the number of nodes expanded is minimized when the g term is weighted less than the h

term. In fact, only nodes along the shortest path are expanded. There is little practical

significance in this result because it is unrealistic to expect perfect h estimates in most

problem domains.

Pohl also suggested a dynamic weighting strategy wherein the weights varied with the

node as well as the state of the search. The idea behind this is to have a greater

depth-first influence initially and when the goal is near, breadth-first search begins to

dominate. This is similar to the manner in which a blind person might attempt to find

an object. Knowing the general direction to the destination, he could take large steps

forward boldly and when in the vicinity of the destination, begin groping around for the

object sought after. Conceptually, the idea is sound, but often it is difficult to find good

domain parameters to tune the weights dynamically.

HPA+ and HPA are interesting as generalizations ofA but they have not significantly

improved on A*. Hence their merit for admissible search remains to be established.

3.2.2.7 B and B'

Martelli's (1977) B algorithm has better worst-case performance than A* when the

consistency assumption (see section 3.3.6) does not hold. For a graph of N nodes, B's

running time is 0(N2) against A*'s running time of 0(2N). B uses a global variable F

which holds the current maximum of the /"values of expanded nodes. In choosing which

node to expand next, the candidate nodes are divided into two disjoint sets. Candidate
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nodes with /"values below F are in one set SI and the rest in the other set S2. If SI is

empty, B selects the node in S2 which has the minimum /"value, as A* would. Otherwise,

B takes the node from Si which has the minimum g value. Ties are resolved in favour of

the goal node.

The rationale for this is that h values, being inconsistent, may be misleading and should

therefore be used only when necessary. Since every node with an /"value below F must

be expanded sooner or later (a lemma proved by Hart et al, 1968), such nodes should be

expanded as soon as possible. Nodes in Si are deemed to have unreliable h estimates,

which explains why selection from SI is based only on the g value.

When the consistency assumption holds, f values of expanded nodes are monotonically

nondecreasing and SI is always empty. In this case, B is identical to A*. The B

algorithm was later modified to B' by changing the h estimates in the course of search

(Mero, 1981, 1984). B' performed better than B by expanding no more nodes than B

would and its worst case behaviour is at least twice as good as B. B and B' are thus better

than A* when the consistency assumption does not hold.

3.2.3 Bidirectional Algorithms

3.2.3.1 Nicholson's Algorithm

The first bidirectional admissible search algorithm was introduced by Nicholson (1966).

Search in both directions is based on Dijkstra's uninformed best-first algorithm. It

terminates when the minimal cost of the complete paths found hitherto is less or

equal to the sum of the minimum cost of the incomplete paths found from the start and

the goal nodes. Until then, the node to be expanded next is that which has the least cost

so far. Nicholson's algorithm is superior to any unidirectional uninformed search

algorithm, in terms of number of nodes expanded and running time. However, it cannot

match A*'s superiority (see Figure 3-1).
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A non-admissible version can be easily adapted by terminating the search once a

complete path is found linking the start to the goal node. This terminating condition can

be used for any bidirectional algorithm if the shortest path is not required.

3.2.3.2 BSPA and VGA

Pohl's (1971) BSPA (bidirectional shortest path algorithm) based on Dijkstra's

algorithm is another bidirectional admissible uninformed algorithm. It was originally

documented as VGA (very general algorithm) in Pohl (1969). BSPA differs from

Nicholson's algorithm in two ways. First, the terminating conditions differ. In BSPA,

admissible search terminates when a node chosen for expansion has already been

expanded by the search effort from the other direction. The least cost path is then the

best complete path with all nodes along it expanded from at least one direction.

The second modification in BSPA has to do with what Pohl called the cardinality

comparison principle. The principle states that the next node to expand should be chosen

from the search direction which has a lesser number of candidate nodes (open nodes).

Having determined the search direction, the corresponding node with the smallest cost

is selected for expansion. Pohl showed theoretically and empirically that making

progress in a sparser region is a better strategy than Nicholson's strategy of moving

equidistantly (i.e. select the open node with the smallest g value) from the start and goal

nodes.

Apparently, Pohl (1969) misinterpreted Nicholson's terminating condition and actually

meant BSPA to differ only on the principle which determined the next search direction.

It is nevertheless true that the cardinality comparison principle is superior, but only if

the comparison is based on the same terminating condition. In fact, even with the

inferior equidistant principle, Nicholson's algorithm performed better (see Figure 3-1)

because its terminating condition is far superior to Pohl's version. My results contradict

Pohl's conclusion that BSPA is superior; understandably so, now that the
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misinterpretation has been pointed out. Since Nicholson's termination condition can

likewise be used for other admissible bidirectional algorithms, its superiority should be

proven. This is done in appendix B.

3.2.3.3 BHPA and VGHA

Following Doran's (1966) bidirectional Graph Traverser, Pohl (1971) formulated a

bidirectional informed search algorithm—BHPA (bidirectional heuristic path

algorithm)—which is based on his HPA. BHPA is a specialized admissible version of

VGHA (very general heuristic algorithm) which is described in Pohl (1969). Whereas

BHPA is a bidirectional implementation ofA*, VGHA is based on HPA + .

In both algorithms, the wavefronts are developed independently of each other. Each

aims toward the opposite terminal node. A major problem with independent informed

bidirectional search is that the wavefronts may not meet near the middle of the search

space. This tends to occur when several comparably good paths exist and the focus of

search differs in the forward and backward search perspectives. Consequently, the

overall search effort may exceed that of a unidirectional informed search or even that of

a bidirectional uninformed search. This phenomenon is often enough to rule out BHPA

and VGHA as suitable for application. A further weakness of both is that their

termination conditions are unnecessarily strong, as in the case ofBSPA.

3.2.3.4 BHFFA and BHFFA2

Champeaux and Sint's (1977a, 1977b) bidirectional heuristic front-to-front algorithm

(BHFFA) is the first implemented search algorithm in which the two search efforts are

mutually dependent. Instead of evaluating the remaining path cost estimates (h)

relative to the terminal (start/goal) nodes, the h estimates are computed relative to all

the open nodes on the opposite wave front. The idea is that a shortest path is likely to be

the pair of incomplete paths (one in the forward search tree and the other in the
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backward tree) which when bridged directly is the shortest among all bridged pairs.

This approach is known as wave-shaping because using such h estimates to determine

which node to expand next has the effect ofdrawing the wavefronts together.

Wave-shaping is computationally demanding as Champeaux and Sint (1977a) admitted:

"the large disadvantage of our algorithm is the very time consuming calculation of the

distance estimator". Besides having to compute for every open node as many h estimates

as there are open nodes in the opposite wavefront, BHFFA has to recompute the order of

merit of open nodes on both wavefronts each time a new open node is generated. As

time-saving measures, Champeaux and Sint suggested restricting the h estimates of a

node to a subset ofmore promising open nodes on the opposite wavefront, and to ignore

the order ofmerit revision.

These measures obviously violate admissibility. However, contrary to the original

claim, BHFFA is not admissible in the first place. The error of non-admissibility was

later discovered and led to BHFFA2 (Champeaux, 1983)—a substantially modified

version. BHFFA2 retains the expensive h estimate computation and maintenance of

sort orders, but has a stronger terminating condition. Hence BHFFA2 can be expected to

be even more computationally demanding.

Although a proof of admissibility is given for BHFFA2, I have found it to be

unconvincing for the following reason. In BHFFA2, 'the remaining path cost estimate (h)

is defined with the constraint that the remaining path must pass through a node on the

opposite wavefront. Its value thus depends on the g value of such a node. Since g values

of open nodes may be reduced by subsequent expansions, the h and hence f values of

nodes may require updating. BHFFA omits a necessary case in its updating procedures:

if gl(ri) (or g2(n)) is updated and n is closed in the opposite tree>t h2(n) (or hi(n)) should

be updated and n reconsidered for expansion in the opposite tree by changing its pointer,

f2 value, and placing n in the open list.

t The subscripts 1 and 2 denote the forward and backward search directions.
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Whereas experimental data was presented for BHFFA, none was given for BHFFA2.

However, BHFFA was only matched against Pohl's unidirectional HPA using the

15-puzzle domain and no running time data were presented. Although it was found that

BHFFA generally solved more problems than HPA and produced shorter solution paths,

the tests do not show how well BHFFA fared against BHPA in overcoming the main

problem of wavefronts not meeting until each has covered a large part of the search

space. We shall refer to this as the elusive wavefront problem. BHFFA's unconvincing

and BHFFA2's unsubtantiated advantages, along with their confirmed disadvantage of

being extremely time consuming, do not commend them for application.

3.2.3.5 D-node Retargetting

D-node retargetting (Politowski and Pohl, 1984) is a non-admissible wave-shaping

bidirectional search algorithm based on Pohl's HPA. It avoids the computational

extravagance of BHFFA and BHFFA2 by not exhaustively computing all relevant h

estimates for the open nodes. Instead, the h estimates are only computed relative to a

chosen node in the opposite tree. This chosen node (d-node) is the open node furthest

from the root of the search tree. However, d-nodes are not always updated whenever a

new open node is generated, since this would mean a revision of all h estimates on the

opposite wavefront—a taxing procedure. Instead, the d-nodes are changed only after an

arbitrary number of node expansions. In other words, the target nodes are initially the

root nodes of the two search trees (as is always the case in non-wave shaping

algorithms), but are periodically reset to the current furthest tip nodes of the search

trees. We shall examine more closely the test results reported by the originators in

section 3.3.3. Suffice it for now to note that d-node retargetting is non-admissible and

hence does not meet our requirement.
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3.3. Issues in Search Theory

3.3.1 Uninformed vs Informed

Uninformed searches such as Moore's and Dijkstra's algorithms do not make use of

information suggesting how close a node is to the goal. An informed or heuristic search

will make use of such information to guide the selection of the next node to expand.

Which should be used depends on whether only one path is required or all paths from a

node. It also depends on whether shortest paths are required and whether search is

unidirectional or bidirectional.

If only one path is required, informed search generally finds it with less search effort.

Whether it also takes a shorter time depends on how costly it is to compute the h

estimates. But if the solution must also be optimal and the h estimates cannot be

guaranteed not to exceed their true values, then uninformed algorithms are the only

recourse. Uninformed search is unadventurous and always considers the closest node

first. When the search space is large, uninformed search will be sooner defeated by the

combinatorial explosion problem.

If all paths from a particular node are required, uninformed searches are more efficient.

Informed searches need a specific goal node on which to base their estimates. When the

goal node changes, the search tree has to be regenerated from scratch. In contrast,

uninformed algorithms only need to grow the search tree once until all nodes in the

problem graph have been expanded.

3.3.2 Unidirectional vs Bidirectional

When a particular path is required, it can be searched from one or two directions.

Obviously, bidirectional search is only applicable when a specified goal state exists,

implying only one path is required. Otherwise, search must be unidirectional.
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There is little doubt that bidirectional search is better than unidirectional search when

heuristics are not used. The same is not true when heuristics are involved, although

there is the potential for even greater reduction in the number of nodes expanded. The

problem preventing this potential from being realized is the elusive wavefront problem.

In general, without wave-shaping techniques, bidirectional informed search algorithms

(BHPA and VGHA) are disappointing compared with a unidirectional equivalent (A* or

HPA). Nevertheless, they can be better than uninformed searches, both unidirectional

and bidirectional. This is substantiated by the test results shown in Figure 3-1.

Another advantage common to any bidirectional search is that maintaining the sort

order of the two smaller lists of open nodes is less expensive than that of one large list of

a unidirectional search. This should go some way towards improving the running time.

3.3.3 Independent vs Wave-shaping

In the case of bidirectional informed search, the two wavefronts can be developed either

independently or in a mutually dependent manner (wave-shaping). The latter is a

common panacea to the elusive wavefront problem, but exacts an extreme penalty in

running time. This is evident from test results in Politowski and Pohl (1984).

First, these test results revealed that d-node retargetting typically ran 10 to 20 times

faster than BHFFA, in spite of time-saving pruning operations used in the BHFFA

implementation. Second, its time overheads were somewhat higher than BHPA, in spite

of expanding half as many nodes as BHPA. Politowski and Pohl did not say whether the

stronger admissible terminating criterion of BHPA was used. Presumably, since d-node

retargetting searches for non-admissible solutions, a cheaper non-admissible criterion

for BHPA was used. If it is not so, the overheads of d-node retargetting compared to a

non-admissible BHPA would be even higher. Third, the parameters for HPA in one of

the tests meant that it was essentially A*, and for this test, d-node retargetting was
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more than 10 times slower than A*, and BHFFA was 20 times slower than d-node

retargetting! These results also show that even with certain time saving

steps—restricted computations of the h estimates in d-node retargetting; and staging in

BHFFA—running times were nevertheless excessive. Hence when time is important

and the greater memory costs can be afforded, the independent approach should be

adopted.

The independent approach has another advantage over wave-shaping techniques.

Noting that bidirectional search is amenable to twice as much parallelism in

implementation as unidirectional search, the independent approach allows about 50%

reduction of running time if full parallelism is exploited. The same cannot be said for

wave-shaping since node expansions on different wavefronts cannot occur concurrently.

A variation of the independent approach is to postulate an intermediate node (Pohl,

1971; Chakarabarti et al, 1986) which is contained in a solution. This decomposes the

problem into two subproblems which can then be solved more readily. Obviously, both

can be solved unidirectionally or bidirectionally. However, it rests on the assumption

that an island node can be identified a priori, and hopefully, it will be near the middle of

the search space where the decomposition is most effective. In practice, this assumption

is hard to satisfy, especially when an optimal solution is required.

3.3.4 Equidistance vs Cardinality Comparison Principle

In a uniprocessor implementation of a bidirectional search algorithm, a choice has to be

made as to whether a node on the forward or backward wavefront should be expanded

next. The equidistance principle selects the most promising open node. It works

reasonably well only in uninformed search (Figure 3-1). If the searches are guided by

heuristics, the cardinality comparison principle—choose from the smaller

wavefront—works better (Pohl, 1969). An intuitive understanding of how it achieves its

effect can be gained by noting that it strives to equate the sizes of the two sets of open
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nodes. This state is likely to exist when the two wavefronts meet ideally at the middle of

the search space. Note however that in a dual-processor implementation, with two

wavefronts developed concurrently, the cardinality comparison principle is irrelevant.

3.3.5 Terminating Conditions

The terminating condition for bidirectional admissible search is not as straightforward

as in the non-admissible case. In the latter, termination occurs when the first complete

path is found. Admissible search has to continue beyond this stage. The general idea is

to keep track of the best complete path P found so far along with its cost k. If the

minimum total cost estimate f from either direction is not less than k, then P is an

optimal solution and search can be terminated. This is not obvious, but it has to do with

the fact that, before termination, there is always a node in one of the wavefronts with an

/estimate below the optimal path cost (for proof, see Pohl (1971)).

A common mistake made in BHPA and BHFFA2 is to restrict unnecessarily the

updating of P to paths which have all nodes closed. This is probably due to Pohl's

misinterpretation (see section 3.2.3.2 and appendix B) of the terminating condition in

Nicholson's algorithm, an interpretation imported into BSPA and BHPA. It is also

found in BHFFA2. This original discovery is important because it means that these

algorithms can be terminated earlier ifP is updatable by any complete path found—an

improvement which is exploited in the new BS* algorithm described in section 3.4.2.1.

3.3.6 Admissibility and the Consistency Assumption

An admissible heuristic search algorithm always gives the optimal solution if any. One

of the most significant contributions of Hart et al (1968) is the condition for

admissibility—if the total path cost estimate fin)=gin) + h(n), then admissibility is

assured when h never exceeds its true value, h*.
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For bidirectional searches, admissibility requires a stronger condition—the consistency

assumption (Hart et al, 1968). It states that h estimates consistently improve along any

partial path developed by A*, or in more precise terms, the error of the h estimate must

be monotonically non-increasing along these paths. For example, in route planning, an

obvious h{ri) function which satisfies both the lower bound condition and the consistency

assumption is the straight line distance between a node n and goal node. This condition

for admissible bidirectional search is not evident because it only creeps out in the proof

given for admissibility. The originators often cite the weaker condition of h < h* which

tends to mislead the reader into thinking that this is all that is required.

There have since been two other minor variations of the consistency assumption, viz.

monotone restriction (Nilsson, 1980) and monotone criterion (Pohl, 1977). These were

proposed with the view that the consistency assumption was unnecessarily strong.

Contrary to this, Kwa (1988) shows that the three terms are equivalent. Furthermore,

all three guarantee admissibility i.e. the condition oih<h* is subsumed.

There are three important consequences of the consistency assumption:

• When A* terminates, not only is the shortest path from the start node to the goal

node known, but also from the start node to all the other expanded nodes.

• A* and bidirectional algorithms based on A* can be simplified and made more

efficient. Since g values of expanded nodes are true minima, any successor node

generated which has already been expanded can be ignored. (This will be referred

to as the once-closed-always-closed property.) This differs from the general A*

algorithm which includes a procedure to propagate improved g values and a

revision of parental pointers when a better route to a previously expanded node is

found. The simplification cannot be applied to BHFFA2 however. The reason is

that, in BHFFA2, the h values (and hence /"values) of closed nodes can be reduced

in subsequent expansions. In fact, this disadvantage is inherent in all
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wave-shaping algorithms since they all share the characteristic of variable h

values.

• Prior to termination, the computed f values are monotonically non-decreasing

and always less than the cost of the optimal path. This last observationmay seem

unimportant, but it can be gainfully exploited to constrain the search effort—a

feature which does not appear in the existing algorithms. Use will be made of it

in section 3.4.2 when the novel BS* algorithm is described. In the next chapter,

its role in hastening termination in a modified A* which uses learnt solutions

will be explained.

3.3.7 Optimality

The optimality of a search algorithm differs from the notion of admissibility. Whereas

admissibility refers to an algorithm's assuredness of always yielding a minimal cost

solution, optimality refers to the search effort involved—the fewer nodes expanded, the

better. Hence, optimality as used in this sense refers to search efficiency, and the reader

should not confuse it with the notion of a minimal cost criterion as is usually meant

elsewhere.

The notion ofoptimality originated from Hart et al (1968) where it was shown that A* is

optimal in the sense that it expanded no more nodes than any less informed heuristic

algorithm K. By "less informed", it is meant that K's h estimate for any node is less than

A*'s. The proofgiven was later shown to be erroneous by Gelperin (1977).

More definite conclusions were established by Dechter and Pearl (1982). They pointed

out that the monotone restriction condition of A* only substantiated the superiority of

some A* algorithms over other less informed A* algorithms. In other words, ifAl* and

A2* are two instances of the A* class of algorithms and Al* is more informed than A2*

then Al* will not expand more nodes than A2*. This agrees with intuition. A* is also
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proved to be optimal in the class of best-first algorithms which also use Wn) as an

underestimate of the true remaining path cost. These findings suggest that A* is a good

basis for a heuristic bidirectional algorithm and the heuristic estimates should be as

accurate as possible. The last point is also suggested by Pohl's theorem for HPA which

proved that if the estimates are perfect, only nodes along the optimal path are expanded.

3.3.8 Summary so far

The following summarizes the main points made during the preceding discussion of

search issues:

• If all the paths from one or more nodes are required, uninformed search fares

better than informed search.

• Ifonly one path is required, informed search is more space efficient.

• Heuristic search does less searching, at the expense of time in computing the h

estimates. Often the time saved in searching a smaller space offsets the overhead

time.

• Without the benefit of heuristics, bidirectional search is more efficient than

unidirectional search. The same need not be true if the searches are informed.

• Bidirectional informed search has the potential to search a much smaller space

than its unidirectional equivalent. However, this is rarely realized because of the

elusive wavefront problem.

• The sort order of the lists of open nodes of a bidirectional search is more easily

maintained than the single large list ofa unidirectional search.

• Bidirectional search is amenable to greater parallelism in implementation than

unidirectional search.

• Wave-shaping overcomes the elusive wavefront problem, but at the expense of

greatly extending the running time.

• Despite time-saving measures which violate admissibility, wave-shaping

remains computationally expensive.
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• In bidirectional search, the independent approach allows concurrent node

expansions on different wavefronts, whereas wave-shaping does not. The former

can be expected to reduce the running time (compared to its unidirectional

equivalent) by about 50%.

• The cardinality comparison principle is superior to the equidistance principle

only when search is non-concurrent and heuristically guided.

• Termination conditions for admissible bidirectional search are more difficult to

establish. Except for Nicholson's algorithm, admissible bidirectional algorithms

have used an overly strong condition for updating the search cut-off parameter.

Consequently, search termination is unnecessarily delayed.

• Contrary to earlier beliefs, the three terms—consistency assumption, monotone

restriction and monotone criterion—are equivalent. Each also subsumes the

condition that h underestimates the true remaining path cost.

• Using underestimated remaining path costs guarantees admissibility in A*. In

the case ofbidirectional search, the monotone restriction must be satisfied.

• The consistency assumption is useful: (1) the optimal path is known for all closed

nodes; (2) the once-closed-always-closed property simplifies A*; and (3)

monotonically nondecreasing/"estimates along a path can be gainfully exploited.

• A* is optimal in the class of best-first search algorithms which use

underestimates of the remaining path cost.

• The unidirectional basis for a heuristic bidirectional algorithm should depend on

whether optimal solutions are required. If so, A* should be used, otherwise B'.

This is because, in the admissible case, the consistency assumption must be

satisfied and B' is appropriate only when this assumption does not hold.

3.4. BS*—A Novel Admissible Bidirectional Search

Algorithm

BS* is a novel bidirectional search algorithm which is admissible, informed and

develops its wavefronts independently. It has the distinctive feature of using staging
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operations (Nilsson, 1980) to contain the search trees and yet does not violate

admissibility.

BS*'s motivation derives from certain key observations:

• The wave-shaping approach should be ruled out because it is computationally

extravagant, and remains so even when time-saving staging operations are used.

Moreover, these staging operations violate admissibility.

• Termination of admissible bidirectional search relies on a cut-off parameter

which is dynamically updated throughout the search process. It was observed

that current bidirectional algorithms do not make use of all opportunities to

update this parameter. Consequently, earlier termination is often missed.

• None of these algorithms exploit the information arising from search to eliminate

unpromising search avenues. It was observed that when information is pooled

from both search trees, situations can be identified which allow staging

operations to be performed without violating admissibility. This has several

useful spin-offs: more accurate guidance of search control, early exposure of

non-promising nodes and reduced book-keeping overheads.

From these observations, it seemed that an improved version of BHPA could be

implemented which may overcome its earlier setback—too many node expansions due to

the elusive wavefront problem. BS* is such an algorithm.

Section 3.4.1 details the notations used to describe BS*. Section 3.4.2 shows how several

refinements can be made to BHPA, transforming it into BS*. (Henceforth, unless stated

otherwise, BHPA refers to its admissible version.) Section 3.4.3 outlines the BS*

algorithm. Formal proof of BS*'s admissibility is then presented in section 3.4.4. Section

3.4.5 summarizes the advantages ofBS*.
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3.4.1 Notations

s start node.

t goal node.

Tl(n) successors of node n in the problem graph.

r2(n) parents of node n in the problem graph.

d current search direction index; when search is in the

forward direction d= 1, and when in the backward

direction, d= 2.

d' 3 -d; it is the index of the direction opposite to the current

search direction,

e a small positive value.

ci(m,n) positive and finite cost of the direct arc from m to n if i= 1,

or from n to m if i= 2.

gi*(n) cost of the optimal path from s to n if i — 1, or from n to t if

i= 2.

hi*(n) cost of the optimal path from n to t if i= 1, or from s to n if

i=2.

gi*(n) + hi*(ri); it is the cost of the optimal path from s to t

constrained to contain n.

gi(n), hi(n) estimates ofgi*(n) and hi*(n) respectively.

fi(n) gi{n) + hi{n).

X cost of the optimal path from s to t.

Lmin cost of the best (least costly) complete path found so far

linking s to t.

TREEl (TREE2) the forward (backward) search tree.

OPENi the set ofopen nodes in TREEi.

| OPENi\ number ofnodes in OPENi.

CLOSEDi the set ofclosed nodes in TREEi.

pi(n) parent of node n in TREEi.
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Qm the set of nodes in OPENd'which are descendants of m in

TREEd'.

MeetingNode node where TREEl met TREE2 and yielded the best

complete path found so far.

3.4.2 Genesis ofBS*

This section explains how several novel improvements transform BHPA into BS*. It is

thus proper to begin with the salient features of BHPA which are amenable to

improvement. For an outline ofBHPA, see appendix C.

BHPA is basically a dual A* with a global variable amin set to record the cost of the best

complete path passing through a node closed in both trees. BHPA attempts to update

amin only when the node chosen for expansion happens to be closed in the opposite

search tree, amin is tested for termination in each iteration of the

select-node-for-expansion loop. Search terminates when amin is less than or equal to all

of the f values of nodes in either open sets. Nodes placed in the open sets remain there

until they are expanded.

3.4.2.1 Earlier Termination.

It may appear that since BHPA tests for termination after every round of expansion,

there cannot be any modification to the algorithm which can hasten termination.

However, termination depends on the value of amin; the faster amin approaches its

minimal value, the earlier the algorithm terminates. An improvement is possible if

hitherto neglected opportunities are used to update amin. These opportunities arise

when a new complete path is found. They exist whenever a successor node is generated

within the expansion loop and placed in the open set. They are not only more numerous

but occur earlier than those used in BHPA i.e. they are more opportune. The suggested

opportunities are valid because what matters is that amin records the best complete path
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found so far. Whether or not this path passes through a doubly closed node is

immaterial. In fact, the suggested test subsumes the original amin-update test since the

latter occurs after the former and cannot yield a better complete path which has not

been discovered earlier by the former. The obvious advantage of earlier termination is a

saving of further search effort.

3.4.2.2 Nipping and Pruning

In BHPA, when a node is selected for expansion it will definitely be expanded. This is

not always necessary. If it is known that the optimal path passes through the selected

node, or that the node cannot possibly be on the optimal path, then it makes no sense to

expand the node. Instead, such a node should be merely closed and not expanded—a

process called nipping.

Selected nodes (for expansion) which should be nipped are those which are already

closed in the opposite search tree. There are two types of closed nodes: good and bad.

Belonging to the good type are those nodes n which have gi(n) =gi*(n). All other closed

nodes belong to the bad type. A nipped node can be either good or bad. In what follows,

informal justifications will be given to show that nipping both types of nodes does not

invalidate admissibility.

A consequence of the monotone restriction is that when a node is closed the optimal path

to it is already known i.e. gi(n)=gi*(n). All closed nodes should therefore be good. This is

true in A* and BHPA but not always true in BS* because of its unusual practice of

discarding certain nodes from the open sets. Discarding nodes has the effect of

foreclosing the optimal path to certain nodes which can only be found by searching

beyond a discarded node. Consequently, when a node is closed the path to it may be

suboptimal.
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Good nipped nodes are those for which the optimal path constrained to pass through the

node is already known. None of its descendants can improve on this path. Rightfully it

should be nipped, but more should be done. A nipped node, being a closed node in the

opposite tree, may have descendants already generated and existing in the opposite

open set. These descendants are also useless and ought to be removed from the open set.

The process of removing them is called pruning. Pruning is thus similar to retrospective

nipping.

Bad nodes are due to nipping and pruning. Later, we shall see another

cause—trimming. Since bad nodes by nature do not offer any possible improvement to

the current best complete path, nipping bad nodes and pruning the descendants of bad

nodes are not only innocuous but check further spawning of bad nodes. Note that BS*

cannot distinguish bad nodes from the good ones. This does not matter since neither

nipping nor pruning involving both node types violates admissibility.

3.4.2.3 Trimming

Trimming like pruning involves removal of certain nodes from the open sets. It too has

the effect of foreclosing the discovery of optimal paths to some nodes. Nodes which

should be trimmed are those with f values at least equal to Lmin. Trimming

opportunities arise whenever a better Lmin value is found.

The justifications are tricky to establish. We need to consider three types of open

nodes—good, bad and possibly bad. Good open nodes are those with gi(n)=gi*(n). Bad

and possibly bad open nodes have gi(n)>gi*(n). What distinguishes the two is that a

possibly bad open node has a chance of becoming a good open node before it is closed,

whereas a bad open node will (if closed) become a bad closed node .

If an open node n is good and meets the trimming condition, the cost of an optimal path

through it or any of its potential descendants cannot be less than Lmin. Since Lmin
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cannot be improved by expanding n, the node should be trimmed away. If the node is

bad, then it must be the case that some earlier nipping, pruning or trimming operation

caused it to be bad, and its goodness was foreclosed when it was found that neither it nor

its potential descendants could have led to an improvement. Trimming a bad node is

thus justified. Finally, for the case of the possibly bad node, the fact that a chance

remains for it to become good means that at least one of its contemporaries on the same

open set may lead to a better path to it. If the possibly bad node remained and a better

path to it is found, then its associated values would be updated. If it is removed, it will be

reinserted when a better path emerges. Although trimming a possibly bad node is

unnecessary, it does no harm.

BS* again is unable to distinguish the three categories of open nodes. The subtle point is

that in trimming what it ought to trim, it could have trimmed what need not be

trimmed. However, the latter event is safe since it does not foreclose finding the optimal

path nor degrade the efficiency of the algorithm.

3.4.2.4 Screening

Screening is the process of placing in the open sets only those hitherto ungenerated

successor nodes with f values below the Lmin threshold. The justifications for trimming

apply similarly here since screening is a form of trimming (think of it as pre-emptive

trimming). The advantage of screening nodes is that the computational cost of insertion

and subsequent trimming is avoided.

3.4.3 The BS* Algorithm

The improvements described in the preceding section can be implemented to give the

following BS* algorithm:
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Algorithm 3-1:

procedure BS*(s, t)

/* Compute the shortest path from s to t. */

1. Lmin *—00 ;gi(s) <-g2(t) <-0;/i(s) <-hi(s).

2. Put s in OPENx and t in OPEN2.

3. until OPENl or OPEN2 is empty do

/* Determine the search direction index. */

4. if\OPENl\<\OPEN2\

5. then d *- 1 else d «- 2

endif

6. d'<-3 - d. /* Set the opposite search direction index. */

7. Transfer node m in OPENd.with the lowest fd. value into CLOSEDd.

8. if m is closed in the opposite search tree TREEd'

then /* nip m in TREEd and prune TREEd' */

9. • Close m without expanding it.

10. • Identify the set Qm comprising nodes in OPENd' which

are also descendants ofm in TREEd

11. • Remove from OPENd' those nodes which are members of

dim.

else /* expand m */

12. TrimFlag <— false

13. foreach n in Td(m) which is not closed in TREEd do

14. g<^-gd(m) + cd(m,n)-,f<^-g+ hd(n)

15. if f<Lmin and n is not in OPENd

then /* insert n into OPENd */

16. • Place n in OPENd

17. • gd(n) *-g,fd(ri) *-f
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18. • pd{ri) <- m. /* Set n's parent pointer. */

19. elseif f<Lmin and n is in OPENd and g<gd(n)

then /* update n in OPENd */

20. • gd(n) *-g\fd(n) *-f

21. • pd(n) <— m

endif

22. if n is in TREEd 'and gl(n) +g2(n) <Lmin

then I* update Lmin */

23. • Lmin *—gl(n) +^2(n); MeetingNode «- n

24. • TrimFlag *— true

endif

endforeach

25. if TrimFlag

then /* trim the open lists */

26. Remove from OPENi and OPEN2 those nodes with f

values ^ Lmin and which are not source nodes (for

OPENl the source node is s; for OPEN2 it is t).

endif

endif

enduntil

27. if Lmin— 00

28. then no path exists

29. else the optimal path cost is Lmin and the optimal path can be

determined by tracing the forward and backward parent pointers

from MeetingNode.

endif

endprocedure
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The preceding algorithm can be modified to maintain child pointers as well as parent

pointers i.e. when a node is expanded, its list of successors is recorded. We may want to

do this for faster identification of £2m (line 10). Otherwise, Qm can be found only by

re-expanding the non-tip nodes of the subtree rooted at m; a more costly procedure.

Although storing child pointers incurs memory overheads, the overheads may be

incurred in the first place in some problem domains (e.g. route planning) where the

problem graphs are represented using adjacency lists of child pointers (Aho et al, 1983,

pp. 87-88). In any case, when child pointers are stored, the space complexity of BS* will

be at least 0(|N|x|E|) where N and E are the sets of nodes and edges (respectively)

defining the problem graph. Parent pointers alone give a lower bound of0(|N|). Whether

BS*.J space complexity is in fact 0(|N|x|E|) depends on the the data structures used for

OPENi, CLOSEDi, etc.

3.4.4 Admissibility of BS*

Final validation of the admissibility of BS* has to rest on a formal proof which is

presented here. It follows the A* proof outline in Nilsson (1980) but with substantial

modifications. By admissibility, it is meant that when a path exists from s to t and the

consistency assumption is satisfied, BS* will terminate with the optimal solution. The

first step of the proof is to show that BS* will terminate when a path exists from s to t.

Lemma 3-1:

BS* terminates for finite graphs.

Proof:

In every iteration of the main loop (steps 3 to 26) of BS*, a node is removed from

OPENd and a finite number of nodes is added to OPENd (nodes in the graph are

assumed to have a finite number of adjacent nodes). Since closed nodes are never
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reopened, there will eventually be no more new nodes to be added to OPENl or

OPEN2. OPENl or OPEN2will eventually be empty and BS* then terminates.

Before proving that when a path exists from s to t, BS* will terminate even if the graph

is infinite, we need to establish a few more lemmas.

Lemma 3-2:

s is always in TREE1.

Proof:

Node s did appear in TREEl since it was initially placed in OPENl (step 2). Node

s can only subsequently disappear from TREEl when it is disowned by TREEl in

either of two events:

A. s was in OPENl with an ancestor node in TREEl from which a pruning

operation was performed (steps 10,11).

B. s was trimmed away from OPENl (step 26).

Event A cannot occur since s has no ancestor in TREEl. Neither can event B

occur since any trimming ofOPENl ignores s. Node s thus remains in TREEl.

Lemma 3-3:

t is always in TREE2.

Proof:

Use a similar proof as for lemma 3-2 with s, OPENl and TREEl replaced by t,

OPEN2 and TREE2 respectively.

Lemma 3-4:

If nl and n2 are both in OPENl and nl as it stands offers a better path from s to

n2, BS* will not expand n2 before nl.
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Proof:

Node nl as it stands offers a better path to n2 means that

gl(nl) + /n*(nl,n2) < gi(n2).

According to the consistency assumption,

hl(nl) - hl(n2) < hl*(nl,n2).

Hencegl(nl) + /il(nl) <gl(nl) + hl*(nl,n2) + hl(n2)

<gl(n2) + hl(n2).

Since /l(nl) < fi(n2), BS* will select nl before n2.

Corollary 3-1:

Along an optimal path P from s to t, if nl precedes n2 along P and both are in

OPENl and all of nl's ancestors in TREEl lie on P, BS* will not expand n2 before

nl when searching in the forward direction.

Lemma 3-5:

If nl and n2 are both in OPEN2 and nl as it stands offers a better path from n2 to t,

BS* will not expand n2 before nl.

Proof:

Use a similar proof as for lemma 3-4 with appropriate changes.

Corollary 3-2:

Along an optimal path P from s to t, if n2 precedes nl along P and both are in

OPEN2 and all of nl's ancestors in TREE2 lie on P, BS* will not expand n2 before

nl when searching in the backward direction.

Theorem 3-1:

Before BS* finds a complete path which is also an optimal path P, there exist ni

and nj in OPENl and OPEN2 respectively such that ni and nj are along P.
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Proof:

Let Pi and P2 be maximal subpaths of P= (nl = s, n2, ... , nk = t) in TREEl and

TREE2 respectively.

Pi = (nl, n2,..., ni) andP2 = (nj, nj + l,..., nk).

Pi and P2 are not null paths (i.e. 1 ^i and j<k) since nl and nk are in TREEl and

TREE2 respectively (by lemmas 3-2 and 3-3).

Furthermore, i < j. Otherwise, the optimal path would have been found.

We wish to show that node ni (nj) is in OPENl (OPEN2) i.e. not closed.

Node ni (nj) is closed only when one of four events occurred:

A. Node ni (nj) was nipped in TREEi (TREEi) (step 9).

B. Node ni (nj) has an ancestor node nx (ny) in TREEl (TREEi) which was

nipped in TREE2 (TREEi) (step 9).

C. Node ni (nj) had a successor in TREEl (TREEi) and on P and the successor

was trimmed from OPENl (OPENi) (step 26). For example, Pi was (nl, n2,

... , ni, ni+l) with ni + l in OPENl. A trimming event led to the removal of

ni + 1 from OPENl (recall that trimming applies only to open nodes).

Consequently, Pi is now (nl, n2,..., ni) with ni in CLOSED 1.

D. Node ni (nj) was expanded but had no successors which could be added to

OPENl (OPENi).

For event A to occur, ni (nj) must have been chosen for expansion in preference to

nj (ni) while searching in the backward (forward) direction. Similarly, for event B

to occur, nx (ny) must have been chosen for expansion in preference to nj (ni) while

searching in the backward (forward) direction. According to corollaries 3-1 and

3-2 these events are impossible.

Suppose event C occurred i.e. node ni+l (nj-l) was trimmed from OPENl

(OPENi).

Then it must be that /l(ni + l) >Lmin. [1]

Since ni + l and its ancestors lie on the optimal path,

gl(ni+l)=gl*(ni + l).
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/l(ni+l) =gl(ni + l) + ftl(ni + l)

^gl*(ni + l) + /u*(ni+l) since /u(ni+l) </n*(ni+l)

= /i*(ni + l)=A.

Since BS* did not find an optimal path, A < Lmin.

Therefore/i(m+l) < Lmin,contradicting [1].

Likewise it can be shown that /^(nj-i) < Lmin. Thus event C cannot occur.

Finally, to show that event D cannot occur, we note that the inequality i<j < k

implies that ni (nj) has at least one successor ni+1 (nj-l) to consider when

searching forward (backward). Since the best path to ni+1 (nj-l) is via ni (nj), ni + l

(nj-l) will be added to OPENl (OPEN2) should ni be expanded, contradicting

event D.

Since none of the events are possible, it follows that node ni (nj) is not closed and

must be in OPENi (OPEN2).

Corollary 3-3:

Before BS* terminates, there exist nodes ni and nj in OPENx and OPEN2

respectively where /l(ni) < A < Lmin and fe(nj) < A < Lmin.

Corollary 3-4:

Ifa path exists from s to t, BS* will not terminate before finding an optimal path.

Theorem 3-2:

Ifan optimal path exists, BS* will terminate.

Proof:

If the graph is finite, BS* will terminate according to lemma 3-1.

Suppose the graph is infinite.

Let d*(n) be the length (number ofarcs) in the best partial path so far in TREEl.

n is the tip node of this path.
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Since the cost of each arc is at least a small positive value e,

gl(n) > d*(n) e

fl(n) = gl(n) + hi(n) > d*(n) e+/tl(rc).

If BS* does not terminate, d*(n) will tend towards infinity and so will fl(n) since

hl(n) is finite. Similarly, it can be shown that even the smallest of the values of

nodes in OPEN2 will tend to infinity. Since this contradicts corollary 3-3, BS*

must terminate.

Theorem 3-3:

Ifa path exists from s to t, BS* will terminate with the optimal solution i.e. BS* is

admissible.

Proof:

Corollary 3-4 tells us that BS* will not terminate with a suboptimal path.

Theorem 3-2 says that BS* must terminate. Hence BS* must terminate with the

optimal path i.e. Lmin=X.

3.4.5. Advantages of BS*

Even without the nipping, pruning, trimming and screening operations, the first

suggested improvement of using all opportunities to update Lmin will hasten

termination. The four operations further expedite termination by eliminating unfruitful

search whenever possible using information gathered during search. Bad open nodes

due to these operations become more prone to trimming because of their inflated g and f

values. This is certainly a desirable effect. The operations serve not only to avoid search

being misled, but save unnecessary and burdensome additional book-keeping which

would be incurred otherwise. Unlike BHPA, when Lmin is updated BS* re-examines the

potential of open nodes for contributing to a better solution, discarding those found

worthless. In this way, BS*'s open sets are kept lean. Consequently, maintaining the

order of the open sets is computationally less demanding. Perhaps more important is

93



that the open sets should be able to guide search control more accurately using the

cardinality comparison principle. This is apparent when BS*'s termination condition is

examined. Trying to nullify the current smaller open set, which is what the cardinality

comparison principle does, corresponds to the choice which is more likely to satisfy the

termination condition (step 3).

A point made earlier is that bidirectional algorithms are more amenable to parallel

computations and this enables its running time to be further reduced significantly. This

is apparent when we examine the time intensive steps which can be concurrently

executed. In a unidirectional search algorithm such as A*, only one node can be

expanded at a time, but once the successor nodes are identified, the / values of these

successors can be computed concurrently. In contrast, BS* can develop the two search

trees concurrently i.e. the two most promising nodes, one from each search tree, can be

expanded simultaneously. Furthermore, the / values of both sets of successors can also

be evaluated in parallel. The obvious but telling point is that BS* allows more

concurrent computations than A*, and if the number of processors is not a limiting

factor, as in massively parallel architectures, then one can expect BS* to run

significantly faster than A*. However, if A* is able to make full use of the processors

available to BS*, then BS*'s speed gain is only significant when generation of successor

nodes is more costly than computation of/values. Another point to note is that there are

communication and shared variable access control overheads involved in concurrent

computations. However, such overheads are highly machine dependent and their

vitiating effects are unlikely to be serious in non-wave-shaping algorithms which

permit both search trees to be developed independently.

3.5. Comparison ofBS* Against Some Other Algorithms

Experiments were conducted to compare the performance of BS* against A* and other

members of BS*'s class viz. Nicholson's algorithm, BSPA, and BHPA. All were coded in

Interlisp-D on the Xerox 1186.
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The test domain used was route planning since this is indeed a relevant application {e.g.

in mobile robotics work) which would give a good indication of how the various

algorithms would perform in a real world problem. Moreover, an admissible heuristic

function which also satisfies the monotone restriction can be easily found in this

domain. Graphs representing a network of geographically dispersed nodes were

randomly generated by first generating the coordinates of n nodes and then randomly

determining which of each node's neighbours are accessible from it. The number of

nodes, n, ranged from 50 to 90 in increments of 10. Arc costs are the straight line

distances between nodes. The heuristic function used gives the straight line distance

between a node and the terminal node. For each graph, the nx(n-l) optimal paths for all

distinct ordered node pairings were computed. The grand totals of node expansions were

measured. In the case of the heuristically guided algorithms, the running times with

garbage collection time excluded were also measured. These tests were selected to

reflect overall performance i.e. the performance range over problems yielding the

shortest to the longest optimal paths.

Figure 3-1 reveals that, on the average, heuristically guided search, both unidirectional

and bidirectional, grew smaller search trees than the uninformed algorithms. BS*'s

overall performance curve is only slightly inferior to A*'s, but it is a significant

improvement on BHPA's—about 30% improvement for each of the five graphs. Figure

3-2 shows that the running times of the informed algorithms bear a similar relationship

to their performance curves in Figure 3-1. The mean ratios of ordinates (with reference

to A*'s ordinates) in Figures 3-1 and 3-2 are shown in Table 3-1. It shows that for an

average 4% increase in node expansions over A*, BS*'s running time increased by only

8%. This compares well against BHPA's corresponding figures of 50% and 70%.

Finally, I compared the relative superiority of BS* and A* as a function of path length.

For this, a 120-node graph was used. The 119x120 solutions were partitioned according

to path length and for each partition, I examined the proportion of solutions for which

one algorithm out-performed the other in terms of node expansions. For the sake of
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Table 3-1. Mean ratios with reference to A*.

BHPA BS*

Mean ratio of expansions 1.5 1.04

Mean ratio of running time 1.7 1.08

statistical accuracy, partitions with less than 50 members were ignored. The results

plotted in Figure 3-3 show that even though A* is marginally better than BS* from an

overall performance point of view, BS* does perform better than A* in some problem

instances, and the frequency of such occurrences increases with solution path length.

The same pattern was observed when the experiment was repeated with other graphs. A

possible reason why BS*'s superiority does not dominate all the time is that the

cardinality comparison principle, although efficacious, is nevertheless imperfect. The

improving superiority of BS* with path length may be explained by the fact that

unidirectional search algorithms, such as A*, are more vulnerable to the effects of

combinatorial growth of search trees with increasing depth of search.

The experiments did not include comparisons with bidirectional algorithms of the

wave-shaping class. Among these, BHFFA and d-node retargetting, being

non-admissible, cannot be compared on an admissible basis. A comparison on a

non-admissible basis would be uninteresting since a non-admissible version of BS* is

similar to Pohl's non-admissible version of BHPA. As for BHFFA2, its admissibility is

questionable. Even in its present form, it is unworthy of comparison because it would

take more time than its predecessor (BHFFA) which itself has been found to be very

computationally expensive despite certain time-saving staging operations.
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3.6. Summary

Route planning is a frequent problem in AGV planning, occurring before and during

execution. Its frequent occurrence, which at times needs to be solved in near real-time,

warrants an admissible and efficient algorithm.

The shortest path problem can be solved more efficiently if unidirectional search is

guided heuristically. Efficiency may be further improved by searching bidirectionally

from the start and goal nodes. This latter approach was inspired by the superiority of

bidirectional uninformed algorithms over their unidirectional counterparts. However,

admissible bidirectional heuristic search algorithms are not generally superior. They

either search too much of the search space or take far too much time figuring out which

node to expand next.

From the review ofprevious algorithms, three key observations were made. First, it was

evidently clear that wave-shaping and its variants are infeasible since the

computational demands are extravagant. Second, it was noted that all the admissible

bidirectional algorithms following Pohl's BSPA unknowingly adopted BSPA's

unnecessarily strong terminating condition, which was apparently due to Pohl's

misinterpretation of Nicholson's algorithm. Relaxing the termination condition

achieves earlier termination and hence less searching. Third, and the most important, it

was observed that information from both the search trees can suggest that certain nodes

are unpromising and should not be developed further. This exploitation of information

collected in the course of search did not occur in previous algorithms, and could also

explain their tendency to explore a greater part of the search space than their

unidirectional equivalents. These observations suggest that an independent approach

for a bidirectional heuristic algorithm may yet surpass A*, at least for some of the time.

Hence the idea of BS* was born. BS* was also motivated by the potential for

significantly reducing the running time through parallel implementation.
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BS* is essentially a turbo-BHPA. Its added power comes from using all opportunities to

achieve early termination and from exploiting information available during search to

eliminate unpromising nodes. In particular, it was shown how the search curtailment

parameter (Lmin) can be updated without missing any opportunity as previous

algorithms did. Also, it was shown how the search trees can be curtailed such that

unpromising branches are never grown.

BS* is by far the best (in terms of time and space) bidirectional admissible search

algorithm in the non-wave-shaping class. It is also distinctive in being the first search

algorithm which employs staging or search reduction operations (nipping, pruning,

trimming and screening) and yet preserves admissibility.

In assessing the merit of BS*, I suggested as a possible criterion the maximum possible

time reduction (implying multiprocessor usage) compared to a unidirectional

implementation, and this time reduction is to be achieved without significantly

expanding more nodes. Using this criterion, BS* has the potential to compute optimal

solutions significantly faster than A*. Although this will incur on average a nominal

penalty in memory requirement (about 4%), there will be instances when BS* will be

superior both in time and space even without the benefit of concurrent computations.

Experiments also indicate that such instances will occur with greater frequency as the

solution path length increases.
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Chapter 4

Route Learning

4.1. Introduction

In chapter 3, it was pointed out that route planning is a recurrent activity for the AGV

movement planner and at times must be solved under near real-time constraints,

implying that fast computation is essential. It was shown how BS*, an admissible

bidirectional heuristic search algorithm, met this requirement. This chapter shows how

another technique—route learning—can be incorporated into search algorithms to

further reduce the time and effort it takes to compute a path.

Route learning or path learning is the process of extracting and remembering useful

information found in the course of searching for a particular solution path. Routes

learned can be used as instant solutions to future searches or, if a search is necessary,

learnt routes may reduce the search effort involved. Either way, route learning can

shorten the time it takes to find a path.

Our motivation for route learning is that it helps to achieve the objective of a fast AGV

movement planner by: (1) avoiding redundant search; and (2) learning from experience
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to yield future solutions more readily. For example, if during a search for a path from A

to Z, a path from C to K is incidentally uncovered and remembered, a fresh search is

avoided if the latter path is subsequently required. For that matter, all paths uncovered

should be remembered if there is no telling which is useful and which is not. To see how

route learning can reduce search effort, consider the case when a path A to Z is required

and the search has so far found a path from A to N. If a path from N to Z has been learnt

from a previous search, then the search can terminate immediately. But if a shortest

path is required, then the search must continue. Even so, the search effort can be

reduced.

This chapter describes the novel use of route learning in graph searching in the

following manner. First, I will show in section 4.2 that much can be learnt (or otherwise

wasted) from the search tree grown in the course of looking for a particular path. If the

graph is undirected, the amount of learning from a tree is double that in the directed

case. The immense knowledge which can be extracted implies the need for

representation using efficient data structures. This is the subject of section 4.3 where a

representation structure of 0(n2) space complexity is described for a graph of n nodes,

along with path storage and retrieval procedures of O(n) time complexity. Section 4.4

details the learning algorithms for extracting the information of all the subpaths

embedded in a search tree. In section 4.5, we will see how the learnt paths can be used in

both admissible and non-admissible search to produce solutions with less time and

effort. BSL* (based on BS*), an algorithm which incorporates the learning algorithms, is

also outlined. Section 4.6 presents empirical results comparing the performance ofBSL*

with BS*. The evidence shows that route learning is an effective technique in reducing

the time and effort in a search problem.

4.2. Solutions Galore

When a graph is searched for a solution path, one or two search tree(s) is/are gradually

grown, depending on whether the search is unidirectional or bidirectional. Much can be
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learnt from a search tree about solution paths linking other states (apart from the start

and goal states) appearing in the tree. In fact, the tree embodies all solutions between

states I and J if a path can be traced in it from I to J. The number of such incidental

solutions embedded in a search tree can be enormous and it grows exponentially with

the depth of the tree, more so than the number of nodes in it.

Figure 4-1. A search tree T and a typical embedded path P.

Consider for example, a directed graph which is searched for a solution path from the

start state S to the goal state G. Without loss of generality, let us assume that

non-optimal solutions are acceptable and a unidirectional search algorithm is used.

Suppose the search tree grown is T (Figure 4-1). Normally, one is only interested in the

solution path from S to G which T reveals; but in route learning, all paths embedded in T

are of interest.

A typical path P embedded in T can be represented by the sequence <n0, nl, ... , nk>.

Every subsequence of P is also an embedded path. It is easy to show that P contains

k(k+1)/2 subsequences including itself. Since there are usually several root-to-tip paths

{i.e. paths which begin at the root and end at a tip node) in T , it should be apparent that

S
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many subpaths are embedded in the tree. However, some subpaths appear in several

root-to-tip paths as Figure 4-2 illustrates. This indicates that the total number of

distinct subpaths is bounded below by k'(k'+1)/2 and above by Ei6[1>q]ki(ki+1)/2 where

q is the number of root-to-tip paths, ki denotes the number of arcs in the i-th root-to-tip

path and k'=min(kl,k2,..., kq).

For an accurate quantitative appreciation of the total number of subpaths in T, suppose

T has a constant branching factor B (i.e. every non-tip node has B immediate successors)

and T is fully grown to a depth of n (i.e. all the tip nodes are at depth n). Let Si (i< n) be

the total number of distinct subpaths in the subtree Ti which include all nodes ofT from

the root node to the nodes at depth i. If all the subpaths in Ti have been learnt, and Ai +1

more new paths can be learnt by extending Ti to Ti +1, then Ei+l = Si+ Ai + l. Here is how

Ai +1 can be determined.

The number of nodes at depth i + 1 is B1 + 1. Thus there are B1 + 1 distinct root-to-tip paths

which end at a node at depth i + 1. Consider one such path P = <n0, nl, ..., ni+l>. Any

subpath of P which ends before depth i+1 is embedded in Ti. Since all subpaths

embedded in Ti have been learnt, only the subpaths of P which end at ni + l are new and

P2

Paths PI and P2 have in common

the subpath P and all subpaths of P.

Figure 4-2. Common subpaths.
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should be gleaned. These are the subpaths <nx, nx + l, •••, ni+l> with x= 0, 1, ... , i.

Since P gives i+1 new subpaths, Ai + l = (i+l)Bi+1. Si can thus be computed from the

series:

B + 2B2 + 3B3+ ... +iBi.

For an idea of the exponential growth of Si, see Table 4-1 which shows the values of Si

for B = 2 as the depth increases to 10.

Table 4-1. Exponential growth of S.

Depth 2

1 2

2 10

3 34

4 98

5 258

6 642

7 1538

8 3586

9 8194

10 18434

In general, a search tree will not be as regular as that depicted in our example to derive

an expression for Si. Not all the tip nodes will be at the same level and the branching

factor varies from node to node. Nevertheless, we can expect exponential growth of the

total number of subpaths as the tree grows.

The vast store of incidental solutions embedded in a search tree has two implications.

First, route learning can be worthwhile if the effort to glean the incidental solutions is

not forbiddingly taxing. Second, learnt paths should not be stored explicitly as a
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sequence (e.g. as a list) of states. An economical representation scheme which also

permits quick path retrieval is required.

4.3. Efficient Data Structures

We need to record, for each path found, both its length and the sequence of nodes

defining the path. This section shows how these can be recorded using matrices.

For a graph with nodes indexed 1, 2, ... , N, we can use a NxN matrix L to record the

length information. L(i, j) stores the length of the path from node i to node j in the graph.

If only the shortest paths are learnt and the graph is undirected, L(i, j) = L(j, i). In this

case, L is symmetric and this allows a more efficient triangular matrix to be used.

The path sequences can also be stored using a NxN matrix Q. A naive method is to set

Q(i, j) to point at the path sequence <i, ..., j> which is itself a data structure which

consumes memory. A more efficient method (Aho et al, 1983) is to use a matrix of back

pointers. In this method, Q(i, j) is set to the node preceding j in the path from i to j. For

example, suppose N = 4 and the graph is directed; then the path P= <1, 3, 2, 4> can be

recorded as shown in Figure 4-3 using Algorithm 4-1.

1 - 3 1 2

2 -

3 -

4 -

Row 1 ofQ updated from
path < 1, 3, 2, 4>.

Figure 4-3. Matrix ofback pointers (directed graph)
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Algorithm 4-1.

procedure StorePath(Path)

/* Store the path sequence Path in the globally accessible matrix Q. The

function pop returns the first node and sets its input variable to what is

left of the sequence. */

vars FirstNode, ToNode; /* local variables */

1. FirstNode pop(Path)

2. StorePathAuxfFirstNode, Path)

endprocedure

procedure StorePathAux(BPointer, Path)

3. ToNode «- pop(Path)

4. Q(FirstNode, ToNode) *— BPointer

5. if Path is not the empty sequence

6. then StorePathAux(ToNode, Path)

endif

endprocedure

The method of back pointers is more efficient because elements in Q store an integer

value and the extra overhead of storing the corresponding sequences explicity as in the

naive method is not incurred. Furthermore, in storing path P= <n0, nl, ... , nk>, we

have also stored all subpaths of P which begin at no. Hence no additional effort and

storage is necessary to store these subpaths of P as would be required with the naive

method.

However, path retrieval is now more involved. The path from node 1 to 4 is retrieved by

tracing the back pointers until the start node is found. The back pointers will be traced

in the order 2, 3, and 1. Reversing this order and putting the terminal node (i.e. 4) at the

end gives the path. Algorithm 4-2 gives a recursive path retrieval procedure. Clearly,
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the method of back pointers incurs more time to retrieve a path compared to the naive

method. If the path has k nodes, k-1 matrix access operations are now needed instead of

just one. Nevertheless, this time penalty is well worth the storage overhead saved.

Algorithm 4-2.

procedure RetrievePath(FromNode, ToNode)

/* Returns the path from FromNode to ToNode. */

vars BPointer, Path; /* local variables */

1. BPointer <— Q(FromNode, ToNode)

2. ifBPointer = FromNode

then Return < FromNode>

endif

3. Path *— RetrievePath(FromNode, BPointer)

4. Return the concatenation ofPath and <ToNode>.

endprocedure

1 2 3 4

1 - 3 1 2

2 -

3 -

4 3 4 2 -

Rows 1 and 4 of Q updated
from path <1, 3, 2, 4> and its
reverse respectively.

Figure 4-4. Matrix ofback pointers (undirected graph)

If the graph is undirected, any path found means that its reverse is also known. Hence

we can also apply StorePath to the reverse of < 1, 3, 2, 4> giving the matrix Q as shown

in Figure 4-4. The number of learnt paths from the discovery of just one path has now

doubled from three to six, showing the greater degree of route learning in undirected

graphs.
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Note that even if shortest paths are recorded in an undirected graph, Q(i, j)^Q(j, i).

Hence a more economical triangular matrix structure cannot be used for Q unlike the

length matrix L.

Instead of storing the backward pointers, we could instead store the forward pointers. In

this case, Q(i, j) indexes the node immediately after node i in the path sequence P= <i,

..., j>. A forward pointer version of StorePath will record not only P, but all subpaths of

P ending at j. Since there is no intrinsic advantage in doing so, we shall use the

backward pointers in our algorithms.

4.4. Route Learning Algorithms

It seems that with the large number of paths embedded in a search tree, path extraction

and learning will be a tedious and time consuming procedure. Indeed this is true if all

the paths in the tree are enumerated and the StorePath procedure is applied to every

path. Such an approach will incur an enormous number of matrix update operations,

many of which will be redundant. A judicious and efficient learning strategy is required

which avoids redundant learning. This section describes how such a strategy can be

implemented both for unidirectional and bidirectional searches.

4.4.1 Enumerating the Set of Distinct Subpaths

The set of distinct subpaths in a tree Tk can be enumerated incrementally using a

method similar to that described in section 4.2 to compute S (the number of distinct

subpaths in a tree). The main idea is to rebuild Tk incrementally starting from To, the

tree with just the root node no. This rebuilding process generates a series of trees To, Tl,

... , Tk such that Ti + l is built from Ti by adding a new node to Ti. As long as the node

added is a successor of a tip node in Ti, Ti + l will be a subtree of Tk and the series will

eventually terminate at Tk. Figure 4-5 illustrates this process.
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\

/

/ Tk
/

/

/
\

Figure 4-5. An incremental series of trees.

Suppose all the subpaths in Ti have been enumerated. The subpaths in the next subtree

Ti+i and which are not in Ti are those which end at node ni + i. The longest of these is

<no, nl,... , ni, ni+i > and the others are <nx ni+l > (x= 1, 2,... i). Altogether, i +1

new subpaths can be enumerated. These can be learnt starting from the longest and

ending with the shortest, or in the reverse sense. We shall see (when the notion of
•tWe.

learning cut-off is introduced) that it is advantageous to learn^longest subpath first.

Clearly, enumerating the new subpaths from Ti+l is straightforward once all the

subpaths embedded in Ti have been enumerated. Since To is the degenerate tree with no

path in it, subpaths in Tl can easily be enumerated. Having done this, T2 is worked on

next, and so on until Tk has been processed. In this way, all the distinct subpoths in Tk
can be systematically enumerated and learnt.

4.4.2 Avoiding Redundant Learning

There are two ways in which redundant learning can occur. The first is when a path has

been learnt during a previous search i.e. from a different search tree. Thus, even though

the above enumeration procedure ensures that the next subpath (say P) identified has

not already been enumerated from previous subtrees in the same series, it may be that P
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has been learnt already. If P is subjected to StorePath again, then one redundant matrix

update operation will ensue for each arc in P. Obviously, we should first check whether

P has been learnt before attempting to record it. A simple way to do this is to initialize

all elements of the matrix Q to zero (or any integer not in the index set of the nodes) and

if subsequently, Q(i, j) > 0, then the path from node i to node j has been learnt.

The second way redundant learning can occur is more subtle and recognising it allows a

simplified and more efficient version of procedure StorePath. Whereas StorePath

typically records several pointers, the simplified procedure merely records one. To see

how this is possible, suppose P = <n.x,..., ni + l > is the next path enumerated when Ti + i

is built. If P is subjected to StorePath, i + 1-x pointers will be recorded. But i-x of these

pointers correspond to subpaths <nx,... , nz> (z = x +1, x + 2,... , i). These subpaths are

in Ti and have been learnt, implying that these i-x pointers already exist in Q. This

means that to learn P, all that is needed is to record one pointer i.e. set Q(nx, ni + l) to ni.

Hence, if learning proceeds chronologically according to the subpath enumeration

procedure, a substantial time-saving measure is possible.

4.4.3 Learning Cut-off

+i

We have seen that whenever a subtree Ti + i is built in the series, i^new subpaths can be
learnt, either starting with the longest or with the shortest. Learning cut-off is the act of

+ \

aborting the learning process before all the i^new subpaths have been recorded, yet
without sacrificing any learning otherwise possible. In doing so, we save some effort in

checking several subpaths. This is possible if there is a way to conclude at some stage of

the learning process that the remaining subpaths have already been learnt. The clue to

this is to observe that the strategy of learning as subpaths are enumerated has the

property of total learning i.e. when a path has been previously learnt, so have all its

subpaths. Couple this with the observation that among the i + l new subpaths arising

from Ti+l a subpath Pi which is shorter than P2 must be a subpath of P2, and we see

that if P2 has been learnt, so have all its subpaths (i.e. those shorter than P2). Hence if
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learning the i+1 new subpaths begins with the longest and works its way towards the

shortest, and prior to recording a subpath, it is checked and found to have been learnt

already, then the learning process associated with Ti+1 can cease immediately.

4.4.4 Forward Learning

Here is how all that has been said fits together in the following learning procedure

(FwdLearn). FwdLearn can be invoked whenever a node is closed (or opened for the first

time) in the forward search tree (for example, the search tree of A* or TREEl ofBS*). By

using FwdLearn as an attached procedure (some refer to such a procedure as a demon)

which is activated whenever a node is closed, we circumvent the need for a separate

procedure to rebuild the search tree after it has been fully developed.

When learning is incorporated into BS*, there is another advantage in dynamic

invocation of FwdLearn. Since only the optimal solutions are learnt, learning must be

abandoned when the guarantee that a closed node has an optimal path to it from its root

is invalidated. This invalidation happens when the first staging operation occurs.

Identifying the moment of invalidation is easy during the search, but is far more

complicated if the search trees are rebuilt after the search has terminated.

Algorithm 4-3.

procedure FwdLearn(FromNode, ToNode, FromToDist, Pointer)

/* Learns the set of subpaths (of the path from FromNode to ToNode)

which terminate at ToNode, beginning with the longest. Aborts when

an intermediate subpath has been learnt already. Assumes

FromNode vtToNode. It is also assumed that elements of L were

initialized to zero. Pointer is the node preceding ToNode along Path. */

vars Path; /* local variable */

1. Set Path to the path from FromNode to ToNode.

/* The conditional part in the next line is the learning cut-off test. */
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2. foreach N in Path until (Q(N, ToNode) > 0 or N = ToNode) do

3. Q(N, ToNode) <—Pointer /* this replaces the more involved

StorePath procedure. */

4. L(N, ToNode) *— FromToDist - L(FromNode, N)

endforeach

endprocedure

4.4.5. Backward Learning

When a bidirectional search algorithm is used, a backward search tree (e.g. TREE2 in

BS*) is also generated. This provides another source for route learning. The backward

learning algorithm (BwdLearn) is likewise an attached procedure which is activated

whenever a node is closed (or opened for the first time) in TREE2. BwdLearn adopts the

main points ofFwdLearn—storing only one pointer per path; beginning with the longest

subpath; and aborting learning when the cut-off condition is true. However, the inverted

nature of the backward search tree calls for a different design.

Figure 4-6. Extending the backward search tree by closing another node.

Figure 4-6 shows the state of TREE2 when node nk is the next node closed. BwdLearn

has to examine in turn, beginning with the longest, all the new subpaths in <nk, nk-l,
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... , nO>. Unless the cut-off condition is true at some intermediate stage, k pointers will

be stored corresponding to the subpaths <nk, ... , nx> (x= k-l, k-2, ... , 0). Unlike

FwdLearn which repeatedly stores the same pointer (at different elements of Q), all

these k pointers will be different. Implementing BwdLearn is thus less straightforward

than FwdLearn. Nevertheless, a lucid implementation can take the following recursive

form:

Algorithm 4-4.

procedure BwdLearn(FromNode, GoalNode, FromtoGoalDist)

/* Learns the set of subpaths (of the path from FromNode to GoalNode)

which begin at FromNode, starting with the longest. Aborts when an

intermediate subpath has been learnt already. Assumes

GoalNode vt FromNode. */

vars Path, ToNode; /* local variables */

1. Set Path to the reverse of the path from FromNode to GoalNode.

2. ToNode «- pop (Path)

3. BwdLearnAux(Path, ToNode)

endprocedure

procedure BwdLearnAux(Path, ToNode)

vars Pointer; /* local variable */

4. ifQ(FromNode, ToNode) > 0

then /* cut-off learning */ exit

endif

5. Pointer *— pop(Path)

6. Q(FromNode, ToNode) *— Pointer

7. L(FromNode, ToNode) «- FromtoGoalDist - L(ToNode, GoalNode)

8. if |Path| > 1

then /* there are more new subpaths to consider */
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9. BwdLearnAux(Path, Pointer)

endif

endprocedure

4.4.6 Final Learning

If a unidirectional search algorithm is used, then FwdLearn is the only algorithm which

is needed. In the case of a bidirectional search, BwdLearn is also required. Even so, at

the termination of search, there will still be opportunities for learning. This section

shows how the final gleaning is performed.

Suppose the solution path found by a bidirectional search algorithm is P (see Figure

4-7). A conventional bidirectional search keeps track of the best complete path found

thus far by recording its length and the node X at which the forward search tree

(TREEl) met the backward search tree (TREE2) and produced the best complete path

(see section 3.4.3). When search terminates, P is found by concatenating the path A

(from S to X) in TREEl with the path B (from X to G) in TREE2. Two observations can

be made which suggest how further learning is possible.

First, node X is not necessarily closed in both search trees. This is a consequence of

algorithms such as MkWoUons and BS* using all opportunities to find the best complete path.

Other algorithms such as BHPA are more restrictive in this respect: the updating of the

variables which represent the best complete path found thus far occurs only when X is

closed in both trees. Another reason why X may not be closed becomes clear in section

Figure 4-7. Solution path from S to G is P=AUB.
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4.5.2. There we see that X may not even be in one of the search trees because a learnt

subpath (from a previous search tree) linked with a partial path (instead of two partial

paths meeting) to yield the best complete path. Hence, following search termination, X

should be checked to see if it is open in both search trees. If it is open in TREEl, then

FwdLearn should be invoked. Likewise, BwdLearn should be invoked if it is open in

TREE2.

Second, P presents more of its own subpaths which have not been considered previously

because they are neither embedded in TREEl nor TREE2. These are the subpaths which

begin before X and terminate after X. They can be learnt simply by iterating along path

B and applying FwdLearn repeatedly as shown in the following procedure:

Algorithm 4-5.

procedure Glean(Start, XNode, Goal, StoGDist)

/* Completes the learning process upon search termination. The first three

input arguments correspond to S, X, and G in Figure 4-7. */

vars PathB, Pointer, Distance;

1. if XNode is not closed in TREEl then FwdLearn(Start, XNode) endif

2. if XNode is not closed in TREE2 then BwdLearn(Goal, XNode) endif

3. PathB *— RetrievePath(XNode, Goal)

4. Pointer *— pop(PathB) /* popped node is XNode which has been learnt

and should be the pointer for the first node

which invokes FwdLearn. */

5. foreach ToNode in PathB do

6. Distance StoGDist - L(ToNode, Goal)

7. FwdLearn(Start, ToNode, Distance, Pointer)

8. Pointer *- ToNode

endforeach

endprocedure
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A more complicated and efficient version of procedure Glean can be designed. What

follows are the underlying ideas, but the implementation is left to the interested reader.

Referring again to Figure 4-7, we see that FwdLearn can be invoked in the opposite

direction (from G to X along path B) to that used above. This reverse direction happens

to be advantageous because learning cut-off can be used to trim the path which

FwdLearn has to work on. For example, if FwdLearn is invoked at node J, FwdLearn

will first find the path from S to J and then proceed to learn all subpaths in this path. If

learning is cut-off (for the first time in this final learning phase) at node I because it was

found that the path from I to J has been learnt, then there is no need to learn any

subpaths contained in <1, ... , X, ... , J>. Thus, in a later invocation of FwdLearn by

node J' (lying between X and J along P), we can be sure that I will again be a cut-off

point ifFwdLearn has not been cut-off before I. This suggests that FwdLearn should use

the shorter path from S to I instead of the longer path from S to J' as it normally would.

Obviously, this requires that the cut-off node which is found nearest to S be recorded.

The procedure Glean applies only when learning is not abandoned because of staging

operations which invalidate the condition of closed nodes having optimal paths. This

point can be understood more clearly with an example. Referring to Figure 4-7 again,

suppose the first staging operation was performed at node I and the final optimal path

via X is due to a partial path A and a learnt path B. Since learning was abandoned at I,

the path from I to X and its subpaths may not be learnt. Applying Glean as above would

ensure that all paths beginning in A and ending in B are learnt. But our learning

algorithms are dependent on the total learning property which is now violated because

of some unlearnt subpaths between I and X. Unless procedure Glean is modified to

preserve the total learning property, the book-keeping will be erroneous. Essentially,

the modification of Glean is to ensure that all partial paths in the final path are totally

learnt before the original steps in Glean are applied.
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4.4.7 When Learning Should Occur

Dynamic application of FwdLearn and BwdLearn (i.e. learn in unison with search) can

occur in two situations: (1) when a node is closed; and (2) when a node is opened for the

first time. The choice depends on whether learning is confined strictly to optimal paths.

If only the optimal paths are learnt, then learning should be invoked when a node is

closed, but on condition that the consistency assumption holds. This condition is

necessary because only then are the paths from the root of the search tree to the closed

nodes guaranteed to be optimal. Otherwise, only the final solution is guaranteed to be

optimal (assuming that an admissible algorithm is used). In this case, dynamic learning

cannot be used and any learning of optimal paths must be based on the final solution

path alone. Obviously, this occurs after the search has ended and the amount of learning

is also severely restricted.

If learning suboptimal paths is acceptable, then dynamic learning should be activated

when a node is opened for the first time. The idea is to learn a new path whenever

possible, and if a path is found to be better than one which has been learnt, then a

decision has to be made on whether relearning should follow. However, relearning is

more complicated than it seems. For example, suppose paths A and B have been learnt

and A is a subpath of B, and if a better path linking the terminal nodes of A is found,

then A and some of its subpaths can be revised, along with their associated cost values.

Unfortunately, these changes will invalidate the costs of B and its subpaths which are

dependent on A. Extending the revisions to the affected paths in B is a non-trivial

matter. The implication is that relearningmay not be worthwhile.
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4.5. Application to Search Theory

The previous section described how routes/paths can be learnt during a search process.

In this section, we will see how learning can be used to reduce the time and effort in

finding a solution.

The most obvious way learning helps is when the search algorithm which is required to

find a path (say from node S to another node G) can be preempted because the path has

been learnt already. This occurs when Q(S, G) > 0, implying that the path exists in

memory. All that is required is to invoke RetrievePath and return the solution path

alongwith its cost in the L matrix.

Even when the search is not preempted because an instant solution does not exist,

learnt solutions can nevertheless be useful. Besides the preemptive role, learnt paths

can complete partial paths in the search tree and enable earlier search termination.

This second role is similar to the use of two partial paths, one from each tree of a

bidirectional search, to find complete paths. Hence when learning is applied, there are

two ways of forming complete paths—using partial paths only; and using a learnt path

as well. Whichever is used, the best of these complete paths is maintained and its cost

acts as a search cut-off parameter. An example of a search cut-off parameter is Lmin in

BS* (section 3.4). How learnt paths expedite search cut-off depends on the modes of

search—directionality and admissibility. Since each of these has two possibilities, four

combinations exist. For the two non-admissible combinations, search cut-off is

immediate once a learnt subpath is available to link up with the partial path(s) to yield

a complete path. But when optimal solutions are required, the search cut-off condition

has to be more carefully considered. We shall examine this condition in detail in the

following two subsections.
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4.5.1 Unidirectional Admissible Search

Examples of unidirectional admissible search algorithms are A*, B, B' and Dijkstra's

best-first search (section 3.2.2). The discussion in this section will be based on A* and its

variants (B and B') since these are more general—setting h = 0 reduces these algorithms

to the Dijkstra uninformed algorithm.

In the conventional application of A*, A* will expand several nodes sequentially until

the goal node is chosen for expansion, at which point the optimal solution is known and

A* terminates. Suppose the sequence of nodes expanded (or chosen for expansion) is

<no, nl,... , nk>. If the consistency assumption holds (section 3.3.6), then /(ni+l) >/(ni)

for i=0, 1, ... , k-1. Furthermore, /(nk) = /*(nk). The proofs for these statements can be

found in Nilsson (1980).

If learnt routes are used to cut-off search, we would maintain a parameter such as Lmin

to record the length of the best complete path found so far. Suppose node ni is expanded

and looking up Q(ni, nk) tells us that the optimal path from ni to nk has been learnt, thus

completing the partial path ending at ni. If this new complete path gives a better value

for Lmin, then Lmin is updated with g(ni) + L(ni, nk). If subsequently, node nj is chosen for

expansion and /(nj) >Lmin, then by transitivity, we can predict that the /"values of the

nodes after nj in the above sequence, will also be at least equal to Lmin, implying

/*(nk) >Lmin. Hence the complete path found by linking up with the learnt subpath at ni

cannot be inferior to the optimal path which A* would conventionally find. This

complete path is thus the optimal path and A* can abort the search prematurely.

Unfortunately, the condition /(nj) >Lmin rarely holds before nk is chosen. This is because

f, in this case, is based on h being admissible (i.e. h < h*) and unless h(n) = /i*(n) at some

intermediate node n, f(n) will be less than f*(n) (which is the cost of the optimal path).

Since Lmin>f(n) by definition, f(n) will be less than Lmin and cut-offwill not occur.
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What if the consistency assumption does not hold? In this case, the / values of the nodes

in the expansion sequence is not necessarily monotonically nondecreasing. The cut-off

condition in the preceding paragraph cannot guarantee an optimal solution. In fact,

learning optimal solutions from the search tree has to be severely restricted to the final

solution path. As explained in section 4.4.7, the FwdLearn procedure cannot be invoked

when a node is closed because there is now no guarantee that when a node is closed, its

optimal path has been found.

Although learnt subpaths cannot play a useful cut-off role when the consistency

assumption does not hold, they can nevertheless play another role which has the same

effect of expediting the discovery of an optimal solution. For this, we must turn to

algorithms B and B'. Recall that these algorithms maintain a global variable F which

records the maximal f value of the nodes which have been closed. F is used to identify

the set of open nodes which definitely have inconsistent h estimates and thus are more

likely to mislead the search. Nodes in this set are considered for expansion first, and

only when this set is empty will the open nodes with consistent h estimates be

considered. If Lmin is maintained as described, a node with a consistent h estimate will,

when chosen for expansion, have an / value below Lmin. Conversely, if its / value is

above Lmin, then we can surmise that its h estimate is inconsistent. In this case, it

should likewise be relegated to the set of first resort. By helping to identify the

candidate nodes with unreliable ratings, there should be less incidents of search being

misled. Effectively, the optimal solution can be found with less effort.

Summarizing, there is not much opportunity to apply learning to reduce search in A*.

The main benefit of learning is in preempting search by instant look-up solutions. When

the consistency assumption does not hold, learning can nevertheless reduce the search

effort of algorithms B and B'. However, the opportunities for learning are severely

curtailed.
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4.5.2 Bidirectional Admissible Search

Unlike unidirectional admissible searches, in bidirectional admissible searches we only

need to consider the case when the consistency assumption holds. This is because

informed bidirectional admissible search requires the consistency assumption to be

satisfied. It is easy to show how learning can help to cut-off search.

All bidirectional admissible algorithms maintain a form of cut-offparameter in the first

place. For example, BHPA uses amin and in BS*, it is Lmin. Learnt subpaths which can

complete the partial paths in the search trees can be used to tighten the cut-off

parameter and thereby enable earlier termination. There are two ways partial paths

can be linked into a complete path using learnt subpaths.

Figure 4-8. Completing a forward partial path.

A

Figure 4-9. Completing a backward partial path.

First (see Figure 4-8), either a forward partial path P is linked with a learnt path Q from

node X of P to the goal node G, or (see Figure 4-9) a backward partial path B is linked

with a learnt path A from the start node S to node X ofB.
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Second (see Figure 4-10), a learnt subpath Q can bridge the non-terminal end nodes X

and X' of partial paths P and P' in the forward and backward search trees. Finding a

learnt path Q in this case is computationally expensive since the algorithm must

inspect, whenever a new open node is generated, all the nodes in the opposite search tree

for possible link-ups. This overhead increases exponentially as the search trees grow

and easily adds more time than can be saved by the technique of search cut-off.

Figure 4-10. Bridging a forward and a backward partial path.

In contrast, the first method requires only one inspection for every new open node and is

likely to save more time than the time added by its overhead. Hence only this method

should be used.

Here is how BS* can be modified to learn by experience and to use learnt information to

help find a solution:

Algorithm 4-6:

procedure BSL*(s, t)

I* Compute the shortest path from s to t. All variables except matrices Q and

L are local. */

1. ifQ(s, t) > 0

then /* path has been learnt; preempt search. */

2. return RetrievePath(s, t) and L(s, t); exit

endif

3. ShouldLearn <— true
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4. Lmin «-oo ; gi(s) <- g2{t) *- 0; fl(s) «- f2(t) <- /ll(s)

5. Put s in OPENl and t in OPEN2.

6. until OPENl or 0PEN2 is empty do

/* Determine the search direction index using the cardinality

comparison principle. */

7. if |OPEN 11 < | OPEN2\

8. then d *- 1 else d *- 2

endif

9. d 3 - d. /* Set the opposite search direction index. */

10. Transfer node m in OPENdwith the lowest fd value into CLOSEDd.

11. if ShouldLearn

12. then Apply the forward or backward learning procedures

accordingly

endif

13. ifm is closed in the opposite search tree TREEd'

then /* nip m in TREEd and prune TREEd' */

14. • Close m without expanding it.

15. • Identify the set Qm comprising nodes in OPENd 'which

are also descendants ofm in TREEd

16. • Remove from OPENd 'those nodes which are members of

Qm.

17. • ShouldLearn «- false

else /* expand m *1

18. TrimFlag false

19. foreach n in Td(m) which is not closed in TREEd do

20. g *-gd(m) + cd(m,n)-,f*-g + hd(n);

21. if f<Lmin and n is not in OPENd
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22

23.

24.

25.

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

then /* insert n into OPENd */

• Place n in OPENd

• gd{n) <-g\ fd(ri) <-f; pd(n) <- m

• LearntLinkUp?()

elseif f<Lmin and n is in OPENd and g<gd(n)

then /* update n in OPENd */

• gd(n) *-g; fd(n) <r- f\ pd(n) *- m

• LearntLinkUp?()

else /* n is screened */

• ShouldLearn *— false

endif

if n is in TREEd 'and gl(ri) +g2(n) <Lmin

then /* update and set TrimFlag */

• Update Lmin and MeetingNode

• TrimFlag «— true

• ShouldLearn <— false

endif

/* Trim open sets if a better Lmin was found */

endforeach

ifTrimFlag

then Remove from OPENl and OPEN2 those nodes with

/"values > Lmin and are not source nodes (for

OPENi the source node is s; for OPEN2 it is t).

endif

endif

enduntil

ifLmin= 00
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36. then no path exists

else

37. • Apply the modified Glean to learn remaining subpaths from

the solution path

38. • Return RetrievePath(s, t) and L(s, t)

endif

endprocedure

procedure LearntLinkUp?()

39. if learnt subpath exists and yields a better complete path

then

40. • Update Lmin and MeetingNode

41. • TrimFlag +- true

endif

endprocedure

Note that in BSL*, learning is permitted as long as no staging operations (nipping,

pruning, trimming and screening) have been performed. This is because once a staging

operation occurs, there is no longer a guarantee that when a node is closed, its optimal

path with respect to its root node is known.

BSL* remains admissible because the proof of BS* applies similarly. The reason for this

is threefold: (1) the application of learnt subpaths affects the search only via Lmin-, (2)

essentially, the definition of Lmin remains unchanged; and (3) as far as the proof is

concerned, Lmin records the cost of the best complete path found so far and it is

irrelevant whether this is due to learning or due solely to the algorithm's search

information.
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4.5.3 Related Work

There is little previous work on applying learning to search theory. The earliest scheme

can be found in Michie and Ross (1969) which described GT4, an adaptive version of

Doran's GT2 (1968).t GT4 implements learning from experience by modifying the

numerical parameters used in the heuristic evaluation function, and by re-ordering the

list of operators used to develop the search tree. The experimental results reported

(based on the 8- and 15-puzzle domains) suggest the effectiveness of these two

techniques in improving search performance; more problems were solved and with less

effort involved. However, the methods are not applicable to admissible search and may

not lead to an improvement in computation time.

The only other reference I have come across is Pohl's (1969) suggestion that the weights

wi in the general evaluation function /(n)=g(n) + Eju;i/iL(n) be tuned dynamically

according to some learning strategy. However, Pohl did not describe any learning

scheme. This learning approach differs from the concept of route learning: learning is

used only to alter the evaluation function whereas in route learning, the /"function is not

modified. Instead of honing the guidance mechanism via the f function, the method of
search

route learning uses previously discovered solutions explicitly to preemptAor prune the
search space.

4.6. Empirical Results

In this section, empirical evidence is presented to support the claim that route learning

can expedite the discovery of optimal solutions using a bidirectional admissible search

algorithm. We will see a reduction in the time and effort it takes to find solutions as

learning increases. After some initial learning, subsequent computational time is less

t Doran's GT2 differs from the original Graph Traverser (Doran and Michie, 1966;
Doran, 1967) by partially expanding/developing selected nodes instead of fully
expanding them. GT2 was written in Algol. GT3 (Marsh, 1969) is merely a POP-2
version ofGT2.
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than if no learning is involved.

The results presented are based on the mean data of 20 repetitions of an experiment

(run with BS* and BSL*), each using a different set of 1000 pairs of start and goal nodes.

Each set was randomly generated and referred to a 90-node graph also randomly

generated. At the beginning of each experiment, the L and Q matrices were initialized

i.e. nothing had been learnt. For BS*, the experiment measured two parameters T and

E. For BSL*, two additional parameters were measured: I and L. These parameters are

defined below and are in relation to the i-th lot (comprising 50 paths) for i= 1, 2,..., 20.

T computation time

E number of nodes expanded

I number of instant solutions from previous learning

L number ofpaths learnt.

Figure 4-11 shows the learning curve as a percentage of the total learning possible.

Since the generated graph is such that any two distinct nodes are connected, there are

altogether 89x90 routes to learn. The learning curve shows diminishing marginal

increase as lot number increases. The reason is that the probability of discovering (by

chance) an unlearnt route decreases as more routes are learnt.

Figure 4-12 shows the time BSL* takes for a lot as a percentage of BS*'s time. The

unbroken curve for BSL* shows that the computation time per lot decreases as the lot

number increases (i.e. as more paths are learnt). Since the time reduction is due to two

factors—instant solutions and more effective search cut-off—a second plot (the dashed

BSL* curve) is given to show just the effect of the second factor. For this, the timings due

to non-instant solutions were estimated by subtracting from T the time due to instant

solutions, and normalizing the result for a similar lot size (i.e. if V is the time for I

instant solutions in the lot, then the normalized time is (T-T')x50/(50-/)). A similar

trend as the un-normalized curve is observed, showing that learning does hasten search

termination. Note that in both BSL* plots, the time initially exceeded BS*'s time. This
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is because much time was initially spent learning and there was insufficient learning to

make a significant impact on the search effort. But after about 30 path computations,

learning begins to pay off.

Figure 4-13 compares the relative search effort involved in terms of number of nodes

expanded in each lot. Again, two plots are shown so that the impact of learning on

search cut-off can be observed. Both show a positive effect of learning in reducing search

effort, with greater effect as more learning is attained.

4.7. Summary

There is abundant incidental knowledge embedded within search trees developed in the

course of solving a particular problem. The embedded knowledge is potentially useful in

two ways. First, it can provide instant solutions to later problems. Second, it can be used

to prune the search trees of subsequent searches by weeding out some of the

unpromising nodes. Consequently, solutions can be found more rapidly. In order to reap

these advantages of learning, three problems must be solved:

• how to represent and retrieve the knowledge efficiently;

• how to extract the embedded knowledge;

• how to apply learnt knowledge during search.

The first problem can be solved by using two matrices L and Q. L holds the costs of the

paths associated with its indices and Q holds the back pointers. By tracing these

pointers, learnt paths can be retrieved. In general, both must be square, but if the graph

is undirected and only optimal solutions are learnt, then L is symmetrical and can be

stored in a triangular array.

The second problem can be solved by three learning algorithms (FwdLearn, BwdLearn

and Glean). These algorithms work efficiently by avoiding redundant learning and
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prematurely aborting the learning process when it concludes that the remaining

information is not new. All three algorithms are applicable in bidirectional searches,

but only FwdLearn is applicable when search is unidirectional. In certain

circumstances, these algorithms can be invoked dynamically in unison with search or

within a separate procedure after the search terminates. Both methods are applicable

when learnt solutions need not be optimal. Dynamic invocation is more efficient but it

requires the consistency assumption to hold if learning is restricted to optimal paths. If

the consistency assumption does not hold and learning is confined to optimal paths, then

the post-search method is necessary and even so, learning must be based solely on the

final optimal solution.

Concerning the third problem, it was shown how learning serves two useful roles:

preemption and cut-off. Implementing preemption is trivial but hastening search

termination is trivial only if suboptimal solutions are acceptable. In this case, all ends

well when any partially developed path can be completed using a learnt path. Ifoptimal

solutions are required, the matter is less straightforward, and it depends on the

directional mode of search. If search is unidirectional, search cut-off hardly occurs in A*,

but can occur more frequently in B and B'. However, in bidirectional admissible search,

there is more scope of search cut-offbeing advanced by considering learnt paths. For this

reason, the application of learning benefits bidirectional search more than

unidirectional search.

The ideas are generally applicable to various search algorithms. However, learning is

useful only when: (1) search is recurrent; and (2) suboptimal solutions are acceptable, or

if only optimal solutions are accepted, then a bidirectional admissible algorithm is used

(implying also that the consistency assumption holds). It happens that these conditions

are met in our AGV application.

Finally, to demonstrate the worth of learning, the BSL* algorithm was introduced and

tested. Based on BS*, it incorporates the three learning algorithm as well as the two
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learning application techniques. Empirical data substantiate the hypothesis that

learning can reduce both the search time and effort.
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Chapter 5

Tolerant Planning and
Negotiation

5.1. Introduction

Planning systems need to consider the difficulties of successful execution to be useful in

solving real world problems. Merely generating a logically correct order of actions to

achieve a goal only solves the real problem in part. If it over-optimistically assumes that

the states of the world will change as expected according to its model of the world, then

there is a likelihood that the plan will fail. The problem of achieving the goal then

remains. Besides logical correctness, plans must also have a degree of executability in

the real world. By "executability", I mean the ability to cope with real world issues

during execution; issues which may not have been accounted for during plan generation,

either not at all or only partially. For example, time is often an important factor,

especially when a plan is part of a higher schedule of events. Other real world issues a

planner may need to consider are: unexpected environmental changes; uncertainties in

action outcomes; resource limitations; and unforeseen interference from other agents in

the same environment.

135



The importance ofplan executability can be seen in recent work in AI planning research
which augments earlier work focusing mainly on logical correctness. Early AI planners
evolved over two generations. The first generation of planners (e.g. Fikes and Nilsson's
STRIPS, 1971) produced plans which were totally ordered sequences of primitive
actions. Observing that some actions can be executed in parallel, Sacerdoti and Tate

developed the second generation of nonlinear and hierarchical planners: NOAH

(Sacerdoti, 1975) and NONLIN (Tate, 1977). These are characterized by the partial
order of plan structures and the use of abstract search operators or action schemas to

successively refine the plan structure. Following this, the focus shifted onto real world

issues of practical importance. Vere built DEVISER (Vere, 1983), a system based on

NONLIN which could handle time constraints and timed events in the real world. Other

work related to planning involving time can be found in Allen (1983), Bell and Tate

(1984, 1985), Cheeseman (1983), Dean (1985), Miller et al (1985), Tsang (1986) and

Vilain (1982). Efforts have also been made in designing planners to manage resources

(Bell, 1985; Wilkins, 1982), monitor the progress of plan execution and incorporate the

use of sensory systems into plans to guide plan execution dynamically (Finger, 1982;

Wilkins, 1985). Another area which has attracted considerable attention is multi-agent

planning (Genesereth et al, 1986; Georgeff, 1984, 1986; Rosenchein, 1982, 1985;

Rosenchein and Genesereth, 1985) where coordination and cooperation are the main

research issues.

Plan executability warrants more than higher sophistication in the planner to

anticipate real world issues prior to execution. It also points to the need for a dynamic

replanning capability t This need is due to a practical limit as to what a planner can

consider prior to execution; a limitation which means that surprises during execution

can nevertheless happen. However, dynamic replanning can be expensive or is liable to
Hence

be futile if it fails to complete in time^it is desirable to minimize or defer dynamic

t Dynamic replanning also implies the means to establish the circumstances in which
replanning is performed. This means that a planner should have a plan execution and
monitoring component (Currie, 1985; Wilkins, 1985). One could say that the third
generation ofplanners are characterized by their dynamic replanning capability.
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replanning as much as possible. The problems ofdynamic replanning are more severe in

multi-agent domains where replanning for one agent may have repercussions for other

agents. These observations suggest that a worthy objective of a planner is to generate

plans which are not prone to require repair during execution.

The theme of this chapter is that tolerant planning imparts executability by allowing

leeway for execution errors. By tolerating execution deviations, dynamic replanning

need not be invoked as often or as immediately as would be the case with a less tolerant

plan. The approach in designing tolerant plans is to allow for redundancies in the

requirements (usually resources) for execution. While this approach is feasible, it raises

another problem—more conflicts must be resolved during planning. This conflict

resolution problem can be solved using a novel model of iterative negotiation for

multi-agent coordination. The purpose of this chapter is to discuss, in general terms,

these concepts of tolerant planning and iterative negotiation. This will add another tool

to the repertoire described in previous chapters with which an AGV movement planner

can be designed to generate coordinated movement plans (described in chapter 6).

We begin by describing in section 5.2 some major problems in multi-agent planning.

This provides the motivation for the concept of robust planning which is introduced in
section 5.3. The intent is to show how tolerant planning is a means to a higher aim of

plan robustness. We then consider some strategies for tolerant planning in section 5.4.
In section 5.5, a computational model of iterative negotiation is described to show how it
resolves conflicts between agents as each strives to generate its own tolerant plan.

5.2. Problems inMulti-agent Planning

In multi-agent planning, the plans for every agent must be constructed such that each
agent is able to achieve its goal, and at the same time, does not prevent other agents
from achieving their goals. This constraint requires two kinds of conflicts to be resolved.
(1) intra-agent conflicts which are local in nature, pertaining to the interactions
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between steps within an agent's plan; and (2) inter-agent conflicts which pertain to

interactions between the steps of two or more agents' plans. The conflict resolution

problem is thus more complicated in multi-agent planning compared to single agent

domains where only intra-agent conflicts are involved.

Besides a more difficult conflict resolution problem, there is also a problem of extensive

dynamic replanning during execution. When an agent deviates from its own plan during

execution, corrections to its remaining plan may be needed, and this in turn may set off

a chain of changes upon other agents' plans. Ifplan modifications are excessive the fixes

may not be achieved in time to meet near real-time performance which is essential for a

dynamic replanning system. Hence an important objective is to contain plan

modifications, minimizing them as far as possible.

The problems mentioned are not unrelated. The way in which multiple interdependent

plans are generated influences the extent to which replanning is necessary when

execution deviations occur. If the system is able to produce plans which are tolerant of

execution deviations, then in most instances when deviations are within limits, the

system avoids immediate plan revisions with their potential for ensuing chain revisions.

This is particularly important when execution deviations are likely, dynamic

replanning is computationally expensive and the plan revisions may not be produced in
time to avert failures.

The point addressed is that strong interdependency between multiple agents' plans can

bring forth plans which are brittle. Traditional approaches in solving just the conflict
resolution issue without regard to its influence on dynamic replanning are liable to

produce brittle plans. A solution to this is tolerant planning which aims to produce
robust plans which continue to be executable despite execution errors and
environmental changes.
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5.3. Robust Plans

A robust plan permits the goal to be achieved in spite of events which work against its

successful execution. Plan robustness is one of the factors which contributes to plan

executability. In contrast, a brittle plan would be almost immediately invalidated when

an adverse event occurs e.g. hardware failure; an unexpected change in environmental

conditions; an action which did not quite achieve the intended effects. The choice of the

term "robust" instead of the more obvious term "tolerant" is to make a distinction

between tolerant planning as a means and the kind of plan it produces as an end. This

distinction is important because robust plans can be achieved by other means. An

alternative approach will be described later in this section.

The concept of robust systems is not new. Many fault-tolerant systems exist today. With

satellites costing astronomical sums, it makes good sense to have several redundant

subsystems on board to enable uninterrupted operation in the event of hardware failure.

The US space shuttles also have several redundant flight management computers to

ensure a high degree of safety. Critical computer-based systems which cannot tolerate

system stoppage (e.g. air defence control systems) also have hot standby systems ready

to take over when the current system fails.

From the above examples, we can note that a key strategy in designing fault-tolerant or

robust systems is to provide for redundant resources. The redundant resources need not

be restricted to physical resources. Taking a more general view, time and physical space
can be considered as resources as well. Bell (1985) went even further in his classification

of resources and proposed that truth assertions about the world can be treated as

resources.

The same approach can be used to build robust plans. Instead of merely ensuring that
the bare resources required are available for each plan step, redundant resources can be
allocated as reserves. For example, if an aircraft normally needs 800 gallons of fuel to
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cover a certain route without stopping enroute, and it is possible that a stronger head

wind than normally encountered may force an undesirable detour to an intermediate

refuelling point, then it would be wise to plan for more gallons. Another example

involving multiple agents can be taken from the movement coordination of several

mobile robots. Considering the space-time constraint that no two robots can be at the

same place at the same time, a plan to schedule the loiter times of two robots which

require to be at the same position to perform some task might require robot X to be there

from 11:00 to 11:08 a.m. followed by robot Y to be there from 11:08 to 11:15 a.m. The

problem is that should robot X arrive late or loiter longer than planned, then the plan

for robot Y must be modified to avoid an impending collision. A more tolerant plan will

take into account the possible delays and grant more loiter time for both X and Y. The

planner may even ensure that a time gap separates the loiter periods of X and Y just in

case X's loiter time exceeds the tolerance provided.

Tolerant planning is not the only way to build robust plans. There is a twin of tolerant

planning—contingent planning. The difference is that whereas tolerant planning

imparts robustness by granting redundant resources, contingent planning takes the

approach of having redundant knowledge of how to accomplish the goal. The recent

work of Drummond et al (1987) on C-plans (based on net theory) to explicitly represent

disjunctive actions in the plan structure is an example of contingent planning. C-plans
allow the plan execution monitoring component to infer an alternative way to achieve

the goal if one option is not possible, but in determining the alternative, it does not need
to modify the plan structure. Disjunction can hence be considered as an approach to

imparting robustness to plans through causal tolerance.

There is a trade-off between ease of plan generation and plan robustness. In tolerant

planning, the minimal plus the redundant resources for a plan step form a set of
resource choices to achieve the subgoal. As a plan develops, more resources are reserved

and other agents are denied their use. From the perspective of other agents, the more

resources are reserved by one agent, the more restricted are the options open for their
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consideration and it becomes increasingly difficult to find a feasible plan. In order to

counter the greediness of agents as they reserve redundant resources, a mechanism is

required to ensure that agents cooperate by releasing some of the redundant resources

which are needed by other agents. I shall address this problem in section 5.5 by way of

the iterative negotiation model.

5.4. Strategies for Tolerant Planning

The preceding discussion on tolerant planning suggests two main strategies for tolerant

planning: setting tolerances for execution deviations, and imposing buffers or hedges

between the plans of multiple agents. These are ways of realizing the principles of

greediness and wariness which seem useful in designing tolerant plans.

5.4.1 Setting Tolerances

If the achievement of subgoals must be satisfied precisely then the planner must deem

any deviation from the expected outcomes as possibly leading to failure. Consequently,

it has to take some kind of plan repair action. The problem is that dynamic replanning

can be expensive, may take more time than is available, or initiate a chain reaction

among other agents whose plans are not independent. The weakness of plans which

must be executed with precision is that such plans are brittle and vulnerable to changes.

Precise satisfaction of subgoals also require strict execution control not only of the agent

but of the environment so that the subgoal can indeed be precisely satisfied with

confidence. Unfortunately, strict execution control entails more complex and expensive

monitoring systems. A recourse is to postpone dynamic replanning by allowing subgoals
to be satisfied imprecisely or within certain tolerances. So long as deviations from the
ideal subgoal are within limits, the same plan structure should permit continuance
towards satisfying the next subgoal. Although the manner of execution of a

predetermined plan step may have to change, there should be no immediate need to
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modify the plan structurally—a more radical remedial action requiring dynamic

replanning.

5.4.2 Hedging

Hedges are safety margins imposed between plans of several agents working in the

same environment. One can visualize this in terms of requirement or resource spaces.

Every agent reserves a subspace of the resource space. The resource space defines what

is needed by the agent at a particular time and hence is dynamic. Whenever two spaces

overlap, a conflict exists. When the spaces touch, there is no conflict, but the situation

can be described as critical since the slightest change in resource requirement leads to

an overlap. If the resource subspaces are allocated during planning such that they are

adequately spaced apart, then there is some leeway for requirement changes to occur

without bringing about an overlap immediately. In this way, plans of other agents are

tolerant ofanother agent's execution deviation.

Whereas setting tolerances allows an agent to postpone dynamic replanning otherwise

warranted immediately by its own execution deviations, hedging allows agents to

postpone dynamic replanning due to the deviant behaviour of other agents. Hedging

thus helps to prevent or contain a chain reaction ofplan alterations.

5.5. Negotiation as a Conflict ResolutionMechanism

Tolerant planning requires the allocation of redundant resources and this can rapidly
reduce the availability of resources. When available resources are over demanded by

several agents, they must come to an agreeable compromise in which the total demand
on resources does not exceed availability. These conflicts can be resolved by an agent

yielding some of its redundant resources for the sake of another, or several may
compromise their initial demands. Whichever the case, the actual conflict resolution
process can take either of two forms.
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The first approach is to submit the dispute to a higher authority; a third party acting as

an arbitrator solely decides how to apportion the disputed resources between the

plaintiffs. The second approach is to let the two agents in conflict settle the dispute
between themselves.

Good arbitration requires consideration of all the relevant factors involved. The factors

will in general be case-dependent. This makes arbitration difficult to implement—it

must be knowledge-rich, knowing how to resolve disputes judiciously for each different

case. Its more extensive and intensive consideration of the circumstances surrounding

each case means that arbitration requires extended time and effort.

The second option is similar to a haggling process. Neither party involved needs to know

the plans, intents and requirements of the other party. This approach is conceptually

simple and yet can be effective. Let us consider an example from the business world for a

better understanding of how negotiation works.

When a customer wishes to procure some item from a company, each party (in general)

would offer a different price. The customer would hope to secure the item at as low a

price as possible, while the company would aim to fatten its profit margin by closing the

sale at as high a price as possible. Both have to come to a point of mutual agreement

without the benefit of an arbitrator. What normally happens is an iterative process of

negotiation with offers followed by counter-offers and so on till the price differential is

eliminated. Otherwise, when neither is prepared to compromise further to strike a deal

the negotiation breaks down. Note that for each agent, there is an element of selfishness

along with a willingness to concede. We can also observe that over a series of business

transactions, when there is a choice to make a deal or break off negotiation, customers

and businessmen are generally satisfied in the end. Admittedly, this conclusion drawn

from a simplified illustration excludes extraneous circumstances (e.g. economic

recession; mismanagement; fraud; labour disputes) in the real world. Fortunately, such
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factors are irrelevant to most applications for which a negotiation metaphor can be

useful.

This general overall satisfaction by virtue of freedom of negotiation suggests that the

concept can be imported to resolve conflicts between agents in a problem solving

situation. Another advantage is that by not involving a higher authority, a

heterarchical organization more amenable to parallel processing is possible. Vamos

(1983) has also argued that heterarchical organizations are more suited than

hierarchical organizations in evolving cooperation and in general work more efficiently.

Apparently, this point is also evident in contrasting political and economic systems (e.g.

capitalism vs socialism; decentralization vs centralization; privatization/deregulation vs

nationalization).

5.5.1 Characteristics ofNegotiation

In designing an effective computational model ofnegotiation which mimicks the concept

described, we need to examine the characteristics of negotiation and seek an

understanding of how each can help in conflict resolution. We examine these as follows:

• Conflict knowledge. An agent knows with which other agent(s) it is in

conflict with and what the conflict(s) is/are. Unless this is so, conflicts will

be overlooked to the detriment of subsequent plan execution. The

knowledge of existing conflicts can be self realized or discovered by
another agent which then informs the agent(s) involved.

• Willingness to negotiate. Between any two agents in dispute, at least one
must be willing to attempt to resolve the conflict. Otherwise, a negotiation

process cannot even begin. In the absence of capital gains, we can assume

that this motivation comes from altruism or benevolence imposed by the

system designer. However, willingness does not mean that an agent must
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settle conflicts at all cost, or even at some cost. As in reality, a conflict can

be resolved when only one agent makes the concessions. Also, when the

bottom line is reached, an agent can break off negotiation. If all parties

break off negotiations, then an impasse is reached; the conflict is not

entirely resolved. Sometimes, an impasse may be temporary. After a lapse

of time, the circumstances may have changed somewhat, and an agent

may then be willing to make further concessions.

• Knowing the negotiables. An agent knows its own bottom line of

negotiation, although not necessarily that of other agents. This implies

that the objects in conflict can be partitioned into two sets: the negotiable

and the non-negotiable with the latter defining the bottom line.

• Yielding and Substitution. An agent may compromise its position by either

yielding or substituting some of the contended objects with other objects

which may or may not be free of contention. Substitution is actually

yielding made up in part or whole with further object reservation. Since

yielding decreases redundancy more than substitution, the latter should

be attempted first whenever possible.

• Agents are selfish. Although agents are willing to negotiate, they are in a

way selfish in trying to minimize what they can give up to settle the
conflict. Each would hope that the gap of dispute can be narrowed by the

other party's effort rather than its own. In the context of multi-agent

planning, the initial tolerant plan of each agent (i.e. before any redundant
resources has been yielded to resolve a conflict with another agent) is the

"optimal" tolerant plan in the sense that any yielding reduces its
robustness and hence executability. Thus every agent should want to

practise the policy of being selfish i.e. sticking as close as possible to its
initial plan.
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Negotiation is an iterative process. A point ofmutual agreement is usually

reached after several rounds of concessions. This follows from the selfish

characteristic since minimal compromise dictates that an agent should

yield in small steps. Depending on the gap of dispute, several small steps

by both agentswill have to occur before an agreement can be reached.

Intransigence. Sometimes, when an agent believes that the other has not

conceded sufficiently before it makes its next concession, it may elect to

concede nothing i.e. appear to be intransigent. This induces the other

agent to make another offer, and possibly, successively further offers to

keep the negotiation process going. Such behaviour is also observed when

one agent has a relatively smaller set of negotiable objects to concede

away.

Skilful negotiation. Every agent has a set of negotiation techniques to use.

The set used by one agent can differ from the other agent's, as should be

the case since their perspectives (of what they desire to achieve ultimately)

differ. Furthermore, agents know at each stage of the negotiation which

technique to apply next. This implies that they know the order of

techniques to use and which of the negotiable objects to consider next.

Nested negotiation. Consider the case of agents A1 and A2 contending over

object X. The resolution may require that A2 gives up X completely, but it
cannot do so without some substitution in order to maintain its position

above the bottom line. A2 then finds that X can be substituted with object

Y. However, Y is held by agent A3. A2 decides to negotiate with A3 over Y

before it resolves its conflict with Al. Then again, A3 may have to

negotiate with yet another agent in order to yield Y, and so on as the case

may be. We see that although a single negotiation act initially involved
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only two agents, it may incur further nested negotiation acts within it. For

a more concrete example, suppose Pegasus Aircraft Co. is the main

manufacture for the PX1 aircraft, and it uses Eagles Co. as a subcontractor

for the wings. In a business negotiation, the customer insists on a

reduction of $10m for the PX1 aircraft. Pegasus Aircraft Co. then tries to

meet this by asking Eagles Co. to reduce its price for the wings by $3m.

Eagles Co. finds that it is nevertheless a profitable deal to lower its price

by $3m, but it will try to minimize its profit squeeze by negotiating with

T-Lium Co., which supplies the titanium material for making the wings,

for a reduction of $lm for the material.

5.5.2 A Computational NegotiationModel

From the above characteristics, we see that there are many degrees of freedom which

one can exploit in a computational model. The good news is that a variety of negotiation

behaviours can be modelled, offering a richness and flexibility to meet a wide range of

situations. The bad news is that choice brings its own problem—how to determine the

optimal choice. In the extreme case when a plethora of possibilities are available, it

becomes a combinatorial optimization problem. Unless the problem is amenable to

formal analysis, one can seldom hope to find an optimal choice. Without the benefit of

formal analysis, the recourse is to make a choice judiciously, implement and observe,

and modify the implementation through trial and error.

After some experimentation, I have found that the model defined by the following

algorithms mimicks all of the characteristics of iterative negotiation. The algorithms

implement a control structure for iterative negotiation, but leave much of the details

{e.g. negotiation techniques) for the user to define. This is necessary since certain details
are dependent on the application domain. We will see an example of how this general
model can be specialized to deal with conflicts in planning AGV movements in Chapter
6.
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Algorithm 5-1;

procedure Plan(Agent, Task)

/* Construct a conflict-free plan. */

vars P, pi, MainConflictSet, Residuel, pi', P';

1. Generate plan P independently for Agent to achieve Task.

/* P is feasible from the viewpoint ofAgent, but may involve steps which

conflict with other agents. In general, P is a partially ordered graph of

primitive plan steps. */

2. until all plan steps in P have been considered do

3. Choose a plan step pi not considered before.

4. Identify MainConflictSet, the set of agents in conflict with pi.

5. ifMainConflictSet is empty then go to step 13 endif

6. Residuel ResolveConflict(Agent, pi, MainConflictSet).

7. ifResiduel = 0 then go to step 13 endif

/* pi cannot be made conflict-free. */

8. Find an alternative plan step pi' for pi.

9. ifpi' exists then pi <— pi'; go to step 4 endif

/* P is infeasible */

10. Find an alternative plan P' for Agent to achieve Task.

11. if P' exists then P «- P'; repeat step 2 afresh endif

12. signal failure and exit /* Task cannot be achieved by Agent. */

13. enduntil

endprocedure

Algorithm 5-2:

procedure ResolveConflictdnitiator, Action, ConflictSet)

/* Attempt to eliminate all conflicts associated with Action; returns the
residue. */

vars Residue2, Respondent, C;
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1. Residue2«-0

2. until Residue2 > 0 or all members ofConflictSet have been considered do

3. Choose from ConflictSet, an agent Respondent not considered before.

4. Compute conflict C between Initiator and Respondentwith respect to

Action.

5. Residue2 <— Negotiate(Initiator, Respondent, C)

enduntil

6. Return Residue2.

endprocedure

Algorithm 5-3:

procedure Negotiate(Initiator, Respondent, Differential)

/* Iteratively negotiate to eliminate Differential; returns the residue. */

1. Differential <— ApplyTechniqueflnitiator, Differential).

2. ifDifferential = 0 then exit, returning 0 endif

3. Differential «- ApplyTechniquefRespondent, Differential).

4. ifDifferential = 0 then exit, returning 0 endif

5. if no new techniques can be applied to reduce Differential

6. then exit, returning Differential /* Negotiation impasse occurred. */

endif

7. Go to step 1.

endprocedure

Algorithm 5-4:

procedure ApplyTechniquefAgent, Differential)

/* Respond by applying a technique in the current negotiation round;

returns the residue. */

vars T, SubAgents, Residue3;

1. Find technique T appropriate for Agent to reduce Differential.
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2. if prior to T s application, negotiation with Agent's subsidiary agents is

required,

3. then Identify SubAgents, the set ofAgent's subsidiary agents involved.

4- Residue3 «- ResolveConflict(Agent, T, SubAgents)
endif

5. Apply T to reduce Differential as far as Residue3 would allow.

6. Return Differential,

endprocedure

In the main procedure Plan, an agent attempts to resolve all conflicts associated with

every step in its plan. If a step cannot be made conflict-free despite negotiation, a

substitute step is sought. If this is also futile then a new plan must be constructed. The

agent attempts to resolve the conflict by first identifying the set of agents with which it

is in conflict with and then invoking the procedure ResolveConflict. Within

ResolveConflict, the planning agent (initiator) negotiates in turn with each member

(respondent) of the conflict set by calling Negotiate. The Negotiate procedure iteratively

eliminates the conflict with the initiator and respondent each taking turns to reduce the

conflict by calling ApplyTechnique. As its name suggests, ApplyTechnique selects and

applies a technique to reduce the conflict. If necessary, ApplyTechnique will initiate its

own conflict resolution process (thus capturing the nested negotiation behaviour in the

model) before it returns a residual conflict.

Defining the negotiation techniques is a critical part of the modelling process since

effective conflict resolution depends on rational negotiation behaviour of agents. Having

defined the techniques, the next step is to rank them in increasing order of preference.

Naturally, the most preferred involves the least compromise. The outcome ofordering is

a list L= (Tl T2 ... Tn) where Tl is the first technique to be tried and Tn is the technique

of last resort. Defining the list L (also called the skill set) captures the skilful

negotiation characteristic of an agent. The various techniques are domain-specific and

are thus left to the user to define during implementation. Besides enabling a variety of
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negotiation behaviours to be modelled, this simple list representation also offers the

flexibility of adapting the skill set to suit the current circumstances since the list can be

manipulated dynamically.

A technique is chosen by taking the first element in L. When the chosen technique is no

longer applicable, L is reset to its tail. Applying a chosen technique has three effects: (1)

the conflict is totally eliminated—in this case, no further negotiation is necessary; (2)

the conflict is partially reduced; and (3) the conflict is not reduced at all. The last effect

is not necessarily a result of means being exhausted; it can be used to simulate

intransigent behaviour. In the second case, the technique may or may not have

exhausted its means. If it has exhausted its means (i.e. no further redundant resources

can be yielded by reapplying the same technique), then a different technique, if any,

should be attempted next by the same agent.

The main algorithm Plan can be modified to invoke an arbitration procedure if there is

still more residual conflict (Residuel) after attempting resolution at step 6. Although it

has been pointed out that arbitration can be computationally expensive, its inclusion

here may have the advantage of eliminating the residual conflict by decree, and therein

avoid local replanning (step 8) or better still, avoid total replanning (step 10). If these

replanning steps are more costly than arbitration, then arbitration will be worthwhile.

On the other hand, there is a risk—arbitration may be in vain, in which case, the wasted

arbitration effort is an added burden since the replanning step(s) would not be

circumvented.

The design of an arbitration procedure is somewhat open-ended. In general, it should
have a higher perspective of the circumstances. Thus it should have access to the

repository of knowledge in the agents in conflict, as well as the organizational

goals/policies. It subjects the relevant information to its decision procedure and the
output should be a resolution plan or an indication of non-resolution. In the latter case,
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it means that the residual conflict has to be eliminated by altering at least one agent's

plan.

5.5.3 RelatedWork

Davis and Smith (1981) developed a contract negotiation metaphor the name of which

suggests great similarity with our negotiation mechanism. However, there are

significant differences. The contract negotiation metaphor has been used for task

distribution and dissemination of control in a multi-agent problem solving

environment. When a task needs to be solved by an agent, it is typically decomposed into

subtasks and announced to agents in the same environment. Agents which are able to

support an announced subtask make a bid which includes certain information specified

in the announcement message. The main agent (manager) decides which bidder to

award the subtask to and sends out the award message to the successful agent

(contractor). In assuming the subtask, the contractor may in turn become a manager

and decompose the subtask even further and initiate another announce-bid-award

contract cycle. Even if a task is not decomposed, an agent may delegate it to another

instead of itself undertaking it. Davis and Smith's negotiation metaphor is suited to

distributed problem solving and is not designed to accomplish conflict resolution.

A more closely related work is Goldstein's (1975) which schedules the activities of

individuals over a particular time period in such a way as to allow all if not most of the

activities to occur. Individual activities are initially specified with associated general

requirements and preferences, leaving a great deal of freedom for the system to
instantiate the period of occurrence for each activity. Conflicts may arise from activities
of one or more individuals. The system first constructs a possibility space of periods for

the activities ofeach individual. It then resolves conflicts between activities of the same

individual. Finally, it fixes conflicts between activities of different individuals. Every
resolution step narrows the possibility space.
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Goldstein s scheme of conflict resolution relies on two types of bargaining techniques.

Resource-driven and purpose-driven techniques form the first and second type

respectively. The two types differ in that resource-driven techniques only make local

adjustments of preferences whereas purpose-driven techniques can modify

requirements or goals. Being more radical in behaviour, purpose-driven techniques are

invoked to fix a conflict only when the resource-driven techniques have failed. In

general, a conflict can be fixed by more than one technique. The system will invoke all

the applicable techniques to build a search tree in the same way as search operators are

used to generate a search tree in STRIPS (Fikes and Nilsson, 1971). At any stage, the

system chooses the most promising node based on the sum of satisfied preferences to

work on next until all conflicts have been resolved. Goldstein's use of bargaining

techniques differs from our negotiation techniques in the following ways:

• Goldstein's system applies all possible bargaining techniques to build a search

tree. Our negotiation techniques are linearized and applied one after another

in a predetermined order and search is not involved.

• The motivations differ. Goldstein applied his system to plan activity calendars

of individuals and did not seek to build schedules which allowed activities to

overrun without warranting immediate changes to affected activities. In our

case, we aim at generating robust plans which tolerate to some extent the

deviant behaviours ofother agents.

• By attempting to debug each conflict in a single step, Goldstein's system is
non-iterative. It resembles more the case of every conflict being resolved by the

arbitrator with no initial haggling between the agents in dispute.

• Fixes in Goldstein's system can work in a discontinuous manner. For example,

a meeting initially scheduled from 9 to 10 a.m. may be shifted to 3 to 4 p.m. In
our case, conflicts are resolved in a gradual manner and this has the effect of

preventing the final set ofplans from deviating too far from their initial ideals.
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5.6. Summary

Tolerant planning is a feasible approach to building robust plans which have better

executability than brittle plans. Robust plans are important and useful in several

real-world situations, particularly when dynamic replanning needs to be minimized and

when execution monitoring should be implemented economically. These organisational

objectives can be achieved by allowing the goals of plans to be satisfied imprecisely yet

innocuously during execution. The key strategy underlying tolerant planning is to

provide more than sufficient means (resources) to achieve the goals, in much the same

vein as existing engineering systems are designed to be fault-tolerant by virtue of

redundant hardware.

While robustness is the benefit gained, the cost of tolerant planning is an increased

demand for resources. Each agent's tolerant plan will need to reserve more resources

than would be the case otherwise. Resource reservation by one agent denies the same

resources to other agents. Since overall availability of resources is limited, resource

contention becomes more acute. A mechanism is hence needed to allocate available

resources fairly and in accordance with operational requirements.

The iterative negotiation algorithm is proposed to solve this problem. It relies on agents

having a set of negotiation skills to participate intelligently during negotiation with

another agent. Intelligent negotiation requires the exercise of intransigence when one

has little to give away and tactical sense which seeks to induce the other party to meet

one most of the way in settling the dispute. When all agents negotiate rationally, an

approximately equitable state of compromise should result. Negotiation thus achieves a

semblance of rational self-organisation, not in structural configuration, but in terms of

agents finding their own level ofplan robustness as conflicts are resolved.

The main advantage of this model is conceptual and representational simplicity. Unlike

some multi-agent planning models, there is no need to include within the representation
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of agents models of other agents' beliefs, intents, plans and inference mechanism.

Rather than having to grapple with the logical complications of such an approach, the

approach of iterative negotiation merely requires a simple form of rational interaction.
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Chapter 6

Planning Coordinated AGV
Movements

6.1 Introduction

Coordination of AGV movements is the main problem in AGV movement planning for

the obvious reason of avoiding collisions. The problem can be solved during plan

execution as is the approach in current AGV systems. This is feasible when deadlines

need not be strictly satisfied since ad hoc coordination does not guarantee that AGVs

can meet their deadlines.

An AGV movement planner which is able to guarantee conditionally that task

deadlines can be met is not only necessary when plans must meet both logical and

temporal constraints, it also has the important advantage of permitting further

planning on the basis of such guaranteed information. Otherwise, further planning

must be either curtailed or made precariously.

Planning with a deadline constraint requires the coordination problem to be solved

during planning and not during execution. This enables plans to proceed with greater
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certainty that if no unexpected interference occurs, then execution will proceed

unhindered and the deadlines will be met. Besides meeting deadlines, the approach
which resolves all anticipated conflicts prior to execution has another advantage—the

sophisticated and costly monitoring and control systems for real time coordination

which are necessary for current AGV systems may be substituted with simpler and

cheaper systems.

This chapter describes how the coordination problem can be solved during AGV

movement planning i.e. given a task, how can an AGV construct a conflict-free plan

prior to execution. It also exemplifies chapter 5's themes of tolerant planning as an

approach towards building plans which have better executability, and the iterative

negotiation metaphor as a model ofconflict resolution.

In section 6.2, the movement coordination problem will be given the more general

resource-based perspective. This gives an appreciation of the similarities in the

principles underlying various solutions to coordination problems at large. Section 6.3

examines the traditional methods of coordinating AGV movement. We will see that

there is a serious drawback in not allowing accurate temporal projections which are

essential in planning with deadline constraints. Section 6.4 motivates the need for

interval-based schedules and shows how the intervals should be defined according to the

required tolerance against execution deviations. Section 6.5 describes the negotiation

techniques and shows how these are organized into skill sets which can be selected

according to the negotiation strategy used. Section 6.6 explains the implementation of

the iterative negotiation model as a conflict resolution mechanism in the AGV

movement planner. We will also see two examples: one showing how a negotiation

process can resolve a conflict, and the other a non-trivial problem scenario to

demonstrate the capability of the model. Section 6.7 discusses various issues related to a

realistic implementation and points out some limitations and areas for further research.
Section 6.8 acquaints the reader with related work.
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6.2 The Coordination Problem

Coordination problems occur frequently in many application domains. They exist

whenever there is a contention over limited means. For example, computing resources

such as printers, tape drives, etc., can be accessible to one process at a time, and it is a

function ofan operating system to coordinate access.

Coordination is also necessary in several transportation domains. Air, road and rail

traffic control systems are obvious examples. Whereas tangible resources can be

identified in the operating system example, the objects of contention may not be

tangible in the transportation examples. Nevertheless, it is possible to take a general

view of coordination problems; a view in which resources, not necessarily tangible, have

to be allocated to meet certain constraints. The advantage of an abstract view is that

general principles or strategies can be identified from solved problem instances, and

these general strategies may be brought to bear on new problems in different domains.

Correlating a problem instance with the general view is straightforward when the

objects of contention are tangible, but can be less apparent otherwise. For instance,

many of the resources in the operating system example fit the general picture readily. In

the case ofmovement coordination, the constraint that no two physical objects can be at

the same place at the same time, suggests that the relevant resource is a space-time

entity. For example, suppose T is the time interval in which every conceivable event of

interest occurs. Imagine that every relevant position in the domain has its own interval

T. This interval is the resource associated with the position. Safe coordination requires

that only disjoint portions of the interval are allocated to objects which need to be at the

position.
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6.3 The Traditional Approach to Movement
Coordination

The most common technique for coordinating the movements of AGVs is the blocking

method, an idea copied from the railway domain. In the blocking method (Muller, 1983;

Todd, 1986), the route network is partitioned into blocks (segments) and a block control

system ensures every block has at most one AGV in it.

The block control system makes use of devices (sensors and activators) fixed along the

routes as well as on the AGVs. These devices work in concert to stop an AGV just before

a block, or allow an AGV to proceed along a block. The traffic control is guaranteed to be

sound according to some logical constraints. Often, the governing logic is hardwired into

the AGV system.

Another approach is to allow AGVs to move so long as no impending collision is

detected. Collisions can be anticipated using sonar transceivers, contact sensitive

bumpers, or some other proximity sensors. Coordination is achieved by stopping the

AGV prior to collision, and enabling the AGV to proceed only when the cause of

stoppage disappears. The advantage of this approach is higher throughput—blocks can

accommodate more than one AGV at a time.

Traditional methods can solve the coordination problem effectively as has been proven

by their long established use in industry. However, there is a serious shortcoming—they

do not admit temporal projection unless a complete simulation is carried out. Even so,

the predictions may not correspond with the actual outcomes during execution. The
reason is that a certain non-determinism is involved in concurrently moving AGVs.

Suppose, two AGVs, X and Y, approach the same junction at about the same time and at
the next time instant, both could have arrived at the junction according to the

simulation. One must give way to the other if collision is to be avoided. If both stop to
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give way to the other, then a starvation type ofdeadlock occurs. Since AGV systems are

engineered not to give rise to deadlocks and collisions, either X or Y but not both will

stop, depending on whichever first gains control of the block. This is where the

non-determinism arises. Inherent inaccuracy in any simulation model cannot predict

which of the two AGVs will gain control first. If the simulation grants the block to X,

then the ensuing sequence ofevents will be very different from the case ifY was granted

control instead.

Temporal projection is nevertheless important since it serves to confirm whether AGV

movement plans will meet the temporal constraints (deadlines) of a higher schedule of

events. The conclusion is that AGV movement plans must be planned with complete

temporal detail if temporal projection is to be possible. This departs from the traditional

approaches which plans the routes with only some temporal detail (e.g. start times) and

leaves spatial-temporal coordination to be realized in an ad hoc manner during

execution.

6.4 Interval-based AGV Movement Plans

In this section, I will describe how AGV movement plans can be generated such that

temporal projection is possible without simulation. I will also show how these plans
meet the objective ofexecutability by virtue of robustness; an issue which was addressed

in chapter 5.

6.4.1 Temporal Projection via Scheduling

Temporal projection is the forecast of arrival and departure times of an AGV along a

route. It is trivial once a movement schedule can be determined prior to execution since

such a schedule defines when an AGV will arrive at and depart from nodes along its

route. Elsewhere along the route, the arrival/departure time can be computed by

interpolation or by solving the equations ofmotion.
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The usual kind of movement schedule is point-based. A point-based schedule defines

exactly the time instant when an AGV will arrive at a position. It is often illustrated

using a graph of position versus time. For example, Figure 6-1 shows that an AGV

departing from position A at time ta, moving at constant speed towards B, will arrive at

B at time tb. It will remain at B until time tb' (perhaps to pick up a load) before

proceeding to C at a slower speed, arriving there at tc.

Figure 6-1. Graph of a point-based schedule.

Figure 6-2. Graph of an interval-based schedule.
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Alternatively, an interval-based specification for schedules can be used. An interval

defines the range of time when an AGV is given sole access to a position. The

interval-based specification is more general since it encompasses a set of point-based

schedules. Figure 6-2 illustrates this. Note that the interval widths may vary. This has

to do with providing an allowance for late arrival. Such allowances should reflect the

difficulty of maintaining punctuality. Since an AGV is more likely to be late when a

greater distance has to be traversed, the interval width should be monotonically

non-decreasing with respect to distance travelled.

Temporal projection can be precise even with interval-based schedules. All that is

required is a reference point in one of the intervals. Effectively, this reference point

instantiates a point-based schedule within the set defined by the intervals. For example,

if it is known that an AGV will arrive at A at time ta (see Figure 6-2), then the arrival

times at succeeding intervals can be predicted, assuming that the speed and waiting

times along the route are also known.

6.4.2 Advantages of Interval-based Movement Plans

The justification for an interval-based representation stems from two objectives: (1) to

reduce the frequency of plan revalidations during execution; and (2) to build robust

movement plans which are less susceptible to replanning and have better immunity

against replanning repercussions.

Suppose for the sake of argument, point-based schedules are used. Assuming that the

planner had constructed a conflict-free set of schedules, there will be no collision as long
as execution is perfect. Unfortunately, ideal execution is impossible in reality since

execution deviations are bound to occur. Actual arrival times will differ at least

minutely from the planned arrival times. Every time a deviation occurs, the remaining
schedule must be revised and the systemmust verify that the new schedule is safe. This
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requires the examination of the movement plans of every AGV which will also be at

points along the route associated with the revised schedule. Such frequent exhaustive

revalidation has a vitiating effect on the near real-time capability of a dynamic

replanner.

Use of interval-based schedules avoid the problem of frequent exhaustive revalidation.

An interval-based schedule has time intervals at every check point along the route of an

AGV. If these intervals are assigned such that all schedules are conflict-free, then no

revalidation is necessary as long as the arrival and departure times of an AGV remain

within interval.

Since continued safety (i.e. the plans remain conflict-free) is guaranteed when execution

deviations remain within bounds, dynamic replanning is also unnecessary. Thus,

interval-based movement plans are robust. The relation with tolerant planning by way

of assigning redundant resources is clear. An interval at a point has redundancies since

only a part of it will be "consumed" during execution. The robust characteristic is

realized by tolerating deviant arrival and departure times which remain within the

intervals.

6.4.3 Composition of an Interval

A rational scheme for defining the intervals at various check points (nodes) along every

route is needed. The considerations for such a scheme should include the following:

• Tolerating self deviations: this should be proportional to the likelihood of

arriving late. Since punctuality is increasingly hard to attain with longer
routes, distance from the starting point is a good metric to use. For better

realism, the topology of the route should also be considered (e.g. corners). We
shall refer to the interval established to accommodate self deviations as the

tolerance interval.

163



• Tolerating deviations of other AGVs: this can be a safety buffer of arbitrary

constant size positioned at the front and rear ends of the time interval.

Although constant, the size can be changed in later planning to reflect more

accurately its role based on the incursions experienced. These buffers

correspond to the hedges discussed in section 5.4.2.

• Meeting the delivery time constraints: the initial task specification will

include an interval denoting the desired period during which unloading at the

destination should occur.

• Using a suitable speed for movement: each AGV has a maximum speed

depending on its gross weight, state of its battery, etc. The planned movement

speed should be set slightly below the maximum speed so that there is an

option to speed up the AGV should the need arises. The speed and delivery

time constraints determine the absolute position of the reserved intervals.

In general, a tasked AGV will move at approximately constant average speed si from an

initial position no to a pick-up point np, spend a certain amount of time (say cop) picking

up the load, then proceed at approximately constant average speed s2 to its destination

nz where it spends some time (say coz) unloading. The speed s2 is normally less than si

since the AGV's gross weight is increased after picking up its load.

One of the constraints which the AGV will have to satisfy is to unload within a

prescribed interval [Dzl, Dz2] at the destination. [Dzl, Dz2] is part of the initial task

specification given to the planner, and it is assumed that coz<(Dz2-Dzl) or else the AGV

planner should report an inconsistent specification to the higher planner. Given these
information and the considerations above, how should the intervals be defined?

The first step is to decide on the planned arrival time tz at the destination. One way is to
set it at Dzl, the beginning of the prescribed interval. Alternatively, tz can be set such

that coz is centred within [Dzl, Dz2] i.e. tz=Dzl + (Dz2-Dzl-coz)/2. In this case, the

maximum amounts by which tz can be advanced or regressed are equal.
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Having fixed tz, a point-based schedule can be easily determined by backward projection

using the speeds and waiting time along the path. This point-based schedule defines the

planned arrival and departure times at various check points. An example is shown in

Figure 6-3.

Position

nz

Figure 6-3. A preliminary point-based schedule.
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Figure 6-4. Components of a reserved interval.
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Finally, the reserved intervals for an AGV to be present at the check points along its
route can be defined to have the following components (see Figure 6-4):

• A constant initial interval 8 which gives some leeway for the planner to

change the planned departure time from the start point no. This interval exists

at all nodes along the path. Tl denotes the beginning of8.
• Immediately following 8 is a waiting interval co during which loading or

unloading can occur. At most nodes, no waiting interval is required.

• co is followed by a tolerance interval x with a width reflecting the likelihood of

maximum delay. For example, for every metre travelled from no, add 5

seconds, and for every corner turned, add another 5 seconds. At no, no

tolerance interval exists. T2 denotes the end of the tolerance interval.

• Two constant width hedges enclosing the juxtaposed intervals defined above;

these hedges are defined for all nodes and complete the definition of the

reserved interval. Hi and H2 denote the beginning and end of the reserved

interval respectively.

6.5 Coordinating AGV Movements

The main task in generating a conflict-free set of plans is to ensure that no two AGVs

(which pass a common node in such a way that they may collide) have overlapping
intervals reserved at the same node. Essentially, three subproblems must be solved.

• Determining whether a collision is possible given the two trajectories.
• Identifying the conflict if the two trajectories may result in a collision.
• Resolving the conflict.

Checking two trajectories for a collision possibility depends on the junctionst and the

t In the route map, every junction is a node. Other nodes are positions where AGVs can
stop for loading, unloading, charging, servicing, and for control purposes.
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cornering precision of AGVs. So as not to digress from the current focus on conflict

resolution, I shall assume that a collision possibility always exists and defer a more

realistic consideration to section 6.7.4.

Adopting the resource-based viewpoint of coordination, a conflict exists when there is

contention for the same resource i.e. time at a check point. This means that when two

reserved intervals overlap, a conflict exists since there is a likelihood of the two AGVs

being at the check point at the same time. Note that the overlap may be such that one

interval contains the other. Furthermore, a conflict may involve more than two

intervals. A resolution scheme must cope with these unusual cases besides the common

case of a simple overlap involving only two intervals.

6.5.1 Principal Modes ofConflict Resolution

Any conflict in the form of overlapping intervals can be reduced by either yielding

(contracting at one end) or shifting the intervals, or a combination of both. These two

basic modes are illustrated in Figures 6-5a and 6-5b.
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Figure 6-5a. Conflict resolved by yielding.
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Figure 6-5b. Conflict resolved by shifting enblock.

Yielding helps to preserve the preferred arrival time at the expense of robustness

whereas shifting preserves robustness by compromising the preferred arrival time. The

preservation of preferred arrival time and robustness are conflicting objectives and

hence a judicious combination of the two resolution modes should be used. In any case,

the important objective is to maintain a balance: AGVs should compromise their

preferred arrival times and plan robustness as equitably as possible. Otherwise, there

will be some AGVs with plans more brittle than others and therefore more likely to

invoke dynamic replanning.

Observe that in the containment case, resolution can be achieved at either the left or the

right end of the containing interval since the conflict can be defined at either end (see

Figure 6-6). Obviously, the end with the smaller conflict should be the focus of

resolution. Note also that intervals remain unbroken after conflict resolution. An

alternative resolution scheme is to split the containing interval into two subintervals.

However, splitting is not recommended because it does not reflect the continuous nature
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of execution deviations. Moreover, it complicates subsequent conflict resolution as well

as the scheme which ensures consistency between intervals of the same AGV.

, Conflict .

< >

y////////////A
I

Conflict

Figure 6-6. Alternative conflict viewpoints.

6.5.2. Implementing the NegotiationModel

A conflict resolution scheme should achieve its effect without causing large disparities

in plan robustness. All resultant plans should have their robustness reduced by more or

less the same degree as reflected by the average yielding.

An approximately equitable state of compromise can be achieved using the iterative

negotiation model described in chapter 5. The model defines the control structure or

protocol of negotiation, and in it, every AGV is modelled as an agent with its own set of

negotiation techniques. The AGV also has a bottom line of compromise which defines

the negotiable parts of the reserved intervals. These negotiable parts can be prioritized

so that certain less important parts are sacrificed first.

In general, AGVs can have different sets of negotiation techniques, bottom lines, and

priorities of negotiable resources. This may be desirable when tasks have differing

priorities. For simplicity of illustration, I will assume that all AGVs are modelled

similarly.
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6.5.2.1 Bottom Line ofNegotiation

The bottom line of negotiation has two parts: (1) the maximal shift allowed; and (2) the

maximal yielding allowed. These ensure that compromises do not jeopardize the

delivery deadline constraint or overly reduce plan robustness.

Figure 6-7. The limits of shift permitted.

The maximum shift allowed is determined by a fixed range within which the reserved

interval must lie. Suppose the earliest departure time for the AGV from its start

position nO is to; the prescribed unloading period at the destination nz is [Dzl, Dz2], the

unloading time is coz, and si and s2 denote the maximum unloaded and loaded speeds

respectively. As shown in Figure 6-7, the left limit of the range is defined by forward

projection from the earliest departure time at no. The line shows the earliest possible

arrival time at points before the destination. The right limit is defined by backward

projection from Dz2-coz at nz. This line shows the latest possible departure time at

various points along the route so that unloading at the destination can be completed by
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Dz2. If the prescribed unloading period need not be satisfied strictly, then the right limit
can be extended further. On the other hand, a more conservative policy might set the
limits more tightly.

The maximum yield permitted is an arbitrary fraction of the reserved interval. A simple

guideline is to set it at 50% of its initial tolerance interval plus both the front and rear

hedges. In setting the bottom line of yield, the consideration should be avoidance of an

overly conservative policy which is likely to cause negotiation impasse when the AGVs

in dispute refuse to concede further to eliminate a residual conflict.

6.5.2.2 Liberal and Conservative Policies

During conflict resolution, an AGV may shift/yield all or a portion of the maximal

amount possible (and required) in a single step. The former follows a liberal policy

whereas the latter is more in keeping with a conservative policy.

A liberal policy has the advantage of eliminating the conflict without protracted

haggling, but may result in highly unbalanced negotiation. On the other hand, a

conservative policy has the advantage of better equity but tends to be protracted and

hence time consuming. It is not obvious what the ideal should be, but it should be a

moderately sized quantum of compromise which does not entail too many iterations.

This can be based on the amount of conflict and the approximate number of iterations

tolerable. For example, if the conflict is 200 seconds and about 10 rounds of negotiations

should occur, then the maximum quantum of compromise can be set at 20 seconds. In

practice, the number of iterations required to resolve the conflict will be more than 10

because there may be rounds when less than 20 seconds are conceded, or even nothing if

intransigence is manifested.
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6.5.2.3 The Negotiables

The bottom line of yield demarcates the parts of the reserved interval which can be

conceded. Recall that, in general, a reserved interval has four components initially.

These are: (1) the constant size interval 8 for flexibility in instantiating the arrival time;

(2) the waiting period co; (3) the tolerance interval x to accommodate delays along the

way; and (4) the front and rear hedges to help contain a chain reaction ofplan revisions.

Suppose that the bottom line of negotiation is as defined in section 6.5.2.1. If a conflict

exists at the left (front) end of an interval, then only the front hedge can be yielded and

every yield reduces it at most by the computed quantum. If the conflict is at the right

(rear) end of the interval, then the components which can be yielded are the rear hedge

and 50% of the allocated tolerance interval. Since the yieldable amount is greater at this

end, more iterations can occur here before all is depleted.

6.5.2.4 Negotiation Techniques

Conflict

l r6—*!
i i l r

W77//////////////////A

Figure 6-8. The L(eft) and R(ight) intervals

Each agent (AGV) has at least one ordered set of negotiation techniques representing its

negotiation skill repertoire. Before describing the basic techniques from which the

negotiation skill sets can be constructed, an explanation of the terms used is necessary.

The superscripts L and R refer to intervals to the left and right of the conflict

respectively (see Figure 6-8). "Left" and "right" refer to temporal relationships on the

time line between intervals belonging to different agents. I will also use the terms

"below" and "above" to refer to spatial relationships between intervals belonging to the

same agent. For example, if an AGV uses a route (no, nl, n2, ... nz), then its interval at
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node nl is above that at no, whereas the interval at nl is below that at n2. The terms Hi,

H2,Tl and T2 are defined as in Figure 6-4.

The following lists a possible set of techniques with respect to an interval:

ShiftRight

YieldFrontHedge

ShiftLeft Reduce the overlap on its right by shifting [Hi, H2]L to

the left without reducing its width.

Reduce the overlap on its left by shifting [Hi, H2]R to

the right without reducing its width.

Without shifting H2R, reduce the left overlap by

yielding as much of the front hedge (increasing HlR) as

is required and possible.

YieldEndHedge Without shifting HlL, reduce the right overlap by

yielding as much of the rear hedge (decreasing H2L) as

is required and possible.

YieldFrontHedge&Shift Reduce the right overlap by shifting to the left as much

as is required and possible. The shift is made after

yielding the front hedge by the amount of shift (TlL,

T2l and H2l are decreased).

YieldEndHedge&Shift Reduce the left overlap by shifting to the right as much

as is required and possible. The shift is made after

yielding the rear hedge by the amount of shift (HlR,
TlR and T2R are increased).

YieldTolerance Without shifting HlL, reduce the right overlap by

yielding as much of the rear of the tolerance interval as

is required and possible (T2L and H2L are reduced).

YieldTol&Shift Reduce the left overlap by shifting to the right as much

as is required and possible. The shift is made after

yielding the rear of the tolerance interval by the

amount of shift (HlR and TlRare increased).
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MoveLeft&Below Reduce the right overlap by shifting to the left by the

required amount after intervals to the left and below

have modified their tolerances and/or hedges to allow

such a shift.

MoveRight&Above Reduce the left overlap by shifting to the right by the

required amount after intervals to the right and above

have modified their tolerances and/or hedges to allow

such a shift.

Absolute left

Figure 6-9. Local and absolute left shift limits

Besides a maximum limit by which an interval can be shifted (explained in section

6.5.2.1) the actual shift also depends on other intervals adjacent to the two overlapping

intervals. For example, Figure 6-9 shows two intervals II and 12 in conflict. Although II

can be shifted to the left by as much as Al, the ShiftLeft technique will only shift as far

as tL, a limit due to an adjacent interval IL. Any shifting beyond this requires interval IL

to yield or shift. Changing IL entails a secondary negotiation process which may lead to

further repercussions. This should be avoided if the conflict can be resolved locally by

adjusting only the two intervals involved.

For the same reason, the other techniques (with the exception of MoveLeft&Below and

MoveRight&Above) which involve shifting are defined such that secondary negotiation

processes will not occur. However, in spite of all the yielding and shifting that can be
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conceded locally, the conflict may not be completely resolved. Only then are the more

drastic techniques (MoveLeft&Below and MoveRight&Above) used.

MoveLeft&Below and MoveRight&Above involve other intervals besides the two

intervals in conflict. These techniques move the left/right adjacent interval to

accommodate a greater shift of the intervals in conflict. Such accommodations entail

secondary negotiation processes.

Shifting an interval also affects the arrival and departure speeds which must remain

within the permissible range. Otherwise, the intervals above or below it have to be

shifted as well. This is another instance of secondary negotiation.

6.5.2.5 Negotiation Skills

The negotiation skills of agents in the model can be represented as ordered lists of the

negotiation techniques. The ordering corresponds to the order of application such that

any compromise begins with the least important resource which can be conceded. When

the technique at the head of the list has exhausted its means, it is dropped from the list

and the next in line will be applied.

From the ten primitive techniques defined in section 6.5.2.4, several skill sets can be

composed. For example, the eight sets used in the AGV planner are:

Via: (ShiftLeft YieldEndHedge YieldFrontHedge&Shift YieldTolerance

MoveLeft&Below)

V2a: (ShiftRight YieldFrontHedge YieldEndHedge&Shift YieldTol&Shift

MoveRight&Above)

V3a: (ShiftLeft YieldFrontHedge&Shift MoveLeft&Below)

V4a: (ShiftRight YieldEndHedge&Shift YieldTol&Shift MoveRight&Above)
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Vlb: (YieldEndHedge YieldFrontHedge&Shift YieldTolerance ShiftLeft

MoveLeft&Below)

V2b: (YieldFrontHedge YieldEndHedge&Shift YieldTol&Shift ShiftRight

MoveRight&Above)

Wsb: (YieldEndHedge&Shift ShiftLeft MoveLeft&Below)

lF4b: (YieldEndHedge&Shift YieldTol&Shift ShiftRight MoveRight&Above)

The variety of skills defined permits the modelling of:

• Negotiation according to conflict type—left or right relative to the interval.

• Secondary negotiation to accommodate shifting beyond the relative limits.

• A tolerance preservation strategy which aims to maintain robustness by

applying shifting techniques first before the yielding techniques. The lists

with an "a" in the subscripts of their labels collectively model this strategy.

• A strategy which aims to preserve the preferred arrival time by doing the

opposite i.e. apply the yielding techniques before the shifting techniques.

The lists with a "b" in the subscripts of their labels collectively model this

strategy. As in the other strategy, the techniques which initiate secondary

negotiations are of last resort in keeping with the objective of minimizing

repercussions.

Figure 6-10 depicts the appropriate usage of these skill sets for different intervals

involved in the negotiation process. Note that all intervals at the same check point and
which

A are left of the conflict use either ^Pla or fib, and those to the right of the conflict use
either f2a or f2b. Secondary negotiations below and above an interval should use

f3a/f3b and f4a/f4b respectively.
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Figure 6-10. Usage ofnegotiation skill sets.

6.6 Implementation

This section describes the implementation of the AGV movement planner. The

implementation has been written in the object-oriented language Loops (Bobrow and

Stefik, 1983; Stefik and Bobrow, 1986; Gittins, 1987) and runs in a Xerox 1186

workstation. Examples will also be given to show how the negotiation model works.

6.6.1 Architecture

Each AGV has a team of experts to assist in generating a robust conflict-free movement

plan. As shown in Figure 6-11, these are:

• Route Planner

The route planner is invoked when the AGV is polled with a task. In general,

a fetch-and-deliver type of task may have more than one supply point to

choose from. The shortest path for each alternative point is computed using

the BSL* algorithm (see chapter 4); and the best of these is returned as the

bid value associated with the task.
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Figure 6-11. Main modules ofAGV.

Note that any path computed must be checked for blockages (e.g. due to an

AGV breaking down). It is assumed that information on any blocked route

segments is available. If any path segment is blocked, then route learning is

deactivated and the BS* algorithm must be used instead.

• Time Manager

When the AGV is polled with a task, the time manager identifies all the free

periods of the AGV in which there is sufficient time to perform the task. The

free periods are found by complementing the current time line (the interval

from current time to the end of planning time) with the time periods of the

tasks pending execution in the AGV's assigned task queue.

Since the AGV's positions at the beginning of the free periods usually differ,

the distance, and hence the time required to perform the task, will also differ

among the free periods. The period which allows the shortest distance is

selected as a basis for bidding.

When the AGV is assigned a task to plan, the time manager defines the

reserved intervals at various nodes along the path. During negotiation, the
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time manager computes the time constraints involved (e.g. absolute and

relative shift limits) and updates the components of the reserved interval. It

also provides the information to guide the application of negotiation

techniques.

• RTokenManager

An RToken is an object (record) which represents the reserved interval.

Every node along the path has an associated RToken created by the RToken

manager. The RToken manager also has access to a global database of all

RTokens established in the course of planning and hence is able to spot

conflicts.

• Negotiator

The function of the negotiator is to resolve conflicts identified by the RToken

manager. In general, the skill set adopted by the negotiator will depend on

the AGV, task, negotiation policy and conflict type. The policy determines

whether a tolerance or arrival time preservation skill set should be used.

6.6.2 Examples

Here is a simple example to show how conflicts can be resolved using the iterative

negotiation model. Figure 6-12 shows two simple plans involving two AGVs X and Y.

X's plan is to move along the path (9 10 11) and Y's plan is to move along (12 10 13). X

planned first and did not require any conflict resolution since no other intervals existed

at nodes along its path. The values of its RTokens are:

R1 [198.75,258.75]

R2 [217.5,289.0]

R3 [248.33,311.33]
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Figure 6-12. Disposition ofRTokens.

As Y developed its plan next, it established the following RTokens:

R6 [240.42,301.92]

R7 [259.17,332.17]

R8 [290.0,364.5]

Y's RToken manager checked the nodes along its path for a possible conflict. It found

that the only co-located RTokens are X's R2 and its R7. Since these RTokens' intervals

overlapped, Y's negotiator initiated a negotiation process with X's negotiator. A trace of

the negotiation process as generated by the planner is shown in Figure 6-13. Both

negotiators used shifting techniques before the yielding techniques since both had

selected the tolerance preservation strategy!.e. strategies Via and V2a were used by R2

and R7 respectively. Observe that before R7 could apply YieldEndHedge&Shift, R8 had

to shift to the right so that Y's departure speed from node 10 could remain within the

speed limits. This is an instance of nested (secondary) negotiation. Furthermore, since

R8 lies downstream from R7, its relevant tolerance preservation strategy is V4a (see

Figure 6-10).
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R2 (217.5 289.0) conflicts with R7 (259.17 332.17)
Amt of conflict: 29.83

At node 10, R7 will negotiate with R2 on its left.
R7 ShiftRight:

Conceded: 4.17 (259.17 332.17) -> (263.33 336.33)
Residue: 25.67

R2 ShiftLeft:

Conceded: 2.08 (217.5 289.0) -> (215.42 286.92)
Residue: 23.58

R7 YieldFnontHedge:
Conceded: 10.0 (263.33 336.33) -> (273.33 336.33)
Residue: 13.58

R2 YieldEndHedge:
Conceded: 10.0 (215.42 286.92) -> (215.42 276.92)
Residue: 3.58

R7 YieldEndHedge&Shift:
R7 will move R8 above.

[Move Above R8] ShiftRight
Conceded: 3.58 (273.33 336.33) -> (276.92 336.33)
Residue: 0.0

Figure 6-13. Trace of a negotiation process.

In another example, we have the following problem scenario (see also Figures 6-14 and

6-15):

Tasks to perform:
Destination Unloading period

Taskl 9 [05:00,06:00]
Task2 19 If

Task3 29 II

Task4 30 II

Task5 13 II

This non-trivial example was contrived such that all the AGVs had to proceed to the

same loading point at about the same time, a situation in which many conflicts had to be

resolved. As evident from the complete negotiation trace (see appendix D), later

planning entailed more nested negotiations as more competing intervals were reserved

at the nodes. As expected, strategies which employ yielding techniques first tend not to

incur as many instances of nested negotiation as those which invoke shifting techniques

first. This is because shifting techniques have to reclaim some time at one end of an
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Uncircled numbers are the nodes defining the route map.
Bold circled numbers denote the AGVs

Paths ofAGVs:

AGV1 ...(29 24 25 20 15 10 15 14 13)
AGV2... (19 14 15 10 15 20 25 24 29)
AGV3 ... (9 4 5 10 15 20 25 30)
AGV4... (5 10 5 4 9)
AGV5... (20 15 10 15 14 19)

Figure 6-14. Trajectories offive AGVs.
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interval after yielding at the other end and this reclaiming may impinge upon other

intervals, resulting in secondary negotiations. Despite many rounds of negotiation

required, all the tasks could be achieved within the delivery time constraints.

AGVI AGV2 AGV3 AGV4 AGV5

Initial position: 29 19 9 5 20

Task assigned: Task5 Task3 Task4 Taskl Task2

All the tasks required the AGVs to pick up the loads at node 10.

Figure 6-15. Initial disposition of AGVs.

Another observation is that negotiators which have made previous concessions tend to

behave intransigently. The intransigence is exhibited when a technique is selected and

all of its associated means have been previously conceded. In this case, the negotiator

makes no concession (in the trace, this is shown by the word "unchanged") and passes

the responsibility of conceding next to the other agent. It may happen that the other

agent is also somewhat depleted of resources which it had conceded earlier in the

negotiation process. In this case, both agents will behave intransigently for a few rounds

until different techniques are invoked with available negotiable resources. In this way,

fairness is achieved to some extent: an agent close to its bottom line will not be forced to

concede unless the other is similarly impoverished.

All in all, the planner took about 54 seconds to compute the set of movement plans

shown in appendix E. These movement plans are conflict-free as was verified by

observing an animated execution using a simulator module developed as part of the

planner.
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6.7 Discussion

6.7.1 Passage Time

Having a finite length, an AGV will take some time to pass a node. For greater

modelling accuracy, this passage time should not be ignored. It is measured from the

moment the front of the AGV reaches a node to the time its rear leaves the node. Hence,

if s is the length of the AGV, u is the initial speed at which the front of the AGV leaves

the node, and a is its acceleration (assumed constant), then the passage time t is

determined by solving the motion equation s= ut + at2/2.

In some applications, an AGV may haul a "train" of unpowered trailers and its effective

length is the total length of the train including the AGV. The same equation applies in

computing its passage time except that the effective length is used instead.

The way to account for the passage time t is to extend the interval by pushing back the

departure time without changing the arrival time. It can thus be viewed as a kind of

non-negotiable waiting time.

Note that a train might occupy more than one node at the same time and consequently,

reserved intervals within a single plan would overlap. However, this does not affect the

way the planner works since such overlaps (being at different locations) do not pose a

resource contention problem.

6.7.2 Soundness

The movement plans generated are sound if no collisions will occur (theoretically) at

any point. This can be checked by examining the safety conditions at junctions and

between junctions.
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Safety at a junction is guaranteed since the intervals reserved at the junction are

disjoint. However, this does not imply safety along a path segment. For example, Figure

6-16 shows two pairs of reserved intervals of AGVs X and Y at nodes nl and n2. X

arrives at and departs from nl before Y but arrives at n2 after Y. Clearly, these intervals

are conflict-free at the nodes. However, because the order of the arrival is reversed in

going from nl to n2, somewhere between nl and n2, Y will run into X unless Y can

overtake X safely. On the other hand, if the order of arrival of any two AGVs moving in

the same direction along the same path segment remains invariant, then overtaking is

unnecessary and safety can also be guaranteed along the path segment.

Position

n2

Y2 X2

f r
XI Y1

Time

Figure 6-16. Collision along a path segment.

Complete safety thus depends on two conditions: (1) non-overlapping intervals where

trajectories may interfere; and (2) invariant arrival order in any two pairs of intervals of

two AGVs proceeding in the same direction along a path segment. The planner ensures

both are satisfied and thus guarantees that the movement plans generated are sound.
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6.7.3 Arbitration

Arbitration may be useful in the event of negotiation impasse. Recall that according to

the top level negotiation control structure (see Algorithms 5-1 to 5-4), when conflict

resolution fails, local replanning is first attempted and if this also fails, then an entire

alternative plan is sought. If this is also in vain, then the planner can look for another

AGV to plan for the task; an AGV which may be better predisposed to find a feasible

plan for the task. All these can be at much computational expense and undesirable if

arbitration could have overcome the impasse in the first place. However, there is no

guarantee that arbitration will always succeed, and if it fails, then the arbitration effort

would have been an added burden.

The essential characteristic of arbitration is that it dictates settlement terms to the

plaintiffs. In this application, arbitration involves forcing one or both AGVs to concede

beyond their bottom lines. The disadvantage of this is that it weakens the robustness of

plans.

6.7.4 False Conflicts

Conflict resolution is achieved at the expense of computation time and plan robustness.

The time it takes can be significant when nested negotiations are necessary. It achieves

its goal of safety by trading off plan robustness. Since these are costs not to be taken

lightly, any opportunity to avoid resolution without sacrificing safety should be

exploited.

This is possible if certain trajectories can be identified as safe (under certain

assumptions) even though the intervals overlap at a node. For example, Figure 6-17

shows some combinations of trajectories passing through a junction which are safe

regardless of the associated time intervals. The assumptions which must hold are: (1)

there is enough room for safe passage by two AGVs; (2) the AGVs have the requisite
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turning precision; and (3) the AGVs obey a standard turning convention e.g. turning in

a clockwise direction with a certain turning radius. Although these assumptions may

not be realized in practice, some combinations of trajectories can nevertheless be

accepted as collision-free (e.g. combination B).

A B

\l

Figure 6-17. Safe trajectories.

Imaginary circle centred at
point representing a junction.

Measured in clockwise sense,
4A0B = a

4AOC = p
4A0D = y

Trajectories P and Q are unsafe
if one of the following is true:

u = Y;
P = 0;
p<a;
Y<a.

Figure 6-18. Trajectories at a point representation of a junction.

Since there may be many types of junctions of different topology and number of

branches, it is useful to have a computational procedure for determining safety given

any two trajectories. A procedure which achieves this objective rests on the critical
constraint that the two trajectories must not touch or intersect each other. Clearly,

this is sufficient to guarantee safety regardless of the associated reserved intervals.
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Informally, the procedure is to select arbitrarily one trajectory, say P (see Figure 6-18),

set its approach direction as the reference line from which the angles of

approach/departure paths are measured in the clockwise direction. Imagine there is a

circle centred at the node denoting the junction. The angles of the approach/departure

paths are angular coordinates of the points where the approach/departure paths meet

the circumference of the circle. The angles a, (3, and y must be in the range [0, 360]. If

any one of the relations shown in Figure 6-18 is true, then the trajectories are not safe.

6.7.5 Dynamic Replanning

Although interval-based movement plans are robust, the need for dynamic replanning

cannot be excluded totally. Hence provision must be made for a dynamic replanning

capability.

Dynamic replanning is not much different from planning prior to execution. In both, a

new plan must be constructed in the context of existing plans and conflicts are similarly

resolved. This suggests that the movement planner can be adapted for replanning as

well.

In general, a planner has more than one task to plan and it may choose to generate the

plans for these tasks in a parallel manner in which it works out a bit of one plan,

switches its attention to another, and so on until all the plans have been completed. A

reason favouring such an approach is that it is amenable to the principle of tackling the

more difficult parts of a problem first.

An alternative approach is to plan for one task at a time. In this approach planning is

always within the context of a set (possibly null) of completely planned tasks. This

sequential approach is simpler to implement and conceptually easier to appreciate. Its

advantage is that a planner based on it is also capable of both dynamic planning and
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replanningt since the planning circumstances are essentially similar i.e. a new/revised

plan must be constructed in the context ofexisting plans.

Since the control strategy of the AGV movement planner takes the sequential approach,

it readily meets the replanning role as well. As a conventional planner, it is activated by

the task manager. As a dynamic replanner, the activation originates from the execution

manager instead. Notwithstanding this difference, the planning functions and conflict

resolution mechanism remain the same.

During execution, dynamic replanning will begin benignly before it calls for more

radical actions which may require replanning on the part of other AGVs. When the

execution monitor detects or anticipates a different arrival time, the initial remedial

action is to change the speed such that subsequent deviations from the schedule are

minimized. Speed variation does not alter any of the intervals and hence preserves the

safety of all the plans. If in spite of speed modifications, the arrival time at a later node

is expected to be outside the reserved interval, then the interval has to be shifted. This is

where dynamic replanning makes use of the same negotiation mechanism if the shifted

interval intrudes into another interval.

If speed variation obviates any shifting of the interval but nevertheless leaves the AGV

behind schedule, then an opportunity arises for shrinking the reserved intervals at later

check points. By doing so, reserved resources which are no longer required are

relinquished and made available to other AGVs during subsequent planning.

Another event which warrants replanning is an AGV breaking down during execution.

The remedy for this is either to replan afresh for the affected task or modify the task

such that another AGV takes over the load from the AGV which came to grief. The
■Pie

latter event is dependent on the fact that^AGV broke down while carrying the load and

t Whereas dynamic planning refers to the construction of a new plan for a task received
during execution, dynamic replanning refers to the modification of a defunct plan for an
existing task during execution.
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that it is possible to effect load transfers between AGVs.

6.7.6 Termination

In distributed agent environments with possibility of conflict, questions of divergence

and deadlock must be examined to be sure that computational processes will terminate.

Here, we will see that neither divergence nor deadlock will occur and hence negotiation

processes will definitely terminate.

6.7.6.1 Divergence

Divergence here refers to the case of a negotiation process always increasing a conflict

rather than reducing it. If this happens, the conflict will not be resolved, and the process

can only be terminated if its divergent behaviour is detected and aborted.

An approach which avoids divergence altogether rests on the observation that

divergence can only occur if there is a technique which increases the conflict instead of

reducing it. Hence if all techniques in a skill set are defined never to increase a conflict,

no divergence can possibly occur.

Referring to Figure 6-10, divergence will not occur if II does not apply either ShiftRight

or MoveRight&Above—two techniques which moves the right end of an interval to the

right which would increase the conflict between II and 12. This restriction is enforced by

excluding the forbidden techniques from the skill sets II will ever use. Similarly, any

interval such as 12 with a conflict on its left to resolve, must use skill sets which exclude

the techniques ShiftLeft and MoveLeft&Below. Since these conditions are satisfied in

the definitions of the skill sets (section 6.5.2.5) used in the movement planner,

divergence is avoided altogether and schemes to detect and subsequently abort the

process are unnecessary.
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6.7.6.2 Deadlock

Deadlock refers to an interval waiting for another to concede before it makes a

concession, but the concession for which it is waiting for cannot occur until it concedes.

This cyclic wait is the general characteristic of the deadlock phenomenon. It is a

problem which has been well investigated by operating systems pundits (Peterson and

Silberschatz, 1985; Finkel, 1986).

An interval to be resolved in the context
'ofan existing conflict-free set.

IlZ

A negotiation chain leading
to an interval at the node oforigin.

Note: The shaded intervals are at the same node.

Figure 6-19. A hypothetical deadlock situation.

A hypothetical example ofdeadlock in the AGV movement planning context is shown in

Figure 6-19. A conflict occurs between II and 12. Suppose II can only shift to the left if IlB

is shifted by some amount to the left. IlB may initiate further negotiation processes if its

shift is conditional on another interval's concession. Suppose the negotiation chain leads

back to an interval IlZ at the same node as II. Before IlZ can shift to the left, it requires

II to do likewise. A deadlock results since each interval along the chain is perpetually

waiting for the next interval to concede first. Similarly, a hypothetical case can be

contrived in which all intervals in a chain are waiting for the next to shift right before it

can do likewise.
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Fortunately, these deadlock situations will never occur in the AGV movement planner.

Informally, the proof of this can be established by noting that any interval required to

shift left has a planned arrival time which is to the left of the initiator's. Proceeding

transitively along the chain of initiations, Iiz's arrival time must be to the left of It's.

Since IlZ is initially conflict free in relation to II, IlZ must be to the left of II,

contradicting the deadlock condition illustrated in Figure 6-19. Since IlZ is on the left

side of II, a shift by IlZ to the left will never require II to do likewise. By the same line of

reasoning, it can be proved that a right shifting type of deadlock can never occur.

Note that a negotiation impasse in which neither is able to concede further is not a

deadlock situation since waiting states in a deadlock imply that concessions are

possible. Unlike deadlocks, negotiation impasse can occur. However, Algorithm 5-3

detects an impasse and ensures that the planner continues with the next step.

6.7.7 Limitations

The present planner has several limitations which are addressed below. Overcoming

some of these limitations is largely a matter of further programming effort to improve

the planner beyond its present feasibility demonstration level.

• Narrow bidirectional segments

It is assumed that narrow bidirectional segments do not exist. These are

segments which cannot accommodate two AGVs abreast but allow an AGV to

pass in either direction. In order to include these segments, the planner must
ensure that the entire segment is reserved for the duration in which any part of

the AGV is along it. In this case, resources are tied to entire segments rather

than just the two nodes defining the segment. Effectively, a block control

strategy is required.
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A possible way to deal with this is to treat the segment as a special node at

which a mandatory waiting time is imposed, this being equal to the time of

occupation along the segment.

• Communication bandwidth

The chattiness of iterative negotiation poses a serious communication problem if

the negotiator and RToken manager modules are modelled within a computer

on board the AGV. This would require frequent transmissions which not only

has a bandwidth limitation, but is also subject to interference. These problems

can be overcome by modelling the AGV within a central host computer,

permitting a faster and completely reliable method of message passing to be

used in place of the transmissions during a negotiation process. Instead of

making frequent transmissions, only the final plan data/changes need to be

transmitted to the physical AGVs.

• Overtaking

The system does not permit overtaking between nodes. If an AGV is allowed to

overtake another AGV which is moving slower or has come to grief, then

extensions are needed to plan a safe trajectory for overtaking. This is a

non-trivial task since collision possibilities in both the direction of travel and

the opposite direction must be considered. It also assumes that the overtaking

AGV is of the free-ranging category with the requisite manoeuvrability.

• U-turns

It is assumed that AGVs can execute "U-turns" at nodes along broad (i.e. wide

enough to accommodate two AGVs abreast) bidirectional segments. U-turns

may be necessary at loading and unloading points. Although AGVs may have a

turning radius small enough to execute a successful U-turn, it is unlikely that a

train of unpowered trailers will follow the turn safely.
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A possible solution where U-turns are not allowed is to impose a constraint on

the route planner such that the successor nodes expanded during the search do

not impose a U-turn.

• Congestion

The instances of conflict can be reduced if routes are chosen which avoid

congested segments or junctions. Another advantage of less contention is better

executability of plans: if an AGV is the sole user of a segment, any replanning

will not involve other AGVs which will be at the same location.

It can be envisaged that a planner which considers traffic congestion will

maintain an account of resource contention at various nodes. The optimal

criteria of routes will include traffic congestion as well as distance. Two

approaches are possible: (1) use a composite heuristic function; and (2) retain the

distance heuristic function but reject the shortest path found if it is considered

too congested, and continue to look for the next shortest and so on until a

shortest acceptable route is found. The advantage of the former is that search

terminates once a route is found. Its disadvantage is that it is not clear how a

composite heuristic function satisfying the monotone restriction can be defined.

This constraint is necessary for BS* and BSL* to be applicable.

• Backtracking

The current planner does not implement the limited backtracking at the top

level of the planning algorithm (lines 8 and 10 of Algorithm 5-1). Backtracking

at this level would first modify the route locally (i.e. segments where the

conflicts could not be resolved are substituted); and if this recourse is also in

vain, then a new route is selected. Implementing this backtracking scheme

requires AGVs to make tentative commitments during negotiations. This

means that any shifting or yielding of intervals are only confirmed when a plan

has been successfully negotiated; otherwise, the AGVs involved must retain the
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state of their reserved intervals prior to negotiations. Furthermore, the

substitution of segments or route should proceed on condition that the increase

in distance must not exceed a threshold {e.g. the distance which the best

alternative AGV would have to travel). If this threshold is exceeded, then it

might be better to re-assign the task.

• Completeness

The planner does not possess the completeness property i.e. it does not

guarantee that a solution will be found if it exists. It fails to be complete because

it does not examine all possibilities of conflict resolution. In fact, this is

practically impossible since there are infinite possibilities for reducing an

overlap between two intervals.

6.8 RelatedWork

6.8.1 Operations Research Methods

Much work has been done in the operations research community to solve vehicle routing

and scheduling (VRS) problems. In its most general form, the VRS problem is: given m

depots, n delivery points, a fleet of k vehicles with known capacities, find a set of routes

and vehicle assignments to satisfy an overall objective e.g. minimum total cost.

Variations of the VRS problem differ in the constraints imposed {e.g. maximum travel

time, maximum distance allowed per vehicle).

Several heuristic methods have been developed which aim to produce efficiently,

feasible but not necessarily optimal solutions. Lin and Kernighan (1973) proposed an

algorithm which incrementally improves an initial feasible solution for the single-depot

case which can be recast as a travelling salesman problem (TSP). Clarke and Wright

(1963) developed a cost-saving approach which has since spawned a few variations with

different savings measures (Gaskell, 1967; Yellow, 1970; Holmes and Parker, 1976).
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The basic idea is to have all delivery points assigned a separate primitive route and

iteratively merge routes which accrue savings.

Gillet and Miller (1974) proposed the SWEEP algorithm which generates the routes

sequentially instead of concurrently as in the above methods. Delivery points are first

clustered by sweeping a line anchored at the depot. The points swept are assigned to a

vehicle until a constraint is reached (e.g. capacity exceeded). When this happens,

subsequent delivery points swept are assigned to the next vehicle and so on. This

method follows from the observation that in many cases, the single-depot VRS problem

has a petal-like solution with little or no overlapping ofadjacent circuits.

Methods which seek optimal solutions such as the branch-and-bound algorithms

(Christofides et al, 1981a, 1981b) are computationally demanding and limited to

problems with simple constraints. Many of the methods addressing the single-depot case

have been extended to handle multiple depots (Wren and Holliday, 1972; Tillman and

Cain, 1972). All of these approaches nevertheless have limited scope. Each can only be

applied for a particular situation. Some difficulties which these methods do not address

are:

• Vehicles may not be depot-based i.e. their starting and finishing positions are

not at the depot and need not be fixed. This requires a solution to an

additional vehicle-depot assignment problem.

• Detailed movement timings are not considered nor planned for in the vehicle

schedules since the main objective is efficient distribution. The problem of

collision avoidance during movement is assumed irrelevant with manned

vehicles.

• The problem is also assumed to be time-invariant and hence solutions are

supposed to be valid at all times. The methods address only routine situations

rather than dynamic problem scenarios.
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The lack of generality in these methods was noted recently by Bott and Ballou (1986)

who also pointed out the shortcomings in these traditional approaches and argued for a

generalized vehicle routing and scheduling methodology which can address many of the

real world restrictions.

6.8.2 Coordination

6.8.2.1 Wesson'sWork

Wesson (1977,1981) developed a planner which generates a conflict-free sequence ofair

traffic control instructions to be issued to aircraft in the jurisdiction of an enroute air

traffic controller. The sequences are generated by simulating the movements of all

aircraft in the environment for the next 20 minutes to uncover dangerous events. For

each such event spotted, beginning with the one of highest priority, all possible

responses culled from a set of event-response production rules, are simulated separately,

sprouting new branches in the search tree. After a certain depth of search, the best

state, evaluated according to some criteria, is chosen and the corresponding sequence of

instructions to reach this state constitutes the air traffic control plan. The plan is then

executed until an unforeseen dangerous event occurs or 10 minutes have elapsed when

the planning process is repeated.

Wesson's planner works more like a replanner than a planner since it fixes flight plans

which are established a priori. Given these, it determines the air traffic control

instructions to impose the necessary flight plan changes whenever dangerous events are

anticipated. Its anticipative capability is limited to a 20 minutes look-ahead and

presumes that ample time is available for corrective action to be implemented.

Since its schedules are point-based and are not necessarily conflict-free prior to

execution, dynamic replanning can be expected to be frequent. Furthermore, its

approach of planning by simulation is limited to a chronological order of conflict
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consideration and is unable to exploit possible advantages of an examination according

to criticality ofconflict.

6.8.2.2 AUTOPILOT

Thorndyke et al (1981) designed AUTOPILOT which is a planner for a single aircraft

working in a multi-agent environment. Similar AUTOPILOTs exist for other aircraft.

No central air traffic control entity is involved. The objective of AUTOPILOT is to

design a plan to navigate the aircraft safely across an airspace.

AUTOPILOT first retrieves a set of candidate plans from a library of plans, using as

keys the origin and destination in the airspace. These are then examined and evaluated

in relation to the plans of other aircraft. The best conflict-free plan is chosen for

execution. If none is found, the plan with least conflict is chosen for patching.

AUTOPILOT will attempt to patch its own plan first, using a set of predetermined

patches as in Wesson's system.

AUTOPILOT has four alternative strategies for fixing a flawed plan. Two of these

involve only self-modification and other agents are not required to modify their plans.

The first of these does not involve communication since its candidate plans are

examined in relation to the inferred plans of other aircraft. In the second strategy,

instead of inferring others' plans, the aircraft is informed about these plans after asking.

Hence there is no risk ofmisinterpretation as in the first strategy.

The other two strategies require other aircraft in conflict to patch their plans if

self-modification fails to resolve all conflicts. In the third strategy, based on the best

plan, aircraft in conflict are requested sequentially to modify their plans. Along with the

request, plans of the requesting and previously requested aircraft are forwarded,

enabling modification to proceed with up-to-date information. The fourth strategy

differs in that all the initial candidate plans which remains flawed after
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self-modification are communicated to the aircraft in the conflict set. Plan patching then

proceed simultaneously and independently, and results are reported back to the

requesting aircraft along with the planning assumptions. The initiator is responsible for

monitoring the amendments, and will halt further patching efforts once a conflict-free

plan emerges which does not jeopardize the plans ofother aircraft.

not
Note that AUTOPILOT doesAgenerate its initial plans. Instead, these are retrieved by
looking up a library of predetermined plans. Apparently, this is because AUTOPILOT'S

main research focus is dynamic replanning. As in Wesson's case, the planning occurs

during execution and not before. By not generating in the first instance a set of

conflict-free plans, it too will have to do more fixing during plan synthesis. It also makes

no mention of the important issue of timeliness: how can dynamic replanning be

performed as fast as possible to avert impending disasters.

6.8.2.3 Organizational Structuring

Corkill and Lesser (1979, 1983) proposed the concept of organizational structuring for

coordinating problem solving in a distributed network. Each problem solving node in

the network uses a compound blackboard architecture with three or four blackboards.

There is a conventional data blackboard on which intermediate and final hypotheses are

posted as in the HEARSAY II system (Erman et al, 1980). A second blackboard

containing the system's own goals and communicated goals of other nodes is used by the

planning component of the node. The third is the organizational blackboard with data
structures which can be externally set to influence the node's problem-solving

behaviour and to define its relationships with other nodes. A fourth blackboard may also

be used to help focus the behaviour of the local node. This permits organizational roles to

be evaluated for acceptance or rejection in view of suggestions arising from local

processing and interaction with other nodes.
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The network architecture can take various forms as decided by the designer. For

example, one could have a lateral architecture in which all nodes can communicate

directly with one another. Alternatively, in a hierarchical structure, there will be

supervisor-worker links which define the communication possibilities. The advantage of

Corkill and Lesser's approach is that the architecture chosen can be adapted to the

problem structure by defining the data structures appropriately in the organizational

blackboards.

Although the blackboard approach provides a general problem-solving paradigm, its

success is highly dependent on proper design of the control module and the

encapsulation of problem-solving expertise into knowledge sources. Generally, it is

more appropriate for domains in which diverse and competing expertise exist and must

be brought to bear on the problem.

6.8.3 Planning with Time Constraints

6.8.3.1 DEVISER

Vere's DEVISER (1983) is the first hierarchical planner which considers time

constraints. It uses two types of time constraints tagged to activities, events and goals:

an interval (window) to represent the permissible range of start times and a

single-valued duration. Plan generation follows the link-expand-resolve cycle as in

Sacerdoti's NOAH (1975) and Tate's NONLIN (1977). Node expansion or ordering, and

variable instantiation cause an outward propagation of window compressions across the

partially ordered network. During this process, updated windows are checked for

validity i.e. earliest start time ^ latest start time. If this constraint is not satisfied, the

changes are aborted and DEVISER backtracks to the last choice point. Temporal
constraints are also useful for pruning the search space. The original DEVISER has

since been upgraded to DEVISER II (Vere, 1985) which incorporates two new
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features—temporal scope of assertions; and window cutoff—to improve planning time

substantially.

6.8.3.2 Bell and Tate'sWork

Bell and Tate (1984, 1985) extended Vere's use of temporal constraints to include

intervals for finish times, durations and inter-sequence wait times. The constraints are

reformulated as a longest path linear programming problem.

If a temporally valid solution exists, it gives the set of earliest/latest start/finish times

delimiting the intervals of each activity. The richer set of constraints extends the

representational repertoire, giving greater applicability to real world problems.

Another advantage of incorporating more aspects of temporal constraints is that invalid

plans can be uncovered earlier, hence reducing wasteful search.

As in Vere's DEVISER, the plans generated normally pertain to a single agent.

Complex issues of interleaving multi-agent plans safely and with a view towards robust

execution are not addressed.

6.8.3.3 FORBIN

In Miller (1985) and Dean (1985a, 1985b), FORBIN is described as a planner which

generates a sequence ofmovements and actions for a mobile robot in a semi-automated

factory. It is essentially a hierarchical planner with a Time Map Manager (TMM) and a

Time Optimizing Scheduler (TOS).

The TMM serves three main functions: (1) detect contradictory assertions which overlap

in time and suggest a remedy when this occurs; (2) monitor the continued warrant for a

subplan or action; and (3) evaluate relative advantages of disjunctive branches in the

partially ordered plan net.
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The TOS computes a schedule for each expansion choice, the best of which is chosen for

further expansion with the schedule serving as a guide on the order of expansion.

Like other planners with a temporal reasoning component, FORBIN uses time

constraints to control search. By ensuring that expansion choices satisfy deadlines and

other time constraints, lesser mistakes are made and hence less backtracking occurs.

The emphasis of FORBIN is synthesizing a plan for a robot's activities which includes

travel. It is restricted to a single agent and does not solve the problem of synchronizing

the plans ofmultiple mobile agents which may interact.

6.8.3.4 Temporal Logic

Several other developments (Vilain, 1982; Allen, 1983; Tsang, 1986) in temporal

planning use a form of temporal logic based on thirteen primitive interval relations.

Vilain extended this set to twenty-six relations which include time points. Cheeseman

(1983) proposed a predicate calculus representation of time which does not entail a

separate temporal reasoning mechanism since temporal assertions, like other assertions

can be manipulated by the same Prolog-like backward reasoning mechanism.

The main concern of temporal logic is how to infer the temporal relation between two

assertions which are indirectly linked by other temporally related assertions.

Controlling inferences to avoid making many possible but useless inferences is a

problem faced by these approaches.

Temporal logic being symbolically-oriented is useful for finding the truth value of

relations between intervals which are not instantiated numerically, but it does not

suggest how numerical intervals should be modified and propagated to maintain

consistency in the course of plan generation. Problems with intervals numerically
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instantiated need not rely on temporal logic since the real line provides a common basis

to infer directly the relation between any two known intervals.

6.8.4 Dynamic Replanning

Not many planners have incorporated a dynamic replanning capability. Those that do

often employ a data structure which maintains dependency information. For example,

the plans generated by STRIPS are supervised during execution by PLANEX (Fikes et

al, 1972) using a triangular table. Rows and columns of the triangular table record

respectively the preconditions and effects of operators used in the plan. With this record

of the plan structure, good and bad surprises can be identified during execution. Good

surprises are serendipitous developments which enable some future operators to be

skipped because they are no longer necessary. Bad surprises occur when the state of the

world has changed such that additional or old plan steps must be spliced into the current

plan to achieve the original goals.

NOAH's procedural net (Sacerdoti, 1975) is also used by its rather simplistic execution

monitor. The net is viewed as a hierarchy of actions and by asking the apprentice

questions in an order determined from the action hierarchy, NOAH can pinpoint the

erroneous action and replan accordingly.

In Ward and McCalla's ELMER route planning system (1982), there are two error

detection strategies: use of check points and error transitions. The latter are identifiable

instances which suggest a deviation from the prescribed route. The methods for error

recovery are: (1) backtrack to the last point on the planned route; (2) replan from the

current position to the same destination; and (3) when the current position is unknown,

explore until an identifiable place is found and then follow either of the first two

methods. ELMER's approach to dynamic replanning differs from the other planners in

not using a dependency data structure.
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Hayes (1975) also worked on a journey planner which produced a travel plan using

pre-stored time-tables of the operating schedules of various transportation means. His

main contribution was the use of a decision graph in conjunction with a goal tree to fix

travel plans.

In all of the above, dynamic replanning is in the context of a single agent and the

importance of timeliness is again not addressed. Also, no attention is paid to the issue of

reducing the vulnerability ofplans to dynamic replanning.

6.9 Summary

Unlike traditional AGV systems which employ hardware to coordinate movements

during execution, the AGV planner described solves the coordination problem prior to

execution. By generating a set of conflict-free schedules, it meets the requirement of

temporal projection. Furthermore, since conflicts are resolved in advance, it is possible

to accommodate more than one AGV in a path segment: implying that a higher

throughput than that of the traditional block control system is possible.

Although point-based schedules suffice for the coordination problem, interval-based

schedules are used instead because these meet the objectives of plan robustness and

preservation of the near real-time capability of a dynamic replanner. Robustness is

achieved by permitting execution deviations without immediate replanning; and if

replanning is necessary, a benign speed alteration remedy can be attempted first

without requiring replanning on the part of other AGVs. Tolerance of execution

deviations also obviates frequent revalidation and this further reduces the likelihood of

the dynamic replanner being bogged down by too much work.

The trade-off in resorting to interval-based schedules is that more conflict resolution is

needed during planning. Resolution requires intervals to be modified and should be

made in an equitable manner to maintain a comparable level of robustness among the
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affected plans. This should reduce the sensitivity of the set of plans to replanning

repercussions. These aims can be met using the iterative negotiation model. Its

implementation requires the definition of sets ofnegotiation skills and a demarcation of

the negotiable components of the intervals.

An AGV movement planner has been implemented in LOOPS on a Xerox 1186

workstation, using the various algorithms described in previous chapters. Although the

planner does not possess the property of completeness, it has the properties of soundness

and definite termination. Tests on its coordination capability have been encouraging,

even for trying scenarios.
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Chapter 7

Planning Collaborative AGV
Movements

7.1 Introduction

The sequential nature of planning for one task at a time means that whenever a task is

being planned, there already exists a set of movement plans associated with the tasks

planned previously. Instead of an AGV (say X) planning for the new task purely in a

coordinative manner based on the route already worked out (as described in chapter 6),

it may be possible to exploit some of the existing plans. Such exploitation may yield

either of two advantages: (1) a better route for X is then possible; or (2) X may be made

redundant because its task can be undertaken by some of the currently tasked AGVs.

Planning the involvement of other AGVs in executing a task otherwise solely executed

by X is known as collaborative planning. The goal of collaborative planning is to exploit

existing movement plans so that economy of effort accrues.

Collaborative planning expands further the theme of constructing efficient AGV

movement plans. This theme was developed in previous chapters which examined

optimal task assignment, computation of shortest routes and route learning. Continuing
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the development of this theme, this chapter shows how economy of effort in executing

tasks can be further improved by planning collaborative AGV movements.

Section 7.2 describes with the aid of examples the types of collaboration which is the

concern of this chapter. It pays particular attention to the characteristics of the different

modes of collaboration since these characteristics serve as clues to the identification of

collaborative opportunities. Section 7.3 defines the conditions for collaboration to be

possible. These conditions are used to prune the search tree of collaborative

opportunities to a more manageable size. Section 7.4 elaborates on the computational

procedures for identifying collaborative opportunities. An example showing the

effectiveness of collaboration is presented in section 7.5. Section 7.6 examines some

related work from operations research and AI which tackle the cooperation problem

from a more general perspective.

7.2 Forms of Collaboration

AGVs which have plans pending execution can collaborate in many ways to help

achieve a new task. One or more AGVs may be involved and their routes may or may not

have to be changed. In any case, a collaborating AGVt must vary its movement schedule
since assistance in the form of fetching another AGV's load while enroute necessarily

entails commitment of time.

The various collaboration schemes can be classified into two categories. The first

category does not require any of the collaborating AGVs to modify their routes. In the

second category, at least one of the collaborating AGVs must make a detour in order to

render assistance.

Figures 7-1 to 7-3 show contrived examples of collaboration schemes belonging to the

t The terms "collaborating AGV", "assisting AGV" and "collaborator" are used
synonymously in this chapter.
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first no-detour category. For the sake of simplicity, Figures 7-1 and 7-2 show only one

assisting AGV involved. In general, the illustrated forms of collaboration may involve

one or more assisting AGVs.

In all the figures, Vy, Vy' and Vy" are AGVs which have already planned to achieve

their tasks along the paths depicted by broken lines. In this chapter, the AGVs with

plans pending execution will also be referred to as the currently tasked AGVs. Vx is an

AGV tasked to perform a new task.

Figure 7-1. Assisted collection.

Figure 7-1 illustrates the case of collaboration by assisting in the collection of the load

for Vx's task. Without collaboration, Vx will have to take the path (A B C G C D E).

Since Vy and Vx have a common path segment (G C) in their plans, a possibility for

collaboration exists in which Vy does not alter its path. Vy can assist Vx by moving Vx's

load from G to C, leaving it there for Vx to collect or transferring it directlyt over to Vx.

The advantage is that Vx can now travel a shorter path (A B C D E) to achieve its task.

The two essential features of the assisted collection form of collaboration are: (1) the

collection node lies on a collaborator's path and (2) the collection point can be shifted

such that Vx's execution path is shortened.

t This is possible only if (1) direct transfer of loads between AGVs can be effected; and
(2) the place of transfer can accommodate both AGVs.
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Figure 7-2. Assisted delivery.

Figure 7-2 gives an example of a form of collaboration known as assisted delivery. Here

we see the assisting AGV, Vy, taking over the load from Vx and delivering it while

enroute to its own destination. As far as Vx is concerned, its delivery node is at D where

it relinquishes its load for good. Without collaboration, Vx will have to take a longer

path (A B C D G H), but with collaboration, its path is reduced to (A B C D). Again,

gainful collaboration is possible because of fortuitous commonality of plan segments. In

this case, the segment in common is (D G H). The key features of the assisted delivery

form of collaboration are: (1) the delivery node of Vx lies on the collaborator's path; and

(2) a better delivery point for Vx can be found along it. Unlike assisted collection which

shifts the collection point, it is the delivery point which is shifted in this case.

Although the commonality of plan segments has been highlighted in both the preceding

examples, it is not meant as a necessary condition for collaboration. In fact it is an

unnecessarily strong constraint since what is required is two nodes in common—the

first and last of the segments—rather than all nodes along the segment. Complete

commonality was highlighted only as an obvious indication of collaborative

opportunities.
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Figure 7-3. Task subsumption.

In the task subsumption form of collaboration (see Figure 7-3) in which assisting AGVs

do not alter their routes, the new task can be undertaken by some of the currently

tasked AGVs working in concert, and Vx which was originally tasked becomes

redundant. Without collaboration, Vx must proceed to pick up its load at B and deliver it

at M. It so happens that a path from B to D can be constituted from the existing plans of

AGVs Vy, Vy' and Vy", allowing the new task to be achieved within its deadline

constraint and yet without jeopardizing the delivery constraints of the assisting AGVs.

Note that in this form of collaboration, the number of tasks assigned exceeds the

number of AGVs involved. The key feature of this mode of collaboration is that both the

pick up and delivery nodes lie on the path of collaboration.

Figure 7-4 shows a simple scenario in which any form of collaboration must involve a

detour on the part of at least one of the currently tasked AGVs. At least one detour is

necessary since neither the collection nor delivery node lies on the path of any of the

currently tasked AGVs. Any appropriate collaborative plan which can be found thus

belongs to the second category.
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Figure 7-4. Detours necessary.

The problem of finding appropriate detours such that economy of effort accrues is

non-trivial. Many detour possibilities exist and have to be enumerated and checked.

Since it is not clear how an efficient strategy can be designed to tackle this problem, it is

left as a subject for future research. Instead, this chapter will focus on the more tractable

problems belonging to the first category i.e. assisted collection, assisted delivery and

task subsumption.

7.3 Conditions for Collaboration

The identification of collaboration opportunities is the first problem to be solved in a

collaborative planner. This raises two questions: (1) when is it plausible for some form of

collaboration to be established? and (2) if it seems possible, when is it desirable? This

section answers these questions by examining the conditions for plausible and gainful

collaboration.
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7.3.1 Feasibility and Plausibility

When is collaboration of the no-detour category apparently possible? The answer

depends on the movement schedules of the AGVs involved, their routes, physical

characteristics of the routes, and the load-bearing capacities of the AGVs.

Considering first temporal feasibility, an obvious condition is that the deadline

constraints of the participating AGVs must be satisfied. However, satisfaction can be

assured only when the collaborative plan is made conflict-free by the coordination

mechanism described in chapter 6. Thus feasibility cannot be ascertained until a

plausible collaborative plan has been constructed and subjected to conflict resolution. In

other words, in collaborative planning, only plausible plans are found and a phase of

coordinative planning must follow, just as in the case of purely coordinative planning in

which a locally consistent plan is first found and then made globally consistent by

means of the iterative negotiation mechanism. Hence the conditions for collaboration

only suggest plausibility and they do not guarantee feasibility.

In collaborative plans involving two or more AGVs, the load is transferred, either

directly or indirectly, from one to the other. If n AGVs are involved, there will be n-1

transfers. In any transfer, obviously the fetching AGV or "transferror" must off-load

before the collecting AGV or "transferree" departs with the collected load. This temporal

constraint is satisfied if the computed departure time of the transferror is before the

arrival time of the transferree. Hence a plausible transfer can be determined on this

basis. If timings at transfer points satisfy this constraint, then another route segment

can be added to the plausible collaborative plan. The advantage ofusing this condition is

that the part of the transferree's plan before the transfer point need not be modified on

account of the transfer.

Even when the constraint in the preceding paragraph is not satisfied, plausibility can be

established by forcing the transferree to arrive later than its current plan suggests.
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However, this has the disadvantage of changing the transferee's plan before it collects

the load; a change which needs further validation and resolution, steps which reduce the

likelihood of the plan being found feasible. Furthermore, such forceful ordering of

departure times is likely to cause a chain reaction of plan changes, adversely affecting

the dynamic performance of the planner and lowering the tolerance of existing plans.

For these reasons, the satisfaction of the departure time constraint is left to fortuitous

circumstances i.e. coerced retardation of the transferree is forbidden.

The route constraint follows from the restriction of no detours. This means that any

shifting of collection or delivery points must occur along the currently planned paths of

the assisting AGVs. As pointed out in section 7.2, this requires either the collection or

delivery points or both lie(s) on some such paths in the first place.

The load-bearing constraint is easy to check. Any currently tasked AGV can be a

collaborator only if it is able to carry the load along the way. This should take into

account the possibility that it may have to carry its own load as well during the period of

assistance.

7.3.2 Desirability

Plausible collaborative plans need to be checked for desirability as well. The criterion

for desirability is tied to the objective of the movement planner i.e. economy of effort.

Again, distance happens to be a convenient and natural metric to use in assessing when

economy ofeffort accrues from a collaborative plan.

Since the assisting AGVs do not change their planned paths, we only need to consider

the change in distance of Vx, the assisted AGV which was originally tasked to perform

the new task alone. At the start of collaborative planning, Vx has a locally consistent

plan with a known route and distance d. A collaborative plan is worthwhile only if it can

reduce d. If several plausible and desirable collaborative plans exist, then the planner
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selects the best i.e. the plan which reduces d most. If the best is subsequently found to be

infeasible during coordinative planning, then the next best is selected and so on until a

feasible collaborative plan is found; failing which the original plan of Vx involving no

collaboration is used.

7.4 Planning Collaborative Movements

This section describes how collaborative plans of the no-detour category can be found.

The methods outlined do not search the space of collaborative opportunities

exhaustively as it is confined to those which are more readily and efficiently identified.

Hence the methods to be described implement a kind of lazy collaboration.

In lazy collaboration, the search for plausible and desirable collaborative plans is

simplified considerably by making two restrictions. The first has been mentioned:

search is based on the no-detour category. The second restriction is to confine the search

for a better collection/delivery point along the current route of the assisted AGV Vx.

Both these restrictions have been made for the sake of efficiency. Otherwise, the search

will involve considerable route planning and testing of the collaborative conditions.

Furthermore, a larger search tree will have to be maintained with exponentially

compounded computational costs of time and space.

7.4.1 Task Subsumption and Assisted Collection

Figure 7-5 shows the path which AGV Vx would take to execute a new task without

collaboration. Vx's path is made up of two shortest subpaths PI and P2 from S (starting

location) to C (collection point) and from C to D (delivery point) respectively. Suppose P'

is a collaborative path (not shown in the figure) constructed from the plans of some of the

currently tasked AGVs and this path begins at C (a method for finding collaborative

paths will be explained in section 7.4.4). P' offers the possibility of shifting the load ofVx

to an alternative collection point C'.
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Figure 7-5. Pre-collaboration path of an AGV Vx.

If C' coincides with D, then the best form of collaboration—task subsumption—has been

found. Otherwise, a simple and efficient method of determining if C' leads to a

shortening of Vx's path is to check whether C' lies on PI or P2.

Figure 7-6. Abetter path via C'on PI.

Suppose C' lies on PI (see Figure 7-6). The new path for Vx via C' using shortest paths

PI' and P2' from S to C' and from C' to D respectively, cannot be longer than the path

comprising PI and P2. (The proof of this statement is trivial and is omitted.) Likewise, if
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C' lies on P2 (see Figure 7-7), then the new path via C' cannot be longer than the path

based on PI and P2.

Suppose that no assisted delivery and task subsumption plans are available. Then it

may seem that the best collaborative plan to take is that which establishes C' as close as

possible to S or D since this brings the new path for Vx closest to the shortest path from

S to D which is the ideal. But collaborative planning should not cease at this juncture

because further improvement is possible. Given C' and the new shortest subpaths from S

to C' and C' to D respectively, the search procedure can be applied recursively to find a

collection/delivery point if not a task subsumption plan. The recursion terminates when

no more collaborative opportunities exist.

In recursive collaborative planning, a variation within the recursive search can be made

to improve search efficiency. Suppose C' has been shifted to a better position along PI,

then the next search for a new collection point can be confined to P2'. Search along PI'

can be omitted since PI' has been explored in the preceding search while examining PI.

Likewise, if C' has been shifted along P2', then the next recursive search for a new

collection point can be confined to PI'.

P2'

D

Figure 7-7. A better path via C' on P2.
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Figure 7-8. Recursive searching enables C" to be established away
from PI and P2.

The advantage of recursive searching is that it enables a larger part of the search space

to be explored while still using the same efficient method for determining desirability.

Without recursive searching, the search space for a collaborative plan is confined to the

original paths PI and P2 of Vx. With recursive searching, a better collection/delivery

point can be established elsewhere as well. Figure 7-8 illustrates this point. The first

search invocation establishes a better collection point C' along PI. Based on this, Vx

plans a new shortest delivery path P2'. A second search invocation along P2' finds a

better collection point at C" which does not lie on the original PI or P2. Recursive

searching thus overcomes to some extent the search space restriction without

compromising search efficiency.

7.4.2 Assisted Delivery

In any assisted delivery plan, the assisted AGV Vx will travel along PI to C where it

collects the load, moves along part of P2 and unloads at a point before its original

delivery destination D. Some other collaborating AGV will pick it up and either
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complete the delivery at D or pass it on to another collaborating AGV and so on until the

load reaches D. Thus the aim is to find a collaborative path P' which effectively shifts

(from the viewpoint ofVx) the delivery point from D to a better location D' on P2. Among

the assisted delivery plans based on D and P2, the best is that which establishes D'

closest C. Again, search should not terminate at this juncture since a recursive

application may uncover better collaborative plans which are based on assisted

collection or task subsumption.

Figure 7-9. An assisted delivery plan.

Figure 7-9 shows an example of an assisted delivery plan. A few points should be

mentioned. First, unlike assisted collection in which both PI and P2 are searched,

search in this case does not involve PI. Second, in the next recursive search invocation,

there is no need to search for a new delivery point along the new subpath P2' since such

points have already been uncovered in the current search. Third, the collaborative path
need not be a subpath of P2; all that is required is that it begins somewhere along P2

and ends at D. If P' begins at C, then P' offers a task subsumption plan.
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7.4.3 Assiduous Search

Unlike lazy collaboration, an assiduous search strategy for identifying collaboration

opportunities would not restrict the search along the current subpaths of the assisted

AGV Vx. This offers the advantage of possibly uncovering collaborative plans not

otherwise found, or which are superior to those found by the restrictive search methods

described above. Although the implemented collaborative planner does lazy

collaboration only, I shall briefly describe how a more comprehensive search can be

implemented for the benefit of those who may wish to investigate its feasibility.

Essentially, two search trees are developed which are rooted at the original collection

and delivery points (see Figure 7-10). The tree rooted at C is used to find assisted

collection plans and that rooted at D for assisted delivery plans. The nodes in these trees

represent shifted collection/delivery points and the corresponding collaborative paths

Tree rooted atC showing
possible shifted collection points.

Figure 7-10. Assiduous searching grows trees ofshifted
collection/delivery points.
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can be found by tracing the arcs back to the root of the tree. Not all shifted

collection/delivery points lead to a path reduction for Vx. All combinations of shifted

collection and delivery points have to be checked for desirability by computing the new

PI' and P2' shortest subpaths. The combination which has the shortest total distance

yields the best collaborative plan.

The disadvantage is that many combinations have to be checked and every check for

desirability now requires the computation of two shortest paths. This is far more costly

than the previous approach which requires two simple tests to determine if the shifted

point lies on the current subpaths PI and P2.

7.4.4. Collaborative Paths and the Collaboration Graph

Collaborative paths are composed of path segments of currently tasked AGVs based on

their existing plans. Their vital role in the search for collaborative plans has been

elaborated upon above. This section explains how collaborative paths are found.

The key to the problem ofdiscovering collaborative paths is to maintain a data structure

such that it is possible to determine how a collaborative path can be extended by another

currently tasked AGV. This extension occurs whenever a transfer point exists. A data

structure which meets this requirement is the collaboration graph. Figure 7-11 shows

part of such a graph. In it, some of the path segments of three currently tasked AGVs

(VI, V2 and V3) are shown. For example, the path segments ofVI shown are Via, Vlb,

Vic and Vld.

Nodes in the collaboration graph have a list of pointers to the RTokens (as explained in

section 6.6.1, RTokens contain information such as ownership and the components of

the time interval reserved at a node) of the currently tasked AGVs. These RTokens are

those which are associated with the node. For example, ifVI and V2 have RTokens Rvia

and RV2a at node Nl, then N1 will have an associated list structure containing the
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Figure 7-11. Part of a collaboration graph.

pointers to Rvia and RV2a. The significance of these pointers is that they provide the

information for determining whether the node is a transfer point from a temporal

perspective.

The collaboration graph is a dynamic data structure. It changes during planning and

execution. Whenever a new plan is established, RTokens are added to existing and

newly created nodes in the graph. During execution, defunct RTokens are removed,

shrinking the list of pointers at some nodes. Nodes in the graph with empty pointer lists

are removed.

Suppose Via (see Figure 7-11) is the last segment of a collaborative path being

constructed. How can it be extended? One definite possibility is to add on VIb which
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means that V1 does not transfer the load to another AGV at N1 but carries the load past

N1 instead. The other possibility is to transfer it to V2 if the constraints for a transfer

(see section 7.3.1) are satisfied. The curved arrow annotated next to N1 in Figure 7-11

shows that a transfer from VI to V2 at N1 is possible. Conversely, the absence of such an

arrow indicates that the transfer conditions are not satisfied. Hence, if a collaborative

path along V2a is being developed, a transfer from V2 to VI at N1 is impossible and the

only way to extend it is along V2b.

Figure 7-12. A sub-tree of collaborative paths.

Continuing the development of the collaborative path at Via, the subtree of

collaborative paths which can be grown is shown in Figure 7-12. Every node in this tree

defines a unique collaborative path which is reconstructed by tracing the path in the

tree from the root to the node. Note that although V3c offers another collaborative path

ending at N5, it is discarded because the collaborative path via N3 is shorter.

Two kinds of trees can be developed using the collaboration graph. The example in

Figure 7-12 shows part of a forward tree of collaborative paths. The forward tree is
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rooted at the original collection point and contains the assisted collection paths. The

other type of tree is the backward tree of collaborative paths. Its construction follows the

same principles except that the arrows in the collaboration graph are traced in the

backward direction. The backward tree is rooted at the original delivery node and

contains the assisted delivery paths.

It may seem that the tree of collaborative paths can be quite large and thus extensive

searching will slow down the planner's performance. Fortunately, the tree can be

pruned substantially using the constraints for transferability and delivery deadline.

7.4.5 The Algorithms

The following algorithms implement the recursive collaborative planning procedures as

described informally above. These procedures search for a set of collaborative plans

indexed by the pair of collection and delivery points in the forward and backward

collaboration trees respectively. The collaborative plan may be composite in nature i.e.

made of an assisted collection and an assisted delivery plan. The set of collaborative

plans is found by invoking CollaborateAux recursively.

Following exit of CollaborateAux within the main Collaborate procedure, the set of

plans are sorted in decreasing order of desirability. Hence task subsumption plans will

appear in front of the list followed by plans which require the assisted AGV to move the

shortest paths. From this sorted list, the first plan is popped off and is subjected to the

conflict resolution process. If it is found infeasible, then it will be discarded and the next

in line is selected. This process is repeated until the collaborative planner finds a

feasible plan. If no collaborative plan exists, CollaborateAux will nevertheless return a

plan based on the original collection and delivery points.

223



Algorithm 7-1:

procedure Collaborated, C, D, PI, P2)

vars TFwd, TBwd, CPlans, Planned, C', D', PAC, Pad, PAGV; /*local variables */

/* PI and P2 are the shortest paths from S to C and from C to D respectively. */

1. Grow forward collaboration tree TFwd rooted at C.

2. Grow backward collaboration tree TBwd rooted at D.

3. CPlans CollaborateAux(C, D, PI, P2, true, true, true)

4. Sort CPlans in order ofdecreasing desirability.

5. Planned «— false

6. foreach Best in CPlans until Planned do

7. C' <— collection point ofBest

8. D' *- delivery point ofBest

9. ifC'^C

10. then Construct the assisted collection plan PAC by tracing the path from

C to C' in TC.

endif

11. ifD'*D

12. then Construct the assisted delivery plan PAD by tracing the path from

D' to D in Td.

endif

13. if D' C'

then /* task subsumption has not occurred. */

14. Construct plan PAGV of assisted AGV based on the shortest paths

from S to C' and C' to D'.

endif

15. Resolve conflicts in PAC, PAD and PAGV (if these exist) by iterative

negotiation.

16. if all plans can be resolved then Planned *- true endif

endforeach
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endprocedure

Algorithm 7-2:

procedure CollaborateAux(C, D, PI, P2, ShiftDFlag, ShiftCAlongPlFlag,

ShiftCAlongP2Flag)

/* Returns the combination of collection and delivery points found by a

recursive search. S is a global variable defined within Collaborate. */

vars CPlans, PI', P2', TC, TD; /* local variables */

1. CPlans *- {{C, D}}

2. ifDisinTC /* TC is the subtree ofTFwd rooted at C. */

then /* a task subsumption plan has been found. {C, D} is included in

case the subsumption plan is found infeasible. */

3. CPlans <-{{C, C}, {C, D}}

else /* look for collaborative plans based on assisted delivery and

collection plans. */

4. if ShiftDFlag

then /* consider assisted delivery plans. Td is the subtree of

TBwd rooted at D. */

5. foreach N in P2 when (N ^ D and N is in Td) do

6. P2%— subpath ofP2 from C to N;

7. CPlans *— CPlans U CollaborateAuxfC, N, PI, P2',

false, true, true)

endforeach

endif

8. ifShiftCAlongPlFlag

then /* look for collaborative plans based on assisted

collection plans which shift C along PI.*/

9. foreach N in PI when (N C and N is in TC) do

10. PI'<—subpath ofPI from S to N;
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11.

12.

endif

13. if ShiftCAlongP2Flag

14.

then /* look for collaborative plans based on assisted

collection plans which shift C along P2. */

foreach N in P2 when (N C and N is in Tc) do

15. PI' *- shortest path from S to N;

16.

17.

endif

endif

18. Return CPlans

endprocedure

Note that within procedure CollaborateAux, in the loop beginning at line 14, if N = D,

then N cannot be in TC; otherwise, a task subsumption plan exists and this would have

been detected in line 2, in which case, the procedure will skip lines 4 to 17. This explains

why the more complete expression (N^C and N^D and N is in Tc) is not used in line

7.5 An Example

We can observe an improvement in economy of effort in task execution by applying the

collaborative planner to the same problem scenario (see section 6.6.2), involving five

14.
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Transfer
point of

AGV5 to AGV2
and

AGV3 to AGV1.

Common
initial

collection
point.

Uncircled numbers are the nodes defining the route map.
Bold circled numbers denote the AGVs

Paths ofAGVs:

AGV1 ...(29 24 25 20 15 14 13)
AGV2 ... (19 14 15 20 25 24 29)
AGV3... (9 4 5 10 15 20 25 30)
AGV4... (5 10 5 4 9)
AGV5... (20 15 10 15 14 19)

Figure 7-13. Better paths for AGV1 and AGV2 due to collaboration.
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AGVs, which was used to demonstrate the feasibility of the purely coordinative AGV

movement planner (described in chapter 6). However, the same delivery deadlines

would have imposed an overly restrictive set of constraints for the planner to find

feasible collaborative plans. Hence, for the purpose of demonstrating collaboration at

work, the delivery deadlines have been relaxed from [05:00, 06:00] to [05:00, 07:30]; a

relaxation which permits some plausible collaborative plans to be found feasible.

Time AGV Activity Task Position

03:11 4 Loading 1 10
03:32 5 Loading 3 10
03:47 5 Loading 2 10
04:03 3 Loading 5 10
04:18 3 Loading 4 10
04:19 5 Unloading 3 15
04:40 3 Unloading 5 15
05:01 4 Unloading 1 9
05:04 1 Loading 5 15
05:37 2 Loading 3 15
05:42 3 Unloading 4 30
05:44 5 Unloading 2 19
06:26 1 Unloading 5 13
07:10 2 Unloading 3 29

Figure 7-14. Loading and unloading sequence of events

The conflict-free set of movement plans generated by the collaborative planner is

illustrated in Figure 7-13. Figure 7-14 lists, in chronological order, the sequence of

loading and unloading events according to the plans. The effect of collaboration is that

AGV1 and AGV2 can be assisted by AGV3 and AGV5 respectively by shifting their

collection points from node 10 to 15. This saves both the assisted AGVs from traversing

the path segment (15 10 15) which would have been necessary without the benefit of

collaboration.
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Observe that AGV5 nevertheless has to fetch its own load at node 10 even though it

could have been similarly assisted by AGV3. No collaborative plan was generated to

assist AGV5 because it was the first AGV to plan the execution of its task and hence did

not have the benefit of any currently tasked AGVs to assist it. This reveals a limitation

of the planner: retrospective collaboration is not exploited to improve the plans of

currently tasked AGVs using the latest plan pertaining to the new task.

Running in compiled mode, the collaborative planner required about 140 seconds to plan

for the five tasks, compared to 54 seconds required by the purely coordinative planner.

Despite the restrictions imposed to uncover collaborative opportunities more readily,

the time overheads are high but may be affordable ifplanning is relatively well ahead of

the time when execution begins. If time is a limiting factor, it may be necessary to

curtail the depth of recursive search and work on whatever candidate plans can be found

within the search time permitted.

7.6 Related Work

The only work I have come across, which deals with some kind of collaboration in the

transportation domain, relates to the transhipment problem (Taha, 1971). The

transhipment problem is to determine how items should be distributed from the sources

to the destinations in an optimal manner. In the transhipment case, movements of items

are allowed to pass through other sources and destinations.

There are two limitations in the transhipment solution which deny its applicability to

the AGV domain. First, the transfer locations are limited to the set of sources and

destinations. This severe limitation rules out many collaborative opportunities. Second,

movement timings and deadlines are not represented in the transhipment model. Hence

no means exist to check the satisfaction of temporal constraints.
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In distributed AI (DAI), there is an important research issue which concerns

mechanisms or schemes for facilitating cooperation between multiple agents in the

same environment. The rest of this section describes the main approaches and systems

designed to deal with the cooperation problem in a more general context.

Davies and Smith's contract net metaphor (1983), reviewed in section 2.3, models

cooperative problem-solving by task sharing in a benevolent way. Recall that the

manager decomposes a task into subtasks which are then distributed to some of the

contractors which have volunteered to solve the subtasks. It assumes that a task can be

decomposed into independent subtasks. This departs from the nature ofAGV movement

collaboration in which parts of the collaborative plan are interdependent.

Another mode of cooperation is result-sharing. This is featured in the Distributed

Vehicle Monitoring Testbed (Durfee et al, 1987). Using the same structure of

multiple-blackboards as described in section 6.8.2.3, agents organize their problem

solving tasks and eventually communicate the results of the monitoring activities to

another agent which pools the information for further processing. This agent may in

turn pass its solution to yet another agent to piece together a larger portion of the

puzzle, and so on until the complete solution is obtained. Cooperation is achieved by

communicating the same high level goals to the agents.

A recurrent theme in cooperation is the formation of groups of agents which are able to

solve a problem more effectively. This is possible in the contract net metaphor. It is also

observed in the EXCHANGE (Doran and Corcoran. 1986) and CONTRACT (Doran,

1986) systems.

Based on TEAMWORK2 (Doran, 1985; Ambros et al, 1986) which is an experimental

shell for implementing multi-agent nonlinear hierarchical planners, EXCHANGE

models a group of socio-economic entities (villages) to investigate the evolution of

economic structures and activities as a result of individual interests, functions,
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resources and limitations. It demonstrates that structure stems from function and hence

hierarchical organizations can evolve to a form which exploits the environment in a

more efficient manner. EXCHANGE achieves cooperation by self-organization such

that the measure ofoverall goal achievement is improved.

In CONTRACT, a lattice of contracts provide the basis of a search for an optimal

contract which best exploits the environment. It relates to EXCHANGE in that a

contract stems from a beneficial pact between actors. Further pacts at a higher level

may be formed recursively. Eventually, a hierarchy of contracts is formed in which each

contract is made up of lower level contracts. The problem-solving objective is then to

search for the best contract given a scenario. Although the design of CONTRACT was

motivated by its relevance to sociocultural systems in which a similar pact formation

phenomenon is apparent, CONTRACT may also be used as a framework for

investigating DAI problem-solving.

Game theory is another approach to the formulation of cooperative strategies.

Developed by von Neumann (von Neumann and Morgenstern, 1944), it was first applied

to the analysis of political, economic and military strategies in a competitive context:

how to maximize one's gain with minimal risks due to the actions of adversaries. The

cooperative context—how agents can select options which are mutually beneficial—was

investigated by Axelrod (1984) who found that cooperation can be induced if

uncooperative agents can be punished e.g. tit-for-tat. Such retribution requires that

there must be a sequence of "moves" in the game. If the game involves only one move,

then there is no opportunity for retribution.

Genesereth et al proposed a game-theoretic model of cooperation between intelligent

agents acting rationally, but without the benefit of communication. The model captures

the different types of interaction (e.g. prisoner's dilemma; battle of the sexes) between

two agents using a pay-off matrix. It assumes: (1) that such a matrix is completely

known by both agents; (2) that agents behave rationally and will seek to maximize their
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pay-offs; and (3) that agents act simultaneously in each game. Hence game exploitation

to the other's disadvantage does not occur as may happen if each took turns in choosing

its course of action. Genesereth et al identified various decision procedures appropriate

for some of the interaction types. If these decision procedures are adopted by the agents,

mutually beneficial cooperation will ensue. The major difficulty in this approach lies

with the definition of the pay-off matrix. This assumes that accurate utility estimates

can be found for all the enumerated combinations of actions. A further shortcoming is

that it does not solve the resolution problem which is inevitable when agents' plans are

not independent.

7.7 Summary

Collaborative planning is another means to improve the economy of effort in task

execution. Its key idea is to exploit existing movement plans of currently tasked AGVs

which may be fortuitously predisposed to assist in the execution of a new task.

Collaboration can occur only if certain conditions—order of arrival/departure times;

delivery deadlines; load bearing capacity; and space feasibility—are satisfied. However,

these conditions determine plausibility and not feasibility. Final feasibility is

ascertained when the selected collaborative plan is subjected to the conflict resolution

mechanism.

The search space for collaborative opportunities can be large and exhaustive searching

may undermine the speed of the planner. An efficient approach is to search along the

subpaths of the AGV being assisted, and to restrict the opportunities to those which do

not entail detours on the part of the assisting AGVs. This enables the desirability of

plausible collaborative plans to be verified readily. Another important reason for

restricting the search to the no-detour category is to minimize the changes to existing

plans; these changes are confined to the temporal dimension since the paths of

collaborating AGVs do not change.
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Three forms of collaboration—assisted collection, assisted delivery and task

subsumption—have been defined and algorithms for identifying them have been

outlined. The algorithms implement the search recursively and use the conditions for

collaboration to prune the search tree. Such pruning improves search efficiency without

overlooking collaborative opportunities which could have been found otherwise.

An experimental collaborative planner has been implemented to demonstrate that

collaboration is indeed possible and beneficial. When presented with the same scenario

(involving five AGVs) which was used to demonstrate the feasibility of the purely

coordinative planner, the collaborative planner was able to improve on two of the AGVs'

movement plans.
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Chapter 8

Summary and Conclusion

8.1 The Research Issues

The main problem which this research focusses on is the automatic generation of AGV

movement plans in a way which is an improvement over current AGV systems. Current

AGV systems produce movement plans which are sub-optimal and coordinated in an ad

hoc manner. By assigning tasks to AGVs optimally, better economy of effort during

execution is attained and this brings with it the benefits of energy saving and more

productive utilization of AGVs. Moreover, ad hoc coordination has the serious

disadvantage of not admitting temporal projection which is essential for further

planning of operations in the factory. This disadvantage can be overcome by planning

the movement schedules of the AGVs prior to execution.

An important consideration in the design of the AGV movement planner is that

planning occurs before and during execution. Run-time planning is required because of

the quasi-continuous nature of factory operations—new tasks are generated as

operations proceed. Furthermore, in reality, the movement timings of AGVs do not

correspond exactly to the planned timings i.e. execution deviations are likely. This
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means that plans may require modification during execution. Hence this dissertation

also addresses the problems of dynamic planning and replanning. Since dynamic

planning and replanning are in the context of other movement plans which already

exist, and there is relatively less time for the planning process to complete before

execution must begin, dynamic planning/replanning needs to be expeditious with few

side-effects on existing plans.

Summarizing, the research issues are:

• Optimality: how can economy of effort in the execution of AGV movement

plans be realized?

• Temporal projection: how can event timings be forecasted to permit further

planning?

• Dynamic planning/replanning: how can a task be planned in the context of

existing plans?

• Dynamic performance: how can planning be made as fast as possible so as to

increase the probability of beginning execution early enough to accomplish

the new goals?

8.2 Addressing the Issues

8.2.1 Optimality

The main approach is to use shortest paths for AGVs individually and as a group.

Individually, every AGV will use the shortest possible path to move from one location to

another. As a group, the total distance of all the AGVs' paths is minimized by

assigning the tasks optimally. These two measures guarantee that a group of AGVs, in
which each has its own task and does not share the burden of other AGVs, has the least

cost ofeffort (measured in distance) required to discharge the tasks.
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A second approach is to reduce the overall effort involved via task sharing. If AGVs are

able to share the burden of another AGV, then AGVs can collaborate in performing a

task in a more economical manner e.g. by exploiting commonality ofplan segments.

8.2.2 Temporal Projection

Temporal projection is possible once a set ofconflict-free movement schedules have been

found. Determining this set is the outcome of movement planning with a conflict

resolution scheme. Two versions of an experimental AGV movement planner—the

purely coordinative version and the collaborative version—have been implemented to

meet this need. Both make use of the iterative negotiation model of conflict resolution to

ensure that plans are conflict-free.

8.2.3 Dynamic Planning/Replanning

Two alternative approaches are possible. The first is to design a pre-execution planner

which functions separately from the dynamic planner/replanner. The second is to design

a planner which meets both the roles of planning before and during execution. I have

chosen the second since it offers the important advantage of code sharing.

A pre-execution planner which is able to plan dynamically can be implemented by

adopting a sequential planning approach in which tasks are planned completely one at a

time. Hence whenever a task is being planned, there already exists (in general) some

plans of other AGVs. Since this is exactly the scenario for dynamic planning/replanning,

the planner meets the dyamic role as well.

Another advantage in this approach is that some exising plans are completely defined to

permit exploitation of collaborative opportunities. The sequential planning approach is

thus congenial to collaborative planning which contributes further to the optimality

objective.
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8.2.4 Dynamic Performance

Dynamic performance demands that the planning process be as fast as possible since

there is no guarantee of a lower bound on the time available. Expeditious planning

relies on two approaches: (1) use of fast algorithms, especially those which are often

invoked during planning; and (2) generating robust plans which lessen the

computational burden of the dynamic replanner by reducing the incidents of dynamic

replanning required to preempt impending failures. Robust plans achieve this effect by

tolerating an AGV's own execution deviations as well as those of other AGVs'.

Replanning is then unnecessary since the plan continues to be safe as long as the

deviations are not excessive. Robust movement plans are thus somewhat innocuous to

deviant behaviours and this also helps to contain a chain reaction ofplan revisions when

replanning becomes necessary.

8.3 Contributions

In addressing the research issues, the original contributions are as follows:

• NewHungarian—an optimal task assignment algorithm which is a novel

computational implementation of the Hungarian method originally described

for manual application. NewHungarian is faster than the Kuhn-Munkres

algorithm which solves the same problem using the augmenting path

approach.

• BS*—a new algorithm belonging to the class of bidirectional admissible

heuristic search algorithms. BS* is superior in this class both in terms of

computational time and space and has the potential to run twice as fast as the

fastest unidirectional search algorithm (A*) when implemented in a

multiprocessor machine. BS* is also the first staged search algorithm which

preserves admissibility.
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• Efficient route learning algorithms for extracting all other optimal solutions

embedded in search trees. These algorithms can be incorporated into most

admissible search algorithms to improve the time and effort in searching for

an optimal solution. BSL*, based on BS*, is one such enhanced algorithm.

Significant speed-up is made possible by the availability of instant solutions,

or ifunavailable, the use of learnt solutions to achieve earlier termination.

• The concept of tolerant planning for generating robust movement plans

which have better executability by being tolerant of extraneous execution

deviations as well as the AGVs' own deviations.

• The iterative negotiation model for conflict resolution which allows AGVs to

compromise their initial ideal plans in an equitable manner without

jeopardizing safety.

• An efficient recursive algorithm which searches for collaborative

opportunities.

• An experimental AGV movement planner to demonstrate the feasibility of

the concepts of tolerant planning, iterative negotiation and collaboration.

8.4 Further Research

8.4.1 Coordinative Planning

For greater planning speed, the use of a parallel computer, in which the processor nodes

represent RTokens created during planning, should be investigated. Links between

processor nodes would represent the relations between RTokens. Such a network would

support the propagation of conflict resolution characteristic of our iterative negotiation

model. The identification of sub-processes which can be computed concurrently, and the

relationship between procedural control and the characteristics of plans produced in

concurrent negotiation acts are possible research issues.
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A form of dependency-directed backtracking mechanism permitting a more

comprehensive search of the solution space may be useful. Possibly, this will reduce the

number of task rejections due to failure to find a feasible plan i.e. the completeness of

planner is improved. Furthermore, if accurate heuristics can be found to guide the

search, the final solution choice will be closer to some optimal criterion. Such a solution

may be more robust and thus less liable to incur dynamic replanning.

8.4.2 Collaborative Planning

Although the collaborative planner exploits existing movement plans to find an even

more efficient plan for a new task, exploitation in the reverse form does not occur. This

suggests that retrospective collaboration based on the set of plans which includes that

which has just been collaboratively planned, may yield further opportunities for

improving on previous plans.

Another avenue for improvement is to make a preliminary analysis of the set of tasks to

be planned. The aim is to determine the order of task planning which gives the most

opportunities for collaboration.

A third area is a liberal scheme for identifying collaborative opportunities. Unlike the

present scheme which works within the no-detour class, a liberal scheme will allow

detours on the part of assisting AGVs. The advantage of this can be noted from the

example scenario in which a slight detour on the part of an assisting AGV enables a task
to be subsumed.
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Appendix A

Some Theorems Related to the Hungarian Method ofOptimal

Assignment.

This appendix proves that the NewHungarian procedure (Algorithm 2-9) terminates

and that its time complexity is 0(n4) where n is the cardinality of the maximal

matching.

Lemma A-l:

Before phase I of procedure NewHungarian terminates, in any MC obtained,

there are always more uncrossed elements than doubly crossed elements.

Proof:

For a nxn matrix, the cardinality of the maximal matching is n.

Before phase I terminates, suppose the current MC has r rows and c columns.

Since phase I has not terminated,

r + c < n [1]

Let a be the number of elements in the matrix which are crossed out twice by the

MC.

a = rc

Let P be the number ofelements crossed out by the MC.

P - nr + nc-a

Let y be the number ofelements which are not in the MC.
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Y = n2 - P = n2 - n(r + c) + a

Y - a = n2 - n(r + c)

From [1] and [2], y > a.

[2]

Theorem A-l;

Procedure NewHungarian terminates.

Proof:

When y > a and phase I tries to find a larger MC by subtracting from each of the

Y uncrossed elements a positive value (equal to the minimum of these elements)

and adding the same value to each of the a doubly crossed elements, the total sum

of the elements in the matrix must be reduced in every iteration of phase I.

Noting that all elements are always non-negative, it follows that a finite number

of applications of the ModifyMatrix procedure (Algorithm 2-2) will eventually

reduce the sum of the matrix elements to zero. In this case, all elements are Os

and the set of distinct representatives can then be trivially found. Phase I must

therefore terminate.

Phase II also terminates by virtue of Berge's theorem (Berge, 1957) and the fact

that every augmentation definitely increases the matching.

It follows that procedure NewHungarian terminates in a finite number of steps.

Theorem A-2:

The time complexity ofprocedure NewHungarian is 0(n4).

Proof:

In general, before phase II is entered, there will be several iterations of phase I.

In deriving an MC, each row/column obtained requires a scan of n elements in it.

For an MC of r rows and c columns, the number ofelements scanned is n(r + c).

Since r + c ^ n, the time complexity of the MC computation is 0(n2).

If the MC is incomplete, members of a subset of the matrix elements are

decremented and members of a disjoint subset are incremented. Since the
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number of elements whose values are changed is at most n2, the time complexity

of the matrixmodification procedure is also 0(n2).

Since the MC computation and matrix modification procedure are in sequence,

each iteration ofphase I is 0(n2).

Next, we will show that the maximum number of iterations in phase I is bounded

above by kn2, where k is a constant.

At each iteration of phase I, let p and q be respectively the minimum and

maximum non-zero values in the matrix.

Clearly, the sum S ofelement values ^ n2q.

Suppose the minimum uncrossed element value is s.

Since more elements are decremented than incremented in each iteration (by

Lemma A-l), S must be decremented by at least s.

As s> p, the number of iterations to reduce S to 0 must be less than T n2q/p~l.

It follows that the time complexity ofNewHungarian is 0(n4).
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Appendix B

Superiority of Nicholson's Terminating Condition

Notations:

k A node where the fringe ofTREEl meets the fringe of TREE2.

Typically, there will be more than one meeting node since fringes

change with search and will meet again elsewhere in the search space.

gminl The minimum gl value of nodes in OPENl.

gmin2 The minimum g'2 value of nodes in OPEN2.

PNIC The proposition [(gminl +gmin2) >Lmin] representing Nicholson's

terminating condition (for proof see Nicholson (1966)).

PBSPA The proposition [k€CLOSEDinCLOSED2] representing Pohl's

terminating condition (for proof see Pohl (1969)).

(further notations appearing in this appendix are defined in section 3.4.1.)
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PNIC and PBSPA are two different terminating conditions which have been proposed for

uninformed best-first bidirectional searches based on Dijkstra's algorithm. Here, we

prove that PNIC is better than PBSPA in the sense that PNIC can detect a least path cost

solution earlier than PBSPA, if not at the same time. The proof also tells us that PNIC

subsumes PBSPA: in other words, whenever PBSPA is true, so is PNIC but not vice-versa.

Hence the disjunctive terminating condition Pnic\/Pbsfa which some might suggest (in

the hope of capturing terminating states otherwise undetected by PNIC alone), is

superfluous.

The proof of the superiority of Nicholson's terminating condition can be established by

showing that there exists an instance in which Nicholson's algorithm terminates before

BSPA, and Nicholson's algorithm terminates no later than BSPA.

Lemma B-l:

PNIC is tested before or at the same time as PBSPA.

Proof:

A k node must exist before Lmin can be assigned a value. Since PNIC contains the

Lmin term, it can first be tested only when the first k node is found. Subsequently,

Lmin is updated when a new k node is found or when a better path to/from an old k

node is found. A k node can be in one of the four states shown in Figure B-l. Since

a node must be open before it can be closed, state A must precede states B and C,

and, states B and C must precede state D. The precedence relationships of these

four states are shown in Figure B-2. Clearly, PNIC can be tested in any of these

four states but PBSPA can be true only in state D.
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State Status of node k

A □ □ Open in both trees.

B D El Open in forward tree and
closed in backard tree.

C El D Closed in forward tree and
open in backard tree.

D El El Closed in both trees.

Figure B-l. The four states of node k

A

Figure B-2

Lemma B-2:

\/m£CLOSEDi, gminl > gl(m).

Proof:

Suppose O is the set of nodes in OPEN1, and node m is chosen from O for

expansion. In general, expanding m enlarges OPENl to (O - {m})US, where S is

the set of m's successor added to OPEN1. Clearly, gl(m) <gl(n) for all n in 0 or

else m would not have been chosen for expansion. Moreover, for every node n in S,

gi(n)=gi(m) + cl(m,n)sgi(m) since cl(m,n)>0. Hence gl(m) is at least equal to

the smallest ofgl in the new OPENl.

. Precedence relationships of states ofk
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Lemma B-3:

^m£CL0SED2, gmm2 > g2(m).

Proof:

Same as the proof for lemma B-2 but with the search direction reversed.

Lemma B-4:

PNIC is true in state D.

Proof:

Let k be the node which first presents a state D. Since k is considered as a

possible contributor to the best value assigned to Lmin, gl(k)+g2(k) >Lmin.

Since k(iCLOSEDir\CLOSED2, gminl>gl(k) (by lemma B-2) and gmin2>g2(k)

(by lemma B-3), it follows that [(gminl +gmin2) >Lmin] (i.e. PNIC) is true.

This proof also establishes the correctness of PBSPA if the correctness of PNIC is

true. By correctness, we mean that when the terminating condition is satisfied,

then the least cost solution has indeed been found.

Theorem B-l:

PNIC is true before or at the same time as PBSPA.

Proof:

PBSPA can only be true when the first state D occurs (by definition of PBSPA).

When this occurs, PNIC is also true (by lemma B-4). But PNIC is tested not only

before a state D (by lemma B-l), it can in fact be true in states earlier than D (by

the example depicted in Figure B-3 which shows a problem instance when PNIC is

true in state A).
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Legend: Q A node in state D.
Path(n): IJ...M The best complete path so far is IJ...M and has length n.

[0] Graph to be searched.

m 2

m o

^0 4

[1] Forward expansion ofA.

DEI 2 2 Hk

[a]<^ Path(8): ADE J^T]

JbI [c] 5 2 GD\
Path(7): ABCE

\rf/ ^c[| 4 4

[2] Backward expansion ofE. [31 Forward expansion ofB.

[4] Backward expansion ofC. [5] Forward expansion ofD.

[6] Backward expansion ofD.

Figure B-3. An instance ofNicholson's algorithm terminating before BSPA.

Path(Y): ABCE
Nicholson's terminating
condition satisfied.
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Appendix C

Pohl's BHPA Algorithm

(Notations used are defined in section 3.4.1.)

Algorithm C-l:

procedure BHPA( )

/* Compute the shortest path from s to t. amin is the search cut-off

parameter. */

1. amin <—00 ;gl(s) *-g2(t) <—0;fl(s) <—hl(s).

2. Put s in OPENl and t in OPEN2.

3. until OPENl is empty

or OPEN2 is empty

or amin. < smallest fl value in OPENl

or amin < smallest f% value in 0PEN2

do

4. Determine search direction index d.

5. Transfer node m in OPENdwith the lowest fd value into CLOSEDd.

/* Expand m. */

6. foreach rtin Td(m) do

7. g gd{m) + cd{m,n)\f *-g + hd(n).

8. if n is in OPENd and f<fd(ri)
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9. then fd(n) <— f\ pd{n) *- m

10. elseif n is in CLOSEDd and f< fd(n)

11. then fdiri) <— f, pd(n) *— m

12. Transfers from CLOSEDd to OPENd.

13. else fd(n) *— f\ pd{n) +- m

14. Place n in OPENd.

endif

endforeach

15. ifm £ CLOSEDxOCLOSEDl and amin>gl(m) + g2{m)

16. then amin *- gi(m) +g2(m)\ MeetingNode *- m

endif

enduntil

17. ifamm = °°

18. then no path exists

19. else the optimal path cost is amin. and the optimal path can be

determined by tracing the forward and backward parent

pointers from MeetingNode.

endif

endprocedure
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Appendix

A Complete Negotiation Trace Involving Five AGVs

Selected strategy: Tolerance preservation i.e. shift before yielding.

AGV4 planning Taskl ....
***** DONE »***♦*

AGV5 planning Task2 ....

R2 (186.25 . 232.75) conflicts with R8 (186.25 . 234.25)
Amt of conflict: 46.5

At node 10, R8 will negotiate with R2 on its left.
R8 ShiftRight:

Conceded: 4.69 (186.25 . 234.25) -> (190.94 . 238.94)
Residue: 41.81

R2 ShiftLeft:
Conceded: 0.0 (186.25 . 232.75) unchanged.
Residue: 41.81

R8 YieldFrontHedge:
Conceded: 10.0 (190.94 . 238.94) -> (200.94 . 238.94)
Residue: 31.81

R2 YieldEndHedge:
Conceded: 10.0 (186.25 . 232.75) -> (186.25 . 222.75)
Residue: 21.81

R8 YieldEndHedge&Shift:
R8 will move R9 above.

[Move Above R9] ShiftRight YieldEndHedge&Shift
R9 will move R10 above.

[Move Above R10] ShiftRight
Conceded: 10.0 (200.94 . 238.94) -> (210.94 . 238.94)
Residue: 11.81

R2 YieldFrontHedge&Shift:
R2 will move R1 below.

[Move Below Rl] ShiftLeft
Conceded: 10.0 (186.25 . 222.75) -> (186.25 . 212.75)
Residue: 1.81

R8 YieldTol&Shift:
R8 will move R9 above.

[Move Above R9] ShiftRight YieldEndHedge&Shift
R9 will move R10 above.

[Move Above R10] ShiftRight
Conceded: 1.81 (210.94 . 238.94) -> (212.75 . 238.94)
Residue: 0.0

***** DONE •***»♦

AGV2 planning Task3 ....

R15 (139.375 . 188.375) conflicts with R2 (186.25 . 212.75)
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Amt of conflict: 2.13
At node 10, R15 will negotiate with R2 on its right.
R15 ShiftLeft:

Conceded: 0.0 (139.38 . 188.38) unchanged
Residue: 2.13

R2 ShiftRight:
Conceded: 0.0 (186.25 , . 212.75) unchanged
Residue: 2.13

R15 YieldEndHedge:
Conceded: 2.13 (139.38 . 188.38) -> (139.38 . 186.25)
Residue: 0.0

AGV3 planning Task4 ....

R25 (229.6875 . 264.6875) conflicts with R9 (231.5 . 268.5625)
Amt of conflict: 33.19

At node 15, R25 will negotiate with R9 on its right.
R25 ShiftLeft:

Conceded: 4.69 (229.69 . 264.69) -> (225.0
Residue: 28.5

R9 ShiftRight:
Conceded: 0.0 (231.5 . 268.56) unchanged.
Residue: 28.5

R25 YieldEndHedge:
Conceded: OOT-t (225.0 . 260.0) -> (225.0 .

Residue: CO cn

R9 YieldFrontHedge:
Conceded: 10.0 (231.5 . 268.56) -> (241.5
Residue: 8.5

250.0)

, 268.56)

R25 YieldFrontHedge&Shift:
R25 will move R24 below.

[Move Below R24] ShiftLeft YieldFrontHedge&Shift
R24 will move R23 below.

[Move Below R23] ShiftLeft YieldFrontHedge&Shift
R23 will move R22 below.

[Move Below R22] ShiftLeft
Conceded: 8.5 (225.0 . 250.0) -> (225.0 . 241.5)
Residue: 0.0

Resolving at both ends: (R2) -> R24 -> (R8)

R2 (186.25 . 212.75) conflicts with R24 (196.25 . 232.75)
Amt of conflict: 16.5

At node 10, R24 will negotiate with R2 on its left.
R24 ShiftRight:

(196.25 232.75) unchanged.

212.75) unchanged.

232.75) -> (197.75 . 232.75)

212.75) unchanged.

Conceded: 0.0
Residue: 16.5

R2 ShiftLeft:
Conceded: 0.0 (186.25
Residue: 16.5

R24 YieldFrontHedge:
Conceded: 1.5 (196.25
Residue: 15.0

R2 YieldEndHedge:
Conceded: 0.0 (186.25
Residue: 15.0

R24 YieldEndHedge&Shift:
R24 will move R25 above.

[Move Above R25] ShiftRight YieldEndHedge&Shift YieldTol&Shift MoveRightOrAbove
R25 moves the following right: ((5.0 . #.($ R9)))
[Move Right R9] ShiftRight YieldFrontHedge YieldEndHedge&Shift
R9 will move R10 above.

[Move Above R10] ShiftRight YieldEndHedge&Shift
R10 will move Rll above.

[Move Above Rll] ShiftRight
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Conceded: 10.0 (197.75 . 232.75) -> (207.75 . 232.75)
Residue: 5.0

R2 YieldFrontHedge&Shift:
Conceded: 0.0 (186.25 . 212.75) unchanged.
Residue: 5.0

R24 YieldTol&Shift:
R24 will move R25 above.

[Move Above R25] ShiftRight YieldEndHedge&Shift YieldTol&Shift MoveRightOrAbove
R25 moves the following right: ((5.0 . #.($ R9)))
[Move Right R9] ShiftRight YieldFrontHedge YieldEndHedge&Shift
R9 will move RIO above.

[Move Above R10] ShiftRight YieldEndHedge&Shift
R10 will move Rll above.

[Move Above Rll] ShiftRight YieldTol&Shift
R9 will move R10 above.

[Move Above R10] ShiftRight YieldEndHedge&Shift
R10 will move Rll above.

[Move Above Rll] ShiftRight
Conceded: 5.0 (207.75 . 232.75) -> (212.75 . 232.75)
Residue: 0.0

R24 (212.75 . 232.75) conflicts with R8
Amt of conflict: 20.0

At node 10, R24 will negotiate with
R24 ShiftLeft:

Conceded: 0.0
Residue: 20.0

R8 ShiftRight:
Conceded: 10.0
Residue: 10.0

R24 YieldEndHedge:
Conceded: 0.0
Residue: 10.0

R8 YieldFrontHedge:
Conceded: 0.0
Residue: 10.0

R24 YieldFrontHedge&Shift
Conceded: 0.0
Residue: 10.0

R8 YieldEndHedge&Shift:
Conceded: 0.0
Residue: 10.0

R24 YieldTolerance:
Conceded: 0.0
Residue: 10.0

YieldTol&Shift:

(212.75 . 238.9375)

R8 on its right.

(212.75 . 232.75) unchanged.

(212.75 . 238.94) -> (222.75 . 248.94)

(212.75 . 232.75) unchanged.

222.75 . 248.94) unchanged.

212.75 . 232.75) unchanged.

(222.75 . 248.94) unchanged.

(212.75 . 232.75) unchanged.

R8
R8 will move R9 above.

[Move Above R9] ShiftRight YieldEndHedge&Shift YieldTol&Shift
R9 will move R10 above.

[Move Above R10] ShiftRight YieldEndHedge&Shift
R10 will move Rll above.
[Move Above Rll] ShiftRight YieldTol&Shift
R10 will move Rll above.

[Move Above Rll] ShiftRight
Conceded: 4.69 (222.75 . 248.94) -> (227.44 . 248.94)
Residue: 5.31

R24 MoveLeftOrBelow:
R24 moves the following left: ((5.31 . #.($ R2)))
[Move Left R2] ShiftLeft YieldEndHedge YieldFrontHedge&Shift YieldTolerance

Conceded: 5.31 (212.75 . 232.75) -> (207.44 . 227.44)
Residue: 0.0

R1 (157.5 . 192.5) conflicts with R23 (177.5 . 204.0)
Amt of conflict: 15.0

At node 5, R23 will negotiate with R1 on its left.
R23 ShiftRight:
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Conceded: 9 .69

Residue: 5 .31
R1 ShiftLeft:

Conceded: 5 .31
Residue: 0 .0

»»**» QONE ******

(177.5 . 204.0) -> (187.19 . 213.69)

(157.5 . 192.5) -> (152.19 . 187.19)

AGV1 planning Task5 ....

R16 (172.8125 . 212.8125) conflicts with R35 (198.4375 . 233.4375)
Amt of conflict: 14.38

At node 15, R35 will negotiate with R16 on its left.
R35 ShiftRight:

Conceded: 6.56 (198.44 . 233.44) -> (205.0 . 240.0)
Residue: 7.81

R16 ShiftLeft:
Conceded: 4.69 (172.81 . 212.81) -> (168.13 . 208.13)
Residue: 3.13

R35 YieldFrontHedge:
Conceded: 3.13 (205.0 . 240.0) -> (208.13 . 240.0)
Residue: 0.0

Resolving at both ends: (R15) -> R34 -> (R2 R24)

R15 (139.375 . 186.25) conflicts with R34 (165.0 . 210.0)
Amt of conflict: 21.25

At node 10, R34 will negotiate with R15 on its left.
R34 ShiftRight:

Conceded: 0.0 (165.0 . 210.0) unchanged.
Residue: 21.25

R15 ShiftLeft:
Conceded: 0.0 (139.38 . 186.25) unchanged.
Residue: 21,25

R34 YieldFrontHedge:
Conceded: 10.0 (165.0 . 210.0) -> (175.0 . 210.0)
Residue: 11.25

R15 YieldEndHedge:
Conceded: 7.87 (139.38 . 186.25) -> (139.38 . 178.38)
Residue: 3.38

R34 YieldEndHedge&Shift:
Conceded: 3.38 (175.0 . 210.0) -> (178.38 . 210.0)
Residue: 0.0

R34 (178.375 . 210.0) conflicts with R2 (186.25 . 207.4375)
Amt of conflict: 23.75

At node 10, R34 will negotiate with R2 on its right.

(178.38 . 210.0) unchanged.

(186.25 . 207.44) unchanged.

Conceded: 6.62 (178.38 . 210.0) -> (178.38 . 203.38)
Residue: 17.13

R2 YieldFrontHedge:
Conceded: 0.0 (186.25 . 207.44) unchanged.
Residue: 17.13

R34 YieldFrontHedge&Shift:
Conceded: 0.0 (178.38 . 203.38) unchanged.
Residue: 17.13

R2 YieldEndHedge&Shift:
Conceded: 0.0 (186.25 . 207.44) unchanged.
Residue: 17.13

R34 YieldTolerance:
Conceded: 5.0 (178.38 . 203.38) -> (178.38 . 198.38)

R34 ShiftLeft:
Conceded: 0.0

Residue: 23.75

R2 ShiftRight:
Conceded: 0.0

Residue: 23.75

R34 YieldEndHedge:
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Residue: 12.13
R2 YieldTol&Shift:

Conceded: .44 (186.25 . 207.44) -> (186.69 . 207.44)
Residue: 11.69

R34 MoveLeftOrBelow:
R34 moves the following left: ((11.69 . #.($ R15)))
[Move Left R15] ShiftLeft YieldEndHedge YieldFrontHedge&Shift
R15 will move R14 below.

[Move Below R14] ShiftLeft YieldFrontHedge&Shift
R14 will move R13 below.

[Move Below R13] ShiftLeft YieldTolerance
R34 will move R33 below.

[Move Below R33] ShiftLeft YieldFrontHedge&Shift
R33 will move R32 below.

[Move Below R32] ShiftLeft YieldFrontHedge&Shift
R32 will move R31 below.

[Move Below R31] ShiftLeft
Conceded: 11.69 (178.38 . 198.38) -> (166.69 . 186.69)
Residue: 0.0

Resolving at both ends: (R14) -> R33 -> (R7)

R14 (113.125 . 148.625) conflicts with R33 (146.25 . 172.9375)
Amt of conflict: 2.38

At node 15, R33 will negotiate with R14 on its left.
R33 ShiftRight:

Conceded: 0.0 (146.25 . 172.94) unchanged.
Residue: 2.38

R14 ShiftLeft:
Conceded: 0.0 (113.13 . 148.63) unchanged.
Residue: 2.38

R33 YieldFrontHedge:
Conceded: 1.69 (146.25 . 172.94) -> (147.94
Residue: .69

R14 YieldEndHedge:
Conceded: .69 (113.13 . 148.63) -> (113.13
Residue: 0.0

R33 (147.9375 . 172.9375) conflicts with R7 (167.5 . 204.0)
Amt of conf1ict: 5.44

At node 15, R33 will negotiate with R7 on its right.
R33 ShiftLeft:

Conceded: 0.0 (147.94 . 172.94) unchanged.
Residue: 5.44

R7 ShiftRight:
Conceded: 5.44 (167.5 . 204.0) -> (172.94 . 209.44)
Residue: 0.0

R32 (123.75 . 157.9375) conflicts with R6 (148.75 . 183.75)
Amt of conflict: 9.19

At node 20, R32 will negotiate with R6 on its right.
R32 ShiftLeft:

Conceded: 0.0 (123.75 . , 157.94) unchanged.
Residue: 9.19

R6 ShiftRight:
Conceded: 9.19 (148.75 , . 183.75) -> (157.94
Residue: 0.0

► DONE ******
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Appendix E

Movement Plans (see Figure 6-14)

(Based on tolerance preservation strategy i.e. shift before yield)

Movement plan for AGV1:

Node Arrival Time Wait(secs) RToken

29 01:02 0 R29
24 01:21 0 R30
25 01:57 0 R31
20 02:12 0 R32
15 02:27 0 R33
10 02:46 10 R34
15 03:35 0 R35
14 04:15 0 R36
13 05:10 20 R37

Movement plan for AGV2:

Node Arrival Time Wait(secs) RToken

19 01:14 0 R12
14 01:30 0 R13
15 02:00 0 R14

10 02:19 10 R15

15 02:58 0 R16
20 03:26 0 R17
25 03:49 0 R18
24 04:36 0 R19
29 05:00 20 R20
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Movement plan for AGV3:

Node Arrival Time Wait(secs) RToken

9 02:11 0 R21
4 02:29 0 R22
5 03:08 0 R23
10 03:27 10 R24
15 04:01 0 R25
20 04:23 0 R26
25 04:46 0 R27
30 05:10 20 R28

Movement plan for AGV4:

Node Arrival Time Wait(secs) RToken

5 02:42 0 R1
10 03:06 10 R2
5 03:49 0 R3
4 04:36 0 R4
9 05:00 20 R5

Movement plan for AGV5:

Node Arrival Time Wait(secs) RToken

20 02:47 0 R6
15 03:02 0 R7
10 03:47 10 R8
15 04:16 0 R9

14 04:53 0 R10

19 05:12 20 Rll
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