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Abstract

Understanding communication patterns between different regions of the human brain

is key to learning useful spatial representations. Once learned, these representations

present a foundation on which new tasks can be learned rapidly. Moreover, the activity

patterns generated by the brain are ultimately relayed to the muscles to generate be-

haviour. By measuring these action potentials from the relevant source regions of the

brain directly, we can capture expected behaviour notwithstanding interruption in the

neural pathways to downstream muscles. Spinal cord injury is an example of interrup-

tion in the case of motor control of arm or leg muscles from the motor cortex of the

brain. Multiple electrodes recording action potentials from neurons in the motor cortex

in conjunction with a plethora of possible modelling techniques can be used to decode

this intended movement. Subsequently, soft or hard robotics can be used to bypass the

damaged spinal cord in relaying intended movement behaviour to specific limbs.

This thesis is comprised of two main parts. The first part addresses the question

of how representation learning in neural networks can benefit the learning of goal-

directed behaviour. Using the learning of spatial representations through recurrent

neural networks as a model, this work showed that such a representation can be used

as a foundation for rapid learning of navigational tasks using reinforcement learning.

This learned representation takes the form of spatially modulated units within the neu-

ral network, similar to place cells found in the brains of mammals. Furthermore, an

analysis of the simulated neurons showed that these place units within the neural net-

work have multiple characteristics replicating those found in biological place cells,

such as precursory firing behaviour.

The second part tackles the issue of variability in neural representations, a phe-

nomenon that causes significant deterioration of the decoding of behaviour from neu-

ral population activity over time. Using combined neural and behaviour recordings

from monkeys performing motor tasks, this work aims to develop stable decoders that

are robust to such fluctuations. Two approaches using unsupervised learning were

investigated. The first is based on domain adaptation, where decoders were trained

to ”ignore” all aspects of the data subject to fluctuations, and to instead extract the

salient, stable aspects of the neural representation of movements. This representa-

tion then allows the decoder to generalise well to a completely unseen recording ses-

sion, thus accurately predicting behaviour intention withstanding significant neuron

non-stationaries present between recording sessions. This generalisation to an unseen
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recording session without retraining or recalibration of a decoder has not been previ-

ously shown.

This first approach performed well for data that was obtained close enough in time

to the training data, but required a significant number of recording sessions for suc-

cessful training. To address these limitations, a contrastive learning approach was

used next. In this model, synthetic variations of trials from a single recording session

were generated. These variations were similar in type and magnitude to the neuron

non-stationaries that exist between recording sessions, and used as training data to-

gether with the original data for a model that learns to remove these non-stationaries

to recover stable dynamics related to behaviour. This method produced a very stable

decoder capable of accurately inferring intended behaviour for up to a week into the

future. This training paradigm is an example of self-supervised learning, whereby the

model is trained on perturbed versions of data.

Taken together, in this thesis I explore approaches which lead to robust represen-

tations being learned within neural networks. These representations are shown to be

neurally realistic and robust, allowing for a high degree of generalisation.
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Lay Summary

Around 80 billion neurons in the human brain communicate continuously to allow us

to perform a plethora of bodily functions. In order to perform these functions, large

populations of neurons from various brain regions interact within these populations

in order to trigger downstream functions. These range from neurons in the motor

cortex interacting to perform the movement of limbs, to neurons in the hippocampus

interacting to perform spatial navigation. Spatial navigation, for instance, occurs when

individual neurons within a population of neurons in the hippocampus region of the

brain are active for distinct regions of an environment. Evolutionarily, this has been

converged on as the most energy efficient mechanism by which humans (and other

mammals) navigate the world.

Although individual bodily functions are processed through these interactions oc-

curring amongst many thousands of neurons, the functions themselves can be fairly

simple. For example, the movement of one’s arm up versus down is controlled by the

same large population of neurons in the motor cortex. However, neuron firing patterns

from this population of neurons as a whole will differ wildly for both of these arm

actions. Finding an informative, low-dimensional representation of such a population

of neurons is then vital to inferring arm movement direction. The expectation is that

the low-dimensional representation of neural activity in the motor cortex will be suf-

ficiently unique for an arm movement up versus an arm movement down. This is the

starting point for building brain-computer interfaces (BCIs), which can infer muscle

movement (and other human behaviour) when even a small subset of these neuron

populations are recorded from. With recent advances in BCI effectiveness, individuals

with life-changing tetraplegia as a result of neuromuscular disorders have the potential

to regain motor functions through the use of BCI controlled prosthetics. The primary

issue with current BCI systems is that once trained, their long-term accuracy wanes

quickly due to instabilities in neuron activity and minute movement of recording ap-

paratus.

In this thesis, I show that using a learning strategy akin to rodents in experiments in

Neuroscience exhibits spatial firing patterns in artificial models similar to that of mam-

mals. I next present two modelling approaches which significantly improve the long-

term accuracy of BCI decoders, reducing the frequency with which these decoders are

required to be recalibrated to facilitate continued accurate decoding of behaviour.
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Chapter 1

Introduction

Artificial Neural Networks (ANNs), especially those optimised using backpropagation

[48], have emerged as powerful and versatile models, capable of both class predic-

tion and novel data generation. It has been shown that ANNs are neurobiologically

analogous models of how the brain processes stimuli [47]. Moreover, when trained to

perform and control tasks akin to those performed in the field of experimental Neuro-

science, ANNs exhibit features and activation patterns mirroring those found in rodents

(but also present in other mammals) performing the same tasks. Recurrent Neural Net-

works (RNNs) in particular have shown to be a fruitful paradigm for modelling areas of

the mammalian brain. This is due to the resemblance between the recurrent nature of

RNN training to the way stimuli are processed by the mammalian brain. For example,

when performing image classification and object detection tasks, RNNs exhibit simi-

lar processing of images as the mammalian visual system [54, 92]. Furthermore, units

of RNNs performing spatial tasks in artificial environments display the emergence of

place and grid representations found in mammals [14, 5, 71, 13, 87].

Within the mammalian brain, the hippocampus is a formation in the medial tem-

poral lobe. It is crucial for the consolidation and retrieval of memory, especially in the

short-term. The hippocampus also serves the important function of spatial localisation

and navigation. This was shown in a landmark study in 1971 by John O’Keefe [66, 65]

where hippocampal neurons of rats traversing a maze exhibited firing patterns corre-

lated with specific locations in the maze. These neurons were termed ”place cells”

and spatial locations which they correspond to, ”place fields”. Further studies into

hippocampal function find further properties of these place cells which facilitate more

complex spatial reasoning, particularly where rewarding stimuli are concerned. These

include place cells drifting towards rewarding locations throughout maze conditioning
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2 Chapter 1. Introduction

[49], a higher concentration of place fields at rewarding locations [58] and preemptive

firing of successions of place cells in anticipation of distinct movement directions [39].

In this thesis I hypothesise that ANN units are analogous to these hippocampal

neurons when ANNs are trained on similar tasks to those of rodents. This is done by

training ANNs using the machine learning paradigm of reinforcement learning in order

to guide a simulated agent towards rewarding locations of a virtual maze. Once I have

shown this resemblance, and that robust representations akin to those of the hippocam-

pus can be used for downstream tasks, I proceed to show that such representations are

also useful for stably modelling neurons which are responsible for expressing animal

behaviour.

Animal behaviours (such as movement, speech and visual stimuli) undoubtedly

correspond to activity from biological neurons in the brain [85, 17]. In recent years, the

number of neurons that can be recorded from simultaneously has increased by several

orders of magnitude. This is due to advances in microchip density and transmission

rates between extracellular recording electrodes and external decoding devices. The

increase in the number of electrodes used in many of these recordings gives far greater

insight into behaviour planning and execution.

The predictive potential of decoding models used to infer behaviour intent corre-

sponding to these high dimensional data streams is also significantly improved. Clas-

sical linear decoders which can be effective on individual or small numbers of neurons

do not have the capacity or complexity to decode from a large number of neurons or

channels. Non linear models with large numbers of parameters such as neural networks

have been shown to be much more practical in predicting behaviour from these high

dimensional recordings [25, 83, 36].

Accurate decoding is possible because high-dimensional neural population activity

typically occupies low dimensional manifolds [12, 18, 23, 31, 59, 75]. These mani-

folds can be extracted using suitable latent variable models. Over time however, drifts

in activity of individual neurons and instabilities in neural recording devices can be

substantial, causing inconsistency in the extraction of a stable neural manifold. This

results in stable decoding over days and weeks being impractical with previous meth-

ods.

This variability due to neural drift and other non-stationaries is one of a number of

hurdles preventing brain computer interfaces from becoming commonplace. Retrain-

ing a decoder over consecutive days would maintain accuracy but with the significant

time and computational cost this would entail. While neural drift cannot be predicted
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on an individual neuron level, population level variations over consecutive recording

sessions such as differing sets of neurons and varying permutations of consistent neu-

rons in recorded data may be learnable by a latent variable model based on neural

networks when the underlying manifold is stable over time.

In this thesis I will present two approaches which aim to correct for this variability.

The first is a model trained using the principle of domain adaptation which aims to

unify data by class irrespective of source distribution. The second uses self-supervised

learning to decode behaviour from unseen recordings up to a week into the future with

no further decoder training. This is achieved by training a model on anticipated future

changes to neuron populations and firing patterns.

I first present background on hippocampal function and how it functions as a pre-

dictive map of an environment. I then review previous and current models for ex-

tracting interpretable latent variables from high dimensional neural data as well as

comparisons of current behaviour decoding methods. Next, I introduce three chapters

of original work where I show that artificial neural networks exhibit properties shared

with their biological counterparts as well as how these neural networks can conversely

be used to model biological neuron firing patterns. Finally, I conclude with a discus-

sion of each of my works and my future research plans.





Chapter 2

Background

2.1 The Hippocampus and navigation

The hippocampus is a complex brain formation in the temporal lobe which serves as a

memory consolidator and has projections to and from many other brain regions. One

of these regions is the entorhinal cortex, itself within the medial temporal lobe. In-

put to the dentate gyrus region of the hippocampus from the medial entorhinal cortex

(MEC) is a crucial pathway with respect to pattern recognition and the encoding of

memories. This encoding mechanism of the hippocampus is used to encode memory

of various stimuli (such as visual landmarks) at different locations in space. The re-

sulting cognitive map [86] of a given environment takes the form of an ensemble of

place cells, which are position-sensitive neurons in the hippocampus which actively

produce action potentials when the animal is at a corresponding place field [66], i.e

location in an environment. Many place cells can map to a single place field (loca-

tion) and a single place cell can map to more than one place field. The combination

of active firing place cells when the animal is at a given location allows for allocen-

tric self-positioning. In fact, place cells have been shown to have a causal role in the

formation of these cognitive maps as the stimulation of individual place cells triggers

the positioning behaviour associated with the location of place fields corresponding to

said place cells [72], causing the animal to determine it is at a position that it does not

actually occupy in space.

In conjunction with grid cells in MEC [30], the animal can navigate to different

locations with a different place field from its current location. Grid cells are neurons

which fire at multiple locations in an environment in a periodic hexagonal manner and

form the coordinate system used by mammals to navigate space. Grid cells essentially
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6 Chapter 2. Background

act as a mapping from one place field to another, supporting navigation through novel

routes and taking into account obstacles as well as other environmental changes.

The layout of place fields is not constant, and can adjust to small changes within

known environments through partial remapping [61] and flexibly adjust to entirely new

environments through global remapping. This remapping of place fields can correct

for obstacles within an environment, changes to stimuli, or a consistent environment

rotation [7]. A linear environment transformation is corrected through the stretching or

contraction of place fields [64]. These hippocampal neurons have also been observed

in the encoding of non-spatial information, showing that hippocampal neurons can

be sensitive to distinct frequency ranges of sound [2] This shows that the memory

encoding function of hippocampal neurons is general-purpose and can be applied to

many tasks within various contexts. Place cells can also be specialised in order to

identify the boundaries of a given environment [50].

2.1.1 Task related place cell properties

The activity of place cells has been shown to be task dependent through experimental

results. Although from a spatial perspective, place cell firing activity was originally

thought to be consistent when the environment remains persistent, results from vari-

ous maze-based rodent experiments show that place cell firing is more malleable and

conductive to task success. For instance, [39] show that place cells in mice in the CA3

region of the hippocampus frequently fire nonlocally, with place cells corresponding to

place fields ahead of the mouse firing prior to the mouse approaching critical decision

locations in a maze. [27] show that a far higher proportion of hippocampal neurons

in the CA1 region in rats performing an episodic task in a T-shaped maze encode the

phase of the task rather than spatial information (in Chapter 3 this relates to trajectory

direction). [1] show CA1 place cells encode rewarding destination location at the start

position of a maze by firing as the rodent begins navigating towards a reward. [49]

demonstrate that place fields of CA1 neurons gradually drift toward reward locations

throughout reward training on a T-shaped maze - this can be interpreted as a form of

continual remapping. [82] identify hippocampal CA1 neurons whose activity are mod-

ulated not only by spatial location in a maze but also by lap number. This shows that

place cells can encode distinct events in time in addition to location.
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2.1.2 Biological parallels of recurrent neural networks

There has been increasing evidence that recurrent neural networks (RNNs) are able

to faithfully model brain activity, particularly that of the hippocampus and entorhinal

cortex. Grid [14, 5] and place [71] representations mimicking that of real grid and place

cells form once the recurrent network has learned a predictive task in the context of a

complex environment. [5] in particular shows that navigation via routes that were not

present during maze traversal training can be achieved when training an agent using an

RNN architecture and reinforcement learning. This is akin to the function of biological

grid cells which are critical for path integration and trajectory planning.

[13] demonstrates not only the emergence of characteristic neural representations,

but also hallmarks of head direction system cells such as compass neurons when train-

ing a recurrent network on a simple angular velocity integration task. [87] show a

plethora of location based cells forming when differently training three RNNs on a

range of simulated navigation tasks, in particular showing anticipatory activity at de-

cision locations. These emergent cells include head direction, boundary vector and

egocentric boundary cells and their prevalence varies across each RNN. Additionally,

based on the results of the study, the authors suggest that when the learned representa-

tion of the model is remapped across environments, the proportions of various location

based cells remain consistent.

2.2 Modelling neural data

Neural recordings have recently seen significantly increasing dimensionality due to

higher probe count and a rise in the number of channels per probe [62, 4, 6, 19, 21, 43,

56, 60, 90], allowing for large scale recordings of neural populations. The raw neu-

ral activity captured by these recording probes is usually spike sorted [51], whereby

a threshold is applied to the activity to detect action potentials (or spikes) on the in-

dividual channels. These spikes are then clustered by firing profile and assigned to

individual neurons.

Modelling approaches which can utilise this dimensionality in order to predict fir-

ing rates or behaviour must either directly model the joint activity of all recorded neu-

rons, capturing specific population wide firing patterns and interactions across neurons,

or extract informative low dimensional latent dynamics from the high dimensional

data. Latent variable models allow us to extract low dimensional dynamics which de-
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scribe firing patterns in high dimensional recordings without needing to observe the

activity of all recorded neurons. Modelling approaches which do not reduce the di-

mensionality in some way are highly computationally expensive [37].

Brain-Computer Interface (BCI) systems which generally take neural activity as

input and predict behaviour are an increasingly prominent application of this neural

modelling. Most of this behaviour prediction currently takes the form of predicting

movement intent from the neural activity of the motor cortex of human and non-human

primates. The implications of accurate real-time movement decoding has the potential

for tetraplegic human patients to be life changing. Current work in the field focuses

on predicting intended cursor movement as input to a personal computer, allowing

patients to interface with the world digitally.

The input signal to an intracortical BCI system for decoding movement usually

consists of raw recordings taken from the motor cortex of a participant using sur-

gically implanted electrodes (such as a Utah array [32]). Movement kinematics are

usually recorded alongside neural activity for decoder model training purposes. The

decoding pipeline for the stated BCI system would then consist of applying a spike

detection algorithm to the raw data and spike sorting the resulting action potentials (as

outlined above) into separate spike trains from individual neurons. Various modelling

techniques can then be used to decode corresponding movement from the spike sorted

neurons.

Decoding techniques can be categorised as being offline or online. Offline de-

coders refer to those approaches which require entire spike trains from the neurons in

a recorded population in order to predict behaviour. Online decoders on the other hand

only require small windows of around 150ms or less to predict momentary behaviour.

Effective BCI decoding for real-world uses such as for prosthetic implementations re-

quire online decoders as these allow use in real-time.

Currently most online decoders in use are based on the Kalman filter [44] and

involve repeated Bayesian inference for each time step. The Kalman filter assumes

that spike trains from all neurons are noisy observations of a hidden latent state. The

method allows for behaviour inference from the noisy spike observations and assumes

that the relationships between neurons are linear with a Gaussian noise model. Non-

linear state estimators which build on the Kalman filter such as the Extended Kalman

filter (EKF) and the Unscented Kalman filter (UKF) more accurately model the non-

linearities in recorded intra-cortical neural data. The UKF in particular has been shown

to be more effective as a decoder in BCI systems than the standard Kalman filter [52,
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53].

[57] propose a variant of the Kalman filter based on the restricted Boltzmann ma-

chine (RBM) [34] to model non-linearities which achieves state-of-the-art online de-

coding performance. The filter they introduce, termed the recurrent exponential family

harmonium (rEFH), models spike trains per neuron as a Poisson process, allowing

for non-linear dynamics. As the RBM on which the model is based is unsupervised,

temporal correlations in spiking data can be explained by latent dynamics instead of

directly relating to behaviour.

Offline decoding meanwhile is more straightforward, with higher overall decoding

accuracy than online decoding due to offline models being exposed to many more

timesteps of neuron spike trains. Non-linear models such as recurrent neural networks

can be expected to achieve almost perfect decoding accuracy on held out trials of data

from the same recording session after training, especially when the minimum trial

length is at least 300ms.

2.2.1 Latent variable models

Neural population activity relating to behaviour has been shown to be inherently low-

dimensional despite the observed high dimensionality of data recorded using multi-

electrode arrays [12, 18, 23, 31, 59, 75] . The implication of this is that activity patterns

across the entire neuron population are responsible for downstream behaviour, not the

spiking of individual neurons. Therefore, predicting behaviour from neural population

recordings has been shown to be most effective when using latent variable models.

Dimensionality reduction methods such as Principal Component Analysis (PCA) and

Variational Autoencoders (VAEs) [46] can be used to extract a low dimensional repre-

sentation of the activity of a population of neurons.

2.2.1.1 Linear Models

While PCA and VAEs can be used to extract a latent representation of neural data, these

methods do not model temporal dependencies across timesteps of each neuron. These

methods are therefore considered static state-space models. Linear dynamical state-

space models on the other hand aim to model temporal correlations across timesteps.

Linear dynamical systems (LDS) [79] and jPCA [12] are examples of latent variable

models which can capture the linear relationships between latent states. Gaussian Pro-

cess Factor Analysis (GPFA) [89] aims to reduce the dimensionality of neural spiking
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data in order to visualise the trajectories of spike trains. GPFA first reduces dimen-

sionality by applying factor analysis to spiking data and simultaneously smoothes the

resulting low-dimensional trajectories by fitting a Gaussian process model to them.

Unlike the state-space models described above, Gaussian process models provide both

a measure of uncertainty along with model selection. The expectation-maximisation

algorithm is used to estimate parameters of the Gaussian process from the data.

2.2.1.2 Non-linear Models

Although the methods outlined above find some dynamical structure outlining neuron

firing patterns, these linear approaches do not model non-linear dynamics which have

been shown to correspond to motor control [23]. An extension of GPFA, Gaussian

Process Factor Analysis via Dynamical Systems (GPFADS) [74], proposes dynamical

priors over trajectories which encourage temporal non-reversibility, allowing GPFADS

to disentangle latent trajectories when applied to motor cortex neural data. Explicit

temporal non-linear models such as recurrent neural networks (RNNs) fare better in

modelling non-linear spiking data. An RNN based latent variable model such as Latent

Factor Analysis via Dynamical Systems (LFADS) [68] acts as a sequential autoencoder

and models non-linear dynamics, extracting a much more informative and interpretable

latent space than the above methods.

When the latent space of LFADS is highly interpretable, we find that it is well

disentangled with regard to properties of individual trials. These properties include

recording session, recording subject and different aspects of behaviour or stimulus to

which the neural activity corresponds to. We can visualise this trial separation by

reducing the dimensionality of the latent space to two dimensions using PCA or t-SNE

and then plotting the resulting variables. In many cases, these extracted latent variables

can be used to reconstruct the original behaviour corresponding to the neural activity.

In a well regularised LFADS model, latents can be inferred from the neural activity of

previously unseen recording trials (within the same recording session), which can then

be used to infer corresponding behaviour.

Targeted Dynamical Neural Modelling (TNDM) [38] utilises a variation of LFADS

to separate neural activity into behaviourally relevant and irrelevant latent spaces, sim-

ilar to [77]. This results in an even better separation of trials by corresponding be-

haviour in the behaviourally relevant latent space than is possible using LFADS, and

therefore more accurate inferred reconstruction of behavioural variables such as hand

movement from unseen trials.
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2.3 Stable behaviour decoding

Neural activity recorded over multiple sessions which correspond to consistent simul-

taneously recorded distinct behaviours is highly unstable. This is largely due to drift

in the activity of individual neurons and non-stationaries such as the minute movement

of recording apparatus. In addition, neurons can move and be replaced by different

neurons, therefore keeping track of neurons across sessions becomes infeasible. Spike

sorting methods will place any neurons which are consistent across recording sessions

in different positions in the resulting downstream neural data for each session, with no

consistent ground truth with respect to neuron identity. Current decoding approaches

such as gated RNNs [35] and latent variable models such as LFADS and TNDM are

highly sensitive to the positions of individual neurons within neural data. Therefore

reliable decoding across sessions is impractical with these methods.

[22] show that spiking data over many days from the same subject share a latent

space. The authors apply PCA to high dimensional neural data over several days (over

the course of a year) and show that this neural activity has underlying dynamics which

are stable and recoverable over many days by alignment using canonical correlation

analysis (CCA). After applying CCA, neural activity can be reconstructed for a record-

ing session many days into the future. Furthermore, accurate decoding of behaviour is

possible from these future sessions once alignment has occurred.

Recent work aims to allow for reliable decoding of behaviour across recording ses-

sions with only relatively little retraining using neural data from an unseen session.

For example, [20] produce an aligner capable of mapping neural data from any session

to an original ”ground truth” session. The authors train an adversarial model to align

EMG neural activity over sessions recorded from many days from a single monkey. A

discriminator network based on a VAE is trained to autoencode neural activity from

a day 0 recording session. Subsequently, the discriminator is trained to maximise the

difference between the neural reconstruction losses of day 0 and other future days.

Then a generator network is simultaneously trained to align neural activity from other

future days to that of the day 0 session by minimising the neural reconstruction losses.

This then allows for reliable behaviour decoding from the latent variables of the dis-

criminator network across recording sessions as these latent variable values have been

maintained across days for consistent behaviours.

Similarly to [20], [45] aim to produce an aligner model without any behaviour

data required for recalibration. The authors train a model akin to LFADS on a day
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0 session, with an added readout layer to predict behaviour from the generator RNN.

Neural activity from a day k session is then used to recalibrate the model. This is done

by training the model (using backpropagation) to minimise the Kullback-Leibler (KL)

divergence between the output of the generator RNN on day 0 and day k. Reliable be-

haviour decoding from the readout layer of the generator RNN which was only trained

on day 0 is then possible for day k.

The above three methods are unsupervised in the sense that they can be recalibrated

for optimal decoding performance on new recording sessions with only neural activity

and without access to behaviour such as kinematic data from a session. This is useful

for BCI applications where simultaneous behaviour recordings are not available for

recalibration, such as for continuous BCI decoding from tetraplegic patients.

[84] train an RNN to predict consistent behaviours from many months of previously

recorded neural data. The decoder is made robust through training on the plethora and

variability of the recorded data over many sessions. In addition, the authors further

perturb this neural data during training in order to inject increased artificial robustness

into the decoder.

[88] use a generative adversarial network to generate synthetic neural data from a

held out session by utilising the behaviour of that session. When this synthetic neural

data is utilised in conjunction with some real neural data from the held out session,

relatively high behaviour decoding accuracy is reported by the authors on a held out

session. Less neural data from the held out session is used than with the above ap-

proaches.

Although the above approaches are somewhat successful in recalibrating a model to

decode behaviour from a new session of recorded neural activity, this recalibration still

requires some data from the new session, and importantly for real-world continuous

use cases, this data acquisition requires time to collect and computation for model

parameter updates. Therefore these models are not truly robust to unseen sessions of

neural recordings corresponding to a subject performing consistent behaviours.

With respect to latent variable modelling, while a low dimensional manifold is

recoverable across sessions, alignment is still required in order to predict behaviour

from the corresponding latent variables of an unseen session. Without this alignment,

behaviour decoding performance is impractical. The next two sections outline ap-

proaches from machine learning which are used in chapters 4 and 5 to create truly

robust decoders capable of predicting behaviour with high accuracy from trials which

have been recorded in sessions which are completely unseen to the decoder with no
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further recalibration.

2.3.1 Domain Adaptation

Domain Adaptation is a field of machine learning which aims to predict consistent

classes from various differing sources. When each of these sources varies substantially

they are considered different domains. For example, Figure 2.1 shows examples from a

dataset with differing domains (house number styling) where the classes to be predicted

(digits from 0 to 9) are consistent.

Figure 2.1: Samples from Street View House Numbers dataset.

In order to predict consistent classes from differing domains, [24] use an unsuper-

vised adversarial approach where a reverse gradient is utilised to predict classes from

domain invariant features. The reverse gradient is implemented between a domain

classifier, which aims to predict the domain identity of each data sample, and a feature

extractor which is optimised in turn to produce features from which domain identity is

difficult for the domain classifier to predict, thereby unifying domains and improving

class prediction performance.

[26] utilise a similar principle to remove inter-experimental variability across ex-

periments where large scale two-photon imaging data was gathered. The authors aim to

predict cell-type classes from imaging data which has been aligned across experiments

and aim for this alignment to improve prediction performance. Their model structure is

relatively similar to that of [24] where a reverse gradient is applied between a domain
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Figure 2.2: Adapted from [24]. Model structure showing reverse gradient between do-

main classifier and feature extractor.

(or experiment ID) classifier and an encoding network. A class predictor then predicts

cell type from the output of the encoding network. The reverse gradient is instrumental

in adversarially forming a domain invariant encoder.

Other domain adaptation methods such as Pixel-DA [8] and CycleGAN [91] are

useful for mapping data from a single source domain to a target domain but are not

effective in merging data from across many domains. In chapter 4 I treat individual

recordings sessions from motor cortex as different domains and aim to create an in-

variant latent space across 12 domains (recording sessions) in order to create a robust

decoder which can predict movement behaviour from a completely unseen recording

session. Therefore I present a model based on [24] as I aim to merge many sessions

instead of mapping individual sessions to a single target session.

2.3.2 Self-supervised Learning

Self-supervised learning is a machine learning paradigm where auxiliary tasks associ-

ated with unlabelled and labelled data are used for training as opposed to direct classi-

fication training of said data. Examples include identifying which augmentations have

been applied to samples of data, such as predicting the amount by which image data

has been randomly rotated. This paradigm of learning has been shown to be successful

in learning useful representations of data for downstream tasks in computer vision and

reinforcement learning [15, 69, 33, 11, 28, 9, 80, 67, 29, 78].

Useful representations are learned by minimising the representational distance within

a given model between various perturbed versions of the same data sample, while si-
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multaneously maximising the distance between perturbed versions of other data sam-

ples. The primary method to achieve this is contrastive learning, where positive exam-

ples (of the same perturbed data samples) are compared to perturbed versions of other

data samples (negative examples) by a proposed metric. The model is then optimised

to have dissimilar representations between these positive and negative examples.

Recent work in self-supervised learning applied to neural data with the aim of pre-

dicting behaviour include [3]. By applying a range of augmentations to neural data

such as temporal jitter, the authors aim to train a model capable of finding nearby

neighbours in the representation of the model and subsequently predict the latent vari-

ables of one trial of neural data from another nearby trial. This method surpasses

previous self-supervised methods such as [28] in predicting the reach direction of tri-

als of two monkeys performing a centre out reach task from the corresponding neural

data.

[55] propose a self-supervised approach which aims to learn disentangled repre-

sentations of neural data. The model used is based on a VAE [46], which is optimised

to maximise the representational similarity in the model latent space of different trans-

formed views of the same data samples (trials). Similarly to [3], the authors apply

augmentations such as temporal jitter and neuron dropout to trials of neural data. For

each trial, two different views are created. The VAE encoder then predicts latent vari-

ables from each of these views. The latents are split between a ”context” space and a

”style” space.

The goal is to have the context space be consistent across both views and the style

space be specific to each view. To achieve this, the authors swap the context space of

the two views before the latents of each view are input to the VAE decoder network,

which reconstructs the original view associated with the input to the encoder before

swapping has occurred. This ensures that the context segment of the latent space re-

mains consistent across views and thus stable to the augmentations applied to create

the views. Behaviour such as movement direction can then be accurately predicted

from the context space of the latents of an unseen trial. The authors indeed show good

decoding accuracy from unseen trials within a single session, but do not show decod-

ing performance across sessions. Good decoding accuracy across sessions is highly

unlikely with this model as the temporal dependencies across each trial of neural data

are not modelled.

The above recent work using self-supervised learning in modelling neural activity

shows the effectiveness of selectively perturbing neural data in order to learn relevant
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latent variables. These models take different views of the same neural data and align

the latent spaces of these views once passed through an encoder, with the ultimate

aim of reconstructing these views. In chapter 5, I utilise a similar technique to train

our sequential autoencoder by aligning the latent variables of perturbed versions of the

same data and aim to generate the activity of the original unperturbed trial. Whereas

[55] propose a model which is invariant to the specific neurons used to represent the

neural state within training data, I look at unseen sessions and so do not aim to produce

a model invariant to new neurons, but one that is able to identify and utilise seen

neurons to reconstruct completely unperturbed trials.

Figure 2.3: Adapted from [63] - Authors form 9 subsets of images and form random

permutations of these subsets. The model is then tasked with predicting the identity

of a given permutation. The representation resulting from training on this auxiliary task

is then used to predict classes of images from imagenet with good accuracy in a self-

supervised fashion (without knowledge of class labels).

[63] is an example of a self-supervised model from computer vision which is

trained to understand the structure of separate classes of images (and how this struc-

ture differs between classes) by learning an auxiliary task (shown in Figure 2.3). This

model is robust in predicting the class of unseen images without being trained on any

class labels and is capable of state-of-the-art downstream class prediction on ImageNet.

I use this principle of learning structure of features of image data and shift neurons in

our neural data by a random amount for each trial. I also jitter the trials in time slightly

and dropout neurons at random. The dropped out neurons are replaced with randomly

generated spike trains to simulate new neurons in an unseen session of data. I aim to

apply the notion of image structure learning to neural data in order to reverse changes

to neuron ordering over several days of recordings in chapter 5.
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2.4 Thesis

2.4.1 Scope

In this thesis I introduce one piece of work showing that signatures and firing patterns

of hippocampal cells emerge when a recurrent neural network is trained on similar

tasks to that of a mammalian rodent. Next I introduce two pieces of work which aim

to produce session robust behaviour decoders of neural activity. These works utilise

methods from machine learning in order to decode behaviour from completely unseen

neural recording sessions.

Scope Extrusion Throughout this thesis I will not explicitly outline the process of

spike sorting or of how neuron populations are recorded from. The data used in chap-

ters 4 and 5 to train the models have been spike sorted by our collaborators. It should

also be noted that the methods described in chapters 4 and 5 are only applied to offline

decoding of entire trials of neural data and not in real time as is required for effective

use with brain-computer interfaces (BCIs). I do not discuss the state-of-the-art in terms

of online behaviour decoding in this thesis but refer the reader to [57].

2.4.2 Contributions

The key contributions of this thesis are as follows:

Recapitulation of experimentally found hippocampal representations

• I show that the place cells which emerge within the representation of an RNN

controlling an agent performing a maze traversal task present firing selectivity

consistent with that shown in experimental neuroscience.

• I then show that this learned representation is advantageous when the artificial

agent is navigating towards rewarding locations in the maze.

• I show that this learned representation tends to sweep ahead of the agent and

replay the path ahead of it, confirming results from experimental neuroscience.

Session invariant latent representation via domain adaptation

• I treat each recording session of neural activity as a separate domain.



18 Chapter 2. Background

• I then propose a model which is trained on many recording sessions of neural

activity, each acting as a separate domain.

• I show that by utilising a negative gradient, a domain invariant latent space can

be obtained.

• I show that, due to this session invariant latent space, this model generalises to

a completely unseen session when trained using the paradigm of unsupervised

domain adaptation.

Capturing neural variability using self-supervised learning

• I introduce a set of perturbations which are applied to all trials of a single record-

ing session which are intended to mimic real inter-session variability.

• I then propose another model trained using a self-supervised learning technique,

whereby each perturbed version of a trial is mapped to the original.

• I show that, when trained only on perturbed trials of the single recording session

of neural activity, this model generalises to unseen sessions for up to a week into

the future.



Chapter 3

Hippocampal representations emerge

when training recurrent neural

networks on a memory dependent

maze navigation task

In this work I aimed to explore if representations of space form in the units of a recur-

rent neural network when trained to predict subsequent environmental stimuli while

an artificial agent performs random walks of a maze. This is a task-optimised model,

where, instead of explicitly hand crafting a computational model of the hippocampus

based on experimental data, the model is trained on tasks the hippocampus is adept at.

If behaviours of a computational model trained in this way are similar to that of the

hippocampus, then there is evidence to suggest that the hippocampus learns in the same

way. My starting hypothesis is based on the predication that the mammalian hippocam-

pus acts as a predictor, and learns to predict subsequent sensory stimuli given actions

(movements) in a given environment [70]. Furthermore, I find that spatial representa-

tions which form in the RNN units are highly comparable to those in the mammalian

hippocampus.

I confirm the above hypothesis, and subsequently show that the resulting spatial

representation learned by the RNN can be employed to efficiently learn goal-directed

behaviour in a reinforcement learning task by directly controlling the actions of the

artificial agent with the RNN. I show that simultaneous predictive learning of the envi-

ronment and Q-learning to reach reward locations using a pre-trained RNN converges

to perfect performance on a reward navigation task much faster than Q-learning alone

19
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with an environmentally pre-trained RNN or without pre-training the RNN on the en-

vironment at all.

This is likely due to the learned representation of the environment within the RNN

being overwritten during Q-learning alone, instead of this representation being directly

utilised for navigation, as is the case when both tasks are optimised simultaneously.

This combined loss training paradigm also recapitulates many key observations

from hippocampal place cells within the units of the RNN:

1. Non-metric attractors form in the activation space of our network units in the

way of place cells, uniformly covering the maze environment. [65]

2. Extrafield firing of these units at locations outside of their apparent place fields.

[39]

3. Non-local forward sweeping representation of the network. [39]

4. Place fields drifting towards reward locations throughout reward training. [49]

5. A high proportion of network units with place fields at the maze start location

encode reward locations. [1]

6. A higher proportion of network units encode task phase than turn direction. [27]

3.1 Contribution

I am the first author and lead of this work. As such, I conceptualised the model,

implemented all versions of the model, ran and evaluated the methods, and wrote the

manuscript along with Matthias Hennig.

3.2 Paper
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Abstract

Predicting the future outcomes of actions forms the basis for reinforcement learning
to shape goal-directed behaviours. Recent work showed that learning based on
predicting future sensory experience using the current state and action of an agent
leads to representations that resemble those in the brain, for instance place and grid
cells of the medial temporal lobe. Here we ask if combining ongoing predictive
learning of sensory events and of notional value of actions leading to rewards forms
representations that enable more efficient goal-directed learning than reinforcement
learning alone. We find that once a recurrent network is trained to learn the
structure of its environment solely based on sensory prediction, a landscape forms
resembling hippocampal place cells. Next, we introduce cued rewards, and train
the network to predict state-action Q-values which are used to guide subsequent
behaviour. A network previously exposed to the same environment without rewards
learns the task faster than a network trained using Q-learning alone, or without
previous exposure. Interestingly, this training paradigm causes non-local neural
activity to sweep forward in space at decision points, anticipating the future path
to a rewarded location. Moreover, prevalent choice and cue-selective neurons
form in this network, again recapitulating experimental findings. Together, these
results indicate that a simple combination of predictive, unsupervised learning of
environment structure and of reinforcers yields efficient representations to support
goal-directed behaviour and exhibit dynamics also found experimentally in the
hippocampus when learning similar tasks.

1 Introduction

Recurrent neural networks have been used to perform spatial navigation tasks and the subsequent
study of their internal representations has yielded dynamics and structures that are strikingly bio-
logical. Metric (Cueva & Wei, 2018; Banino et al., 2018) and non-metric (Recanatesi et al., 2019)
representations mimicking grid (Fyhn et al., 2004) and place cells (O’Keefe & Nadel, 1978) respec-
tively form once the recurrent network has learned a predictive task in the context of a complex
environment. Cueva et al. (2020) demonstrates not only the emergence of characteristic neural
representations, but also hallmarks of head direction system cells when training a recurrent network
on a simple angular velocity integration task. Biologically, non-metric representations are associated
with landmark spatial memory, in which place cells within the mammalian hippocampus fire when
the associated organism is present in a corresponding place field. Non-metric place representations
differ from metric grid representations as place cells do not inherently encode mappings or distances
across positions in space, and in this sense they cannot be readily used exclusively in mammalian
navigation. Therefore, in contrast to grid cells, place cells only encode individual (or sometimes mul-
tiple) environment locations in isolation. In this paper, we show that although place representations



do not encode mappings between distant locations, they are effective as a consolidated foundation of
space for difficult navigation tasks.

Extrafield firing of place cells occurs when these neurons spike outside of these contiguous place field
regions. Here we show that recurrent neural networks (RNNs) produce representations with internal
dynamics that closely resemble those found experimentally in the hippocampus when performing
goal-directed behaviour in a predictive learning framework. Importantly, experimental research in
neuroscience shows that non-metric representations are not entirely context-free, but exhibit task-
related activity. For instance, Johnson & Redish (2007) show that spatial representations in mice in
the CA3 region of the hippocampus frequently fire nonlocally. Griffin et al. (2007) show that a far
higher proportion of hippocampal neurons in the CA1 region in rats performing an episodic task in a
T-shaped maze encode the phase of the task rather than spatial information (in this case trajectory
direction). Ainge et al. (2007) show CA1 place cells encode destination location at the start position
of a maze. Lee et al. (2006) demonstrate that place fields of CA1 neurons gradually drift toward
reward locations throughout reward training on a T-shaped maze. The interpretation of these results
is however currently unclear.

In this work we show that a recurrent neural network learning a choice-reward based task using
reinforcement learning, in conjunction with predictive sensory learning produces an internal represen-
tation with consistent extrafield firing associated with consequential decision points. In addition we
find that the network’s representation, once trained, follows a forward sweeping pattern as reported
experimentally by Johnson & Redish (2007). We then show that a higher proportion of units in
the trained network show strong selectivity for the encoding or choice phase of the task than the
proportion showing selectivity for spatial topology. Importantly, these properties only emerge during
predictive learning, where task learning is much faster compared to traditional deep Q learning.

2 Method

Figure 1: Left, the wall observation received by the network at each timestep. Right, the artificial
agent performs exploratory trajectories though the maze environment, from which we task the LSTM
network to learn a predictive representation.

We use a form of the maze used by Johnson & Redish (2007) which has a central T structure with
returning arms, shown in Figure 1. All walls of the maze are tiled with distinct RGB colours which
are generated at random and remain fixed throughout. The length of each outer edge of the maze
is 11, with the width of the maze being 1 at all locations.. An agent with a 1 square footprint is
initially learning to predict the next sensory stimulus during exploration of the maze. This exploration
performed by the agent is constrained such that the agent always moves in the forwards direction
and at a constant speed. When the agent approaches the top or bottom of the maze stem, the agent
moves in one of two random directions which is not the reverse direction of its current heading. This
combination of unsupervised learning and exploration has been shown previously to produce place
cell-like encoding of the agent’s position (Recanatesi et al., 2019). Later, rewards at four possible
locations are introduced and the agent is tasked with associating a cue with the rewarding trajectory.
The agent has four vision sensors, one in each cardinal direction, reading the wall RGB colours they
intersect at any distance, with a small amount of added Gaussian noise. Therefore, at each time step
the RNN receives a total of 12 values (red, green and blue components for each of 4 wall colours
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intersected by the agent’s sensors). The distance of the agent to a particular wall segment does not
affect the RGB values received.

The agent is controlled by a simple recurrent neural network comprised of a single 380 unit Long-
Short term memory (Hochreiter & Schmidhuber, 1997) (LSTM) network with a single layered readout
for the prediction of RGB values. We do not impose any regularisation on the network. We first
pre-train the network by tasking it with predicting the subsequent observation of wall colours from
the currently observable wall colours given its trajectory through the maze. As in the experiments by
Johnson & Redish (2007), during pre-training the agent does not choose any of its actions and is only
learning to predict the sensory inputs it encounters. In a given pre-training iteration, we collect all
observations as the agent traverses the maze until it returns to the start location at the bottom of the
central stem and finally train the LSTM on the entire collected trajectory. The network is trained with
a mean-squared error loss of predicted and target RGB wall colours (Eq. 1), with model parameters
optimised using Adam (Kingma & Ba, 2015) and a learning rate of 0.0002:

lossrgb =
1

T − 1

T−1∑

t=1

(rgbt+1 − tanh (Wrnn.[ht−1, rgbt] + brnn))
2 (1)

where T is the total number of timesteps in a given trajectory, rgbt is a 12 x 1 sized vector containing
the RGB values for the 4 vision sensors of the agent at timestep t. rgbt+1 indicates the RGB sensor
values of the subsequent timestep, which the network aims to predict. Wrnn and brnn are the
parameters of the RNN, ht−1 is the state RNN at the previous timestep with h0 being zero.

To solve this predictive task, the network has to maintain the sequence of encountered wall obser-
vations in its internal memory for several time steps in order to predict subsequent wall colours. In
our model, this is achieved through the network forming a non-metric representation of the maze
environment, as also demonstrated by Xu & Barak (2020). Unsurprisingly, the RNN has difficulty in
predicting the subsequent set of wall colours when the agent reaches the top or bottom of the maze
stem, due to the randomly chosen turn directions at these locations.

Figure 2: For the joint prediction and reinforcement learning task to be learned by the LSTM network,
we introduce a cue which indicates future reward locations to the agent. The cue is first played
halfway up the central maze stem (primary cue location). At secondary cue locations, the same cue
tone is repeated if and only if the agent has proceeded in turning in the direction corresponding to the
cue tone frequency given at the primary cue location. The agent is free to choose the next action to be
taken when traversing the maze at either the choice point at the top of the stem of the maze or at the
secondary cue locations. There are two potential reward sites on both returning arms, with the reward
sites being active if the agent is on the returning arm corresponding to the cue tone frequency.

Once the LSTM has formed an internal representation of the maze, the agent is tasked with navigating
towards potential reward sites whose location is indicated by a cue signal: a low frequency cue
indicates active reward sites on the left return arm and a high frequency cue indicates active reward
sites on the right return arm - the cue tone and corresponding side of active reward sites are together

3



chosen randomly at each iteration with a secondary cue given if the agent has turned correctly. In this
phase there are three choice points, while the movements are constrained to follow the forward maze
direction elsewhere: at the top of the maze stem and at the two secondary choice points (Figure 2),
with initially random movement at these points during reward training. There are 5 steps between the
cue and choice points and 7 steps from the choice point to the first reward site on either return arm.
The inclusion of the secondary cues as additional choice points was motivated by the experimental set
up used by Johnson & Redish (2007), to compare the network activity at these points to experimental
data. These secondary points also give the agent the opportunity to backtrack on its decision made
at the primary choice point in light of further environmental observation (the presentation or lack
thereof of the secondary cue), and make learning more efficient in our model. This may explain how
it speeds up training the animals in the same task.

We additionally introduce a new single layered readout for the LSTM network which predicts state-
action values associated with the four cardinal directions in relation to the agent’s current position
and direction. At each timestep, this ensemble receives the agent’s environment observation and the
agent follows an epsilon-greedy policy (starting with fully random movement at choice points and
a decaying epsilon thereafter) for choosing optimal actions of those available at each of the three
choice points. The recurrent network controlling the agent is trained on a weighted combined loss of
a reinforcement learning (RL) task loss and the previously described predictive wall colour loss:

losscombined = |Q(s, a)− (r + γ ·Q′(s′, argmax
a′

Q(s′, a′))|+ λ · lossrgb (2)

The first component of this loss is the difference between predicted and observed state-action values
which are represented by Q-values (Watkins & Dayan, 1992), which are a prediction of future global
reward:

ht = tanh (Wrnn.[ht−1, rgbt] + brnn) (3)
Q(s, a) = WQht + bQ (4)

where ht is the output of the RNN at each timestep and WQ and bQ are the parameters of the new
readout layer we use to predict Q-values. We use double-Q learning (Van Hasselt et al., 2016) to
train the agent on the task, updating the target Q value predictor (Q′ - a LSTM with same number
of units) every 15 training iterations. Double-Q learning allows for optimal performance on the
reward task in drastically fewer agent maze traversals and network training iterations than with
standard DQN (Mnih et al., 2013) based Q-learning which suffers from overestimation of Q-values.
We settle on a discount factor (γ) of 0.8 as values higher than this regularly cause the network to
converge on solutions wherein the agent does not take the most direct path to reward locations, with
backtracking at secondary choice points. The second loss component is the sensory prediction task
which we used to pre-train the network (λ decays from 10 to 0.02 throughout training). This loss
component is included when training the network on the reward task so that the spatial map of the
maze environment formed during pre-training is maintained throughout Q-learning. This ensures the
map is not overwritten as would happen when Q-learning is performed alone, and leads to faster task
learning (see results). We optimise the network for this joint task using Adam and a learning rate of
0.0002, which we find improves the rate of convergence with optimal task performance, as opposed
to higher learning rates which still converge but with backtracking at secondary choice points often
inherent in task solutions.

In contrast to much of the previous work on spatial representations in recurrent networks, we do not
give the network any indication of the agent’s location or movement. This makes the task considerably
more difficult due to the unpredictable movement possible at choice points during the reward task.
The network is coerced into storing the current movement direction of the agent in its representation,
in addition to storing the cue frequency. As such, a network of Gated Recurrent Units (Cho et al.,
2014) (GRUs) or vanilla RNN units was unable to perform well in either the pre-training or joint RL
task due to these prevalent long term dependencies (18 steps between cue and final reward).

To analyse the representations formed by the network, we train a further single layered fully connected
network (shown in green in Figure 2) to predict the agent’s next location using the activity of the
LSTM. There is no backpropagation of gradients between this predictor and the LSTM network,
and the predictor is trained at the end of reward training. This network followed by a softmax layer,
generates a distribution indicating the probability of agent location inferred from LSTM activity.
The plots in Figure 5 are examples of this. This is used in place of the decoding algorithm used by
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Johnson & Redish (2007) to predict the neuronally inferred maze location of rats when performing a
cue based task.

3 Results

The agent learns the sensory prediction task to a high degree of recall and after around a thousand
training iterations (combined loss with pre-training in Figure 3), the agent is able to achieve perfect
performance on the reward task when the LSTM network has 380 or more units (Fig. 3, right). We
trained the reinforcement learning (Eq. 2) portion of the task in an epsilon greedy manner, with a
steadily decaying epsilon to ensure that the agent would choose the rewarding path consistently once
actions were chosen at choice points completely by the network. Notably, the agent did not turn at
either of the secondary choice points once training had completed - only at the primary choice point.

We attempted to run the reinforcement learning task alone in a maze with no sensory input except the
reward cue. In this scenario the network is not able to learn the task due to a lack of self-localisation
and is unable to perform the task based on step counting between the cue and choice point. In
addition, the reward based reinforcement learning task was attempted using Q-learning alone with a
loss function that did not include the wall colour prediction error, both with and without pre-training
(shown in Fig. 3, left). In both cases we find that the reward task is not learnable with the same higher
rate of epsilon decay we use for the combined loss function with pre-training, as the network quickly
forgets the consolidation of the maze formed during pre-training, which we maintain through the
combined loss (Eq. 2). We also find the network can solve the reward task using the combined loss
without pre-training, albeit in around 3 times the number of maze traversals as with the use of the
spatial map formed in the pre-trained case (Fig. 3, left).

Figure 3: Left: Success rate (proportion of direct traversals to reward locations) of each set of training
paradigms on the reward task, averaged over 10 initial conditions and random wall colours using
optimal rate of epsilon decay for each paradigm, each shown with a 95% confidence interval. Place
representation formed during pre-training alongside combined loss allows network to achieve perfect
performance on reward task in relatively few maze traversals. Q-learning alone without pre-training
also achieves perfect performance in more than twice the number of maze traversals. Q-learning alone
with pre-training takes far more maze traversals to converge (and is less likely to be optimal) due to
the non-random initial state of network and inability to utilise the spatial map formed. Combined
training without pre-training also takes relatively many maze traversals to converge due to a relatively
difficult joint task with no biased initial state. Right: Pre-trained network optimised with combined
loss converges at similar rates with different network sizes above 380 units.

3.1 Extrafield place cell firing

First, we investigate the representation learned by the network. Pre-training causes the formation
of a consolidated representation that resembles place cells in the hippocampus. We observe a
substantial increase in activity in a particular unit when the agent moves across its respective place
field. Individual units in the network generally have well isolated place fields, which together cover
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the whole maze and therefore allow reliable decoding of agent location. After training on the reward
task, the network units exhibit substantial extrafield firing with respect to the previously formed place
fields. We especially see units with extrafield activity at the primary and secondary cue points (Fig.
4E).

In the top row of Figure 4(A-D) we show activity in four reward trained LSTM units obtained
through the collection of unit activity from a full left sided trajectory from the maze start point
returning to the start point with cues presented, together with a full right sided trajectory. We show all
activity from this activity collection in the top row of Figure 4(A-D). Maze areas for each unit with
activity higher than 30% of the peak activity of each unit are defined as place fields (mirroring the
experimental threshold used by Johnson & Redish (2007)). In experiments, rodents seem to pause
at high consequence decision points (Johnson & Redish, 2007) with alternating head movement
behaviour signifying vicarious trial and error (VTE) (Muenzinger, 1938; Hu & Amsel, 1995). In the
activity plots in the bottom row of Figure 4(A-D), we simulate this using our reward trained model
by running the agent from the start position at the bottom of the maze stem, then pausing it at the top
of the stem, with a left cue presented halfway up. We show activity above 60% of unit peak activity
(identified with the previously collected aggregated activity) shown in addition to the previously
identified place fields.

The network representation seems to have substantial activity corresponding to both return arms, with
surprisingly high extrafield activity in the shown LSTM units when the agent is paused at the maze
choice point, a location for which these units do not usually have corresponding activity (Fig. 4B-D).
To generate the extrafield firing maps in the bottom row of Figure 4A-D), we first define extrafield
firing as unit activity averaged over the number of paused timesteps which exceeds 60% of peak
timestep averaged unit activity while the agent is paused at the top of the maze stem. For Fig. 4B-D)
bottom row, the number of timesteps usually taken by the agent during normal motion to reach each
dotted place field appears to be a sufficient number of steps before timestep averaged activity at the
paused choice point reaches 60% of timestep averaged peak activity.

Figure 4: Two forms of extrafield firing emerge: A-D) Firing of place units with place fields
ahead of the paused agent: Top row: Activity maps showing well isolated place fields of four RNN
units (acting as place cells) form after predictive pre-training, indicated in dotted regions. Bottom row:
After reward training, we see that when the agent moves from the start to the top of the maze stem
(with a left cue presented), then kept stationary at the choice point with the RNN repeatedly receiving
observation from choice point for several timesteps thereafter, we see extrafield firing, indicating that
these units with place fields ahead of the agent are active while the agent is paused (shown in addition
to previously determined unit place fields in dotted regions). A) Strong extrafield firing between cue
and choice point, due to place field being present on left side of maze (firing in conjunction with the
sole presentation of a left cue). This example shows that extrafield firing at the choice point does
not always occur. B, C, D) High extrafield firing at choice point while agent is paused at top of
stem for many timesteps. E) Extrafield firing outside of contiguous place fields at primary and
secondary cue points: Place fields outlined in dotted areas (determined from average activity on
both trajectories) of four RNN units forming after pre-training. After training on the reward task we
observe high levels of consistent extrafield firing at primary and secondary cue points in 56% of RNN
units.
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Figure 5: RNN inferred position of the agent moves ahead of the real agent position, with the
network replaying previously learned spatial trajectories through the maze. We run the agent
from the start position to the top of the stem of the maze at timestep 9 with a low frequency (left)
cue tone at timestep 4. The agent is stopped at this position with the LSTM network receiving the
environment observation from this position for the remainder of the shown timesteps. The RNN
representation inferred agent position (inference shown in green in Figure 2), moves in the direction
corresponding to the frequency of the given low frequency cue tone (left). Then between timesteps 13
and 17, the inferred position jumps from the return arm with active reward sites to the alternate arm,
with the inferred position moving from this position to the start location fairly consistently. Then the
inferred position jumps again at timestep 29 to the rewarding return arm and moves constantly to the
start position.

3.2 Forward moving representation

In contrast to the static dynamics of the LSTM network after predictive pre-training, following
training on the reward task, the forward representation of the LSTM is looking ahead of the agent and
is now displaying sweeping behaviour (Fig. 5) which is identified experimentally in rats by Johnson
& Redish (2007) when performing cue based tasks. When the agent is stationary at the choice point,
once it has moved from the bottom to the top of the maze stem receiving a low frequency cue, we
observe the representation (inferred agent position) moving ahead of the agent - first in the direction
corresponding to the cue given at the first cue point and then abruptly down the opposing arm of
the maze towards the starting location. Thereafter the representation moves down the correct arm
(corresponding to the cue) and becomes stationary at the maze start location. This path switching
behaviour is reliably observed in networks trained on the combined loss (Eq. 2) with and without
pre-training, with differing numbers of units and initial conditions as long as the reward task is solved
without backtracking at secondary cue locations. The network lacks a sweeping or forward moving
representation when trained on the reward task with Q-learning alone, regardless of pre-training.
Thus pre-training does not contribute to sweeping or path switching behaviour.

We visualise these dynamics using Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al., 2018) in Figure 6. This shows generally connected manifolds over time for each
trajectory, with closer inspection revealing the dynamics which leads to the sweeping arm behaviour
in Figure 5 when the agent is stationary at the primary choice point. Zeroing visual input while the
agent is paused at the choice point gives comparable representation dynamics to that observed in
Figures 5 and 6.

Separately, we find that place fields of particular LSTM units drift forwards from their original
firing positions after pre-training, towards the reward locations on the return arms throughout reward
training, as shown experimentally in CA1 neurons in Lee et al. (2006). We observe this behaviour
in 56 out of 380 network units (15%) which have final resting locations of place fields at reward
locations (Figure 7) out of a total of 116 units with place fields which move generally, with the
remaining 60 having place fields moving to other random locations. We use chi-square to test if
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Primary Cue Choice Point Return to Start

Figure 6: Low dimensional manifold of network dynamics shows trajectory switching phe-
nomenon. We apply UMAP dimensionality reduction to the activations of the LSTM at each
timestep. The x-axis represents timesteps, with the primary cue, the choice point and the return to the
maze start position indicated. The y-axis is the 1-dimensional UMAP representation of the 380 unit
LSTM and we show how this value relates over timesteps across different trajectories. We show the
manifold of dynamics of a complete left (with low frequency cue presented) trajectory (dark blue)
and complete right trajectory (red) shown along with manifold of dynamics when agent run from start
location to choice point with left cue (light blue) and right cue (pink) given at cue point and agent
paused in place at the top of the maze stem (as seen in Figure 5). A few timesteps after the agent is
paused, the dynamics of the left cue paused agent (light blue) switches manifold path abruptly from
running alongside the complete left trajectory path (blue) and joins the right trajectory path (red),
following this for many timesteps before ultimately resulting at the same manifold end position as the
complete left trajectory manifold path (blue). This is analogous for the right cue paths (red and pink).

Figure 7: Place fields of several RNN units drift towards reward positions throughout reward
training. We show place fields of four representative LSTM units (one in each row), starting from i =
0 with the pre-trained network (where i is the number of complete maze traversals throughout reward
training), drifting forwards towards reward locations throughout reward training as the total number
of maze traversals increases. The place fields ultimately rest at maze reward locations at the end of
reward training (i = 1400).

significantly more RNN units with place fields which move throughout reward training, move to
reward locations versus other random locations in the maze. We show that place field movement
throughout reward training is not random but significantly preferential toward reward locations (p <
1.78e-38). This is possibly explained by the gradient of Q values (prediction of predicted reward)
spreading backwards from reward locations (Hasselmo, 2005) and becoming stronger throughout
training.

3.3 Selectivity of neuronal units

In addition to a forward sweeping representation, this trained network also exhibits neural selectivity
that closely matches hippocampal circuits. Griffin et al. (2007) reported that after reward learning,
hippocampal neurons were more strongly selective for the encoding or choice phase of a task rather
than the direction of the organism’s trajectory. We garner the preference of selectivity of each
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neuronal unit in our network using a discrimination index used by Griffin et al. (2007) for the turn
direction selectivity (DIturn) and the phase selectivity (DIphase):

DIturn =
FRright − FRleft

FRright + FRleft
DIphase =

FRcue − FRchoice

FRcue + FRchoice
(5)

where FRright for a particular LSTM unit is the mean firing rate from the cue point on the central
stem to the choice point at the top of the stem on trajectories where the agent turns right at the choice
point. Similarly FRleft is the mean stem firing rate when the agent turns left. FRcue is the firing rate
at the cue (encoding) point averaged over both left and right trajectories and similarly FRchoice is the
averaged firing rate at the choice (sampling) point.

Figure 8: RNN units are more task selective than direction selective. Histograms showing LSTM
unit discrimination index for turn direction selectivity (DIturn) vs task phase selectivity (DIphase).
Counts averaged over 30 trained models, with error bars indicating one standard deviation of error.
A highly negative selectivity index for turn direction indicates a neuronal unit which exhibits high
levels of selectivity (uniquely high network activity) for a leftward trajectory and a highly positive
selectivity index indicates selectivity for a rightward trajectory. A negative selectivity for task phase
indicates a neuron which is highly selective for the choice (retrieval) phase of the goal based task
whereas a positive index indicates a neuron which is highly selective for the cue (encoding) phase of
the task.

The firing areas used for selectivity measurement are insets in Figure 8. We use the stem above
the cue point to assess turn direction selectivity, and the cue/choice points to assess encoding and
sampling (DIphase). Figure 8 shows a higher proportion of LSTM units are strongly task selective
rather than turn selective, with significantly more units having large absolute DIphase indices than
DIturn indices.

In addition, the reward trained network is found to have a disproportionately high number of units
(163 out of 380 LSTM units) with place fields at the start location of the maze. Moreover, we find
evidence of conditional destination encoding in these units which were heavily differentiated in their
firing with respect to particular rewarding locations, as shown experimentally in CA1 hippocampal
place cells (Ainge et al., 2007; Wood et al., 2000; Ferbinteanu & Shapiro, 2003). 59.5% of units
with a place field at the maze start location fired uniquely at this point for rewarding locations on a
particular return arm.

4 Discussion

In this work we show that networks trained with a combined predictive and goal-based objective
exhibit functional dynamics and selectivity behaviour coinciding with that of hippocampal neurons.
We demonstrate that extrafield firing activity of network units emerge when a simulated agent, which
is trained on a goal based reward task in a T-shaped maze, pauses at decision points - suggesting
intrinsic dynamics are encoding the future trajectory of the agent. This mirrors experimental results
in hippocampal place cells in rats (Johnson & Redish, 2007; Frank et al., 2000). At the same time,
we find that networks using this combined objective, following exploratory pre-training only on a
sensory prediction task, can learn the correct goal-directed behaviour much faster than an equivalent
network with only a Q learning objective.
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Previous work shows that metric neural representations of environments form when an RNN is
optimised to predict agent position from agent velocity (Cueva & Wei, 2018; Banino et al., 2018)
and non-metric representations form when an RNN is trained to predict future sensory events given
direction of movement (Recanatesi et al., 2019). When training our model we do not provide the
LSTM network with any explicit information about location or direction, it only receives sensory
information. This is similar to the purely contextual input received by the model pre-trained by Xu &
Barak (2020) where no velocity input is given, however, the network used by these authors is still
trained on position and landmark prediction in a supervised way.

Instead, our training paradigm forces the LSTM to maintain an implicit notion of movement within
its internal state in relation to environmental observations. This, in conjunction with the consideration
that model-free RL methods such as Q-learning perform poorly on tasks in dynamic environments
such as ours (Dolan & Dayan, 2013), and the long term dependency on the delayed cue in perspective
of the choice location, makes the task outlined in Figure 2 challenging. Thus the LSTM is constrained
to solve the reward task by storing its current trajectory in its state, as it receives no input concerning
its last action or its current direction. This gives rise to a forward looking representation when
combined with predictive learning.

Training on a sensory predictive task causes the formation of a non-metric place cell like representation
in the activations of network units, similarly to Recanatesi et al. (2019). This allows relatively fast
learning of the cue-reward task when using a combined predictive and RL loss - this is due to the
network being able to localise itself even in the absence of any location or direction based input.

These pre-trained LSTM units demonstrate nonlocal extrafield firing after reward training (Figure 4).
We observe that cue or choice point extrafield activity is evident in most LSTM units after training
on the reward task. This is likely due to the increased precedence these points have in the agent
reaching reward locations. Together the trained LSTM network units form a representation which
sweeps along the paths available to the agent, first down the reward path and then the other, as shown
in Figure 5 and demonstrated in rats in Johnson & Redish (2007). The sweeping dynamics of the
representation may arise due to the lack of a second cue as the agent is paused at the choice point.

Although hippocampal place cells are critical for spatial memory (Nakazawa et al., 2002; Florian
& Roullet, 2004; Sandi et al., 2003; Redish & Touretzky, 1998; Miller et al., 2020), it is unclear
by what mechanism an ensemble of place cells contributes to a representation of goal-directed
behaviour. Our model and training paradigm is in keeping with the hypothesis that the hippocampus
is involved in maintaining a conjunctive representation of cognitive maps and sensory information
(Whittington et al., 2019). We show that this paradigm can be extended with predictive learning
of Q-values of anticipated future reward, and show that the resulting representation is well suited
for learning actions leading from a cue to a reward. Importantly, this representation emerges solely
from sampling sensory inputs and predicted rewards, while reinforcement learning itself remains
model-free and is initially random. The surprising similarity of the task-dependent activity in our
simulations and experimentally recorded neural activity in similar tasks suggests that the model
may replicate central aspects of learning and planning in the hippocampus. Our trained model
could improve understanding of hippocampal function by testing hypotheses regarding previously
unobserved dynamics inexpensively. This could be performed on maze environments such as this
work, or more open arena settings once the model is retrained.

A limitation of our model is that it has no generative component from which to sample observations.
Future work would focus on an agent capable of sampling future trajectories in order to truly plan its
upcoming actions in a complex environment.
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34 Chapter 3. Hippocampal representations emerge...

3.3 Discussion

In this chapter I introduced a modelling approach which first trains an RNN on a pre-

dictive task, with the aim of learning random trajectories through a maze environment,

based on the wall colours of said maze. From this pre-training, I find that the RNN

units are spatially modulated, with firing preferences of individual RNN units dictated

by specific positions in the maze. Once the RNN has learned the environment, the

RNN is tasked with controlling an artificial agent and guiding it towards stochastic

reward locations in the maze. The RNN learns this task much more quickly with the

environmentally trained RNN than with a tabula rasa RNN. Furthermore, I show that

training the RNN on the reward task alongside the predictive task increases the speed

of convergence on the reward task.

Once training on the reward task has converged, I show that the RNN units have

firing responses akin to those found in rodent place cells after having learned a similar

navigation task. The numerous resemblances found could be indicative of the utility in

using artificial neural networks in modelling biological neural systems.

Although these recapitulations are noteworthy, the virtual environment used is

somewhat simplistic and it remains to be seen whether similar representations will

emerge on larger, more complicated and open environments. Furthermore, despite the

place representations which emerge in the units of the RNN, can these actually be used

to effectively model the mammalian brain? Could further results from an artificial neu-

ral network predicate those to be eventually found empirically in a biological network?

Much recent work has recapitulated experimental findings [13, 14, 5, 71, 87, 81], how-

ever there is currently no work where artificial neural network models have success-

fully predicted experimental findings.

Another potential unknown is whether the replay shown in section 3.2 of the paper

above is a result of repeated training on the same trajectories or an actual innate plan-

ning mechanism of the network. If a result of training, is this also the case in biology?

Does the biological forward moving representation found in [39] come about through

explicit planning or simply through repetition? Moreover, the representation of the

maze environment learned by the RNN clearly helps with navigation training but is

this the best auxiliary task to pre-train the network on? Could some other pre-training

task other than subsequent maze wall colour prediction be more effective in learning a

foundational representation for downstream tasks? Future work should be focused on

answering these questions.
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3.3.1 RNN representation with backtracking in task solution

In contrast to Figure 5 in the paper where the navigation task is solved without any

backtracking, here we show how the RNN’s representation behaves when the naviga-

tion task is solved with the agent often backtracking at secondary choice points in the

maze before moving to the correct reward locations. This backtracking is achieved

by either increasing the learning rate from 0.0002 to a higher value or increasing the

discounting factor γ in Q-learning (see Equation 2 in the paper) from 0.8 to a higher

value. Here we use a learning rate of 0.001 and a discount factor of 0.9 (but only one

of these is required to cause backtracking).

t = 1 t = 4 
(cue)

t = 9
(choice) agent stops

t = 13 t = 16
Inferred position 

passes secondary 
cue/choice point

t = 28
Inferred position stays 

fixed at secondary 
cue/choice point

t = 29 t = 35t = 32t = 20
No further 

inferred forward 
movement

t = 17
Inferred position 

backtracks

t = 26

Figure 3.1: Backtracking causes RNN inferred position of the agent to move to

secondary cue/choice point and remain at this position. We run the agent from the

start position to the top of the stem of the maze at timestep 9 with a low frequency (left)

cue tone at timestep 4. The agent is stopped at this position with the RNN receiving the

environment observation from this position for the remainder of the shown timesteps.

The RNN representation (inferred agent location) moves in the direction corresponding

to the frequency of the given cue tone. Then between timesteps 13 and 17, the inferred

position moves between the primary and secondary choice points slightly, finally resting

at the secondary choice point for the remainder.

As seen in Figure 3.1, when backtracking is present in the model’s solution for the

navigation task, the forward movement of the RNN’s representation while the agent

is paused is minimal, with the uncertainty caused by backtracking resulting in the
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inferred agent position resting at the secondary cue/choice point instead of switching

maze arms and returning to the maze start position, as is the case when backtracking is

not present in the task solution (Figure 5 in the paper).

This difference in movement of RNN representation is due to the uncertainty caused

by backtracking of the agent being inherent at the secondary cue/choice points. This

backtracking means that when the agent is paused at the top of the maze stem and

the RNN representation moves ahead of the agent, reaching the secondary cue/choice

”position”, the lack of secondary cue being presented to the RNN causes ambiguity as

to which secondary point (left or right) the RNN believes the agent is at. In the above

example, with a low frequency cue given to the agent and reward sites active on the

left side of the maze, the agent should turn left at the primary choice point. The RNN

representation inferred agent location does move in this direction, but does not move

past the left secondary cue/choice point. The lack of secondary cue after 4 timesteps

causes the RNN to believe the agent is at the secondary cue/choice point on the right

side of the maze, but this is not reconciled with the RNN’s inferred location. This leads

to the RNN representation remaining stationary at the left secondary cue/choice point.



Chapter 4

Robust alignment of cross-session

recordings of neural population

activity by behaviour via unsupervised

domain adaptation

In this chapter I introduce a modelling approach which successfully unifies the latent

representations of many sessions of intracortical neural recordings. I have already

discussed how neural population activity relating to behaviour is assumed to be inher-

ently low-dimensional despite the observed high dimensionality of data recorded using

multi-electrode arrays [12, 18, 23, 31, 59, 75]. Therefore, predicting behaviour from

neural population recordings has been shown to be most effective when using latent

variable models [37]. The primary issue with this however is that the latent represen-

tations of trials of differing recording sessions of neural activity diverge considerably,

requiring the retraining or recalibration of behaviour decoders. The only way to avoid

this is to form a latent representation which is robust to the considerable neural drift

and variation (such as probe movement) present between recording sessions.

[22] have shown that latent representations of trials formed using PCA from record-

ing sessions months apart can be reconciled using straightforward linear transforma-

tions. Therefore the drift and non-stationaries between many recording sessions could

be learnable, with a latent variable model capturing the variability between these ses-

sions. The model could interpolate or extrapolate this learned variability to a com-

pletely unseen session chronologically close to these learned sessions. [38] show that

it is advantageous to separate the latent space of Latent Factor Analysis via Dynamical

37
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Systems (LFADS) [68] into behaviourally relevant and behaviourally irrelevant sub-

spaces. This shows that training the model to reconstruct spike trains as well as predict

behaviour results in a more disentangled latent space.

In this work, I aim to produce a session invariant decoder of intracortical neural

activity from monkeys performing a centre-out reach task [23]. I show that applying

an adversarial loss on neural reconstruction between the encoder and decoder of a

sequential autoencoder based on LFADS causes the latent space to become invariant

to recording session. Simultaneously, behaviour is decoded from the same latent space,

causing trial disentanglement by behaviour. This results in a latent space which is well

separated by behaviour (in this case movement direction) but with no separation by

recording session. The model therefore importantly captures inter-session variability,

successfully creating a robust latent space.

As a result, the model generalises effectively to a completely unseen session (held

out from training), both chronologically in between training sessions and chronolog-

ically after training sessions, with high decoding accuracy. Notably, this requires no

further retraining of the model, as is the case with all previous methods. To my knowl-

edge, no prior model is capable of decoding from a held out session with high accuracy.

This approach is similar to [24] and [26] who use domain adaptation by backpropaga-

tion to train a domain invariant encoder.

4.1 Assessing the efficacy of SABLE on synthetic data

Prior to testing our model on real neural data recorded from the motor cortex of two

monkeys performing a centre-out reach task, we first assess the performance of our

model (SABLE) by applying it to synthetic data generated from a deterministic non-

linear Lorenz system (Figure 4.1). This system is a set of nonlinear equations for three

dynamic variables. It is widely used [68] to generated synthetic spiking data due to

its limited dimensionality, which allows its entire state space to be visualized. We

simulated a population of 50 neurons with firing rates given by randomly weighted

linear read-outs of the Lorenz variables as they evolve, followed by an exponential

nonlinearity. Spikes from these firing rates were then generated by a Poisson process.

We generated trials by starting the Lorenz system with a 8 sets of randomly chosen

initial conditions and running the system for 1 second. We slightly vary the weights

of the linear read-out for trials within each session and randomly sample completely

new weights for the linear read out of the Lorenz variables in each session (to simulate
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Figure 4.1: Lorenz system used to generate a synthetic dataset to represent multiple

sessions of recording while performing consistent behaviours.

variability across recording sessions in non-human primates). We generate a total of

160 trials for each synthetic session, 20 for each set of Lorenz initial conditions (each

corresponding to a different behaviour).

To simulate behaviour corresponding to this synthetic spiking data, we apply a

separate randomly sampled linear read-out of the Lorenz variables which we keep

constant across trials and sessions, with some Gaussian noise applied to the read out

values (to simulate variation in behaviour across trials). Using SABLE, we aim to

predict this corresponding behaviour from the synthetic spiking data. SABLE was

trained using varying numbers of these synthetic sessions (19, 9 and 6) and tested on

a single completely held out synthetic session. We hypothesise that our model can

generate latent variables for each trial such that the latent space is separated by set

of Lorenz initial conditions (corresponding to each behaviour), with no separation by

session. If this disentanglement occurs and the SABLE encoder learns to model the

variability across sessions, stable behaviour decoding should follow.

As shown in Figure 4.2, training SABLE on 9 and 19 synthetic training sessions

leads to a robust latent space, with trials separated well by behaviour (set of Lorenz ini-

tial conditions) and not separated by training session. We also observe high behaviour

decoding accuracy (R2) when testing on a held-out session when training with 9 or

19 sessions. 6 sessions seems to contain too little overall variability for the model to

generalise to trials from the unseen synthetic session, therefore we see little overlap of

trials from the held-out test session and trials from the training sessions in the latent

space (Figure 4.2). From these results on synthetic data, we hypothesise that SABLE
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Figure 4.2: t-SNE dimensionality reduced latent space of SABLE when applied to an

increasing number of synthetic training sessions and testing on a single unseen syn-

thetic test session. Dots in each latent space indicate trials from synthetic training

sessions while triangles indicate trials from a held-out session, with each colour indi-

cating a distinct set of Lorenz initial conditions. Above: Number of training sessions we

train SABLE on to produce corresponding latent space. Below: R-squared decoding

accuracy of SABLE predicted behaviour vs. ground truth synthetic behaviour.

will be effective in generalising to trials from an unseen session of real neural record-

ings when trained on trials from a sufficient number of recording sessions to capture

inter-session variability.

4.2 Contribution

I am the first author and lead of this work. As such, I conceptualised the model,

implemented all versions of the model, ran and evaluated the methods, and wrote the

manuscript along with Matthias Hennig. Matthew Perich and Lee Miller provided the

dataset used to train and evaluate the model.

4.3 Paper
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Abstract

Neural population activity relating to behaviour is
assumed to be inherently low-dimensional despite
the observed high dimensionality of data recorded
using multi-electrode arrays. Therefore, predict-
ing behaviour from neural population recordings
has been shown to be most effective when using
latent variable models. Over time however, the
activity of single neurons can drift, and different
neurons will be recorded due to movement of im-
planted neural probes. This means that a decoder
trained to predict behaviour on one day performs
worse when tested on a different day. On the other
hand, evidence suggests that the latent dynamics
underlying behaviour may be stable even over
months and years. Based on this idea, we intro-
duce a model capable of inferring behaviourally
relevant latent dynamics from previously unseen
data recorded from the same animal, without any
need for decoder recalibration. We show that un-
supervised domain adaptation combined with a
sequential variational autoencoder, trained on sev-
eral sessions, can achieve good generalisation to
unseen data and correctly predict behaviour where
conventional methods fail. Our results further sup-
port the hypothesis that behaviour-related neural
dynamics are low-dimensional and stable over
time, and will enable more effective and flexible
use of brain computer interface technologies.

1. Introduction
In the brain, stimuli and behaviour can be decoded from
the activity of populations of neurons, and it is well estab-
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lished that correlations or co-variations between neurons
are a key ingredient in neural population codes (Saxena &
Cunningham, 2019). There has been considerable success
developing methods for decoding external variables from
recordings of even modestly sized populations of 10s or
100s of neurons (Hurwitz et al., 2021a), raising hopes that
brain computer interfaces (BCIs) can be an effective assis-
tive technology for severely disabled patients. However,
a decoder, once trained, requires stable recordings to per-
form well. Over the course of days and weeks, the signals
recorded from implanted extracellular probes will inevitably
change and drift due to factors such as impedance changes,
gliosis and probe and brain movement (Chestek et al., 2011).
Non-invasive systems such as electromyography (EMG) sen-
sors will not be worn permanently and positioned slightly
differently every time, creating even stronger variations in
recorded signals. Moreover, the activity of individual neu-
rons can change considerably over similar time scales due
to neural plasticity (Rule et al., 2019). Together these fluc-
tuations will lead to degradation of decoder performance
over time, thus to be effective, frequent recalibration of BCI
systems would be inevitable.

Given the limited long-term stability of recorded neural sig-
nals, reports of relatively stable behaviour decoding over
days with the same decoder may seem surprising (Chestek
et al., 2007). Recent work by Gallego et al. (2020) how-
ever showed that some aspects of the population activity of
cortical neurons remain very stable even over months and
years. Specifically, this study showed that neural population
activity in the primary motor cortex is highly restricted to
and evolves along a low-dimensional manifold that is stable
even when single neuron activity constantly fluctuates.

Low-dimensional neural dynamics can be effectively ex-
tracted from neural population activity with latent variable
models (Hurwitz et al., 2021a). These models use an often
small number of latent variables (or factors) together with an
appropriate observation model that relates latent variables
to the recorded activity. Importantly, the latent variables in
such models often predict stimuli or behaviour very well
even when they were only optimised to reproduce neural
activity (Hurwitz et al., 2021a). Nonlinear state space mod-
els such as LFADS are particularly powerful in predicting
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single trial activity and behaviour in test data (Pandarinath
et al., 2018).

Therefore, instabilities in neural recordings can be success-
fully compensated for by re-training the part of a model that
translates neural activity into the latent dynamics, which are
assumed stable over time (Farshchian et al., 2019; Daba-
gia et al., 2022; Degenhart et al., 2020; Wen et al., 2021;
Herrero-Vidal et al., 2021). As a behaviour decoder, this
can be more data-efficient than re-training a decoder from
scratch, but still requires regular interventions. Here we ask
if it is possible to recover the latent dynamics without any
re-training.

Our approach uses a domain adaptation inspired solution.
Sources of session to session variability in neural recordings
are shown in Figure 1 and include existing neurons lost from
recording electrodes, existing neurons replaced by unseen
neurons, and all recording electrodes shifting systemati-
cally due to probe array shift. This variability is substantial
enough that each recording session can be constituted as a
separate domain.

Original Neuron Lost

Neuron Replaced Probe Array Shift

Figure 1. Causes of session-to-session variability in recordings
from neural populations. Neurons from the original recording
session can be lost from the recording array, original neurons can
be replaced by unseen neurons and the entire probe array can
shift, causing a systematic change in neuron position. In addition,
spike sorting can induce variability as the signal to noise ratio of
individual neurons changes between sessions. Domain adaptation
of many varied sessions enables our model to learn these sources
of variability.

We treat each recording session as a separate domain, each
of which can be used to predict the same set of behaviours.
The model is optimised using both recorded activity and be-
haviour to recover the same latent variables irrespective of
the domain so it is capable of predicting behaviour cor-
rectly for a previously unseen session without need for
re-calibration. In contrast, latent variable models without
domain adaptation fail to generalise to unseen data, and
instead partition the latent space into distinct parts corre-
sponding to the individual recording sessions. We test this

model with long-term recordings from the primate motor
cortex during a reach task and show that, provided sufficient
training data, it can predict behaviour well for previously
unseen sessions. BCI decoders that can generalise well to
unseen sessions or subjects without any re-training have not
yet been demonstrated. We believe this is the first work
to show such cross-session decoder generalisation without
recalibration.

2. Related Work
This issue of neural stability is investigated by Gallego et al.
(2020) where the dynamics of a set of a single animal’s
M1 cortex neurons are recorded from over many days. The
authors find that the underlying dynamics of these neurons
over time are indeed reconcilable. Principal component
analysis (PCA) is used to reduce the dimensionality of the
neural activity on each day, and these variables are then
aligned using canonical correlation analysis (CCA). After
alignment, neural activity is regenerated for up to 16 days
with close similarity and accurate decoding of behaviour.

Farshchian et al. (2019) take this approach a step further
and utilise an adversarial approach with a non-linear model
(ADAN) to directly align neural activity over many days in
order to accurately predict EMG during movement. A dis-
criminator network is trained in a similar fashion to LFADS,
tasked with autoencoding neural activity from day 0. A
generator neural network is optimised to align neural popu-
lation activity to that recorded at day 0. The autoencoding
discriminator is tasked with maximising the alignment loss.

Sussillo et al. (2016) build a robust decoder capable of utilis-
ing large amounts of training data and maintaining decoding
performance in the face of recording condition changes such
as neuron turnover. Herrero-Vidal et al. (2021) introduces a
robust probabilistic approach for neural alignment in a com-
mon low dimensional manifold. Their method is applied to
recordings from the mouse olfactory bulb, revealing low-
dimensional population dynamics that are odour specific
and have consistent structure across animals. Following
the same idea, Wen et al. (2021) uses adversarial generative
modelling to generate large amounts of synthetic spike data
from just the behaviour of a separate recording session or
subject, mimicking the spike data of that session/subject.
Together with this generated synthetic spike data and a small
amount of real spike data from the unseen session, the au-
thors are able to achieve relatively good behaviour decoding
accuracy on the held out session. This model is more data
efficient than the previously mentioned approaches. Never-
theless, in all these cases data from all recording sessions
or animals is required for good behaviour decoding, and the
models are not capable of generalisation to unseen sessions.
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Hurwitz et al. (2021b) combines ideas from Pandarinath
et al. (2018) and Sani et al. (2021) to jointly model the neural
activity and external behavioural variables by separating the
latent space into behaviourally relevant and behaviourally
irrelevant components; the relevant dynamics are used to
reconstruct the behaviour through a flexible linear decoder
and both sets of dynamics are used to reconstruct the neural
activity through a linear decoder with no time lag. This work
shows that an LFADS-like model can jointly model neural
activity and associated behaviour or movement, hence po-
tentially isolate invariant behaviour-related dynamics that
can be used for cross-session decoding.

Domain adaptation broadly aims to predict classes from la-
belled data of a similar nature, albeit from differing sources
or domains. The method relevant to this work is by Ganin
& Lempitsky (2015), who use a negative gradient between
a domain classifier and feature extractor in order to coerce
the feature extractor to produce domain invariant features
from which a label predictor can infer data classes reliably.
This method of domain unification is unsupervised.

An application of domain adaptation to correct for vari-
ability in experimental data by Gonschorek et al. (2021)
used an autoencoder model and a domain classifier to align
two-photon imaging data across experiments. The authors
successfully align their recording sessions but they do not
test efficacy on unseen sessions. They also explicitly use
experimental session ID as domains and show efficacy on
non-sequential data in this respect. In this work we show
that it is beneficial to not explicitly use session/experiment
ID for domain adaptation but to instead use neural patterns
directly to align recording sessions for high dimensional
sequential data.

In this work we model each session of neural recording as
a separate domain and predict behaviour from all of these
sessions simultaneously. Domain-invariant latent variables
are obtained using the paradigm of unsupervised domain
adaptation via a negative gradient, which are then optimised
to reconstruct the observed behaviour.

3. Model
This model is based on the hypothesis that behaviour y is
encoded in a stable latent space with variables z, and that the
two are related linearly as y = f(z). Equally, neural activity
x is related to the latent variables through a simple function,
and as in related models we choose a linear read-out with a
Poisson link function to generate non-negative firing rates
(Pandarinath et al., 2018). However, this function will differ
between recording sessions (or domains) d as we expect to
observe different neurons in each session, and the activity of
neurons may change over time. The problem is thus to find
the correct encoding function z = g(x) to transform neural

activity into the latent space which then allows decoding
of behaviour. As explained above, re-training this part of
the model for each session can successfully align different
sessions. Here we show that this can be achieved without
the need for re-training.

Specifically, as proposed by Pandarinath et al. (2018) we
assume that the latent dynamics evolve autonomously pro-
vided a set of initial conditions zi that are modelled as Gaus-
sian random variables. These latent variables are produced
for each trial by an encoder network consisting of bidirec-
tional Gated Recurrent Units (Cho et al., 2014) (GRU). They
are used to simultaneously predict behaviour, and to recon-
struct the original trial-specific neural activity. We apply
recurrent and kernel regularisation to the encoder GRU to
enable better generalisation to unseen sessions.

A further bidirectional GRU is used as a decoder for neural
reconstruction and a final separate GRU is used to predict
behaviour from the generated latent variables. Training is
based on a mean squared error loss for behaviour and Pois-
son likelihood for neural activity. Importantly, we reverse
the backpropagation gradient between the neural reconstruc-
tion decoder and the encoder. This gradient reversal layer
leads to maximisation of the neural reconstruction loss in the
encoder network while, at the same time, the neural decoder
network is adversarially optimised to minimise neural re-
construction loss. This implicitly encourages the encoder to
generate latent variables which are not separated by session
of data collection.

The behaviour decoder meanwhile forces the encoder to gen-
erate latent variables which are differentiated by behaviour.
Ultimately, this produces a latent space separable by be-
haviour but not by session of data collection. The complete
model is illustrated in Figure 2.

The model is trained using real neural activity which corre-
sponds to consistent behaviours (movement directions in a
centre-out reach task, see below). The generative process of
our model is as follows:

zi = Wenc(GRUθenc
(xi,1:T )), (1)

g1:T = GRUθdec(zi), (2)
b1:T = GRUθbeh(zi), (3)

rt = exp(Wrate(Wfac(gt))), (4)
x̄t ∼ Poisson(rt), (5)
ȳt = Wbeh(bt) (6)

where i indicates a particular trial and T is the total number
of timesteps per trial. θenc, θdec, θbeh are the parameters of
the GRUs used to encode spike trains into latent variables,
decode spike trains from the generated latent variables, and
to decode behaviour from the latent variables respectively.
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Figure 2. Our model (SABLE) consists of a sequential variational autoencoding approach combined with a sequential behaviour decoder.
Notably, we implement a reverse gradient layer between the neural decoder and encoder GRUs. The encoder can then learn to extract the
invariant latent dynamics determining behaviour from data obtained in different sessions with variability in the recorded neural activity.

Wenc, Wfac, Wrate and Wbeh are non-linear layers which
produce latent variables, neural activity factors, generate
firing rates and predict behaviour respectively at each time
step per trial.

At each training iteration the following three losses are opti-
mised using Adam (Kingma & Ba, 2015) asynchronously:

Lrec = −
T∑

t=1

log(Poisson(xi,t|rt)) (7)

Lbeh =
1

T

T∑

t=1

(yi,t − ȳi,t)
2 (8)

Lkl = DKL[GRUθenc(zi|xi)||N (0, I)]

= −1

2
[log(z2i,σ)− z2i,µ − z2i,σ + 1] (9)

where i indicates a particular trial, T is the total number of
timesteps per trial, yi is the true behaviour per trial and ȳi is
the predicted behaviour. The loss in Eq. 7 is maximised by
the encoder network and minimised by the neural decoder
network (and not applicable to the behaviour decoder net-
work). This adversarial training is the most crucial aspect
of our model. As the encoder maximises the neural recon-
struction loss throughout training, it produces increasingly
spike pattern-invariant latent variables.

Behaviour loss (Eq. 8) is minimised by both the encoder and
behaviour decoding network while the Kullback–Leibler
(KL) divergence loss (Eq. 9) (between a multivariate stan-
dard Gaussian distribution and the encoder generated latent

variables) is minimised by just the encoder network. Thus
the total error for all parameters in the model across all
training trials can be summarised as:

E(θenc,Wenc, θdec,Wfac,Wrate, θbeh,Wbeh) =

N∑

i=1

(
Li
beh(θenc,Wenc, θbeh,Wbeh)

+ Li
rec(θdec,Wfac,Wrate)

+ λklL
i
kl(θenc,Wenc)

)
− λr

N∑

i=1

Li
rec(θenc,Wenc)

(10)

where N is the total number of training trials, λkl is the
weight of KL divergence and λr is the weight of the reverse
gradient applied to the encoder RNN. λkl rises exponen-
tially as training progresses while λr decays exponentially
(thereby increasing session invariance over training). We
denote our model Stable Alignment of Behaviour through
spike-invariant Latent Encoding (SABLE).

SABLE does not require specific hyperparameter tuning
for either monkey tested in Section 6, however, in subjects
or experimental setups where neural drift is more variable
between recording sessions, tuning recurrent dropout and
kernel regularisation values may be beneficial for optimal
behaviour decoding performance from unseen session trials.
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Figure 3. Experimental setup: In each trial one randomly chosen
target direction (indicated by one of 8 coloured circles) appears on
screen, and the monkey is instructed to control the cursor (white
circle) by moving the manipulandum. The monkey moves the
cursor to the target location after a go cue. The collected data for
each trial consists of the neural spikes and monkey hand position
across all timesteps. Our model is tasked with predicting hand
position from neural spikes at each timestep.

4. Data
4.1. M1 neural recordings during reach task

We verify that SABLE is able to predict behaviour from
unseen neural activity by applying it to data from a previ-
ously published experiment (Gallego et al., 2020). In this
experiment, two monkeys are trained to perform a center-
out reach task towards eight outer targets. On a go cue, each
monkey moves a manipulandum along a 2D plane to guide
a cursor on a screen to the target location (Figure 3). On
successful trials a liquid reward is given. Spiking activity
from the motor cortex (M1) along with the 2D hand position
are recorded during each trial. Spike trains are converted
into spike counts in 10ms bins, and behaviour variables
are used at the same resolution. Only successful trials are
used, all trials are aligned to movement onset and cut from
movement onset to the shortest reach time across all trials.

For our analysis, we train SABLE on many consecutive
days of recorded data and test on a subsequent held out day
of recordings for each monkey. In total there are 13 near
consecutive days of recordings for monkey 1 and 6 near-
consecutive days of recordings for monkey 2, with fewer
recorded neurons and timesteps for monkey 2 overall. Each
day for each monkey consists of one recording session.

5. Models for comparison
We compare the ability of SABLE to predict behaviour from
sessions of unseen spike data against existing methods and
against a variation of our own model. We look at the fol-
lowing existing models: LFADS (Pandarinath et al., 2018)
and RAVE+ (Gonschorek et al., 2021). We also compare
against our own model where we do not reverse the gra-
dient between the encoder and decoder, which we denote
SABLE-noREV. In addition, we compare against a baseline
RNN (GRU) with a linear readout layer optimised to predict
movement from spiking data without autoencoding.

LFADS has been shown to have good efficacy at neural
reconstruction across trials and sessions with some separa-
tion of behaviour in its latent space in previous work. We
implement RAVE+ as an autoencoding model with GRUs
for the encoder and decoder as our data are time series, and
treat recording sessions as separate domains. As with our
own model, the encoder is tasked with generating a small
number of latent variables following a multivariate standard
Gaussian distribution from neural data while the decoder is
tasked with reconstructing the data from the latent variables.
We use a non-linear layer as a domain classifier on the latent
space between the encoder and decoder and implement a
negative gradient between this classifier and the encoder
network, thus encouraging the encoder to produce session-
invariant latent variables. For all models we use the same
regularisation techniques in the encoder or predictor as we
do for SABLE to maximise generalisation.

For LFADS and RAVE+ we use a separately trained GRU
to predict behaviour from the latent space of these models.
We do not include ADAN (Farshchian et al., 2019) or the
generative adversarial model by Wen et al. (2021) as both
require at least some training data from held out session or
subject to be effective. Implementation details of SABLE
and all comparison models can be found in the Appendix
(Section B).

6. Results
6.1. Application to motor cortex neural recordings

during a reach task

We train all models on varying numbers of training sessions
and for both monkeys, testing behaviour (2D hand position)
prediction on intermediate and subsequent held out record-
ing sessions. Our results, summarised in Figure 4, show that
SABLE is capable of generalising to unseen data provided
a sufficient number of training sessions are provided. In all
cases tested SABLE outperforms the comparison models.
For example, decoding accuracy for SABLE on an unseen
intermediate session for monkey 1 with 12 training sessions
is 0.91, which exceeds all other models by at least 0.25. For
comparison, the RNN decoder typically yields an accuracy
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Monkey 2

+

Monkey 1

Intermediate Test Session End Test Session

Figure 4. Behaviour prediction performance when testing all models on a completely unseen recording session. We report the mean
r-squared between the inferred and true x,y positions. Each model is tested on a held out session while trained on different numbers of
training sessions for both monkeys. The left column shows results for a held-out testing session which is in the chronological centre of the
training sessions whereas the right column shows results for a test session recorded after all training sessions. Each test condition is run
10 times with different random seeds, with error bars showing standard deviation.

of around 0.92 on held-out data when trained and tested on
a single session, indicating that SABLE can achieve satura-
tion performance on unseen data. RAVE+ has a relatively
high decoding performance when a large number of train-
ing sessions are used, likely because its domain adaptation
paradigm removes some session specific variance in this
case. In contrast, SABLE-noREV and LFADS have low
decoding performance across monkeys and session numbers
although they gradually improve with increasing session
numbers.

Comparing the performance between the two monkeys, we
see generally better overall decoding performance for mon-
key 2 at the same number of train sessions as monkey 1,
although monkey 1 has far more total training data avail-
able (12 total consecutive sessions from monkey 1 vs. 5 for
monkey 2) and so has higher peak behaviour decoding per-
formance for all models. In addition, we limit the number of
neurons for each monkey to the lowest number of neurons
in any given session. Therefore, monkey 1 has 42 neurons
of neural data across sessions whereas monkey 2 has 16.

Next we compare the difference between test performance
for all models on both monkeys for different held out test ses-
sion ordering (intermediate or end). While SABLE achieves

end test session decoding performance exceeding that of
current methods (0.71 mean r-squared with 12 train ses-
sions), performance on any given intermediate test session
is substantially higher (0.90 mean r-squared with 12 train
sessions). Moreover, the performance of SABLE decreases
noticeably faster when applied to an end test session when
the number of training sessions is reduced versus an inter-
mediate test session. This confirms that drift in recordings
is gradual, not random.

6.2. Latent space analysis

Figure 5 shows T-SNE embeddings of the latent space of
all autoencoding models. Each colour represents a different
target direction with respect to behaviour, and embeddings
of the training data are shown as circles while the test trials
are shown as triangles.

The embeddings of the LFADS latent space show a clear
separation that corresponds to the different training sessions.
This shows that there are indeed significant differences be-
tween the sessions that are captured in the latent space and
prevent generalisation to unseen sessions. Within each ses-
sion cluster there is a good separation by target direction,
indicating that the latent variables extract behaviourally rele-
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Figure 5. T-SNE embeddings of latent space for autoencoder models. In each embedding, points denoted by a circle are trials from 12
training sessions for monkey 1 and 5 training sessions for monkey 2. Points denoted by a triangle are trials from a held out intermediate
test session for both monkeys. Each colour represents a target direction for the centre out reach task.

vant information from the neural activity. In contrast, many
trials from the test session form a cluster in a region not cov-
ered by the training data, with some degree of separation by
behaviour in monkey 1 (where more sessions are available
for training). Here the model fails to assign these trials to
meaningful latent variables as the differences in activity are
too large to be mapped appropriately. We denote trials such
as these hereafter as unassigned. Some trials are assigned
locations in the latent space also occupied by the training
data, indicating that despite session differences occasionally
a matching of unseen to training data can be achieved, again
with some separation by target direction. However there is
also a cluster of unseparated test trials which the encoder
of the model has failed to produce meaningful latent vari-
ables for due to these test trials being too disparate from the
training trials.

For LFADS applied to monkey 2, the encoder still manages
to separate trials by train session, but to a lesser degree.
We suspect this is due to fewer neurons being available
for the sessions of monkey 2. Here there is no longer a
cluster of separated test trials, instead some test trials are
assigned to existing train clusters as they are fairly similar.
Here again however we see a large cluster of unassigned
test trials. Overall we see that LFADS clusters train trials
and coinciding test trials well but its encoder cannot effec-
tively generate latent variables for dissimilar test trials for
behaviour decoding.

The picture is different for RAVE+, where the latent space
seems better aligned (more session invariant) but no longer
well separated by behaviour for monkey 1 (larger training
set and more neurons). In contrast, for monkey 2 we see
little session alignment but better behaviour separation is
achieved (fewer sessions and fewer recorded neurons). In
this case there is some degree of merging of session clusters
and organisation by behaviour target direction, but this is
insufficient for good test behaviour decoding. For monkey
1 we see 7 clusters, 4 of which have some separation by
direction for train session trials. However test trials are not
separated well at all by direction. For monkey 2 there is
far less clustering by session and some of these clusters
separate by direction. Here there is also a large cluster of
unassigned test trials. The domain adaptation method used
in RAVE+ (reverse gradient based on session ID explicitly)
thus does not seem to prevent trials clustering by session.

SABLE-noREV, our model without the reverse gradient,
produces a result very similar to LFADS. For both mon-
keys, there is a cluster of well separated test trials and also
many test trials that are unassigned to any cluster (either
by direction or session). Therefore, using the latent space
for both neural reconstruction and behaviour decoding si-
multaneously, as proposed by Hurwitz et al. (2021b), is not
beneficial to test behaviour decoding across sessions.

Finally, applying SABLE to either monkey produces latent
spaces which are very well separated by behaviour and al-



Robust alignment of cross-session recordings of neural population activity by behaviour via unsupervised domain adaptation

most entirely training-session invariant. We denote each
unseen test trial as correctly classified in terms of target di-
rection by observing whether a given trial gives a behaviour
decoding r-squared of above 0.6. When applied to monkey
1 we see a small degree of misclassification of test trials by
direction (13% of total test trials), but only when the correct
and incorrect target directions are adjacent to each other
spatially in the task outlined in Figure 3. This confirms
that more similar behaviours in a task have more similar
neural patterns and may be difficult for any decoder to dis-
entangle. There are also a small number of unclassified test
trials (3% of total test trials) in the centre of the embedding
plot, we suspect these may be trials with highly contrasting
spiking patterns to any train trial. When applied to monkey
2, we see less misclassification (4% of total test trials) by
test behaviour direction and just a couple of unclassified
test trials. We also note that both SABLE embeddings are
topographically similar and correspond to the spatial aspect
of the movement directions of the task outlined in Figure 3.

The stark differences in latent variables seen between
SABLE-noREV and SABLE are quite surprising consider-
ing the only difference between these models is the reverse
gradient between neural decoder and encoder in SABLE
versus a positive gradient in SABLE-noREV. This shows
the importance of a negative neural reconstruction gradient
in training the SABLE encoder network to generate ses-
sion invariant latent variables. In addition, we suspect that
SABLE’s encoder generates far fewer unassigned latent vari-
ables than the other autoencoding models due to the simpler
and more behaviourally structured latent space.

6.3. Behaviour decoding

Examining the decoded behaviour of monkey hand position
using SABLE (Figure 6) shows good overall reconstruction
of movement trajectories, especially when testing on an
intermediate test session. The intermediate test session
behaviour decoding for both monkeys mirrors the SABLE T-
SNE embedding in Figure 5. Test trials which are incorrectly
assigned with respect to movement directions (Figure 5)
are decoded correspondingly (Figure 6). Therefore, the
behaviour decoder network of SABLE directly utilises latent
variables in a particular cluster and decodes one particular
direction of movement. Our model is thus consistent with
the hypothesis outlined above.

When decoding from an end test session however, this phe-
nomenon is less pronounced as the encoder seems to be less
certain of the clusters formed in the latent space. There are
more wrongly assigned test trials and the decoded move-
ment trajectories are more spread out, leading to a lower
overall mean r-squared when predicting behaviour.

Monkey 1

Monkey 2

Intermediate Test Session End Test Session

Figure 6. Predicted 2D monkey hand position of test trials using
SABLE when trained on 12 train sessions for monkey 1 and 5 train
sessions for monkey 2 and tested on an unseen intermediate or end
test session.

6.4. Predicting behaviour from an unseen subject

Next we predict behaviour from the unseen neural data from
37 sessions of monkey 2 when SABLE is trained on 14
recording sessions of monkey 1. We use all available record-
ing sessions available for monkey 1 spread across 3 years to
train SABLE as we believe this gives the best opportunity
for cross subject generalisation. However, for the held-out
data we only obtain a mean r-squared of 0.03, so the model
fails to generalise to a different animal. Examining the T-
SNE embedding in Figure 7 shows that the trials from the
training sessions of monkey 1 cluster well by movement
direction but the trials from monkey 2 do not map to these
direction clusters as the separated sessions of either just
monkey 1 or monkey 2 do (as seen in Figure 5). Therefore
it appears that the relationship between the recovered latent
dynamics and behaviours differs between the two animals,
and may require an extra alignment step.

7. Discussion
In this work we present a new method, SABLE, for aligning
neural activity with complex temporal dynamics from dif-
ferent recording sessions to allow for consistent behaviour
decoding across sessions. We apply it to neural recordings
from primate motor cortex during a reaching task where the
considerable variability between recording sessions prevents
generalisation for a conventional decoder.

The model is trained as a variational autoencoder similar
to LFADS (Pandarinath et al., 2018), with an additional
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gradient from behaviour decoder that disentangles the la-
tent space to enable improved behaviour decoding (Hurwitz
et al., 2021b). Reversing the gradient from the neural re-
construction encourages the model to ignore variability in
the activity that is irrelevant for decoding activity, which in
turn results in an session-invariant encoding of behaviour-
relevant factors.

Unlike other domain adaptation methods, our model does
not require domain labels, but is trained on a single data set
that contains different experimental sessions. This is an ad-
vantage in potential BCI applications as variability may not
only exist between single sessions, but also within a single
session, and in addition the degree of variability may differ
as well. As a result, the model still requires considerable
amounts of session data for good behaviour reconstruction.
We found that performance did not saturate when it was
trained on 12 sessions. In contrast, good behaviour decod-
ing with our baseline RNN model could be achieved from a
single session with less than 200 trials. Yet we expect that
the number of trials per session required is much less than
used here.

A main limitation of this method, which may also limit its
direct application in a BCI system, is that it assumes that be-
haviour is generated by autonomous neural dynamics which
relies on specification of appropriate initial conditions that
form the latent variables in the model. This approach has
been shown to successfully capture neural dynamics in a
range of scenarios (Pandarinath et al., 2018) and has the
advantage of a relatively compact and behaviorally relevant
latent encoding that supports discovering invariant features
in the neural activity. A possible extension to remove this
limitation may be the inclusion of a controller input that
models additional temporal dynamics to better account for
behavioural variability (Pandarinath et al., 2018). This ex-
tension of the latent space can be trained in the same manner
and may allow modelling of more complex and variable be-
havioural paradigms.

We compare our model to RAVE+ (Gonschorek et al., 2021),
to our knowledge currently the only other method for do-
main adaptation of inter-session data. RAVE+ does show
some indication of alignment when sufficient individual
recording sessions are available, but its latent space fails
to capture behaviourally relevant structure. As a result, be-
haviour decoding for unseen test data is poor. We suspect
that the RAVE+ fails because the temporal dynamics in
our data are too variable between trials. As pointed out by
the authors, RAVE+ requires consistent temporal dynam-
ics between trials, which can be controlled in experiments
where stimuli are presented, but that are rarely obtained
in behavioural experiments. The other models shown here
(LFADS, RNN decoder) are included to contrast domain
adaptation to conventional encoders, and not as a baseline

for generalisation performance.

Our results are consistent with recent reports showing that
motor control is based on low-dimensional latent neural
dynamics that are very stable over time despite ongoing
neural drift (Gallego et al., 2020). Our model can be used to
discover these latent dynamics in data with high variability.
Tests we performed on synthetic data (a Lorenz system)
indicate that this approach is also successful when neural
dynamics are generated from latent dynamics with random
transformations (not shown).

Our finding that SABLE has a better performance for inter-
mediate held-out sessions than for sessions at the end of a
sequence of training sessions suggests that performance will
likely eventually decline for long time intervals between
train and test sessions. As long as the latent dynamics are
stable however, we expect that training the model with more
sessions will eventually stabilise generalisation performance.
Taken together these results are encouraging for BCI appli-
cation as they suggest highly consistent recordings may not
be required for good performance as long as it is possible to
recover relevant latent dynamics.
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A. Cross-subject decoding T-SNE Embedding

Figure 7. T-SNE embedding of SABLE latent space when training on 37 sessions of monkey 1 and testing on 14 sessions of monkey 2.
Training trials are denoted by circles and test trials by triangles. Each colour denotes a particular movement direction.
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B. Model Details
Below are implementation details for all models used in this paper.

SABLE
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Batch Normalisation on all layers
- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially

(between encoder and neural de-
coder)

Reverse Gradient weighting (λr) 1.0 to 0.000000001 Decaying exponentially
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SABLE-noREV
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Batch Normalisation on all layers
- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially
Reverse Gradient weighting (λr) N/A Constant positive gradient of 1

LFADS
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Trained separately to rest of model
Batch Normalisation on all layers

- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially
Reverse Gradient weighting (λr) N/A Constant positive gradient of 1
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RAVE+
Parameter Value Notes
Encoder

- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1000
- RNN L2 Recurrent Regularisation 1000
- Recurrent Dropout 0.2
- Wenc Units 512 Non-linear layer
- Wenc Dropout 0.8
- Wenc L2 Regularisation 1000
- Latent space dimension 64

Neural Decoder
- RNN Units 256 Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wfac Units 128 Non-linear layer
- Wfac Dropout 0.2
- Wfac L2 Regularisation 10

Behaviour Decoder Trained separately to rest of model
Batch Normalisation on all layers

- RNN Units 256 X 2 Stacked Gated Recurrent Unit
- Wbeh Units 512 Non-linear layer
- Wbeh Dropout 0.1
- Wbeh L2 Regularisation 1.0

Domain Classifier
- Non-linear layer Units 256 X 2 Batch Normalisation
- Dropout 0.1
- L2 Regularisation 0.001

Training
Kullback–Leibler (KL) divergence weighting (λkl) 0.01 to 10000 Rising exponentially

(between encoder and Domain Classi-
fier)

Reverse Gradient weighting (λr) 1.0 to 0.000000001 Decaying exponentially
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4.4 Discussion

In this chapter I developed a novel domain adaptation approach (SABLE) for unifying

the representations of many recording sessions of neural data. The primary mecha-

nism used for this is a reverse gradient between the encoder and decoder of a sequen-

tial autoencoder. I show how crucial this reverse gradient is by testing the decoding

performance of a comparison model with the same architecture as SABLE but lacking

this reverse gradient (SABLE-noREV). SABLE-noREV is unable to form a session in-

variant encoder and so the latent space produced is similar to that of LFADS, whereby

trials are separated by behaviour (movement direction) as well as by session.

On intracortical recordings from two monkeys performing a centre-out reach task,

I demonstrate that SABLE is effective in forming a session invariant representation of

several recording sessions for each monkey. I show that this invariant representation

can generalise to a held out session which was recorded close in time to the sessions

used for training. This allows for accurate behaviour prediction from the unseen ses-

sion without any retraining of the model on the unseen session. This has not been

previously shown and represents a novel and significant result.

While SABLE is robust to nearby unseen recording sessions, behaviour decoding

accuracy is only high on an intermediate session, not on an end session which is a more

realistic use case, for example as a BCI system. SABLE is also highly parameterised

utilising three stacked Gated Recurrent Units (GRUs) with 512 units each in order

to achieve held out session generalisation. The model also performs most effectively

with a high level of regularisation, namely dropout of fully connected layers, but also

L2 and recurrent dropout applied to GRUs. Training time is also somewhat slow due

the high number of sessions which need to be trained on (12 sessions were used for

training in the case of monkey 1).

SABLE also does not explicitly take into account the neural variability between

sessions, so it is inherently difficult to see how the model is actually able to gener-

alise to an unseen session where neuron positions have shifted and firing patterns have

changed. In addition, SABLE, being based on LFADS and being a latent variable

model, is only effective when trained on whole trials of neural data offline and cannot

operate online on small windows of trial data as would be required for a real world

BCI application.

Moreover, I demonstrate that SABLE cannot generalise to trials from recording

sessions across monkeys. This is to be expected, as generalising across subjects is
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implausible even with recalibration. This is in part due to there being no direct (albeit

unknown) mapping of neurons across subjects as there is across sessions of the same

subject.



Chapter 5

Capturing cross-session neural

population variability through

self-supervised identification of

consistent neuron ensembles

It has been shown that high dimensional neural population activity occupies a low di-

mensional manifold, therefore we can expect separate sessions of neural recordings

from the same subject to occupy the same low dimensional manifold. However, drifts

in activity of individual neurons can be substantial from day to day [73, 10]. While this

drift is random and cannot be predicted on an individual neuron level, other population

level variations over consecutive recording sessions such as differing sets of neurons

and varying permutations of consistent neurons in recorded data may be learnable (Fig-

ure 5.1). The model outlined in the last chapter (SABLE) does not explicitly model

neural drift or population variation (such as that due to probe movement). Here I aim

to create a model capable of learning population variation.

In this chapter, I show that classification of consistent and unfamiliar neurons,

along with detection of the order and presence of recording neurons over subsequent

sessions of recordings is crucial in maintaining behaviour decoding performance on

an unseen session of neural data. I propose forming variations of individual trials

from a single recording session of two monkeys performing a centre-out reach task.

These variations are formed by applying perturbations to these trials, mirroring the

non-stationaries existing across sessions. I train a deep recurrent neural network to

perceive these perturbations and subsequently leverage this perception to train a se-

57
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Figure 5.1: Adapted from [84] - Neurons in recording session on day 0 can be lost and

new neurons can be added over subsequent recording sessions when recording using

chronic intracortical microelectrodes.

quential autoencoding model to test decoding performance on completely unseen ses-

sions of neural activity up to a week into the future, from just one session of training

recording. This is a notable advance from SABLE in the previous chapter, which is

only capable of generalising to a single (subsequent day) recording session.

I train the aforementioned RNN to perceive perturbations by optimising it to iden-

tify the initial positions of neurons in the original unperturbed trial. Once trained, I

use the activations of this network as an embedding to aid in training an LFADS [68]

model which will be tasked with taking perturbed trials of neural data and predicting

original trials. For each trial of neural data we generate several perturbations such that,

through contrastive learning, the encoder of the LFADS model learns to map varia-

tions of the same trial to similar latent variables and variations of other trials to distant

latents. Together, this ensemble of the neuron locator RNN and the LFADS variant is

termed CAPTIVATE.

The LFADS variant trained is highly robust to newly introduced neurons in unseen

sessions due to the neuron locator RNN’s embedding. I observe high movement decod-

ing accuracy on several sessions of unseen neural data from just one training session,

as opposed to the many training sessions required to achieve high movement decoding

accuracy on an unseen session in the model (SABLE) outlined in the chapter above.

This is due to the model and training paradigm described in this chapter more directly

modelling the neuronal changes occurring between sessions versus SABLE.
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5.1 Contribution

I am the first author and lead of this work. As such, I conceptualised the model,

implemented all versions of the model, ran and evaluated the methods, and wrote the

manuscript along with Matthias Hennig. Matthew Perich and Lee Miller provided the

dataset used to train and evaluate the model.
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Abstract
Decoding stimuli or behaviour from recorded neural activity is a common approach
to interrogate brain function in research, and an essential part of brain-computer and
brain-machine interfaces. Reliable decoding even from small neural populations is
possible because high dimensional neural population activity typically occupies low
dimensional manifolds that are discoverable with suitable latent variable models.
Over time however, drifts in activity of individual neurons and instabilities in neural
recording devices can be substantial, making stable decoding over days and weeks
impractical. While this drift cannot be predicted on an individual neuron level,
population level variations over consecutive recording sessions such as differing
sets of neurons and varying permutations of consistent neurons in recorded data
may be learnable when the underlying manifold is stable over time. Classification of
consistent versus unfamiliar neurons across sessions and accounting for deviations
in the order of consistent recording neurons in recording datasets over sessions of
recordings may then maintain decoding performance. In this work we show that
self-supervised training of a deep neural network can be used to compensate for this
inter-session variability. As a result, a sequential autoencoding model can maintain
state-of-the-art behaviour decoding performance for completely unseen recording
sessions several days into the future. Our approach only requires a single recording
session for training the model, and is a step towards reliable, recalibration-free
brain computer interfaces.

1 Introduction
Neural decoders require stable neurons in a recorded population in order to accurately predict
behaviour such as movement or to allow decoding of stimuli. However, over time instabilities
in the recording equipment and drift in neural activity lead to instabilities that prevent re-using a
decoder trained on one day for a session recorded on another day [Huber et al., 2012, Ziv et al.,
2013, Driscoll et al., 2017]. At the same time, neural population activity is highly structured and
often confined to low-dimensional manifolds [Cunningham and Byron, 2014] that can be recovered
using latent variable modelling approaches [Hurwitz et al., 2021]. Importantly, recent work showed
that movement-related latent neural dynamics in population activity from the primate motor cortex
is stable and could be recovered over intervals as long as two years [Gallego et al., 2020]. This
suggests that despite the variability at the level of single neurons, in each session a subset of neurons



will remain informative about behaviour. A stable cross-session decoder therefore has to be able to
identify these neurons and utilise them for decoding. Therefore, here we focus on identifying known
recording neurons in unseen sessions. In particular, we hypothesised that a latent encoding of neural
activity can be augmented by information about which neurons were seen during training, and at
which position in the input. We show that this is sufficient to decode behaviour (in our case different
cued arm movements by a monkey with simultaneous motor cortex recordings) with high accuracy
across unseen sessions.

We achieve this with a self-supervised approach through training a recurrent neural network (RNN) to
predict original neuron positions following data perturbation in a manner mirroring session to session
variability. In essence, the closer our perturbations mimic real inter-session variability (as shown in
Figure 1), the higher our behaviour prediction performance on an unseen session. These perturbations
include adding spikes to existing neurons from randomly generated neurons, removing spikes from
existing neurons, shifting the entire neuron population by a constant amount, slightly shifting neurons
in time, replacing neurons with randomly generated neurons and eliminating neurons entirely.

Original Neurons Lost

Neurons Replaced Probe Array ShiftNeurons Move

Neurons Added

Figure 1: Inter-session ensemble variability possible when recording from neural populations. Neu-
rons from the original recording session can be lost to the recording array, new neurons can become
visible, neurons can move between electrodes, original neurons can be replaced by unseen neurons
and the entire probe array can shift, causing a systematic change in neuron position. In addition,
spike sorting can induce variability as the signal to noise ratio of individual neurons changes between
sessions. The perturbations we apply to each trial of recordings is in response to each of these sources
of variability. We model each unseen test trial as an instance of a perturbed seen train trial and
subsequently, our sequential autoencoder model attempts to map each unseen trial to a known trial.

This neuron locator RNN is trained to predict original neuron position within a single recording
session from many perturbed variations of trials of this training session. Once trained to predict
original neuron positions, a separate network, which in this case is a sequential autoencoder based
on Latent Factor Analysis via Dynamical Systems (LFADS) [Pandarinath et al., 2017], is trained to
predict original unperturbed neural recording trials from perturbed variations of trials from the same
session. The encoder of this sequential autoencoder receives as additional input the embedding of
the neuron locator RNN activations, conditioning the encoder to produce latent variables which are
informative enough to accurately reconstruct the original recording. The encoder produces latent
variables which are separated by behaviour (arm movement direction) in a self-supervised manner,
from which behaviour can be predicted without the model being explicitly trained on behaviour.

Importantly, the joint neuron locator RNN and LFADS encoder ensemble can predict behaviourally
relevant latent variables for unseen recording sessions that yield high decoding accuracy. Currently,
there are no existing approaches to accurately predict behaviour from an unseen recording session
when training on just one single session. We not only show this is possible with our method, but
that our approach is robust to inter-session variability for up to 8 days when a sufficient number of
neurons are persistent across sessions.

2 Related Work
There have been many recent approaches to creating robust behaviour decoders of neural activity
[Gallego et al., 2020, Farshchian et al., 2019, Sussillo et al., 2016, Wen et al., 2021, Karpowicz et al.,
2022, Wimalasena et al., 2021]. However these methods are not capable of decoding behaviour from
a previously unseen recording session if the recorded activity is subject to random fluctuations.

2



Recent work in modelling neural activity shows the consequences of selectively perturbing neural
data in order to learn relevant latent variables in a self-supervised way using an autoencoder [Liu et al.,
2021, Azabou et al., 2021, Zhu et al., 2021]. These models take different views of the same neural
data and align the latent spaces of these views once passed through an encoder, with the ultimate aim
of reconstructing these views. We utilise a similar technique to train our sequential autoencoder by
aligning the latent variables of perturbed versions of the same data and aim to generate the activity of
the original unperturbed trial. Importantly, Liu et al. [2021] propose a model which is invariant to
the specific neurons used to represent the neural state within training data; in this work we look at
unseen sessions and so do not aim to produce a model invariant to new neurons, but one that is able
to identify and utilise seen neurons to reconstruct unperturbed trials.

Gonschorek et al. [2021] and Jude et al. [2022] use domain adaptation to align data across recording
sessions. In both studies the authors use an autoencoder model and a domain classifier. However these
models require training on many days of recording sessions for good behaviour decoding accuracy.
For instance, Jude et al. [2022] requires as many as 12 training sessions and training on behaviour
explicitly in order to produce high behaviour decoding accuracy on an unseen test session. In this
work we achieve state-of-the-art behaviour decoding performance on an unseen test recording session
using just one training recording session, and show that this decoding accuracy can be maintained
many days into the future without recalibration.

We train an RNN to predict original neuron position from perturbed trials and utilise this network to
inform the sequential autoencoder model. This is considered self-supervised learning as we do not
train our model on behaviour explicitly but instead train on the subtasks of predicting original neuron
positions and reconstructing unperturbed trials from perturbed ones. This approach is similar to that
used in Noroozi and Favaro [2016], where authors form 9 subsets of images and randomly permute
these subsets, then task the model with predicting the permutation.

3 M1 Recordings

| | | || | | ||| | |
| | | | || || | |
| | ||| | | |
| | | | | || || |

| | | | | | | |
| | | | | | |
| | | | | | |

| | | | |
| | | || |

| || | | | | |
| | | | | | || | | |

| | | || | |

Spikes X,Y Position

Figure 2: Experimental setup: In each trial one randomly chosen target direction (indicated by one
of 8 coloured circles) appears on screen, and the monkey is instructed to control the cursor (white
circle) by moving the manipulandum. The monkey moves the cursor to the target location after a go
cue. The collected data for each trial consists of the neural spikes and monkey hand position across
all timesteps. We predict hand position from neural spikes at each timestep.

We apply our model to data from a previously published experiment [Gallego et al., 2020]. In this
experiment, two monkeys were trained to perform a center-out reach task towards eight outer targets.
On a go cue, each monkey moves a manipulandum along a 2D plane to guide a cursor on a screen to
the target location (Figure 2). On successful trials a liquid reward is given. Spiking activity from the
motor cortex (M1) along with the 2D hand position were recorded during each trial. Spike trains were
converted into spike counts in 10ms bins, and behaviour variables are used at the same resolution.
In this work, only successful trials are used, all trials are aligned to movement onset and cut from
movement onset to the shortest reach time across all trials.

For our analysis, we train our model on one session of recorded data from a single day which we
denote day 0 (containing 173 trials for both monkeys) and test on subsequent held out days of
recordings for each monkey. A comparison of the activity between sessions shows considerable
variability, caused by shifts in the order neurons appear as well as disappearance of neurons and the
appearance of new ones (see Appendix B, Figure 8). These changes are particularly pronounced for
longer time intervals, but are already significant in recordings one day apart. In total we used 5 days
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of recordings for both monkeys, with 55 recorded neurons across all sessions for Monkey C and 17
for Monkey M. Each day for each monkey consists of one recording session.

4 Data Perturbations
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Figure 3: Perturbations applied simultaneously to each trial of neural data, demonstrated with a
simple 5 neuron system. A) Replace entire spike train with a randomly generated neuron of the
same firing rate as the original neuron. B) Spikes randomly added to spike train proportional to
average firing rate of all neurons in a given trial, to mirror influence of nearby newly added unknown
neurons. C) Spikes randomly removed to mimic removal or movement of nearby known neurons.
D) Deletion of entire neurons to simulate neuron loss between sessions, with randomly generated
neurons introduced as the first or last neuron of the trial to keep neuron number consistent. E) Small
random time jitter of all neuron spike trains to simulate experimental variation between sessions. F)
Constant random shift of the order of all neurons to mirror probe shift.

Fig. 3 outlines the perturbations forming each variation of a single trial during the training of our
model. Perturbations A) to D) in Fig. 3 are applied with equal probability to a given neuron of
a given trial. Perturbation E) is applied to all neurons, time jitter is chosen randomly between
-30ms and +30ms. Perturbation F) is applied to all trials, the amount of this neuron shift is chosen
randomly between 0 and 25% of the total number of neurons. We hypothesise that this combination
of transformations sufficiently mirrors the real day to day changes of recorded neuron ensembles.

5 Model
Our modelling approach is based on the hypothesis that the perturbations mentioned above can
capture the substantial variability between recording sessions from the same animal. We also expect
neural activity x is related to the latent variables z through a simple function, however, this function
will differ between recording sessions as we expect to observe different neurons in each session. The
problem is thus to find the correct encoding function z = f(x) to transform perturbed neural activity
into a consistent latent space which then allows decoding of behaviour. In addition, for the same
behaviour we require zi for each trial i to be similar despite variations in the activity xi.

We first train a fully connected layer and an RNN to predict original neuron position in perturbed
trials. We apply the perturbations from Figure 3 to each trial, then task the network to predict the
original position of each neuron in the recording data or whether it was previously unseen. As shown
in Figure 4, for each neuron in the recording data we project a softmax linear read-out layer from
the RNN which each form a probability distribution of predicted original neuron position across
all possible positions (plus an extra position indicating that the neuron was randomly generated).
Each of these is compared against a one hot encoding of the original neuron position before any
perturbations have been applied. If the neuron is randomly generated then the one-hot encoding is
one at the dedicated extra position. Predictions of original neuron position are made as follows:

x̄i,1:T = Perturb(xi,1:T ), (1)
actsi = GRUθpos(fpos(x̄i,1:T )), (2)

posi,n = softmax(Wn
neuron.actsi) (3)

The predicted position for trial i and neuron n is then: argmax posi,n
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Figure 4: Our model consists of a neuron locator RNN (1) combined with a sequential variational
autoencoding approach (2). The neuron locator (1) is trained first to identify original neuron position
(or if the neuron is randomly generated) in each trial after perturbations have been applied. Then the
neuron locator’s weights are frozen and its activations are given as additional input to condition the
encoder of the sequential autoencoder (2). Notably, we perturb recording trials when training both
the neuron locator and sequential variational autoencoder. The sequential autoencoder is tasked with
reconstructing the original unperturbed recording trials. The encoder of the sequential autoencoder
maps perturbed versions of the same trial to similar latent variables. This is accelerated by imposing
an alignment loss across the latent variables of variations of the same trial. The generator RNN of the
sequential autoencoder predicts original trials from latent variables produced by the encoder RNN.

Perturb is the simultaneous application of all perturbations outlined in Section 4 to a given trial, so
xi,1:T are the original trials and x̄i,1:T are the perturbed trials. i indicates a particular trial and T is the
total number of timesteps per trial. fpos is a fully connected layer and θpos are the parameters of the
locator network used to predict original neuron position, with actsi being the final RNN hidden state
(activations) of this locator network for each trial (which we use later as a conditional embedding).
Wn

neuron is the set of linear layers (one linear layer for each neuron in the data) used to predict original
neuron position, producing a probability distribution when combined with a softmax layer for each
neuron.

Once trained, the weights of this neuron locator network are frozen, and the activations of the
RNN are used as additional input to the encoder of an LFADS-inspired sequential autoencoder.
This input conditions the encoder in predicting latent variables used to generate original trials from
perturbed trials. As proposed by Pandarinath et al. [2017] we assume that the latent dynamics
evolve autonomously provided a set of initial conditions zi that are modelled as Gaussian random
variables. These latent variables are produced for each trial by an encoder network consisting of
bidirectional Gated Recurrent Units [Cho et al., 2014] (GRU). They are used to reconstruct the
original trial-specific neural activity from the perturbed trials. A further bidirectional GRU is used
as a generator for neural reconstruction of unperturbed trials from latent variables zi. Training is
based on Poisson likelihood for unperturbed neural activity reconstruction (as in [Pandarinath et al.,
2017]). The model is trained using real neural activity which corresponds to consistent behaviours
(movement directions in a centre-out reach task). The generative process of our model is as follows:

zi = fenc(GRUθenc(x̄i,1:T ; actsi)), (4)
g1:T = GRUθgen(zi), (5)

rt = exp(Wrate.ffac(gt)), (6)
x̂t ∼ Poisson(rt) (7)

where θenc and θgen are the parameters of the GRUs used to encode perturbed spike trains into
latent variables and subsequently generate original unperturbed spike trains from the latent variables.
fenc and ffac are fully connected layers which produce latent variables and neural activity factors
respectively. Wrate is a linear transformation used to generate firing rates at each time step per trial.
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At each training iteration the following three losses are optimised with Adam [Kingma and Ba, 2015]:

Lrec = −
T∑

t=1

log(Poisson(xi,t|rt)) (8)

Lkl = DKL[GRUθenc(zi|x̄i; actsi)||N (0, I)] = −1

2
[log(z2i,σ)− z2i,µ − z2i,σ + 1] (9)

Lalign =
1

P

P∑

j=1

P∑

k ̸=j

(zi,j − zi,k)
2 (10)

Together Lrec and Lkl are the usual evidence lower-bound of the marginal log-likelihood in a VAE
[Kingma and Welling, 2014]. Lrec is minimised by the encoder network and the neural generator
network. As in Liu et al. [2021], we apply an alignment loss (Lalign) across latent variables produced
from perturbed trials (where P is the number of perturbations of a given trial) of the same original
trial zi which reduces training duration. We form 2 perturbed variations of each trial in a given batch
at each training iteration. Kullback–Leibler (Lkl) divergence loss (between a multivariate standard
Gaussian distribution and the encoder-generated latent variables) and Lalign are minimised by just
the encoder network. We name our model CAPTure and Identify Variability at Target Ensembles
(CAPTIVATE). Further implementation details can be found in Appendix A.

5.1 Comparison models
We compare the ability of CAPTIVATE to predict behaviour from sessions of unseen spike data
against existing methods and against a variation of our own model where we do not use the locator
network trained on original neuron position to aid in aligning perturbed trials. We denote this model
variation CAPTIVATE-noLoc. In addition, we look at vanilla LFADS [Pandarinath et al., 2017] in
autoencoding trials without any perturbations. We also compare against a baseline RNN (GRU) with
a linear readout layer explicitly trained to reconstruct movement behaviour from neural activity.

For all autoencoding models we use a separately trained GRU network to predict behaviour from the
day 0 training session latent space. We do not include ADAN [Farshchian et al., 2019], NoMAD
[Karpowicz et al., 2022] or the generative model by Wen et al. [2021] as all require training data from
a held out session or subject to be effective. We also do not test against Gonschorek et al. [2021] or
[Jude et al., 2022] as these approaches require many training sessions to be effective in predicting
behaviour from an unseen session whereas we aim to do this with just one training session.

6 Results
Figure 5 shows behaviour decoding performance of CAPTIVATE for an unseen session that was
recorded the day after the training session for different total rates of perturbation. A total perturbation
rate of 40% (i.e a rate of 10% for each perturbation A) - D) in section 4) for both monkeys appears to
be optimal. At perturbation rates above 40%, neural activity from perturbed day 0 train trials with a
particular target movement direction begin to resemble original trials of other movement directions,
and thus hurt alignment. Perturbation rates below 40%, particularly for Monkey C, are not sufficient
to simulate the inter-session variability between day 0 and day 1. Training the neuron locator RNN on
a total perturbation rate of 40% for both monkeys yields 85% and 93% accuracy on predicting original
neuron position from day 0 perturbed trials from Monkey C and Monkey M respectively. Indeed, the
neuron locator network is 76% accurate at identifying original neuron position in a simulated unseen
session created with a total perturbation rate of 80% (see Appendix D, Figure 10).

Using the optimal rate of 40% of perturbation to trials from both monkeys when training CAPTIVATE
leads to the results summarised in Figure 6. For both monkeys we see high behaviour decoding
performance on the unseen session from day 1, surpassing previous methods. CAPTIVATE maintains
high behaviour decoding performance for Monkey C on an unseen session up to 8 days after the
day 0 training session was recorded. CAPTIVATE also accurately maps neurons from trials across
unseen sessions of Monkey C up to 8 days into the future to known neurons from trials of the day 0
train session (see Appendix C, Figure 9). Notably, behaviour decoding for Monkey C is much more
stable for future unseen sessions than for Monkey M. This is likely due to sessions from Monkey
C containing more than 3 times as many neurons as Monkey M. However, we see in Appendix E,
Figure 11 that training CAPTIVATE with 20 neurons from the Monkey C day 0 session is sufficient
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Monkey MMonkey C

Figure 5: Behaviour decoding performance on an immediately subsequent unseen session (day 1) of
CAPTIVATE at different rates of total perturbation. Total perturbation rate is the sum of the rates of
perturbations A) - D) outlined in section 4, each of which are applied at equal rates.

to achieve an R2 of 0.68 when testing on 20 neurons of the day 8 session, indicating our model can
be robust to a low number of neurons.

CAPTIVATE CAPTIVATE-noLoc

Monkey C Monkey M

Figure 6: Behaviour prediction performance when testing all models on 30% of held-out trials from
day 0 and subsequent days of completely unseen recording sessions. We report the mean R2 between
the inferred and true x,y positions. Each model is tested on held out trials from day 0 and trials from
unseen sessions recorded an increasing number of days into the future from the original training
session (day 0) for both monkeys. Each day 0 train session is run 10 times with different random
seeds, with error bars showing standard deviation when applied to each unseen session.

Notably in the case of Monkey M, day 1 decoding performance is high at all levels of perturbation
from 0.1 to 0.4 (Figure 5), therefore it is likely that the session to session variability between day 0
and day 1 is small. Thus, for a subject with fewer neurons in recorded data, CAPTIVATE may only
require a low rate of total perturbation when aligning nearby unseen sessions.

CAPTIVATE-noLoc, Vanilla LFADS or an RNN model cannot capture session-to-session variability
even for the day 1 unseen session, as shown in Figure 7. CAPTIVATE-noLoc cannot accurately
reconstruct original trials from perturbed variations of the day 0 train session, but has a similar day
0 and day 1 session behaviour decoding accuracy, implying our perturbations closely mirror inter-
session variability. This indicates that poor performance of CAPTIVATE-noLoc on both monkeys is
due to the inability of the encoder of this model to recognise known neurons and thus, shows how
crucial the neuron locator network is in recognising known neuron ensembles in unseen recordings.

LFADS is trained solely on unperturbed trials and so cannot recognise the shifts that occur between
sessions as variations of the day 0 training session, and thus cannot create an appropriate latent
encoding. The RNN model is also trained on unperturbed trials and is even less robust to later unseen
sessions than LFADS, however, this RNN baseline can recognise some behaviour in both monkeys
for the day 1 unseen session, indicating a relatively low level of variability in adjacent day recordings.
Similarly, we see a mean R2 of 0.37 (± 0.02) when training an RNN on day 7 for monkey C and
testing on day 8 and an R2 of 0.42 (± 0.04) when training an RNN on day 9 and testing on day 10
for monkey M. Importantly, none of these models overfit as they yield high decoding accuracies for a
held-out portion of day 0 trials for both monkeys and for all models, especially the RNN. Therefore
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the performance drop of the RNN model when applied to unseen sessions is a clear indication of
substantial variations between sessions.
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Figure 7: For each monkey, Top row: t-SNE embeddings of latent space for CAPTIVATE when
applied to each unseen session. In each embedding, points denoted by a circle are trials from the
day 0 training session. Points denoted by a triangle are trials from the named unseen session. Each
colour represents a target direction for the centre-out reach task. Bottom row: Predicted 2D monkey
hand position of trials using a separately trained RNN decoder trained only on the day 0 latent space
of CAPTIVATE when applied to each unseen session, with mean R2 between all positions of each
predicted and ground truth trajectory shown across all trials in a given unseen session.

Figure 7 shows t-SNE visualisations of the latent space and behaviour predictions made from the
latent space of CAPTIVATE when trained on the day 0 session and applied to unseen sessions. For
Monkey C, the majority of trials from all unseen sessions are correctly aligned with the corresponding
trials in the training data set (Figure 7, compare dots and triangles in the t-SNE plots where colour
indicates movement direction; note that the latent space is well partitioned by behaviour although
the model is only trained on neural activity). Occurrences where the unseen trials correctly overlap
known train trials, in turn, yields correctly decoded behaviour. The alignment becomes progressively
worse for later sessions, and as the alignment is less precise, behaviour predictions also become
worse. In contrast, for Monkey M the alignment of trials beyond day 2 becomes increasingly worse,
a consequence of the smaller number of neurons in the recording.

Ablations of individual perturbations (as outlined in Figure 3) applied when training on the day 0
session reveal that perturbations which introduce randomly generated neurons and alter the continuous
ordering of neurons have the highest impact on unseen session behaviour decoding performance.
This analysis is summarised in Table 1 and shows that neuron deletions, replacements and probe
shifts cause the majority of inter-session neuron ensemble variability. Nonetheless, a combination
of all perturbations are necessary for the decoding performance achieved by CAPTIVATE in Figure
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Table 1: Mean decoding performance effects of ablating individual perturbations when training on
day 0 session and tested on immediately subsequent (day 1) unseen session for both monkeys. For
reference, the full CAPTIVATE model trained on day 0 achieves mean decoding R2 performance of
0.84 (± 0.02) on monkey C and 0.86 (± 0.03) on monkey M when applied to the day 1 session.

Ablation No-Replace No-Add No-Remove No-Delete No-Jitter No-Reorder
C Mean R2 0.66 0.79 0.74 0.49 0.77 0.70

(± 0.03) (± 0.01) (± 0.02) (± 0.04) (± 0.01) (± 0.03)
M Mean R2 0.71 0.75 0.81 0.63 0.81 0.77

(± 0.03) (± 0.02) (± 0.01) (± 0.03) (± 0.01) (± 0.02)

6. We also train CAPTIVATE without the alignment loss in Eq. 10, which produces a behaviour
decoding mean R2 of 0.82 on Monkey C and 0.85 on Monkey M on trials from the day 1 unseen
session. This minimal drop in decoding performance when training without an explicit alignment
loss is consistent with results from [Liu et al., 2021]. Additionally, decoding performance across
unseen sessions when training on day 0 and day 11 sessions separately is almost symmetrical (as
shown in Appendix F, Figure 12), indicating that our model can effectively capture neural variability
from unseen sessions both forwards and backwards in time. We further assess robustness by testing
CAPTIVATE on a variable number of neurons across sessions (similar to a real BCI setting) and
show good generalisation, even surpassing performance of the model trained with 55 neurons (as in
Figure 6) for some unseen sessions (see Appendix G, Figure 13).

7 Discussion
In this paper we use a self-supervised approach, CAPTIVATE, to train a model to recognise and
correct for session-to-session variability in neural recordings. We then show that the combination of
this approach with a latent variable model that identifies low-dimensional dynamics in neural activity
yields a model that is now robust variability between recordings sessions. The model is capable of
successfully predicting behaviour with high accuracy from unseen sessions, surpassing previous work
by Jude et al. [2022] when comparing against subsequent day decoding performance. Furthermore,
our approach leads to relatively high and stable behaviour decoding performance on unseen sessions
many days into the future when a sufficient number of neurons are persistent across sessions. As a
result, this method performs better for data sets with more recorded neurons (Monkey C), while for
fewer neurons the performance degrades more quickly, only producing good results for sessions close
in time to the training session (Monkey M).

With CAPTIVATE we achieve stable behaviour decoding performance for up to 8 days, which is
followed by a slow decline in performance. The decline is due to an increase in variability that could
no longer be compensated. This would require a model to correct even stronger perturbations, but
training a model this way leads to an overall decrease in performance even for short time intervals
(Figure 5). Therefore long-term stable decoding currently still requires re-training of the components
of a latent variable encoder model such that the altered neural dynamics are re-aligned with the latent
dynamics [Wen et al., 2021, Karpowicz et al., 2022, Farshchian et al., 2019]. Equally, our model
fails to successfully decode behaviour from recordings from an unseen animal (not illustrated) as this
requires a more complex mapping function between activity and latent space [Wen et al., 2021].
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A Implementation and training details
Below are implementation details for the CAPTIVATE model.

CAPTIVATE
Parameter Value Notes
Neuron Locator Network Layer Normalisation on all layers

- RNN Units 784 X 3 Stacked Gated Recurrent Unit
- Wpos Units 1024 X 3 Non-linear layer
- Wpos Dropout 0.5
- Wpos L2 Regularisation 100.0

Sequential Autoencoder Encoder
- RNN Units 784 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 0.1
- RNN L2 Recurrent Regularisation 0.1
- Wenc Units 1024 X 3 Non-linear layer
- Wenc L2 Regularisation 0.1
- Latent space dimension 64

Sequential Autoencoder Generator
- RNN Units 512 X 3 Stacked Gated Recurrent Unit
- RNN L2 Kernel Regularisation 1.0
- RNN L2 Recurrent Regularisation 1.0
- Wfac Units 512 Non-linear layer

Training
- KL divergence weighting (λkl) 0.02 to 1.0 Rising exponentially
- Batch size (Train Neuron Locator) 16
- Batch size (Train Seq. Autoencoder) 4
- Learning rate (Train Neuron Locator) 0.0001 Adam Optimizer
- Learning rate (Train Seq. Autoencoder) 0.00001 Adam Optimizer
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B Changes in recorded neural activity across sessions
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Figure 8: A, Pairwise correlations of trial-averaged activity of single neurons between two sessions.
For each neuron, the average firing rate was computed for each of the eight movement directions
(see part B for examples) at 10ms resolution. The activity for the eight movement directions was
concatenated and the Pearson correlation coefficients computed between all neuron pairs. Each plot
shows the correlation matrix for activity from session from a different day and activity from the
first day (day zero, the training data set in Figure 6). This analysis shows that some neurons from
the first session can be matched to neurons recorded at subsequent days, but the relative position of
these matched neurons in the recording tends to shift (see high off-diagonal correlations). As the
average correlations do not change systematically over this period of time (not illustrated), the gradual
changes in neuron identity is a main factor that prevents reliable decoding from unseen sessions in
previous models. B, Examples of trial-averaged firing rates of three neurons that were tracked over
all recording sessions. This matching is based on the similarity of the firing rates, experimentally it is
hard to determine if these are indeed the same neurons. In all cases, the time course of the activity
is similar and shows consistent differences between trial type (indicated by colour) across sessions.
Also note that while these neurons appear to reliably encode movement direction, the activity of a
single neuron alone is too noisy to allow for reliable direction decoding from single trials, instead a
population decoding approach is required. All data illustrated here is from Monkey C.
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C CAPTIVATE accurately maps perturbed neurons and neurons from
unseen sessions to known neurons from the Day 0 training session

CAPTIVATE is trained by mapping perturbed trials to known trials. If trials from unseen sessions are
similar to the perturbed trials then generalisation to these sessions is possible. Therefore, we aim
for the encoder network of CAPTIVATE to map perturbed trials and trials from unseen sessions to
day 0 trials. This entails that neurons across unseen sessions (even after neural drift and ensemble
change) are mapped directly to neuron positions of the day 0 session at the session. For trials of
each movement direction from unseen sessions, we expect that the trial average firing rates of these
neurons will map to the day 0 average firing rates for each neuron. As seen below for 4 neurons
across 3 sessions (2 unseen), the CAPTIVATE generator network produces trial average firing rates
matching the day 0 train session firing rates.
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Figure 9: CAPTIVATE is trained on the day 0 session of Monkey C. On the left we show real trial
averaged firing rates for each movement direction across 4 randomly selected neurons across the
day 0 session and 2 unseen sessions. On the right we show predictions from the generator network
of CAPTIVATE. If generalisation is achieved the generator should accurately map neurons across
unseen sessions to the neurons of day 0. We see that this is the case as the predicted firing rates are
closely matched in the unseen sessions to the day 0 firing rates across movement directions.
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D Neuron Locator performance over simulated neural variation
As we do not have ground truth neuron identities from unseen sessions (with respect to the day 0
train session), we simulate inter-session variability by increasing perturbation rate and testing against
CAPTIVATE trained on the day 0 session from monkey C with a total perturbation rate of 0.4 (as in
the results shown in Figure 6). We see that the neuron locator network of CAPTIVATE can predict
neuron identity with 68% accuracy even at a very high total perturbation rate of 1.0.
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Figure 10: Neuron locator network accuracy when predicting neuron identity (with respect to
unperturbed day 0 monkey C train session) as the total rate of perturbation is increased. We are
simulating neural drift and ensemble shift across sessions. As we know the ground truth neuron
identities, we can assess how well the neuron locator can predict neuron identity.
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E Training and testing CAPTIVATE with different numbers of original
neurons

Here we test the varying numbers of neurons across sessions of Monkey C when using CAPTIVATE.
We see that only 20 neurons are required across sessions for good generalisation for up to 8 days.
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Figure 11: Behaviour prediction performance when training CAPTIVATE on varying numbers of
neurons of the day 0 session recorded from Monkey C and testing on all other unseen sessions of
monkey C, using the same number of neurons as used in the training session. We also test all neuron
number variations of CAPTIVATE on a held out portion of trials from day 0. We report the mean
R2 between the inferred and true x,y positions for the entire movement trajectory of each trial. Each
day 0 train session is run 10 times with different random seeds, with error bars showing standard
deviation when applied to each unseen session.
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F Changing calibration session
Here we show that by training our model on perturbed trials we can generalise to neural drift and
recording array movement. CAPTIVATE accounts not only for session variability in the future but
also in the past.
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Figure 12: Behaviour prediction performance when separately training CAPTIVATE on the day 0
and day 11 sessions of Monkey C and testing on all other unseen sessions. We see that performance
across unseen sessions when training on these sessions is almost symmetrical, indicating that our
model can effectively capture neural variability from sessions both backwards and forwards in time.
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G Variable neuron number per session
When using an implanted recording array we may lose electrodes or neurons due to spike sorting
error over a period of time. Here we show our model can account for this variable neuron number.

Figure 13: We test CAPTIVATE with a variable number of neurons per session of recording from
Monkey C. In our original experiment we only utilise the first 55 neurons of each recording session
as this is the minimum number across all sessions. Here we use every neuron available per session
(number of neurons per session shown in Figure) and train CAPTIVATE on the day 0 session with
67 neurons. For all other sessions we add randomly generated neurons to compensate. We see that
CAPTIVATE is robust to the number of original neurons being variable across sessions. Note the
increase in generalisation performance when the model is applied to the day 8 session. This is due to
this session having a relatively high number (60) of original neurons, and is thus easier for the model
to map trials from this session to known trials from the day 0 training session than it is from other
later unseen sessions.
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H Testing trained model on known neural variability
We test the resilience of our whole model against an increasing total rate of perturbation in order to
ascertain how much variability the model can account for. For the results below, CAPTIVATE is
trained with a total perturbation rate of 0.4 on the day 0 session of Monkey C. Note that the model is
trained to map perturbed trials to original unperturbed trials.

A B C

Figure 14: We train CAPTIVATE on trials from the day 0 session of Monkey C with a 0.4 total
rate of perturbation on each trial. We then test the trained model on trials of the same session but
with increasing rates of total perturbation applied to trials. A) Mean r-squared error of movement
predicted from the latent space of the model vs. real movement trajectory of each trial. B) Mean
Poisson log-likelihood for neural activity reconstruction by the model generator of original day 0
unperturbed trials. C) Mean squared error of model predicted firing rates vs. real firing rates of
original unperturbed day 0 trials.
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I Testing trained model on known neural variability across held-out trials
We test the resilience of our whole model against an increasing total rate of perturbation in order to
ascertain how much variability the model can account for. For the results below, CAPTIVATE is
trained with a total perturbation rate of 0.4 on 70% of the trials of the day 0 session of Monkey C. We
show test performance on 30% of the trials of the day 0 session which are withheld from training.
Note that the model is trained to map perturbed trials to original unperturbed trials.

A B

C D

Figure 15: We train CAPTIVATE on 70% of the trials from the day 0 session of Monkey C with a 0.4
total rate of perturbation on each trial. We then test the trained model on the remaining 30% of trials
of the same session but with increasing rates of total perturbation applied to these held-out trials. A)
Neuron locator network accuracy when predicting neuron identity (with respect to unperturbed day
0 Monkey C train session) as the total rate of perturbation is increased. We are simulating neural
drift and ensemble shift across sessions. As we know the ground truth neuron identities, we can
assess how well the neuron locator can predict neuron identity. B) Mean r-squared error of movement
predicted from the latent space of the model vs. real movement trajectory of each trial. C) Mean
Poisson log-likelihood for neural activity reconstruction by the model generator of original day 0
unperturbed trials. D) Mean squared error of model predicted firing rates vs. real firing rates of
original unperturbed day 0 trials.
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5.3. Discussion 81

5.3 Discussion

In this chapter I introduce CAPTIVATE, a modelling approach which produces a stable

decoder of behaviour from spiking neural activity, capable of generalising for up to a

week into the future from a single training session. This is due to the model having

captured the variability of neural data between sessions during training, thus the model

is able to remain robust to these changes. I additionally discover that non-stationaries

which interrupt the continuous ordering of neurons in the monkey datasets (neuron loss

and replacement), are most prominent across recording sessions.

Although this is a vast improvement on the work in the previous chapter (SABLE),

the perturbations applied to each trial may need to be adjusted if applied to a different

species of primate or to a human. Recordings from humans for example, may present

more non-stationaries between days as more movement of the recording electrodes

from a Utah array is likely, due to a higher degree of freedom for movement of the

subject versus monkeys in a laboratory setting who are relatively fixed in place. Even

for changes to recording apparatus, adjustments to the perturbations will most likely

be required, however it is only possible to tell if this is necessary once this data is

collected.

Therefore, the cost of using CAPTIVATE is that the optimal perturbation rate and

the types of perturbations will need to be identified, but this is only a one-time cost if

subject or recording equipment is constant. These perturbations for a new subject or

recording apparatus also need to be learnable by the neuron locator RNN, and so cannot

be too complex. If optimal performance were not achieved when training the neuron

locator RNN, the ability of the encoder RNN in reversing the perturbations applied to

a trial would be severely hampered causing a deterioration in decoding performance.

Furthermore, as with SABLE, CAPTIVATE is also relatively highly parameterised.

The neuron locator RNN in particular has three stacked Gated Recurrent Units (GRUs)

in order to learn as many variations of the trials in the training session as possible.

As mentioned in the paper, the approach is only successful on the monkey with a far

higher neuron count. However, a high neuron count does not seem to be a precondition

of good decoder generalisation using CAPTIVATE (see Appendix of paper).

Similarly to SABLE, CAPTIVATE is only effective when trained on entire trials of

neural activity and cannot be used in online decoding. Although not realistic for BCI

systems in its current form, I believe the training approach used in CAPTIVATE will be

fruitful in the future. The notion of mapping synthetic variations of neural activity with
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realistic non-stationaries to ground truth activity could be utilised to stabilise online

decoders, and this endeavour is my current research focus.

5.4 Testing efficacy of CAPTIVATE when decoding across

subjects

I hypothesise that CAPTIVATE should not be able to generalise well across subjects as

the modelling approach described above aims to recognise consistent neurons across

datasets (recordings) from the same animal. With separate animals (monkeys), there

are clearly no consistent neurons across their recording sessions. However, there may

be a subset of neurons in the motor cortex with fairly similar firing patterns across the

two monkeys (C and M) when performing similar behaviours.

[76] show that animals of the same species performing the same behaviours have

behaviourally relevant neural population latent dynamics which are identifiable across

individuals, regardless of the small differences of each individual’s brain. Indeed, the

modelling approach used in CAPTIVATE (mapping perturbed trials to original trials)

creates a high level of stability across sessions of the same animal. High accuracy

cross-subject decoding should be possible using our approach if there are a sufficient

number of neurons in the motor cortex of monkey C which are recorded from which

have coinciding firing patterns across behaviours within the same centre-out reach task

as the perturbed neurons (across perturbed trials) of monkey M.

I test how well behaviour from a recording session of monkey C with many trials

(1026) can be decoded using CAPTIVATE trained with a single session of monkey

M (173 trials). As the dataset for monkey M consists of 17 neurons, we also use 17

neurons from the monkey C session. As seen in Figure 5.2, trials from monkey M

are expectedly well separated by behaviour in the latent space of CAPTIVATE. Trials

from monkey C (previously unseen) are far less disentangled in this regard and trials

pertaining to particular movement directions in the centre-out reach task do not overlap

similar trials from monkey M; this is evident in subsequent decoded behaviour (Figure

5.3). Therefore there is only a mean decoding accuracy of 0.224 (R2) of trials from

monkey C.

Although this result is expected, there is some unexpected disentanglement of trials

of monkey C in the model latent space, particularly in sets of trials from movement di-

rections which are spatially adjacent (blue, purple, black vs. light green, dark green and
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Figure 5.2: t-SNE dimensionality reduced latent space of CAPTIVATE trained on a

single session recorded from monkey M and applied to a single unseen session (1026

trials) recorded from monkey C. Dots in each latent space indicates trials from monkey

M training session while triangles indicate trials from a unseen monkey C session, with

each colour indicating a distinct movement direction in the centre-out reach task.

teal in Figure 5.2). Therefore CAPTIVATE trained on monkey M seems to be some-

what effective at generalisation to other monkeys performing the same task/behaviours,

although there appears to be minimal overlap of neurons with similar firing rates across

the two monkeys across movement directions. Nonetheless, with a rapidly increasing

number of neurons recorded in datasets in the future, this overlap becomes more likely

- here only 17 neurons are used across both monkeys therefore there is little possibility

of cross-subject neuron similarity across behaviours.
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Figure 5.3: Behaviour decoding of CAPTIVATE when applied to an unseen recording

session from monkey C after being trained on a single session from monkey M, with

each colour indicating a distinct movement direction in the centre-out reach task.



Chapter 6

Conclusion

In this thesis, I introduced three works that present approaches which aim to learn ro-

bust representations of neural populations. The first of these demonstrates that just

through performing a predictive task during maze traversal, reminiscent of experimen-

tal neuroscience, a recurrent neural network model learns a spatially modulated rep-

resentation of the maze environment. This spatial modulation is in the form of place

units. I show that utilisation of this learned representation is advantageous for learning

downstream tasks, such as navigating towards reward locations. The neural network

units then demonstrate a further multitude of place cell properties, recapitulating many

experimental results. This task-optimised model helps to understand more complex

brain function in place of other artificial hand crafted models which can be too com-

plicated.

In the second work, I introduced a robust decoder of behaviour from neural ac-

tivity, brought about through unsupervised domain adaptation. For the first time, I

showed that it is possible to train a model capable of generalising to a completely un-

seen neural recording session. No other preexisting method is capable of this stability

without some form of recalibration or retraining. This is achieved through the forma-

tion of a stable sequential autoencoder latent space, where the sequential autoencoder

is trained using an adversarial technique. Finally, in the third work, I introduced a

self-supervised model trained with a contrastive learning approach which aimed to in-

corporate real neural non-stationaries into the training data, creating a model with a

highly stable latent representation. This representation was able to remain constant

and thus generalise to neural data from recording sessions up to a week into the future,

allowing for an even longer horizon of behaviour decoding without recalibration than

the approach presented in the second work. While each of these works were presented

85
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and discussed in the context of neural populations, their principles and model archi-

tectures can have an impact on other fields of machine learning and on other areas of

Neuroscience research.

6.1 Implications of consolidated spatial representations

My work on spatial representations (chapter 3) for use with Q-learning could be useful

for future work in reinforcement learning (RL), as this form of learned representation

is useful as a succinct foundation for downstream tasks, especially when agents are

navigating in generally consistent environments but with dynamic elements or minor

changes. Future work should focus on testing the training paradigm with larger, more

complex arenas with dynamic elements to see whether such a representation allows for

efficient learning of tasks. The RNN model could be used in conjunction with a convo-

lutional neural network so that an artificial agent can receive three dimensional visual

input (instead of static wall colours). The RNN could then build a stable spatial rep-

resentation from random walks of a complex environment with dynamic 3D objects.

Additionally, when trained on a more complex environment, the model could be ex-

amined for conjunctive responses, where RNN units encode multiple spatial properties

simultaneously, such as place and distance to reward.

6.2 Implications and challenges of stable BCI decoding

As previously discussed, my works in stable predictors of behaviour from neural ac-

tivity have significant implications for brain-computer interfaces (BCIs), through the

substantial reduction in the frequency of decoder retraining required for accurate be-

haviour prediction over prior methods. Stable BCI decoders are even more imperative

in human subjects than the laboratory primates which the models in chapters 4 and 5

were tested on. Free moving human subjects tend to have a higher rate of variabil-

ity in between sessions (or even within sessions) than fixed monkeys. Using current

methods, recalibration may be required every hour or so for accurate decoding with

human subjects. My work is vital in improving this recalibration frequency. The cru-

cial capacity to learn robust yet informative latent representations of high-dimensional

time-series data is additionally applicable to fields such as natural language processing,

speech processing and financial modelling.
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Chapters 4 and 5 discuss methods (SABLE and CAPTIVATE) which are success-

fully evaluated on intracortical neural data, proving these approaches are effective

when applied to data collected from invasive recording apparatus. However, there

are very few instances of invasive recording equipment being implanted in humans, in-

stead, non-invasive techniques such as Electroencephalography (EEG) are much more

commonly used. This is due to invasive surgery and monitoring thereafter not being

required for EEG recording. Future work could focus on adapting the techniques from

chapters 4 and 5 for use with non-invasive recordings - the difficulty here would pri-

marily be that EEG data is not spike based and is highly prone to interference. As

previously stated, robust online decoding is a major unsolved problem. Generally,

there exists a 100-150ms latency between neural activity and behaviour, so decoding

does not need to be strictly real-time - yet there are currently no online approaches

which are robust to non-stationaries existing across recording sessions. Future work

utilising the domain adaptation and contrastive learning approaches from SABLE and

CAPTIVATE for stable (close to) real-time behaviour decoding without calibration

from invasive recordings may be more promising with respect to BCI applications in

humans in the short-term. In general, these works leave room for iteration with the

hope of non-invasive (or semi-invasive) real-time BCI systems which require only in-

frequent calibration.

6.3 Future potential for cross-subject decoding

In this thesis I test cross-subject decoding using SABLE in chapter 4 (Figure 7 in

paper) and using CAPTIVATE in chapter 5 (Figure 5.2). In both circumstances there is

little generalisation to the unseen animal’s neural activity, resulting in poor behaviour

decoding. This is not surprising considering that there is rarely any observed similarity

in spiking patterns across animals, despite performing the same consistent behaviours.

However, I believe that CAPTIVATE in particular would benefit in regard to gen-

eralisation from a far larger number of recorded neurons across the training and test

subjects. This would increase the likelihood of encountering neurons with overlapping

spiking patterns across subjects. This is more likely with CAPTIVATE due to the sig-

nificant perturbations we apply to training data. There is already some behaviourally

relevant disentanglement of trials with CAPTIVATE when applied to an unseen animal

when training and testing with just 17 neurons (Figure 5.2), so this is not infeasible.

With SABLE, I hypothesise that due to an increasing number of training sessions
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from the same animal being favourable for generalisation to an unseen session, training

SABLE with sessions from several animals will allow the model to capture the cross-

subject variability present, potentially allowing for generalisation to an unseen animal.

However I believe this to be implausible without a significant increase in the number

of parameters used in the SABLE model due to the severity of the variability existing

across animals.

SABLE and CAPTIVATE are designed to generalise to unseen neural data without

any fine-tuning or recalibration. Other approaches using a large amount of data from

across animals [76] show that neural population dynamics are preserved across animals

performing similar behaviour. Therefore, a few particular trials from an unseen animal

may be effective in sufficiently fine-tuning a model trained entirely on another animal;

this could be a more realistic approach to achieve cross-subject decoding. The expected

likelihood of a particular pair of neurons across animals with overlapping spiking for

all consistent behaviours is minute. Thus an ensemble modelling approach which aims

to match neurons across populations (subjects) with similar spiking for even a single

consistent behaviour per pair of neurons (if such a pair exists) may be fruitful. Through

few-shot learning (one trial for each behaviour), each model of the ensemble could

then be used for each behaviour by mapping coinciding neurons, allowing for potential

generalisation.

6.4 Nature of representational drift in neural circuits

Representational drift refers to continual changes in firing patterns in single neurons

or in a neuron population while corresponding behaviour remains unchanged [73]. Al-

though this drift plays an important role in continual learning [16], it eventually renders

neural decoders of behaviour ineffective, often in a matter of hours. In this thesis I have

introduced a model (SABLE) which has been shown to account for and overcome this

representational drift, permitting good behaviour decoding accuracy for at least for a

single future day of recording. CAPTIVATE on the other hand, is designed to account

for changes to neuron ensembles across recording sessions and does not explicitly ac-

count for this drift, although some of the perturbations utilised may inherently model

drift, improving cross-session generalisation.

Although stable behaviour decoding is a central consideration for modelling rep-

resentational drift, there are many noteworthy applications for the investigation of the

nature of this drift. Although drift may appear random, by modelling this drift in
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whole neuron populations, we could identify the mechanisms by which learning and

memory encoding takes place, affirming the need for drift in these large distributed

systems [73]. Furthermore, the purpose of high dimensional neural data pertaining to

low dimensional behaviours [23] could be better understood. Currently, redundancy is

thought to be the central reasoning for this high dimensionality, making neural popu-

lations robust to failure in individual neurons and to external factors. However, there

is a high energy cost to maintaining many more neurons than is realistically required

for each possible behaviour. Therefore modelling neural drift in populations can aid in

concretely understanding this phenomenon.

In chapter 3 I look at representations of space, modelled by place units. Within

areas of the brain such as the hippocampus, the firing patterns of these place cells need

to be relatively fixed in order for efficient navigation of a previously explored environ-

ment. However, due to representational drift, these place cells will fire differently over

time. Therefore, there must be a mechanism to correct for this drift so that a mammal

can navigate in a learned environment in the future. It is thought that internal error

signals could detect and correct drift [73], such that plasticity in other regions of the

hippocampus be used to compensate for changes in the relevant place cells. By inves-

tigating drift across multiple regions of the hippocampus, this mechanism for stable

spatial reasoning can be identified.

6.5 Final Statement

I would like to thank the reader for reading my work; I hope my ideas put forward in

this thesis are useful to your future research efforts and for the building of effective

BCI systems.
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