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Abstract
This paper proposes for the first time the theoretical requirements that a fractional-order
bilinear system with conformable derivative has to fulfil in order to satisfy different input-
to-state stability (ISS) properties. Variants of ISS, namely ISS itself, integral ISS, exponential
integral ISS, small-gain ISS, and strong integral ISS for the general class of conformable
fractional-order bilinear systems are investigated providing a set of necessary and sufficient
conditions for their existence and then compared. Finally, the correctness of the obtained
theoretical results is verified by numerical example.

1 INTRODUCTION

Over the past centuries, the fractional calculus, dealing with
differential equations of fractional order, has attracted a major
interest in various fields of science and engineering [4, 15, 21,
24, 25, 32, 36, 50]. During recent decades, many researchers
from the control community have been actively exploring the
possibility of extension/adaptation of various control methods
from the integer setting into the fractional one. For exam-
ple, combination of Lyapunov theory and the Mittag–Leffler
function allowed to stabilise fractional-order nonlinear sys-
tems [32]. Several attempts have been also made to generalise
the Barbalat-type lemmas in order to analyse the stability of
time-varying fractional-order nonlinear systems where it is very
difficult to find Lyapunov functions with negative definite
derivative [13, 43]. Furthermore, in other research works, several
nonlinear control methods have been extended into the frac-
tional dynamic systems such as sliding mode control [34, 47],
back-stepping control [38], fuzzy control [20], adaptive control
[48].

In the available literature, there exist numerous definitions
of non-integer order derivatives, among which the Riemann–
Liouville (RL) and Caputo are the most frequently used
ones defined via fractional integral [32]. Recently, a simple
well-behaved fractional-order derivative so-called conformable
derivative which is a natural extension of the usual derivative,
was proposed in ref. [19]. Later, this definition was extended
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to higher orders and a set of interesting properties such as
fractional Laplace transform, fractional exponential function,
fractional power-series, and fractional chain rule were devel-
oped in ref. [1], and the related calculus of variations was also
established in ref. [22].

There are weaknesses associated with RL and Caputo def-
initions that have convinced researchers from different areas,
particularly system and control, to adopt conformable derivative
as a possible alternative tool [19]. For example,

1) The derivative of a constant function is not zero with the RL
derivative [19],

2) The fractional product rule and fractional chain rule are not
satisfied either for RL or Caputo derivatives [19],

3) The monotonicity of a function cannot be determined from
the sign of its fractional derivative [44].

In addition, since the fractional systems with nonlocal deriva-
tives are infinite-dimensional and their future behavior depends
on the entire past history, this gives rise to the problems of
fractional systems initialisation [36] and, therefore, using the
concept of pseudo-state space instead of state space in control
systems [35]. Such limitations, indeed, confine the natural gen-
eralisation/adaptation of some important notions and methods
from the control theory of integer systems into fractional
setting. In other words, the introduction of fractional-order
calculus to systems and control at the level of the traditional
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integer-order calculus is still not an easy task such derivative
definitions [27]. For instance, the well-known exact feedback
linearisation method [16] cannot be applied to fractional non-
linear systems defined with RL and Caputo derivatives, since
the fractional chain rule is not satisfied by these operators [18].
Likewise, the important concepts of the geometric control can-
not be naturally generalised into fractional setting defined with
nonlocal derivatives as the system-theoretic interpretation of
the fractional system through the associated pseudo-state tra-
jectories is significantly different from the integer case due to
the nonlocal effect of Caputo-like derivatives and the associated
initialisation problems [31].

It is important to mention that the conformable derivative
tool allows to overcome some technical problems in investigat-
ing fractional-order systems. During recent years, conformable
derivative has become one of the most hot topics and several
interesting results have been reported in the area of systems
and control. For example, the exact linearisation of nonlinear
fractional-order systems by state feedback has been addressed in
ref. [18]. A version of Barbalat lemma which cannot be adopted
by Caputo derivative was developed for conformable fractional-
order systems [43]. In ref. [17] a state estimation framework for
fractional-order systems under the conformable derivative was
presented to address fault detection problem. The conformable
derivative has been also interestingly employed to solve frac-
tional infinite-horizon optimal control problems in stabilising
and chaos control of fractional-order systems [50]. In ref. [27],
a framework in terms of behavioral system theory has been
presented to develop a general modelling specification as well
as stability conditions for conformable linear systems with a
fractional differential order, and the sufficient conditions and
tests for stability were provided based on linear matrix inequal-
ities. Furthermore, several well-behaved modelling and control
methods have been newly developed under conformable deriva-
tive including conformable fractional-order neural sliding-mode
control [34], conformable fractional optimal control [22], robust
∞ control scheme for nonlinear conformable fractional-
order systems [26, 28] and conformable fractional modeling
and control of complex biological system [4, 15], to mention
a few.

The notion of input-to-state stability, which reflects the
robustness of a system against both initial states and external
inputs, has been now recognised as a central concept in the
theory of nonlinear control systems [42]. The ISS framework
was originally introduced in ref. [39], merged the Lyapunov
and input-output stability theories and has become the corner-
stone of the stability theory for control systems [24, 28, 30, 41,
46]. Indeed, the fractional-order systems are an emerging field
of control engineering for which the characterisation of ISS
property and its related variants has to be carefully addressed.
There are a few research contributions which are dedicated to
extend the notion of ISS to the fractional-order field. In ref. [11],
the finite-time input-to-state stable theory of fractional-order
dynamical system was proposed. Then, based on this theory, a
linear feedback controller is derived to achieve synchronisation
of smooth chaotic fractional-order systems with indeterminate
parameters and external stochastic noise in finite time. Two

Lyapunov theorems for the input-to-state practical stability of
fractional-order systems were presented in ref. [8] and several
adaptive fault estimation and fault accommodation methods
for fractional-order non-linear, switched, and interconnected
systems under Caputo derivative are proposed. Following this
work, the input-to-state practical stability of fractional-order
systems was further extended in ref. [9] and the notion of
Mittag–Leffler ISS Lyapunov function was proposed in order
to design an event-triggered adaptive neural networks controller
for fractional systems under Caputo derivative. Moreover, the
Lyapunov characterisation of Mittag–Leffler input-to-state sta-
bility of the fractional differential equations with exogenous
inputs was presented in ref. [37] and employed to investigate
the Mittag–Leffler input-to-state stability of a particular class of
fractional neutral networks. However, to our best knowledge, all
of these works were merely limited to extension of ISS notion to
fractional systems and no research study has been dedicated to
adapt the other useful variants of ISS namely integral ISS [40],
exponential integral ISS, small-gain ISS [10], and strong integral
ISS [10] into fractional settings.

Motivated by the above discussions, the focus of this paper
is on the development and characterisation of the theoretic
requirements that conformable fractional-order nonlinear sys-
tems, particularly the conformable fractional bilinear systems,
have to satisfy in order to fulfil various ISS properties. That is,
several important variants of ISS including integral ISS, expo-
nential integral ISS, small-gain ISS, and strong integral ISS,
which have been widely accepted in integer-order systems, are
extended into (conformable) fractional-order systems and a set
of sufficient and necessary conditions for ISS-type stability anal-
ysis of conformable fractional nonlinear systems (in particular,
conformable fractional bilinear systems) have been established
for the first time.

The remainder of this paper is organised as follows. We start
by providing some necessary definitions and useful lemmas in
Section 2. The main results are given in Section 3. And finally, an
example is presented in Section 4 to show the correctness of the
achieved theoretical findings. Concluding remarks are brought
up in Section 5. In order to maintain the readability of the
presentation, some minor proofs are sketched in the appendices.

1.1 Notation

We denote ℝ≥a = {x ∈ ℝ ∶ x ≥ a}, where ℝ is the set of
real numbers. A class  function is a function 𝜂 ∶ ℝ≥0 →
ℝ≥0, which is continuous and satisfies 𝜂(0) = 0, 𝜂(s) > 0 for
all s ≠ 0. A class  function is a function 𝜂 ∈  , which is
strictly increasing. A class ∞ function is a function 𝜂 ∈
, which is also unbounded. A class  function is a func-
tion 𝜂 ∶ ℝ≥0 → ℝ≥0, which is continuous, strictly decreasing,
and satisfies 𝜂(s) → 0 as s → ∞, and a class  function
is a continuous function 𝛽 ∶ ℝ≥0 × ℝ≥0 → ℝ≥0 such that
𝛽(⋅, t − t0) ∈  for each fixed t ≥ t0 and 𝛽(s, ⋅) ∈ , for each
fixed s ≥ 0. We denote 𝜂1(𝜂2(⋅)) as the composition of two
class  (respectively, ∞) functions 𝜂1(⋅) and 𝜂2(⋅) which is
also  (respectively, ∞). Moreover, 𝜂−1(⋅) denotes as the
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inverse of function 𝜂(.). If 𝜂(.) is a class  (respectively, ∞)
function, then 𝜂−1(⋅) is also a class  (respectively, ∞) func-
tion. The function W (⋅) is said to be proper (i.e. radially
unbounded), if W (‖s‖) → ∞ as ‖s‖ → ∞. We denote 𝒰m

as the set of all measurable piecewise continuous functions
u(t ) from ℝ≥t0

to ℝm . If z ∶  → ℝq is a measurable func-
tion defined on [t0 , t ], then ‖z (t )[t0,t ]‖∞

denotes the (essential)

supremum of z (t ) and has the following definition: let 𝜇
be the Lebesgue measure, thus, ess sup{‖z (t )‖ ∶ t ∈ [t0, t ]} ∶=
inf{a ∈ ℝ ∶ 𝜇{t ∈ [t0, t ] ∶ z (t ) > a} = 0}. When t = ∞, we
simplify the notation by ‖z‖

∞
. For x ∈ ℝn, its transpose

is denoted by xT and the Euclidean norm of x is defined

by ‖x‖ ∶=
√

x2
1 + x2

2 + ⋯ + x2
n . For a given matrix A ∈

ℂn×n, where ℂ is the set of complex numbers, 𝜆min(A) and
𝜆max(A) denote the minimum and maximum eigenvalues of
A, respectively. The spectrum of A is defined as Spec(A) ∶=
{𝜆 ∣ 𝜆 is the eigenvalue of A}. We also denote by Arg(z ), the
principal argument of z ∈ ℂ, so that Arg(z ) ∈ (−𝜋, 𝜋].

2 PRELIMINARIES

The definition of the fractional conformable derivative and
related useful definitions and lemmas are introduced in follow-
ing section.

2.1 Conformable fractional derivative and
its properties

Definition 1. [1] The (left) conformable fractional derivative of
order of 𝛼 ∈ (0, 1] starting from t0 of a function f ∶ ℝ≥t0

→ ℝ
is defined by

T 𝛼
t0

f (t ) = lim
𝜀→0

f
(

t + 𝜀(t − t0)1−𝛼
)

− f (t )

𝜀
, ∀t > t0. (1)

If T 𝛼
t0

f (t ) exists ∀t ∈ (t0, t1) for some t1 > t0 and lim
t→t0

+
T 𝛼

t0
f (t )

exists, then by definition

T 𝛼
t0

f (t0) = lim
t→t0

+
T 𝛼

t0
f (t ). (2)

When t0 = 0, we write T 𝛼 in order to simplify the notation.
It is worth noting that for 𝛼 equal to 1, the conformable frac-

tional derivative (1) is completely consistent with the classical
integer derivative. Moreover, although the definition (1) can be
extended for higher orders (𝛼 > 1) [1], throughout this paper,
we only consider 𝛼 ∈ (0, 1).

Definition 2. [1] The conformable fractional integral of order
𝛼 ∈ (0, 1] of a function f ∶ ℝ≥t0

→ ℝ starting from t0 is
defined by

I 𝛼
t0

f (t ) = ∫
t

t0

(𝜏 − t0)𝛼−1
f (𝜏)d𝜏. (3)

Lemma 1. [1] Assume that f ∶ ℝ≥t0
→ ℝ is a continuous function

and 𝛼 ∈ (0, 1]. Then, for all t > t0 we have

T 𝛼
t0

I 𝛼
t0

f (t ) = f (t ). (4)

Lemma 2. [1] Let f ∶ ℝ≥t0
→ ℝ be differentiable function and 𝛼 ∈

(0, 1]. Then, for all t > t0 we have

I 𝛼
t0

T 𝛼
t0

f (t ) = f (t ) − f (t0). (5)

Lemma 3. [43] Let f ∶ ℝ≥t0
→ ℝ be a continuous function such

that T 𝛼
t0

f (t ) exists on (t0,∞), if T 𝛼
t0

f (t ) ≥ 0 (respectively T 𝛼
t0

f (t ) ≤
0), for all t > t0, then function f is increasing (respectively decreasing).

Lemma 4. [1] (Fractional chain rule). Assume f , g ∶ ℝ>t0
→ ℝ be

(left) 𝛼−differentiable functions, where 𝛼 ∈ (0, 1]. Let h(t ) = f (g(t )).
Then, h(t ) is (left) 𝛼−differentiable and for all t with t ≠ t0 and g(t ) ≠
0 we have

T 𝛼
t0

h(t ) = T 𝛼 f (g(t )) ⋅ T 𝛼
t0

g(t ) ⋅ g(t )𝛼−1
. (6)

If t = t0, we have

T 𝛼
t0

h(t ) = lim
t→t0

+
T 𝛼 f (g(t )) ⋅ T 𝛼

t0
g(t ) ⋅ g(t )𝛼−1

. (7)

The following lemma establishes a multivariable chain rule in
(conformable) fractional setting.

Lemma 5. (Fractional multivariable chain rule) Assume

f ∶ ℝn
>t0

→ ℝ and g ∶ ℝ>t0
→ ℝn be (left) 𝛼−differentiable

and g1−𝛼 ∈ ℝn×n is a diagonal matrix defined as g1−𝛼 =
diag(g1(t )1−𝛼, g2(t )1−𝛼, … , gn(t )1−𝛼 ), where 𝛼 ∈ (0, 1]. Let

h(t ) = f (g(t )), then h(t ) is (left) 𝛼−differentiable for all t with t ≠ t0
and det[g1−𝛼] ≠ 0 we have

T 𝛼
t0

h(t ) = ∇𝛼 f (g) ⋅
(
g1−𝛼

)−1
⋅ T 𝛼

t0
g(t ), (8)

and, if t = t0 we have

T 𝛼
t0

h(t ) = lim
t→t0

+
∇𝛼 f (g)⋅

(
g1−𝛼

)−1
⋅ T 𝛼

t0
g(t ), (9)

where ∇𝛼 f (g) denotes 𝛼−Gradient of f with respect to g and is defined

as follows.

∇𝛼 f (g) =
𝜕𝛼 f (g)

𝜕g𝛼
=

𝜕 f (g)

𝜕g
⋅ g1−𝛼. (10)

Proof. The proof follows straightforward from Lemma 4.

The fractional fundamental exponential function plays a
critical role in expressing the solution of (conformable)
fractional-order systems and is defined as follows:
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1502 NOZARI ET AL.

Definition 3. [1] The fractional exponential function is defined
by

E𝛼 (c, t − t0) = exp
(

c

𝛼
(t − t0)𝛼

)
, ∀t ≥ t0 (11)

where 𝛼 ∈ (0, 1] and c ∈ ℝ. If c = 1, we simply write E𝛼 (t − t0)
[1] .

Lemma 6. [1] Consider the fractional conformable exponential function

E𝛼 (𝜔 , t − t0).Then, it has the following convergent fractional power-series

expansion

E𝛼 (c , t − t0) =

∞∑
k=0

c𝛼 (t − t0)𝛼

𝛼kk!
, ∀t ≥ t0 (12)

where 𝛼 ∈ (0, 1] and c ∈ ℝ.

2.2 Conformable fractional bilinear system

Consider the following conformable fractional−order nonlinear
system with exogenous inputs:{

T 𝛼
t0

x(t ) = f (x(t ), u(t )), ∀t > t0,

x(t0) = x0,
(13)

(seeking readability, hereafter, the arguments t will be usu-
ally omitted) where T 𝛼

t0
is the conformable derivative of order

𝛼 ∈ (0, 1], x ∈ ℝn and u ∈ 𝒰m are the state and control input
of the system. Moreover, f ∶ ℝn × ℝm ⟶ ℝn is continu-
ously differentiable function satisfying f (0, 0) = 0. The general
fractional-order conformable bilinearised/bilinear system is
defined by the following equation

⎧⎪⎨⎪⎩
T 𝛼

t0
x(t ) = Ax(t ) +

m∑
i=1

ui (t )Ni x(t ) + Bu(t ), ∀t > t0,

x(t0) = x0,

(14)

where x ∈ ℝn and u ∈ 𝒰m (ui are the components of the vector
u) are the state and control input of the system, and A , Ni ∈
ℝn×n, B ∈ ℝn×m are the system constant matrices.

The conformable fractional bilinear systems (CFBS) given by
Equation (14) so referred to as non-autonomous bilinear system
inspired by ref. [12]. The simplest case of Equation (14) is a frac-
tional bilinear system with the assumption that there is only one
input and that therefore there also exist just one N matrix .The
focus of this paper is to study various notions of input-to-state
stability for fractional-order bilinear systems of the form (14). It
is worth noting that the bilinear systems are one of the simplest
class of nonlinear control systems that include a linear part as
well as nonlinear perturbations characterising as multiplication
of input and state due to, e.g. a linear state feedback or a multi-
plicative perturbation [12]. Nevertheless, they cover wider range
of applications in engineering and science including chemical

engineering and biology [28], particularly, in tumour-growth
modelling [4] and cancer chemotherapy [12]. Furthermore, it is
common to linearise the nonlinear systems over an operational
steady-state. Such linearised models, however, are not capable
of covering the complete range of operation and bilinearisa-
tion could be thus an alternative approach to obtain a better
approximation of system nonlinearities [12].

Throughout the paper, it is assumed that given any input
signal u ∈ 𝒰m and x0 ∈ ℝn, the systems (13) and (14) have a
solution. Some sufficient conditions for the existence of solu-
tions for fractional-order conformable differential equations are
given in refs. [1, 5–7 14, 33 49].

3 MAIN RESULTS

3.1 Stability properties

In this subsection, we provide some definitions for develop-
ment of input-to-state stability [39] and its variants including
integral ISS [40], exponential integral ISS, small-gain ISS [10],
and strong integral ISS [10] in conformable fractional setting
with emphasis on conformable fractional bilinear systems.

Definition 4. The conformable fractional-order system (13) in
the absence of inputs is said to be

i. Globally asymptotically stable (GAS), if there exists function
𝛽 ∈  such that, for all x0 ∈ ℝn, its solution satisfies

‖x(t )‖ ≤ 𝛽(‖x0‖, t − t0), ∀t ≥ t0. (15)

ii. Fractional exponentially stable (FES), if there exists function
𝜂 ∈ ∞ such that, for all x0 ∈ ℝn, its solution satisfies

‖x(t )‖ ≤ 𝜂(‖x0‖)E𝛼 (𝜔, t − t0), ∀t ≥ t0. (16)

for some constant 𝜔 < 0.

Definition 5. The conformable fractional-order system (13) is
called

i. Input-to-State Stable (ISS), if there exist functions 𝛽 ∈ 
(transient term) and 𝜂 ∈ ∞ (asymptotic term) such that,
for all x0 ∈ ℝn and u(t ) ∈ 𝒰m , its solution satisfies

‖x(t )‖ ≤ 𝛽(‖x0‖, t − t0) + 𝜂
(‖‖‖u(t )[t0,t ]

‖‖‖∞

)
, ∀t ≥ t0.

(17)

ii. Integral input-to-state stable (iISS), if there exist functions 𝛽 ∈
 and 𝜂1, 𝜂2 ∈  such that, for all x0 ∈ ℝn and u(t ) ∈
𝒰m , its solution satisfies

‖x(t )‖ ≤ 𝛽(‖x0‖, t − t0)

+𝜂1

(
∫

t

t0

(𝜏 − t0)𝛼−1
𝜂2(‖u(𝜏)‖)d𝜏

)
, ∀t ≥ t0. (18)
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NOZARI ET AL. 1503

iii. Small-gain input-to-state stable (sg-ISS), if there exist an R > 0
(input threshold), 𝛽 ∈ , 𝜂 ∈ ∞ such that, for all x0 ∈
ℝn and u ∈ 𝒰m , its solution satisfies

‖‖‖u(t )[t0,t ]
‖‖‖∞

≤ R ⇒ ‖x(t )‖ ≤ 𝛽(‖x0‖, t − t0)

+𝜂
(‖‖‖u(t )[t0,t ]

‖‖‖∞

)
, ∀t ≥ t0. (19)

iv. strong integral input-to-state stable (strong-iISS), if it is sg-ISS and
strong-iISS.

Remark 1. By the virtue of the ISS conceptual framework
(17), we have the following consequences: if the input vanishes,
all solutions of Equation (13) converge to zero (convergent-

input convergent-state stable (CICS) property [39]). If all inputs are
bounded, all of the solutions of Equation (13) are also bounded
(bounded-input bounded-state stable (BIBS) property [39]). Besides, if
system is ISS, then the origin of unperturbed dynamics is said to
be GAS defined by Equation (15).

Lemma 7. Consider the conformable fractional-order system (13). If the

system is strong-iISS, then it is also CICS and BIBS.

Proof. This Lemma is a consequence of Definition 5 (iv).
Assume that system (13) is strongly iISS. Thus, it implies that
Equations (18) and (19) are fulfilled. Clearly, Equation (18) sug-
gests that for any u(t ) ∈ 𝒰m there exist solutions to Equation
(13). The CICS property is also guaranteed by Equation (18) as
a consequence of strong-iISS property. Moreover, we can see
from Equation (19) that, the BIBS property is guaranteed for
{u ∈ 𝒰m ∶ ‖u[t0,t ]‖∞

≤ R} in that all the trajectories approach
ball of radius related to the magnitude of input. □

Definition 6. The conformable fractional-order system (13) is
called

i. Fractional exponential input-to-state stable (fe-ISS), if there exist
functions 𝜂1, 𝜂 ∈ ∞ such that, for all x0 ∈ ℝn and u ∈
𝒰m , its solution satisfies

‖x(t )‖ ≤ 𝜂(‖x0‖)E𝛼 (𝜔, t − t0)

+𝜂1

(‖‖‖u(t )[t0,t ]
‖‖‖∞

)
, ∀t ≥ t0. (20)

ii. Fractional exponential integral input-to-state stable (fe-iISS), if there
exist functions 𝜂1, 𝜂 ∈ ∞ and 𝜂2 ∈  such that, for all
x0 ∈ ℝn and u ∈ 𝒰m , its solution satisfies

𝜂1(‖x(t )‖) ≤ 𝜂(‖x0‖)E𝛼 (𝜔, t − t0)

+ ∫
t

t0

(𝜏 − t0)𝛼−1
𝜂2(‖u(𝜏)‖)d𝜏, ∀t ≥ t0, (21)

for some constant 𝜔 < 0.

It is important to mention that, the terms 𝜂(‖x0‖)E𝛼 (𝜔, t −
t0) and 𝜂−1

1 (𝜂(‖x0‖)E𝛼 (𝜔, t − t0)) in Equations (20) and (21)
fulfil the requirements of a -function. However, Definition 6
establishes stronger ISS and iISS notions compared to Defini-
tion 5 (i) and (ii) for system (13), in that, the convergence of
solutions in Equation (13) is necessarily bounded by fractional
exponential decay.

In many circumstances, it is not straightforward to verify that
a fractional-order system (13) satisfies the requirements of the
ISS concepts given by the aforementioned conditions as it may
be difficult to obtain an explicit solution of the system. Alterna-
tively, we provide Lyapunov-type characterisation of ISS-type
properties for conformable fractional systems (13) which is
indeed an extension of the Lyapunov stability from the usual
sense [16].

Definition 7. A continuous function V ∶ ℝn → ℝ that has
conformable fractional derivative of order 𝛼 for all t > t0 is
called an ISS–Lyapunov function for system (13), if there exist
𝜂

1
, 𝜂1 ∈ ∞ and 𝜒, 𝜂1 ∈  such that

𝜂
1
(‖x‖) ≤ V (x ) ≤ 𝜂1(‖x‖), (22)

‖x‖ ≥ 𝜒(‖u‖) ⇒ ∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −𝜂1(‖x‖),

(23)

for all t > t0, x ∈ ℝn, and u ∈ 𝒰m .

Remark 2. It is noted that, the estimate Equation (22) quan-
tifies the requirements that V has to be a class -function
and proper.

Definition 8. A continuous function V ∶ ℝn → ℝ that has
conformable fractional derivative of order 𝛼 for all t > t0 is
called an iISS–Lyapunov function for system (13), if there exist
𝜂

1
, 𝜂1 ∈ ∞ such that

𝜂
1
(‖x‖) ≤ V (x ) ≤ 𝜂1(‖x‖), (24)

holds, and there exists 𝜂1 ∈  and 𝜎 ∈  so that following
dissipation inequality holds

∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −𝜂1(‖x‖) + 𝜎(‖u‖), (25)

for all t > t0, x ∈ ℝn, and u ∈ 𝒰m .

The following lemma describes the notion of ISS–Lyapunov
function for fractional-order system (13) in the dissipation-like
characterisation which will be shown that, it is equivalent to con-
cept of ISS–Lyapunov function represented by implication in
Definition 7.
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1504 NOZARI ET AL.

Lemma 8. A continuous function V ∶ ℝn → ℝ that has conformable

fractional derivative of order 𝛼 for all t > t0 is called an ISS-Lyapunov

function for system (13) if and only if there exist 𝜂
1
, 𝜂1, 𝜂1 ∈ ∞ such

that

𝜂
1
(‖x‖) ≤ V (x ) ≤ 𝜂1(‖x‖), (26)

holds, and there exists also 𝜎 ∈  so that the following dissipation

inequality holds

∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −𝜂1(‖x‖) + 𝜎(‖u‖), (27)

for all t > t0, x ∈ ℝn, and u ∈ 𝒰m.

Proof. See Appendix A. □

Remark 3. There exists a slight difference between Lemma 8 and
the dissipation characterisation for iISS given in Definition 8 as
a result of unlike definitions given for 𝜂1(.) where in Lemma (8)
it is required to be unbounded.

3.2 Supportive lemmas

In this subsection, we established the following important
lemmas needed during the later ISS-type stability proofs of
conformable fractional order bilinear systems.

We start with the following lemma where we develop
a novel useful fractional comparison lemma [23] by which
the asymptotic convergence of the trajectories of con-
formable fractional-order nonlinear system (13) can be
established.

Lemma 9. Let 𝛼 ∈ (0, 1]. Given any function 𝜑(⋅) ∈  , there exists

a function 𝛽𝜑(⋅) ∈  with the following property: Assume that y(⋅)
be a piecewise continuously 𝛼-differentiable function for all t > t0 with

y(t ) ≥ 0, and also y(⋅) fulfils the following conformable fractional-order

differential inequality

T 𝛼
t0

y(t ) ≤ −𝜑(y(t )), y(t0) = y0 ≥ 0, ∀t > t0, (28)

then, the following estimate holds

y(t ) ≤ 𝛽𝜑(y0, t ), ∀t > t0. (29)

Proof. See Appendix B. □

By the next lemma, a fractional version of Gronwall–
Bellman-type inequality [3] is developed for conformable
fractional integrals which will be useful in subsequent stability
proofs.

Lemma 10. (Fractional Gronwall–Bellman-type Lemma) Let

𝛼 ∈ (0, 1], r (t ) and h(t ) be continuous, nonnegative functions defined for

a ≤ t ≤ b, and c (t ) be continuous, positive and nondecreasing function

defined for a ≤ t ≤ b such that

r (t ) ≤ c (t ) + ∫
t

a

(𝜏 − a)𝛼−1
h(𝜏) r (𝜏)d𝜏, a ≤ t ≤ b. (30)

Then, for all for a ≤ t ≤ b we have

r (t ) ≤ c (t ) exp

(
∫

t

a

(𝜏 − a)𝛼−1
h(𝜏)d𝜏

)
. (31)

Proof. See Appendix C. □

In the following lemma, useful conditions for bounding the
norm of fractional exponential function are established which
will be used for later stability proofs.

Lemma 11. Let 𝛼 ∈ (0, 1] and A ∈ ℂn×n. For any 𝜔 >
max{Re(𝜆) ∶ 𝜆 ∈ Spec (A)},

(1) there exists a constant 𝜓 ≥ 1 such that ‖E𝛼 (A, t − t0)‖ ≤
𝜓E𝛼 (𝜔, t − t0) for all t ≥ t0, and

(2) if the matrix A such that |Spec (A)| ≠ 0, |Arg(Spec(A))| >⌈𝛼⌉𝜋

2
does not hold , then ‖E𝛼 (A, t − t0)‖ does not converge

to zero as t → +∞.

Proof. See Appendix D. □

In the following, we establish a matrix lemma in conformable
fractional setting that will be employed in the Lyapunov-based
stability proofs in next subsection.

Lemma 12. Let 𝛼 ∈ (0, 1] and A ∈ ℝn×n. If matrix A such that|Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
, then for any Q ∈ ℝn×n

there exists exactly one solution P ∈ ℝn×n of equation AT P + PA =
Q, and if Q < 0 then P > 0.

Proof. See Appendix E. □

3.3 ISS-type stability of conformable
fractional bilinear systems

In what follows, we provide some sufficient and necessary con-
ditions for ISS, iISS, sg-ISS, strong-iISS, fe-ISS, and fe-iISS
properties in regards to systems (13) with the emphasis on
system (14).

We start by showing that the conformable fractional bilinear
systems are not, in general, ISS through a counter example.

Remark 4. (CFBS are neither, in general, ISS nor fe-ISS). Con-
sider one-dimensional CFBS given by T 𝛼

t0
x = Ax + uNx with|Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
for any 𝛼 ∈ (0, 1]. In

order to show that the CFBS are not ISS, we give the follow-
ing counter example: let choose A = −1, N=1, and a constant
input u = u∞ ≡ 2, then, we have T 𝛼

t0
x = (A + u∞N )x whose
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NOZARI ET AL. 1505

unique solution is given by x(t ) = x0E𝛼 (A + u∞N , t − t0)
[1]. Since |Arg(Spec(A + u∞N ))| < ⌈𝛼⌉𝜋

2
for any 0 < 𝛼 ≤

1, it thus gives unbounded trajectories for x0 = 1 by using
Lemma11. Therefore, we deduce that CFBS given by Equation
(14) is not, in general, ISS and not fe-ISS either.

However, we are interested to show that whether the com-
fortable fractional bilinear system is iISS or not. In the sequel,
we will establish sufficient and necessary conditions to show
that all conformable fractional-order bilinear systems of the
form Equation (14) are iISS.

Proposition 1. (iISStability of CFBS) Let 𝛼 ∈ (0, 1]. The

fractional-order bilinear system (14) is iISS if and only if the matrix A

such that |Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
for every t > t0. In

this case, the property (18) is fulfilled by

𝛽(s, t − t0) = 𝜂′
1(E𝛼 (𝜔, t − t0)𝜓s), 𝜂1(s) = 𝜂′

2(s), 𝜂2(s) = K 𝜓s,

where 𝜂′
1, 𝜂

′
2 are ∞ functions defined as 𝜂′

1(r ) =
1

2
r2 +

r , 𝜂′
2(r ) =

1

2
(exp(r ) − 1)2 + b r exp(r ) for all b > 0, and 𝜓 ≥ 1,

𝜔 ∈  such that ‖E𝛼 (A, t − t0)‖ ≤ 𝜓E𝛼 (𝜔, t − t0) for all t ≥ t0,

and K > 0 such that ‖ m∑
i=1

Ni x(𝜏)ui (𝜏)‖ ≤ K‖u(t )‖‖x(t )‖.

Proof. See Appendix F. □

The following theorem establishes the relationship between
the ISS–Lyapunov function and the ISS property of Equation
(13) in fractional setting.

Theorem 1. The conformable fractional-order system (13) is said to be

ISS, if it admits an ISS–Lyapunov function.

Proof. The proof is inspired by ref. [39]. Let 𝜂
1
, 𝜂1, 𝜂1, 𝜎 be as in

Definition 7 and fix a point x0 ∈ ℝn and non-zero input func-

tion u ∈ 𝒰m such that M = 𝜂1
−1

(𝜒(‖u(t )‖)). By the inequality
on the right-hand side of Equation (22), we introduce the set
M ∶= {x ∈ ℝn ∶ V (x ) ≤ M }.

Claim 1. If there exists t0 ≥ 0 such that x(t0) ∈ M , then x(t ) ∈
M for all t > t0.

Proof of Claim 1. By contradiction, there exist a sufficiently
small 𝜀 > 0 and some t ≥ t0 such that V (x ) > M + 𝜀. Let 𝜏 ∶=
inf{t ≥ t0 ∶ V (x(t )) ≥ M + 𝜀, for all fixed 𝜀 > 0}. It then fol-
lows that ‖x(𝜏)‖ ≥ 𝜒‖u(t )‖ from which the right-hand side of
Equation (23) holds for every t near 𝜏

T 𝛼
t0

V (x ) = ∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −𝜂1(‖x(t )‖) < 0.

Using Lemma 3, we have V (x(t )) ≥ V (x(𝜏)) for some t ∈
(t0, 𝜏). This contradicts the minimality of 𝜏, thus x(t ) lies in M

for all t ≥ t0 as claimed. □

Claim 2. For any x0 and any bounded input u ∈ 𝒰m , there exists
a time t1 > 0 for state trajectory x(t ) such that

( 1) the state trajectory of the system lies in M for all t ≥ t1,
and

( 2) ‖x(t )‖ ≤ 𝛽(‖x0‖, t − t0) for all t < t1.

Proof of Claim 2. Let t1 = inf{t ≥ 0 ∶ x(t ) ∈ M } ≤ ∞. Then,
the previous argument shows that V (x ) ≤ M for all t ≥ t1
This in turn implies that ‖x(t )‖ ≤ 𝜂

1
−1(V (x )) ≤ 𝜂

1
−1(M ) =

𝜂
1
−1(𝜂1(𝜒(‖u‖))) for all t ≥ t1. Setting 𝜂(r ) = 𝜂

1
−1(𝜂1(𝜒(r )))

which is a of class ∞, we see that, x(t ) satisfies

‖x(t )‖ ≤ 𝜂(‖u‖), (32)

for all t ≥ t1, as claimed in ( 1).
We observe that for all t < t1, x(t ) does not belong to M

by which it follows that V (x ) > M , in turn, ‖x(t )‖ > 𝜒‖u(t )‖.
Consequently, by Equation (23)

T 𝛼
t0

V (x ) = ∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −𝜂1(‖x‖)

≤ −𝜂1

(
𝜂1

−1
(V (x ))

)
< 0.

This inequality ensures that the solutions are in fact defined
for all t > t0 ≥ 0. Further, the function V (t ) = V (x(t )) is such
that

T 𝛼
t0

V (t ) ≤ −𝜂1

(
𝜂1

−1
(V (t ))

)def
= − �̃�(V (t )),

for all t > t0. Now, we have the conformable fractional
differential inequality of the form Equation (28). By
Lemma 9, we observe that, there exists some 𝛽�̃� ∈ 
which merely depends on 𝜂1, 𝜂1 such that V (x(t )) ≤
𝛽�̃�(V (x(t0)), t − t0) for all t ≤ t1. It then follows from
Equation (23) that ‖x(t )‖ ≤ 𝜂

1
−1(𝛽�̃�(𝜂1(r ), t − t0)), in

which 𝜂
1
−1(𝛽�̃�(𝜂1(r ), t − t0)) is again a -function. Set-

ting 𝛽(‖x0‖, t − t0) = 𝜂
1
−1(𝛽�̃�(𝜂1(r ), t − t0)), we can conclude

that

‖x(t )‖ ≤ 𝛽(‖x0‖, t − t0), (33)

for all t ∈ (t0, t1) as claimed in Equation ( 2). □

we now complete the proof of Theorem1 by combining the
solutions (32) and (33) by which we obtain the property (17) for
all t > t0. Therefore, the system (13) is ISS and this concludes
the proof. □

Remark 5. A similar Lyapunov characterisation can be also
formulated for sg-ISS. However, there has to exist an input
threshold R > 0 such that Equation (27) holds for {u ∈ 𝒰m ∶‖u‖ ≤ R}.
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1506 NOZARI ET AL.

The following Lyapunov-type theorem formulated in an
implication form establishes an stricter condition for ISS
property of Equation (13) compared to that of Theorem 1.

Theorem 2. Consider the fractional-order system (13), and assume that

there exist a continuous function V ∶ ℝn → ℝ that has conformable

fractional derivative of order 𝛼 for all t > t0, two constants q1, q2 > 0,

and 𝜂
1
, 𝜂1 ∈ ∞ and 𝜒 ∈  functions so that

(1) 𝜂
1
(‖x‖) = q1.‖x‖2 ≤ V (x ) ≤ 𝜂1(‖x‖),

(2) ‖x‖ ≥ 𝜒(‖u‖) ⇒ ∇𝛼V (x )(x1−𝛼 )
−1

f (x, u) ≤
−q2V (x ),

for all t > t0, x ∈ ℝn, and u ∈ 𝒰m. Then the system is fe-ISS.

Proof. The proof will be done in the similar way as in Theorem 1.
Let M = 𝜂1(𝜒(‖u(t )‖)). Define the set

M ∶= {x ∈ ℝn ∶ V (x ) ≤ M }. We make the following two
claims where the proof of the first one is analogous to that of
Theorem 1 and, therefore, we do not sketch it here.

Claim 1. If there exists t0 ≥ 0 such that x(t0) ∈ M , then x(t ) ∈
M for all t > t0.

Claim 2. For any x0 and any bounded input u ∈ 𝒰m , there exists
a time t1 > 0 for state trajectory x(t ) such that

(1) the state trajectory of the system lies in M for all t ≥ t1
and

(2) ‖x(t )‖ ≤ 𝜂(‖x0‖)E𝛼 (𝜔, t − t0) for all t < t1.

Proof of Claim 2. The proof of Equation (1) is similar to that
of Theorem1. Thus, we skip it here.

As a result of Equation (1), we observe that x(t ) satisfies

‖x(t )‖ ≤ 𝜂(‖u‖), (34)

for all t ≥ t1. Now, we sketch the proof of part Equation (2).
Note that for all t < t1, x(t ) does not belong to M by which
it follows that V (x ) > M , in turn, ‖x(t )‖ > 𝜒‖u(t )‖. Thus, by
using Equation (2), we have

T 𝛼
t0

V (x(t )) = ∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −q2V (x ).

Defining V (t ) ∶= V (x(t )), we have T 𝛼
t0

V (t ) ≤ −q3V (t ) ∶=
𝜑(V (t )). From the comparison Lemma 9 applied to the
this inequality, we observe that, there exists some 𝛽𝜑 ∈ 
such that V (t ) ≤ 𝛽𝜑(V (t0), t − t0) for all t ≤ t1. By setting
𝛽𝜑(V (t0), t − t0) = V (t0)E𝛼 (−q2, t − t0), we have

V (t ) ≤ V (t0)E𝛼

(
−q2, t − t0

)
, ∀t ≤ t1,

Now, by assumption (1), we obtain

‖x‖ ≤
(

1
q1

) 1

2

V (t0)
{

E𝛼

(
−q2, t − t0

)} 1

2

= 𝜂(‖x0‖)E𝛼 (𝜔, t − t0), (35)

where 𝜔 = −
q2

2
< 0 for all t ∈ (t0, t1), as claimed in (2). □

Combining the solutions (34) and (35) gives inequality (20)
for all t > t0. Thus, system (13) is fe-ISS. □

It has been shown that the CFBS (14) are iISS, but not ISS
(see Remark 4). Now we want to show whether CFBS are sg-
ISS or not. To prove this, the following novel theorem in a
dissipation-like formulation, inspired by ref. [40], is established
in fractional setting. Using this, we will show that all CFBS are
fe-iISS as in Equation (21) and, then, we will extend the proof
to show that they are also ISS and sg-ISS.

Theorem 3. Consider the fractional-order system (13), and assume that

there exist a continuous function V ∶ ℝn → ℝ that has conformable

fractional derivative of order 𝛼 for all t > t0, a constant q > 0, and

𝜂1, 𝜂
1
, 𝜂1, 𝜎 ∈ ∞ so that

(1) 𝜂
1
(‖x‖) ≤ V (x ) ≤ 𝜂1(‖x‖),

(2) ∇𝛼V (x )(x1−𝛼 )
−1

( f (x ) +
m∑

i=1
fi (x )ui ) ≤ −(q −

𝜂1(‖u‖))V (x ) + 𝜎(‖u‖),

for all t > t0, x ∈ ℝn, and u ∈ 𝒰m. Then the system is fe-iISS. In

this case, the property (21) is satisfies by 𝜂1(s) = 𝜂−1
2 (

1

2
𝜂

1
, (s)) ∈ ∞,

𝜂2(s) = 𝜂1(s) ∈ ∞, 𝜂3(s) = �(s) ∈ ∞.

Proof. Assume that there exist a ∞ function Θ(.) be such that
Θ(s) ≥ 𝜂1(s) and Θ(s) ≥ 𝜎(s) for all s ≥ 0. Now, Suppose that
Equation (2) holds, then inspiring by the approach in ref. [2]
for solving the inhomogeneous integer-order systems, we get an
estimation of V (x ) as follows:

∇𝛼V (x(t ))
(

x(t )1−𝛼
)−1

f (x, u)

≤ −
(
q − 𝜂1(‖u(t )‖)

)
V

(
x(t )

)
+ 𝜎(‖u(t )‖),

T 𝛼
t0

V (x(t ))

≤ (
Θ(‖u(t )‖) − q

)
V (x(t )) + Θ(‖u(t )‖),

Multiplying both sides by E𝛼 (q, t − t0), we get

E𝛼

(
q, t − t0

)
T 𝛼

t0
V (x(t ))

≤ E𝛼

(
q, t − t0

)
(Θ(‖u(t )‖) − q)V (x(t ))

+ E𝛼

(
q, t − t0

)
Θ(‖u(t )‖),

E𝛼

(
q, t − t0

)
T 𝛼

t0
V (x(t )) + qV (x(t ))E𝛼

(
q, t − t0

)
≤ E𝛼

(
q, t − t0

)
(Θ(‖u(t )‖)V (x(t )))

+ E𝛼

(
q, t − t0

)
Θ(‖u(t )‖),

By fractional product rule [19], we have

T 𝛼
t0

(
V (x(t ))E𝛼

(
q, t − t0

)) ≤ E𝛼

(
q, t − t0

)
(Θ(‖u(t )‖)V (x(t )))

+ E𝛼

(
q, t − t0

)
Θ(‖u(t )‖),
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NOZARI ET AL. 1507

Applying conformable fractional integral on both sides and
Lemma 2, we have

E𝛼

(
q, t − t0

)
V (x(t )) − V (x0)

≤ ∫
t

t0

(𝜏 − a)𝛼−1
E𝛼

(
q, 𝜏 − t0

)
Θ
(‖‖u(𝜏)‖‖)(V (x(𝜏)) + 1)d𝜏,

E𝛼

(
q, t − t0

)
V (x(t ))

≤ V (x0) + ∫
t

t0

(𝜏 − t0)𝛼−1
E𝛼

(
q, 𝜏 − t0

)
Θ
(‖‖u(𝜏)‖‖)(V

(
x(𝜏)

)
+ 1)d𝜏,

and, we can write

E𝛼

(
q, t − t0

)
V (x(t )) ≤ V (x0)

+ ∫
t

t0

(𝜏 − t0)𝛼−1Θ
(‖‖u(𝜏)‖‖)E𝛼

(
q, t − t0

)
V (x(t ))d𝜏

+ ∫
t

t0

(𝜏 − t0)𝛼−1Θ
(‖‖u(𝜏)‖‖)E𝛼

(
q, 𝜏 − t0

)
d𝜏.

It follows from fractional Gronwall–Bellman-type Lemma (see
Lemma 10) that,

E𝛼

(
q, t − t0

)
V (x(t ))

≤
(

V (x0) + ∫
t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)E𝛼

(
q, 𝜏 − t0

)
d𝜏

)

× exp

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏

)
,

V (x(t )) ≤ (
E𝛼

(
−q, t − t0

)
V (x0)

)
× exp

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏

)

+

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)E𝛼

(
−q, t − t0

)
E𝛼

(
q, 𝜏 − t0

)
d𝜏

)

× exp

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏

)
.

It is obvious from Definition 3 that, E𝛼 (−q, t − t0)E𝛼 (q, 𝜏 −
t0) ≤ 1 for all 𝜏 ∈ [t

0
, t ]. So, we get

V (x(t )) ≤ E𝛼

(
−q, t − t0

)
V (x0)

× exp

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏

)

+

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏

)

× exp

(
∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏

)
,

For the sake of readability, we also define 𝜉(t ) =

∫ t

t0
(𝜏 − t0)𝛼−1Θ(‖u(𝜏)‖)d𝜏. Thus,

V (x(t )) ≤ E𝛼

(
−q, t − t0

)
V (x0) exp

(
𝜉(t )

)
+ 𝜉(t ) exp

(
𝜉(t )

)
,

Moreover, by noting the following inequality

E𝛼

(
−q, t − t0

)
V (x0) exp

(
𝜉(t )

)
= E𝛼

(
−q, t − t0

)
V (x0)

+ E𝛼

(
−q, t − t0

)
V (x0)

(
exp

(
𝜉(t )

)
− 1

)
≤ E𝛼

(
−q, t − t0

)
V (x0) +

1
2

E𝛼

(
−2q, t − t0

)
V (x0)2

+
1
2

(
exp

(
𝜉(t )

)
− 1

)2
.

We can obtain

V (x(t )) ≤ E𝛼

(
−q, t − t0

)
V (x0) +

1
2

E𝛼

(
−2q, t − t0

)
V (x0)2

+
1
2

(
exp

(
𝜉(t )

)
− 1

)2
+ 𝜉(t ) exp

(
𝜉(t )

)
.

Let define 𝜂1, 𝜂2 ∈ ∞ functions such that 𝜂1(r ) = r +
1

2
r2, 𝜂2(r ) =

1

2
(exp(r ) − 1)2 + r exp(r ) [40]. Then by using

assumption (1), we can get the following estimate:

V (x(t )) ≤ E𝛼

(
−q, t − t0

)
V (x0) +

1
2

E𝛼

(
−2q, t − t0

)
V (x0)2

+
1
2

(
exp

(
𝜉(t )

)
− 1

)2
+ 𝜉(t ) exp

(
𝜉(t )

)
,

𝜂
1
(‖x(t )‖) ≤ E𝛼

(
−q, t − t0

)
V (x0) +

1
2

E𝛼

(
−2q, t − t0

)
V (x0)2

+
1
2

(
exp

(
𝜉(t )

)
− 1

)2
+ 𝜉(t ) exp

(
𝜉(t )

)
,

𝜂
1
(‖x(t )‖) ≤ 𝜂1

(
E𝛼

(
−q, t − t0

)
V (x0)

)
+ 𝜂2

(
𝜉(t )

)
,

𝜂
1
(‖x(t )‖) ≤ 𝜂1(E𝛼

(
−q, t − t0

)
𝜂1

(‖x0‖) + 𝜂2

(
𝜉(t )

)
,

It is intuitively clear that 𝜂2(r ) ≥ 𝜂1(r ) for any r ≥ 0. Using this
property, we can write

𝜂
1
(‖x(t )‖) ≤ 𝜂2(E𝛼

(
−q, t − t0

)
𝜂1(‖x0‖) + 𝜂2

(
𝜉(t )

)
,

Multiplying both sides of this inequality by
1

2
and apply-

ing 𝜂−1
2 , using the fact 𝜂−1

2 (
a1+a2

2
) ≤ 𝜂−1

2 (a1) + 𝜂−1
2 (a2) for all
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1508 NOZARI ET AL.

non-negative a1, a2 [28], we have

1
2
𝜂

1
(‖x(t )‖)

≤ 1
2

(
𝜂2(E𝛼

(
−q, t − t0

)
𝜂1(‖x0‖) + 𝜂2

(
𝜉(t )

))
,

𝜂−1
2

(1
2
𝜂

1
(‖x(t )‖)

)
≤ 𝜂−1

2

(1
2

(
𝜂2

(
E𝛼

(
−q, t − t0

)
𝜂1(‖x0‖)

)
+ 𝜂2

(
𝜉(t )

)))
,

𝜂−1
2

(1
2
𝜂

1
(‖x(t )‖)

)
≤ 𝜂−1

2

(
𝜂2

(
E𝛼

(
−q, t − t0

)
𝜂1(‖x0‖)

)
+ 𝜂−1

2

(
𝜂2

(
𝜉(t )

)))
,

𝜂−1
2

(1
2
𝜂

1
(‖x(t )‖)

)
≤ E𝛼

(
−q, t − t0

)
𝜂1(‖x0‖) + ∫

t

t0

(𝜏 − t0)𝛼−1
Θ(‖u(𝜏)‖)d𝜏.

Now, we have property (21) satisfied with 𝜂1(s) =

𝜂−1
2 (

1

2
𝜂

1
(s)) ∈ ∞, 𝜂2(s) = 𝜂1(s) ∈ ∞, 𝜂3(s) = Θ(s) ∈ ∞.

Therefore, system (13) is fe-iISS. □

It is worth noting that for the case the fractional
order 𝛼 is equal to 1, the results obtained for the fe-
iISS of the conformable fractional-order bilinear systems
are consistent with those presented for the integer case in
ref. [40].

Corollary 1. If there exists a continuous function V ∶ ℝn → ℝ that

has conformable fractional derivative of order 𝛼 for all t > t0 and satisfies

the corresponding conditions (1) and (2), then system (13) is also iISS

by virtue of Definition 5 (ii) and Definition6 (ii).

In the following proposition, we show that fractional-order
bilinear system (14) is also fe-iISS in the view of Theorem 3. We
use Lemma 12 to ensure the existence of P = PT > 0 satisfying
AT P + PA = −Q for any Q = QT > 0.

Proposition 2. (fe-iISStability of CFBS) Let 𝛼 ∈ (0, 1]. The

fractional-order bilinear system (14) is fe-iISS if and only if the matrix

A such that |Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
.

Proof. (if). If the matrix A does not satisfies the conditions|Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
, then the unforced

system is not GAS and consequently not fe-iISS either. (Only
if) Suppose that |Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
.

Then, pick any P = PT > 0 so that AT P + PA = −Q (see
Lemma 12). Let V (x ) = xT Px be a Lyapunov function
that has conformable fractional-order derivative of order
𝛼 for all t > t0, then T 𝛼

t0
V (x(t )) is given by Lemma 5

as follows: T 𝛼
t0

V (x(t )) = ∇𝛼V (x )(x1−𝛼 )
−1

T 𝛼
t0

x(t ), where

x1−𝛼 = diag(x1
1−𝛼, x2

1−𝛼, … , xn
1−𝛼 ). Suppose that

det[x1−𝛼] ≠ 0 we can write

T 𝛼
t0

V (x(t )) = ∇𝛼V (x )
(
x1−𝛼

)−1
T 𝛼

t0
x(t )

= 2xT P
(
x1−𝛼

)(
x1−𝛼

)−1

(
Ax +

m∑
i=1

uiNix + Bu

)

= 2xT P I

(
Ax +

m∑
i=1

uiNix + Bu

)

= 2xT PAx +

m∑
i=1

2uix
T PNix + 2xT PBu

= 2xT PAx +

m∑
i=1

2uix
T PNix + 2xT PBu,

for all t > t0 ≥ 0. We note that, there exists a constant K > 0
such that

‖‖‖‖‖2xT P

m∑
i=1

uiNix
‖‖‖‖‖ ≤ 2‖x‖‖P‖‖‖‖‖‖

m∑
i=1

uNix
‖‖‖‖‖

≤ 2K 𝜆max(P )‖u‖‖x‖2
, (36)

and, for all vectors x ∈ ℝn, and u ∈ 𝒰m , we can write

2xT PBu ≤ 2‖x‖‖PB‖‖u‖ ≤ 2𝜆max(P )‖B‖‖u‖‖x‖ ≤ ‖x‖2

+𝜆max(P )2‖B‖2‖u‖2
, (37)

also 2xT PIAx=2xT PAx=xT (AT P + PA)x ≤ −𝜆min(Q)‖x‖2).
Using these all, for all t > t0, we can write

T 𝛼
t0

V (x(t )) ≤ −𝜆min(Q)‖x‖2
+ 2K 𝜆max(P )‖u‖‖x‖2

+ ‖x‖2

+ 𝜆max(P )2‖B‖2‖u‖2

≤ (2K 𝜆max(P )‖u‖ − 𝜆min(Q) + 1)V (x )

+ 𝜆max(P )2‖B‖2‖u‖2

≤ (
r2K 𝜆max(P )‖u‖ − q

)
V (x )

+ 𝜆max(P )2‖B‖2‖u‖2
, ∀𝜆min(Q) > 1,

Thus, the requirements from Theorem 3 are satisfied and
the conformable fractional-order bilinear systems (14) are, in
general, fe-iISS, as desired. □

Remark 6. From the proof of Proposition 2, it is deduced
that V (x ) = xT Px is not an iISS–Lyapunov function for CFBS
in the view of Definition 8. However, it works to show that
the CFBS are fe-iISS and iISS in the view of Theorem 3 and
Corollary 1.
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NOZARI ET AL. 1509

Now, we proceed from here to show that CFBS are also sg-
ISS. Following proposition provides an approximation of the
input threshold R > 0 using the same Lyapunov function.

Proposition 3. (sg-ISStability of CFBS) Let 𝛼 ∈ (0, 1].The

fractional-order bilinear system (14) is sg-ISS, If and only if the matrix A

such that |Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
. In this case, letting

P = PT > 0 satisfying AT P + PA = −Q for any Q = QT > 0, an

input threshold for Equation (14) is

R =
𝜆min(Q) − 1
2K 𝜆max(P )

,

for 𝜆min(Q) > 1, in which K > 0 such that ‖ m∑
i=1

Ni x(𝜏)ui (𝜏)‖ ≤
K‖u(t )‖‖x(t )‖.

Proof. (if). If the matrix A does not satisfies the conditions|Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
, then the unforced

system is not GAS, and thus, not also fe-iISS. (If). Sup-
pose that |Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
. Pick any

P = PT > 0 so that AT P + PA = −Q. Let V (x(t )) = xT Px

be a Lyapunov function that has conformable fractional
derivative of order 𝛼 for all t > t0, then T 𝛼

t0
V (x(t )) is

given by Lemma 5 as T 𝛼
t0

V (x(t )) = ∇𝛼V (x )(x1−𝛼 )
−1

T 𝛼
t0

x(t ),
where x1−𝛼 = diag(x1

1−𝛼, x2
1−𝛼, … , xn

1−𝛼 ). Assuming that
det[x1−𝛼] ≠ 0 and ‖u‖∞ ≤ R, we have

T 𝛼
t0

V (x(t )) = ∇𝛼V (x )
(
x1−𝛼

)−1
T 𝛼

t0
x(t )

= 2xT P
(
x1−𝛼

)(
x1−𝛼

)−1

(
Ax +

m∑
i=1

uiNix + Bu

)

= 2xT P I

(
Ax +

m∑
i=1

uiNix + Bu

)

= 2xT PAx + 2xT P

m∑
i=1

uiNix + 2xT PBu,

for all t > t0. Using Equations (36) and (37), and also
xT (AT P + PA)x ≤ ‖x‖𝜆min(Q)‖x‖ ≤ −𝜆min(Q)‖x‖2, we can
write

T 𝛼
t0

V (x(t )) ≤ −𝜆min(Q)‖x‖2
+ 2K 𝜆max(P )‖u‖‖x‖2

+ ‖x‖2

+ 𝜆max(P )2‖B‖2‖u‖2

≤ −𝜆min(Q)‖x‖2
+ 2K 𝜆max(P )R‖x‖2

+ ‖x‖2

+ 𝜆max(P )2‖B‖2‖u‖2

≤ (2K 𝜆max(P )R + 1 − 𝜆min(Q))‖x‖2

+ 𝜆max(P )2‖B‖2
R2,

where 𝜆min(Q) > 1. By Remark 5 and, thus, property (27) , we
have 𝜂(s) = (−2K 𝜆max(P )R + 𝜆min(Q) − 1)s2 has to be a class
∞−function. Therefore, it follows that (−2K 𝜆max(P )R +

𝜆min(Q) − 1) ≥ 0. That is, R ≤ 𝜆min(Q)−1

2K 𝜆max(P )
, ∀𝜆min(Q) > 1. This

concludes the proof. □

Summarising all the above together, we have the follow-
ing main novel result Concerning the ISS-t the conformable
fractional-order bilinear systems.

Theorem 4. Consider the conformable fractional bilinear system (14).

The following statements are equivalent:

(a) The matrix A such that |Spec (A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
for all 𝛼 ∈ (0, 1],

(b) It is iISS,

(c) It is fe-iISS,

(d) It is strong-iISS,

(e) It is sg-ISS,

(f) It is BIBS and CICS.

Proof. We have: [a ⇔ b] (see Proposition 1); [a ⇔ c] (see
Proposition 2); [a ⇔ e] (see Proposition 3); [c ⇒ b] (see Def-
initions 5(ii) and 6(ii) where Equation (21) evidently implies
(18); [d ⇒ f ] (see Lemma 7)); [a ⇔ d ] (since [d ⇒ b ∧ e] (see
Definition 5(iv)), [a ⇒ b] (see Proposition 2), and [a ⇒ e]
(see Proposition 3), then [a ⇒ d ]. Conversely, If |Spec(A)| ≠
0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
, then, the zero-input system (14) is

neither GAS nor SiISS); □

4 AN ILLUSTRATIVE EXAMPLE

Consider the following multi-inputs fractional-order bilinear
system with conformable derivative

T 𝛼x(t ) = Ax(t ) + N1 x(t )u1(t ) + N2 x(t )u2(t ) + Bu(t ), t > 0

where x(t ) = (x1(t ), x2(t ), x3(t ))T is the state of system and
u(t ) = (0.5us (t ) − 0.5us (t − 4), exp(−t ))T is the control input
in which us (.) denotes unit step function, and

A =

⎛⎜⎜⎜⎝
−3

−4

−2

2

−5

1

1

−1

0

⎞⎟⎟⎟⎠, B =

⎛⎜⎜⎜⎝
0

1

0

1

0

1

⎞⎟⎟⎟⎠,

N1 =

⎛⎜⎜⎜⎝
2

1

1

0

1

0

1

1

2

⎞⎟⎟⎟⎠, N2 =

⎛⎜⎜⎜⎝
1

1

1

−2

0

−2

0

1

0

⎞⎟⎟⎟⎠,
In what follows, the major properties of input-to-state sta-

bility for this system is analysed through simulations. By this
example we will get a better idea of how strict are the iISS
estimations for the conformable fractional bilinear systems
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1

FIGURE 1 Time history of the control inputs

established in Proposition 1. The control inputs are depicted
in Figure 1. All simulation results, obtained in Figure 2, are for
the initial condition x0 = (1, −0.5, 0.8)T .

Since the matrix A such that |Spec(A)| ≠
0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
for 0 < 𝛼 ≤ 1, then by Propo-

sition 1 we expect that this system is iISS. The trajectories along
with the corresponding iISS estimation (18) with respect to the
given inputs for two values of 𝛼 are depicted in Figure 2. Taking
in to account that that 𝜓 ≥ 1 (see Lemma 11), it is observed
that the iISS estimate is larger than what is actually needed.
Moreover, the transient (overshoot) term 𝛽(⋅), obtained when
inputs are wiped out, and the asymptotic term 𝜂(⋅) of the iISS
estimation are obtained as in Proposition 1 and illustrated. It is
noted that, at t = 0, all the trajectories lies in the ball of radius

𝜓‖x0‖ +
1

2
𝜓2‖x0‖2 (≈ 20 for 𝛼 = 0.5 and ≈ 6.5 for 𝛼 = 0.95)

which is quite larger than its actual value(‖x0‖ ≈ 1.8). Clearly,
for small t ≤ 4 s, the 𝛽(.) term makes the major contribution
to amount the transient behavior. On the other hand, for large

t , all trajectories approach to the smaller ball of radius 𝜂(⋅)
since 𝛽(‖x0‖, t ) converges to zero as t → ∞. In other words,
although the inputs fade after t = 4 s, the weaker definition
of iISS compared to ISS permits the states yet to have some
steady-state bias with respect to external inputs. The system
is also sg-ISS in the view of Proposition 3. Pick Q = 2I , then
using Lemma 12 we obtain the solution

P =

⎡⎢⎢⎢⎣
0.3116

−0.1460

0.2268

−0.1460

0.4260

−0.5464

0.2268

−0.5464

2.5424

⎤⎥⎥⎥⎦.
Let K ≃ 0.1 and ‖B‖ = 2, then we can obtain the input thresh-
old as R ≈ 1.4 (see Proposition 3). Note that, since |u1| ≤ 1 and|u2| ≤ 0.5, thus we have ‖u(t )‖ ≤ 1.4.

5 CONCLUSION

In this paper, we have developed several novel input-to-state
stability notions namely ISS, iISS, sg-ISS, strong-iISS, fe-ISS,
and fe-iISS for (conformable) fractional-order systems with the
emphasis on the bilinear systems. That is, a set of Lyapunov-
based sufficient conditions has been provided to establish
these properties for the nonlinear fractional systems with con-
formable derivative. We have also established a set of sufficient
and necessary conditions particularly for ISStability of the
general class of conformable fractional bilinear systems. it is
noted that extending the obtained results to the higher-order
conformable fractional bilinear systems also represents a worth-
while direction for future research. Furthermore, the notion of
ISS-Control-Lyapunov function and its related variants could
be generalised for stabilising the control-affine nonlinear con-
formable fractional systems including conformable fractional
bilinear systems can be considered as another research line in
the future.
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FIGURE 2 Transient and asymptotic behavior using iISS estimation for 𝛼 = 0.5(left) and 𝛼 = 0.95(right).
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APPENDIX A: PROOF OF LEMMA 8
The idea of proof is inspired by the remarks given in ref. [42].
(If). The proof of implication (27) ⇒ (23) is immediate. (Only
if). To prove the opposite implication, suppose that (23) holds
and ‖x‖ ≥ 𝜒‖u‖, then Equation (27) holds for any 𝜎(⋅). Let
define

𝜎(r ) ∶= max
{

∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) + 𝜂1(𝜒(‖u‖)) ∶

‖u‖ ≤ r , ‖x‖ ≤ 𝜒(r )
}

.

Then, for ‖x‖ ≤ 𝜒‖u‖,

∇𝛼V (x )
(
x1−𝛼

)−1
f (x, u) ≤ −𝜂1(‖x‖) + 𝜎(‖u‖).

Define 𝜎(r ) ∶= max{0, 𝜎(r )}. Then, 𝜎(⋅) is continuous, non-
negative, 𝜎(0) = 0, and we can consider it as a ∞ function
(If 𝜎(⋅) ∉ ∞, majorise it by a class ∞ function) to have
inequality (27) satisfied. This completes the proof.

APPENDIX B: PROOF OF LEMMA 9
Let define the following function on (0, +∞):

𝛿(s)
def
= − ∫

s

1

(r − 1)𝛼−1 1
𝜑(r )

dr ,

for any 0 < 𝛼 ≤ 1. It follows from Lemma 1 that, T 𝛼
1 𝛿(s) <

0 for all s > 0 and 0 < 𝛼 ≤ 1. Using Lemma 3, we deduced
that, this is a strictly decreasing 𝛼−differentiable function on
(0, +∞) for all 0 < 𝛼 ≤ 1. Suppose, without loss of general-
ity, lim

s→0+
𝛿(s) = +∞. Otherwise, the following function could

be instead considered:

�̄�(s)
def
=

{
min{s, 𝜑(s)}, if 0 ≤ s < 1,

𝜑(s), if 1 ≥ s.
.

The function 𝜑(⋅) is also a class -function that satis-

fies 𝜑(s) ≤ 𝜑(s) for any s ≥ 0 and lim
s→0+

∫ 1

s
(r − s)𝛼−1 1

𝜑(r )
dr ≥

∫ 1

s
(r − s)𝛼−1 1

r
dr ≥ ∫ 1

s
r𝛼−1 1

r
dr = +∞ holds since

1

𝛼−1
< 0.

We observe that, if T 𝛼
t0

v(t ) ≤ −𝜑(v(t )) then also T 𝛼
t0

v(t ) ≤
−𝜑(v(t )), so 𝛽𝜑 could be used to bound solutions. Define

0 < a
def
= − lim

s→+∞
𝛿(s). Note that the range of 𝛿 and thus the

domain of 𝛿−1 belong to (−a, +∞)(this may be a = +∞). Let
define

𝛽𝜑(s, t )
def
=

⎧⎪⎨⎪⎩
0, if s = 0,

𝛿−1
(

1

𝛼
(t − t0)𝛼 + 𝛿(s)

)
, if s ≥ 0.

for all s ≥ 0, t > t0, and 0 < 𝛼 ≤ 1.
Claim. Given any y(.) fulfilling all the corresponding conditions
in the Lemma 9, then

y(t ) ≤ 𝛽𝜑(y0, t ). (B.1)

for all t > t0 and 0 < 𝛼 ≤ 1.

Proof of Claim. Assume that Equation (28) holds, then it fol-
lows from Lemma 3 that y(t ) is nonincreasing and if y(t0) =
0 for some t0 ≥ 0, then, we see that y(t ) ≡ 0 for all t > t0.
Now, without loss of generality, suppose that y(t0) > 0. Let

t ∗
0

def
= inf{t ∶ y(t ) = 0} ≤ +∞. It is enough to show that the

bound in Equation (B.1) holds for t ∈ [t0, t ∗
0 ). Since 𝛿 is strictly

decreasing in the view of Lemma 3, we only need to show

that y(t ) ≥ 𝛿−1(
1

𝛼
(t − t0)𝛼 + 𝛿(y0)) for all 𝛼 ∈ (0, 1] which

can be also written as 𝛿(y(t )) ≥ 1

𝛼
(t − t0)𝛼 + 𝛿(y0). Therefore,

by definition, we have − ∫ y(t )

1
(r − 1)𝛼−1 1

𝜑(r )
dr ≥ 1

𝛼
(t − t0)𝛼 −

∫ y0

1
(r − 1)𝛼−1 1

𝜑(r )
dr , which is equivalent to

∫
y0

y(t )
(r − 1)𝛼−1 1

𝜑(r )
dr ≥ 1

𝛼
(t − t0)𝛼. (B.2)
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By Equation (28), one sees that

∫
t

t0

(𝜏 − t0)𝛼−1 T 𝛼
t0

y(𝜏)

𝜑
(
y(𝜏)

)d𝜏

≤ −∫
t

t0

(𝜏 − t0)𝛼−1d𝜏 = −
(t − t0)𝛼

𝛼
. (B.3)

By Lemma 2 and changing variables in Equation (B.3), we get
Equation (B.2) by which we obtain the desired result we claimed.

It only remains to prove the claim that 𝛽𝜑 is of class . The
function 𝛽𝜑 is continuous since both 𝛿and 𝛿−1are continuous
in their domains, and lim

r→+∞
𝛿−1(r ) = 0. It is strictly increasing

in s for each fixed t since both 𝛿 and 𝛿−1 are strictly decreasing.
By construction, we see that 𝛽𝜑(s, t ) → 0 as t → +∞. Hence,
𝛽𝜑 ∈ , as claimed. □

APPENDIX C: PROOF OF LEMMA 10
First we remark that the following lemma will be needed in
order to prove Lemma 10.

Lemma C.1. [49]Let 𝛼 ∈ (0, 1]. Assume that r (t ) and h(t ) be

continuous and non-negative functions defined for a ≤ t ≤ b, and c be a

non-negative constant such that

r (t ) ≤ c + ∫
t

a

(𝜏 − a)𝛼−1
h(𝜏) r (𝜏) d𝜏, ∀a ≤ t ≤ b, (C.1)

then, for all a ≤ t ≤ b

r (t ) ≤ c. exp

(
∫

t

a

(𝜏 − a)𝛼−1
h(𝜏) d𝜏

)
. (C.2)

Proof of Lemma 10. Define r (t ) ∶= c (t )𝜁(t ).Then, by Equation
(30), we have

𝜁(t ) ≤ 1 + ∫
t

a

(𝜏 − a)𝛼−1
h(𝜏) ×

c (𝜏)𝜁(𝜏)
c (t )

d𝜏

≤ 1 + ∫
t

a

(𝜏 − a)𝛼−1
h(𝜏) 𝜁(𝜏) d𝜏.

By Lemma C.1, we obtain an upper bound for 𝜁(t )

𝜁(t ) ≤ exp

(
∫

t

a

(𝜏 − a)𝛼−1
h(𝜏) d𝜏

)
. (C.3)

Using Equation (C.3) in r (t ) = c (t )𝜁(t ), we obtain the inequality
(31). This concludes the proof. □

APPENDIX D: PROOF OF LEMMA 11
We use 2-norm during this proof. However, what we concludes
here also holds when other norms are used as any two norms
are equivalent in finite dimensions.

If A ∈ ℂn×n, by Jordan Decomposition theorem [2], there
exists an invertible S ∈ ℂn×n such that

A = S J S−1 = S diag(J1, J2, … , Js ) S−1) (D.1)

with the Jordan block

Jl =

⎛⎜⎜⎜⎝
1

𝜆l ⋱

𝜆l ⋱ 𝜆l

⎞⎟⎟⎟⎠ ∈ ℂnl ×nl

l = 1, 2, … , s and, 𝜆l is the eigenvalue of matrix A and
s∑

l =1
nl =

n. Substituting Equation (D.1) into E𝛼 (A, t − t0), we have

E𝛼 (A, t − t0) = E𝛼

(
SJS−1, t − t0

)
= S E𝛼 (J , t − t0)S−1

= S diag(E𝛼 (J1, t − t0), … , E𝛼 (Js , t − t0))S−1,

∀t ≥ t0, (D.2)

with

E𝛼 (Jl , t − t0) = E𝛼 (𝜆l Inl + Znl , t − t0)

= E𝛼 (𝜆l Inl , t − t0)E𝛼 (Znl , t − t0), ∀t ≥ t0,

(D.3)

where Znl = Jl − 𝜆l Inl is an nl × nl nilpotent matrix. Then,
E𝛼 (Znl , t − t0) can be expressible using Lemma 6 since its
fractional series terminates. So,

E𝛼 (Znl , t − t0) =

∞∑
k=0

Znl
k(t − t0)k𝛼

𝛼kk!
, ∀t ≥ t0. (D.4)

For any sufficiently small 𝜀 > 0, we can write

E𝛼 (Jl , t − t0) = E𝛼 (𝜆l , t − t0)

(
nl −1∑
k=0

Znl
k(t − t0)k𝛼

𝛼kk!

)
= E𝛼 (𝜆l + 𝜀, t − t0)E𝛼 (−𝜀, t − t0)

×

(
nl −1∑
k=0

Znl
k(t − t0)k𝛼

𝛼kk!

)
= E𝛼 (𝜆l + 𝜀, t − t0)

×

(
nl −1∑
k=0

E𝛼 (−𝜀, t − t0)Znl
k(t − t0)k𝛼

𝛼kk!

)
,

∀t ≥ t0. (D.5)

Using the fact ‖P‖ ≤ q max{|pi j |}, for P ∈ ℂq×q [45], we
obtain

‖‖E𝛼 (Jl , t − t0)‖‖ ≤ nl |E𝛼 (𝜆l + 𝜀, t − t0)|𝜓k,l , ∀t ≥ t0,

(D.6)
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1514 NOZARI ET AL.

where 𝜓k,l is the maximum of the kth term in
‖Znl ‖k (t−t0 )k𝛼

E𝛼 (𝜀,t−t0 )𝛼kk!
for

any 𝜀 > 0 and for all t ≥ t0.

Define Ωk,l (t )
def
=

‖Znl ‖k (t−t0 )k𝛼

E𝛼 (𝜀,t−t0 )𝛼kk!
for any 𝜀 > 0 and t ≥ t0. We

observe that, this function has a maximum at a point tm > t0
for any 𝜀 > 0, since Ωk,l (t0) = 0, Ωk,l (t ) ≥ 0 for all t ≥ t0, and
Ωk,l (t ) → 0 (t → +∞). Therefore, in order to find this point,
we apply the fractional conformable derivative that yields

‖Znl ‖k(tm − t0)k𝛼

𝛼kk!
E𝛼 (−𝜀, tm − t0)(−𝜀 +

𝛼k

(tm − t0)𝛼
) = 0,

from which we obtain tm = (
𝛼k

𝜀
)

1

𝛼 + t0. Therefore, we have

𝜓k,l = Ωk,l (tm ) =
‖Znl ‖k

kk

exp(k)𝜀kk!
.

By taking the norm in Equation (D.2) , for every 𝜔 >
max{Re(𝜆) ∶ 𝜆 ∈ Spec (A)} we obtain

‖E𝛼 (A, t − t0)‖ = ‖‖S E𝛼 (J , t − t0)S−1‖‖
≤ ‖S‖‖‖S−1‖‖‖‖E𝛼 (J , t − t0)‖‖
= 𝜅(S )‖‖E𝛼 (J , t − t0)‖‖
≤ 𝜅(S )max

l

{‖‖ E𝛼 (Jl , t − t0)‖‖}
≤ 𝜅(S )max

l

{
nl |E𝛼 (𝜆l + 𝜀, t − t0)|𝜓k,l

}
≤ n 𝜅(S ) max

l

{
𝜓k,l

}
E𝛼 (𝜔, t − t0)

≤ 𝜓E𝛼 (𝜔, t − t0), ∀t ≥ t0, (D.7)

where 𝜅(S ) is the condition number of S ∈ ℂn×n to be 𝜅(S ) =‖ S ‖‖S−1‖ ≥ ‖SS−1‖ ≥ 1 by sub-multiplicativity of matrix
norm [45] and n = max(n1, n2 … ns ). we observe that, 𝜓 ≥ 1 as
desired. Hence, the bound in (1) holds, as claimed.

We now complete the proof of Lemma 11 by showing that
claim (2) holds. We will do this by studying the elements of
matrix E𝛼 (A, t − t0) in terms of the Jordan blocks: E𝛼 (A, t −
t0) = S diag(E𝛼 (J1, t − t0),⋯, E𝛼 (Js , t − t0)) S−1 where, by
Equations (D.4) and (D.5), we observe that the non-zero entries
of E𝛼 (Jl , t − t0) can be expressed uniformly as follows:

1
( j − 1)!

((
𝜕

𝜕𝜆

) j−1

E𝛼 (𝜆, t − t0)

)
|𝜆=𝜆l

, j = 1, 2, … , nl .

Now, we consider the following separate cases for all t > t0 and
0 < 𝛼 ≤ 1:

(i) If 𝜆l = 0, then

1
( j − 1)!

((
𝜕

𝜕𝜆

) j−1

E𝛼 (𝜆, t − t0)

)
|𝜆=𝜆l

=
(t − t0)( j−1)𝛼

𝛼 j−1( j − 1)!
→ +∞ (t → +∞),

for all j ≥ 2. So, ‖E𝛼 (Jl , t − t0)‖ → +∞ as t → +∞,
which, in turn, follows that ‖E𝛼 (A, t − t0)‖ → +∞.

(ii) |Arg(𝜆l )| < ⌈𝛼⌉𝜋

2
, then

1
( j − 1)!

((
𝜕

𝜕𝜆

) j−1

E𝛼 (𝜆, t − t0)

)
|𝜆=𝜆l

=
1

𝛼 j−1( j − 1)!

(
(t − t0)( j−1)𝛼

E𝛼 (𝜆l , t − t0)
) |𝜆=𝜆l

,

thus, for all j ≥ 2

||||||
1

( j − 1)!

((
𝜕

𝜕𝜆

) j−1

E𝛼 (𝜆, t − t0)

)
|𝜆=𝜆l

||||||
=

||||| (t − t0)( j−1)𝛼

𝛼 j−1( j − 1)!

|||||E𝛼

(|𝜆l | cos

(
arg(𝜆l )⌈𝛼⌉

)
, t − t0

)
.

Since |Arg(𝜆l )⌈𝛼⌉ | <
𝜋

2
, then, cos(

Arg(𝜆l )⌈𝛼⌉ ) > 0. Therefore,‖E𝛼 (Jl , t − t0)‖ → +∞ as t → +∞ which, in turn, yields‖E𝛼 (A, t − t0)‖ → +∞.
(iii) If |Arg(𝜆l )| = ⌈𝛼⌉𝜋

2
, then we first assume that the

algebraic and geometric multiplicities of critical eigen-
value 𝜆l are equal, then by Equation (D.5), we have
E𝛼 (Jl , t − t0) =E𝛼 (𝜆l , t − t0)Inl

whose diagonal elements

are |E𝛼 (𝜆l , t − t0)| = E𝛼 (|𝜆l | cos(
Arg(𝜆l )⌈𝛼⌉ ), t − t0) =

1(t → +∞). Therefore, E𝛼 (Jl , t − t0) and, in turn,
E𝛼 (A, t − t0) are bounded in this case.

On the other hand, assume that the algebraic and geometric
multiplicities of critical eigenvalue 𝜆l are not the same. So,
we have||||||

1
( j − 1)!

((
𝜕

𝜕𝜆

) j−1

E𝛼 (𝜆, t − t0)

)
|𝜆=𝜆l

||||||
=

||||| (t − t0)( j−1)𝛼

𝛼 j−1( j − 1)!

|||||E𝛼

(|𝜆l | cos

(
Arg(𝜆l )⌈𝛼⌉

)
, t − t0

)

=
||||| (t − t0)( j−1)𝛼

𝛼 j−1( j − 1)!

||||| → +∞

as t → +∞ for all j ≥ 2. Thus, ‖E𝛼 (A, t − t0)‖ → +∞ as
t → +∞.

Putting all above cases together imply that Equation (2),
as desired.

APPENDIX E: PROOF OF LEMMA 12
The proof of Lemma 12 will follow from the subsequent lemma.

Lemma E.1. Let M , N ∈ ℝn×n. Consider the linear map

ℑ∶ ℝn×n → ℝn×n and ℑ(Y )∶= MY + YN . If |Spec(M )| ≠

 17518652, 2022, 15, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12304 by C

ochraneItalia, W
iley O

nline L
ibrary on [14/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NOZARI ET AL. 1515

0, |Arg(Spec(M ))| > ⌈𝛼⌉𝜋

2
and |Spec(N )| ≠ 0, |Arg(Spec(N ))| >⌈𝛼⌉𝜋

2
for all 𝛼 ∈ (0, 1], then ℑ is invertible.

Proof. It is enough to show that given any matrix
Q there exists some Y so that MY + YN = Q.|Spec(M )| ≠ 0, |Arg(Spec(M ))| > ⌈𝛼⌉𝜋

2
and |Spec(N )| ≠

0, |Arg(Spec(N ))| > ⌈𝛼⌉𝜋

2
, then we have

‖‖E𝛼 (𝜇, t − t0)QE𝛼 (𝜈, t − t0)‖‖ ≤ 𝜓‖‖Q‖‖E𝛼 (2𝜔, t − t0),

holds for all t > t0 since |Arg(𝜔)| > ⌈𝛼⌉𝜋

2
(see

Lemma 11).Thus,

P ∶= −∫
∞

t0

(t − t0)𝛼−1
E𝛼 (𝜇, t − t0)Q E𝛼 (𝜈, t − t0) dt

is well-defined. Moreover,

MX + XN = −∫
+∞

t0

(t − t0)𝛼−1 [
𝜇 E𝛼 (𝜇, t − t0)QE𝛼 (𝜈, t − t0)

+ E𝛼 (𝜇, t − t0)QE𝛼 (𝜈, t − t0)N ] dt

= −∫
+∞

t0

(t − t0)𝛼−1

×

(
d𝛼

dt 𝛼

[
E𝛼 (𝜇, t − t0)QE𝛼 (𝜈, t − t0)]

)
dt

= −I 𝛼
t0

T 𝛼
t0

(E𝛼 (𝜇, t − t0)Q E𝛼 (𝜈, t − t0))

= Q − lim
t→+∞

(E𝛼 (𝜇 , t − t0) Q E𝛼 (𝜈, t − t0))

= Q,

as desired. □

Proof of Lemma 12. Choose any Q. Since |Spec(A)| ≠
0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
it also holds |Spec(AT )| ≠

0, |Arg(Spec(AT ))| > ⌈𝛼⌉𝜋

2
. Hence, by Lemma E.1, there

exists a unique solution P for each Q. The explicit formula for
P ,

P ∶= −∫
∞

t0

(t − t0)𝛼−1
E𝛼

(
AT , t − t0

)
Q E𝛼 (A, t − t0) dt

shows that P > 0 if Q < 0, since the latter implies −E𝛼 (AT , t −
t0)QE𝛼 (A, t − t0) is positive definite matrix for t > t0. □

APPENDIX F: PROOF OF PROPOSITION 1
(Only if). If matrix A does not satisfies the conditions|Spec(A)| ≠ 0, |Arg(Spec(A))| > ⌈𝛼⌉𝜋

2
, then the unforced

system is not GAS and consequently not iISS either. (Only if).

To prove the opposite implication, we inspired by the given
approach in ref. [2] for solving the inhomogeneous integer-
order systems. We start from Equation (14) and applying
conformable fractional integrator on both sides,

T 𝛼
t0

x(t ) =

(
Ax(t ) +

m∑
i=1

Ni x(t )ui (t )

)
+ Bu(t )

E𝛼 (−A, t − t0)T 𝛼
t0

x(t ) = E𝛼 (−A, t − t0)Ax(t )

+ E𝛼 (−A, t − t0)
m∑

i=1

Ni x(t )ui (t ) + E𝛼 (−A, t − t0)Bu(t )

E𝛼 (−A, t − t0)T 𝛼
t0

x(t ) − E𝛼 (−A, t − t0)Ax(t )

= E𝛼 (−A, t − t0)
m∑

i=1

Ni x(t )ui (t ) + E𝛼 (−A, t − t0)Bu(t )

T 𝛼
t0

(
E𝛼 (−A, t − t0)x(t )

)
= E𝛼 (−A, t − t0)

m∑
i=1

Ni x(t )ui (t ) + E𝛼 (−A, t − t0)Bu(t )

I 𝛼
t0

(
T 𝛼

t0

(
E𝛼 (−A, t − t0 )x(t )

))
= I 𝛼

t0

(
E𝛼 (−A, t − t0 )

m∑
i=1

Ni x(t )ui (t ) + E𝛼 (−A, t − t0 )Bu(t )

)
,

and, then using Lemma 2, we have

E𝛼 (−A, t − t0)x(t ) − x0

= ∫
t

t0

(𝜏 − t0)𝛼−1
E𝛼 (−A, 𝜏 − t0)

m∑
i=1

Ni x(𝜏)ui d𝜏

+ ∫
t

t0

(𝜏 − t0)𝛼−1
E𝛼 (−A, 𝜏 − t0)B u(𝜏) d𝜏

x(t ) = E𝛼 (A, t − t0 )x0

+ ∫
t

t0

(𝜏 − t0 )𝛼−1
E𝛼 (A, t − t0 )E𝛼 (−A, 𝜏 − t0 )

m∑
i=1

Ni x(𝜏)ui (𝜏) ds

+ ∫
t

t0

(𝜏 − t0 )𝛼−1
E𝛼 (A, t − t0 )E𝛼 (−A, 𝜏 − t0 )B u(𝜏) d𝜏.

Now, we can get the estimate of solution x(t ):

‖x(t )‖ ≤ ‖E𝛼 (A, t − t0 )x0‖
+
‖‖‖‖‖∫

t

t0

(𝜏 − t0 )𝛼−1
E𝛼 (A, t − t0 )E𝛼 (−A, 𝜏 − t0 )

m∑
i=1

Ni x(𝜏)ui (𝜏)d𝜏
‖‖‖‖‖

+
‖‖‖‖‖∫

t

t0

(𝜏 − t0 )𝛼−1
E𝛼 (A, t − t0 )E𝛼 (−A, 𝜏 − t0 )B u(𝜏) d𝜏

‖‖‖‖‖
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1516 NOZARI ET AL.

≤ ‖E𝛼 (A, t − t0 )‖‖x0‖
+∫

t

t0

(𝜏 − t0 )𝛼−1‖E𝛼 (A, t − t0 )E𝛼 (−A, 𝜏 − t0 )‖‖‖‖‖‖
m∑

i=1

Ni x(𝜏)ui (𝜏)
‖‖‖‖‖ d𝜏

+∫
t

t0

(𝜏 − t0 )𝛼−1‖E𝛼 (A, t − t0 )E𝛼 (−A, 𝜏 − t0 )‖‖B‖‖u(𝜏)‖ d𝜏.

We assume that there exists a constant K > 0 such that‖ m∑
i=1

Ni x(𝜏)ui (𝜏)‖ ≤ K‖u(t )‖‖x(t )‖. Now, by Lemma 11,

‖x(t )‖ ≤ 𝜓E𝛼 (𝜔, t − t0 )‖x0‖
+ ∫

t

t0

(𝜏 − t0 )𝛼−1
K 𝜓E𝛼 (𝜔, t − t0 )E𝛼 (−𝜔, 𝜏 − t0 )‖x(𝜏)‖‖u(𝜏)‖ d𝜏

+ ∫
t

t0

(𝜏 − t0 )𝛼−1𝜓E𝛼 (𝜔, t − t0 )E𝛼 (−𝜔, 𝜏 − t0 )‖B‖‖u(𝜏)‖ d𝜏.

Now, we have

‖‖E𝛼 (−𝜔, t − t0 )x(t )‖‖
≤

(
𝜓‖x0‖ + ∫

t

t0

(𝜏 − t0 )𝛼−1𝜓E𝛼 (−𝜔, 𝜏 − t0 )‖B‖‖u(𝜏)‖d𝜏

)

+ ∫
t

t0

(𝜏 − t0 )𝛼−1
K 𝜓‖‖E𝛼 (−𝜔, 𝜏 − t0 )x(𝜏)‖‖‖u(𝜏)‖d𝜏.

By fractional Gronwall–Bellman Lemma (see Lemma 10), we
can write the previous inequality as follows:

‖‖E𝛼 (−𝜔, t − t0 )x(t )‖‖
≤

(
𝜓‖x0‖ + ∫

t

t0

(𝜏 − t0 )𝛼−1𝜓E𝛼 (−𝜔, 𝜏 − t0 )‖B‖‖u(𝜏)‖d𝜏

)

× exp

(
∫

t

t0

(𝜏 − t0 )𝛼−1
K 𝜓‖u(𝜏)‖d𝜏

)
,

then,

‖‖x(t )‖‖ ≤ (E𝛼 (𝜔, t − t0 )𝜓‖x0‖
+ ∫

t

t0

(𝜏 − t0 )𝛼−1𝜓E𝛼 (𝜔, t − t0 )E𝛼 (−𝜔, 𝜏 − t0 )‖B‖‖u(𝜏)‖d𝜏

)

× exp

(
∫

t

t0

(𝜏 − t0 )𝛼−1
K 𝜓‖u(𝜏)‖d𝜏

)
.

Observing that E𝛼 (𝜔, t − t0)E𝛼 (−𝜔, 𝜏 − t0) ≤ 1 holds (see
Definition 3), then, we have

‖‖x(t )‖‖ ≤
(

𝜓‖x0‖E𝛼 (𝜔, t − t0 ) + ∫
t

t0

(𝜏 − t0 )𝛼−1𝜓‖B‖‖u(𝜏)‖ d𝜏

)

× exp

(
∫

t

t0

(𝜏 − t0 )𝛼−1
K 𝜓‖u(𝜏)‖ d𝜏

)

≤
(

𝜓‖x0‖E𝛼 (𝜔, t − t0 ) + 𝜓‖B‖∫ t

t0

(𝜏 − t0 )𝛼−1‖u(𝜏)‖d𝜏

)

× exp

(
K 𝜓 ∫

t

t0

(𝜏 − t0 )𝛼−1‖u(𝜏)‖ d𝜏

)
.

Seeking readability, we let 𝜁(t ) = ∫ t

t0
(𝜏 − t0)𝛼−1‖u(𝜏)‖ d𝜏

‖‖x(t )‖‖ ≤ (
E𝛼 (𝜔, t − t0)𝜓‖x0‖ + 𝜓‖B‖𝜁(t )

)
exp

(
K 𝜓𝜁(t )

)
≤ E𝛼 (𝜔, t − t0)𝜓‖x0‖ exp

(
K 𝜓𝜁(t )

)
+ 𝜓‖B‖𝜁(t ) exp

(
K 𝜓𝜁(t )

)
.

We use the fact 2a1a2 ≤ a2
1 + a2

2 for every a1, a2 > 0 ref. [41] to
convert the first term to a summation as follows:

E𝛼 (𝜔, t − t0)𝜓‖x0‖ exp
(
K 𝜓𝜁(t )

)
= E𝛼 (𝜔, t − t0)𝜓‖x0‖

+ E𝛼 (𝜔, t − t0)𝜓‖x0‖(exp
(
K 𝜓𝜁(t )

)
− 1

)
≤ E𝛼 (𝜔, t − t0)𝜓‖x0‖ +

1
2

E𝛼 (2𝜔, t − t0)𝜓2‖x0‖2

+
1
2

(
exp

(
K 𝜓𝜁(t )

)
− 1

)2
.

Now, we can rewrite the estimation of x(t )

‖‖x(t )‖‖ ≤ E𝛼 (𝜔, t − t0)𝜓‖x0‖ exp
(
K 𝜓𝜁(t )

)
+ 𝜓‖B‖𝜁(t ) exp

(
K 𝜓𝜁(t )

)
≤ E𝛼 (𝜔, t − t0)𝜓‖x0‖ +

1
2

E𝛼 (2𝜆m, t − t0)𝜓2‖x0‖2

+
1
2

(
exp

(
K 𝜓𝜁(t )

)
− 1

)2
+ 𝜓‖B‖𝜁(t ) exp

(
K 𝜓𝜁(t )

)
.

By defining functions 𝜂′
1, 𝜂

′
2 ∈ ∞ such that 𝜂′

1(r ) =
1

2
r2 +

r , 𝜂′
2(r ) =

1

2
(exp(r ) − 1)2 + b r exp(r ) where b > 0, we have

‖‖x(t )‖‖ ≤ E𝛼 (𝜔, t − t0)𝜓‖x0‖ +
1
2

E𝛼 (2𝜔, t − t0 )𝜓2‖x0‖2

+
1
2

(
exp

(
K 𝜓𝜁(t )

)
− 1

)2
+ 𝜓‖B‖𝜁(t ) exp

(
K 𝜓𝜁(t )

)
≤ E𝛼 (𝜔, t − t0)𝜓‖x0‖ +

1
2

E𝛼 (2𝜔, t − t0 )𝜓2‖x0‖2

+
1
2

(
exp

(
K 𝜓𝜁(t )

)
− 1

)2
+

‖B‖
K

(K 𝜓𝜁(t )) exp (K 𝜓𝜁(t ))

≤ 𝜂′
1(E𝛼 (𝜔, t − t0)𝜓‖x0‖)

+𝜂′
2

(
∫

t

t0

(𝜏 − t0 )𝛼−1
K 𝜓‖u(𝜏)‖ d𝜏

)
.
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NOZARI ET AL. 1517

Comparing with Equation (18) and noting that b =
‖B‖
K

> 0,
then we obtain

𝛽(s, t − t0) = 𝜂′
1(E𝛼 (𝜔, t − t0)𝜓s), 𝜂1(s) = 𝜂′

2(s), 𝜂2(s) = K 𝜓s⋅

Thus, conformable fractional bilinear systems are generally iISS
as claimed.

It is worth highlighting that for the case the fractional
order 𝛼 is equal to 1, the results obtained for the iISS
of the conformable fractional-order bilinear systems are
consistent with those presented for the integer case in
ref. [40].
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