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Abstract 

Background:  Obesity and related co-morbidities represent a major health challenge nowadays, with a rapidly 
increasing incidence worldwide. The gut microbiome has recently emerged as a key modifier of human health that 
can affect the development and progression of obesity, largely due to its involvement in the regulation of food intake 
and metabolism. However, there are still few studies that have in-depth explored the functionality of the human gut 
microbiome in obesity and even fewer that have examined its relationship to eating behaviors.

Methods:  In an attempt to advance our knowledge of the gut-microbiome-brain axis in the obese phenotype, we 
thoroughly characterized the gut microbiome signatures of obesity in a well-phenotyped Italian female cohort from 
the NeuroFAST and MyNewGut EU FP7 projects. Fecal samples were collected from 63 overweight/obese and 37 nor-
mal-weight women and analyzed via a multi-omics approach combining 16S rRNA amplicon sequencing, metagen-
omics, metatranscriptomics, and lipidomics. Associations with anthropometric, clinical, biochemical, and nutritional 
data were then sought, with particular attention to cognitive and behavioral domains of eating.

Results:  We identified four compositional clusters of the gut microbiome in our cohort that, although not distinctly 
associated with weight status, correlated differently with eating habits and behaviors. These clusters also differed in 
functional features, i.e., transcriptional activity and fecal metabolites. In particular, obese women with uncontrolled 
eating behavior were mostly characterized by low-diversity microbial steady states, with few and poorly intercon-
nected species (e.g., Ruminococcus torques and Bifidobacterium spp.), which exhibited low transcriptional activity, 
especially of genes involved in secondary bile acid biosynthesis and neuroendocrine signaling (i.e., production of 
neurotransmitters, indoles and ligands for cannabinoid receptors). Consistently, high amounts of primary bile acids as 
well as sterols were found in their feces.

Conclusions:  By finding peculiar gut microbiome profiles associated with eating patterns, we laid the foundation for 
elucidating gut-brain axis communication in the obese phenotype. Subject to confirmation of the hypotheses herein 
generated, our work could help guide the design of microbiome-based precision interventions, aimed at rewiring 
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microbial networks to support a healthy diet-microbiome-gut-brain axis, thus counteracting obesity and related 
complications.

Keywords:  Gut microbiome, Obesity, Diet, Uncontrolled eating behavior, Metagenomics, Metatranscriptomics, 
Lipidomics, Gut-brain axis

Background
Over the last 4 decades, the worldwide prevalence of 
overweight and obesity has risen from 3.2 to 10.8% in 
men and from 6.4 to 14.9% in women [1]. In Italy, the 
predicted 2025 prevalence of obesity in adults has been 
estimated at 25.5% in men and 22.9% in women [2]. 
Obesity is recognized as a complex, multifactorial dis-
ease that represents a major risk factor for health, with 
important consequences on quality of life, life expec-
tancy and healthcare costs [3]. In particular, obesity has 
been linked to increased risk of developing a wide range 
of non-communicable diseases, such as type 2 diabetes, 
fatty liver disease, hypertension, dyslipidemia, coronary 
heart disease, stroke, and cancer [3]. Despite steady pro-
gress in the management of obesity and its comorbidities, 
preventive and therapeutic strategies sometimes prove 
ineffective, and the long-term maintenance of weight loss 
is particularly challenging. In order to design tailored 
treatment strategies that are effective over time, the need 
to better stratify patients according to precise phenotyp-
ing criteria has recently been highlighted [4]. To this end, 
a systems biology-oriented approach that elucidates the 
different components of the obesity phenotype and their 
interactions is strongly advocated, for practical advance-
ment in obesity research towards precision and personal-
ized medicine [3, 5].

In this scenario, increasing efforts have been made to 
investigate the relationship between obesity and the gut 
microbiome (GM), which has led to the identification of 
the latter as a potential viable biomarker and therapeu-
tic target [6, 7]. Composed mainly of bacteria, along with 
archaea, fungi, and viruses, the trillion-member commu-
nity that resides in the human gastrointestinal tract has 
emerged as a key regulator of host metabolism, playing 
a crucial role in the pathophysiology of obesity by con-
tributing to increased energy harvesting and storage, 
affecting adipose tissue composition and fat mass gain, 
as well as providing low-grade inflammation and insulin 
resistance [6]. These actions are mediated by a plethora 
of bioactive metabolites produced by the GM in a diet-
dependent manner, e.g., short-chain fatty acids (SCFAs), 
conjugated fatty acids, and tryptophan metabolites. 
These molecules can in fact also exert peripheral effects 
and even modulate the brain, through direct or indirect 
mechanisms involving a complex network of neuroen-
docrine factors and their receptors, thus affecting central 

appetite control, including food reward signaling, and 
energy balance [8, 9]. It is therefore not surprising that 
perturbations of the gut-microbiome-brain axis have 
been implicated in unbalanced eating patterns towards 
cravings, overeating, and hedonic-driven eating behavior 
[10]. In particular, “food addiction” (FA), a type of eating 
behavior in which the hedonic aspect overrides energy 
homeostatic mechanisms, has been recognized to play a 
crucial role in the pathophysiology of obesity, especially 
in women [11–13]. Despite the ongoing controversy over 
its diagnosis [14–16], addictive eating behavior leads to 
the increased consumption of highly palatable foods well 
beyond the energy needs and despite the known negative 
physical, physiological, and psychological consequences 
[11, 17]. Recently, FA in obese females has been associ-
ated with GM dysbiosis and reduced levels of indolepro-
pionate, a neuroprotective tryptophan-derived microbial 
metabolite, which probably exerts both local effects by 
strengthening barrier function, and peripheral effects, 
e.g., preserving beta cell function and counteracting 
oxidative stress and inflammation of the central nerv-
ous system [18]. Very recently, Leyrolle and colleagues 
have examined the biological and psychiatric profile 
of obese patients with and without binge eating disor-
ders through non-targeted multi-omics approaches. The 
authors suggest the potential role of certain GM layouts 
(i.e., with enrichment of Bifidobacterium and Anaero-
stipes, and depletion of Akkermansia and Intestimonas) 
and/or plasma metabolites (i.e., food contaminants and 
food derived-metabolites) as drivers or biomarkers of 
binge eating disorders [19]. However, to our knowledge, 
no other studies have examined the relationship between 
GM and FA and, in general, very little information is 
available on GM functionality in uncontrolled eating 
behavior and obesity.

In an attempt to bridge this gap, providing some insight 
into the complex gut-microbiome-brain axis in obesity, 
here we applied an exploratory multi-omics approach to 
a cohort of 37 normal-weight and 63 overweight/obese 
premenopausal women, enrolled within the European 
FP7 NeuroFAST and MyNewGut projects, with differ-
ent eating habits and behaviors. Specifically, we first 
characterized the compositional profiles of GM by 16S 
rRNA amplicon sequencing and shotgun metagenom-
ics, for fine taxonomic resolution down to species level, 
and evaluated their association with eating behavior as 
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assessed by several psychometric questionnaires. We 
then applied a shotgun metatranscriptomic approach to 
unravel transcriptionally active microbial pathways asso-
ciated with eating behavior, as well as variations in spe-
cific microbial genes involved in the regulation of food 
intake, energy expenditure, and neuroendocrine signal-
ing. Metabolic outputs of the GM, such as SCFAs, bile 
acids, and sterols, were finally assessed through fecal lipi-
domics. Our findings, albeit exploratory and associative, 
provide potential GM-based biomarkers to phenotype 
the patient with excess weight and FA/nutritional dys-
function to personalize future treatments.

Methods
The NeuroFAST cohort: study design and sample collection
The present study is based on a subgroup of 63 over-
weight/obese (OB) women enrolled in the project Neu-
roFAST (fully described in a previous publication) [20]. 
Study population included women aged > 18  years in a 
premenopausal state, with BMI ranging between 24.9 
and 40.0  kg·m−2. Overweight and obesity were defined 
according to the World Health Organization criteria [21]. 
Exclusion criteria were the presence of acute/chronic dis-
eases (i.e., type 2 diabetes, thyroid dysfunction, endog-
enous hypercortisolism or other endocrine or metabolic 
disorders, major cardiovascular events, renal, hepatic, 
and systemic diseases, central nervous system illness and 
cancer), previous and current neurological or psychiatric 
disease (explored by a direct psychological interview, the 
Mini-International Neuropsychiatric Interview—MINI 
[22]), and current use of psychotropic medication, cor-
ticosteroid therapy, post-menopausal state, pregnancy, 
or nursing. Additional exclusion criteria were as fol-
lows: alcohol and substance abuse and addiction, ano-
rexia nervosa, bulimia nervosa, ongoing or recent (i.e., 
the last 6 months) diet, and treatment with any medica-
tion in the past 6  months before clinical examination. 
The study cohort was implemented in the context of 
the project MyNewGut, by enrolling 37 healthy normal-
weight (NW) women. The abovementioned exclusion 
criteria were maintained. Both OB and NW women were 
enrolled at the Unit of Endocrinology and Prevention and 
Care of Diabetes of S. Orsola Polyclinic—University Hos-
pital (Bologna, Italy). In order to exclude country-related 
effects on the GM profile, all women were enrolled in the 
Emilia Romagna region and surroundings (Italy). Psy-
chometric and nutritional questionnaires were adminis-
tered as described below. Stool and blood were collected 
from all women for GM analysis and measurement of 
biochemical profile, metabolic and inflammatory bio-
markers, and gut hormones, respectively. Moreover, all 
participants underwent an oral glucose tolerance test. 
Venous blood was drawn in the follicular phase of the 

ovarian cycle after an overnight fast using standardized 
procedures, to minimize the effect of hormonal fluc-
tuations on the experimental results [23]. Routine bio-
chemical parameters, serum hormones, and metabolites 
were measured at the Central Laboratory of S. Orsola 
Polyclinic University Hospital (Bologna, Italy); addi-
tional blood samples for gut hormones were collected 
and stored at – 80 °C up to the assay. Fecal samples were 
collected within 24–48 h prior to clinical and nutritional 
assessment, stored at – 20 °C on the day of collection and 
then transferred to – 80 °C upon arrival in the laboratory. 
The study was conducted in accordance with the Decla-
ration of Helsinki and approved by the local ethics com-
mittee (072/2010/U/Sper; 149/2015/U/Sper). A written 
informed consent was provided by each woman enrolled.

Collection of clinical, behavioral, and nutritional data
Examinations of the enrolled participants included 
anthropometric data (i.e., body weight, height, BMI, waist 
and hip circumferences, and waist-to-hip ratio), systolic 
and diastolic blood pressure, and physiological markers 
in blood. Insulin resistance and sensitivity were defined 
according to the Homeostasis Model Assessment of Insu-
lin Resistance (HOMA-IR) [24] and the Matsuda-index 
[25] respectively. A HOMA-IR value > 2.5 was used to 
define insulin-resistant participants. All women under-
went a visit with a fully trained psychologist from the 
Department of Experimental, Diagnostic and Specialty 
Medicine (University of Bologna), aimed at investigating 
the previous or current presence of psychopathological 
disorders, and use of psychotropic agents, through MINI 
[22]. In addition, participants filled out a battery of psy-
chometric questionnaires:

–	 Bulimic Investigatory Test Edinburgh (BITE): a 
33-item self-report measure designed to assess 
symptomology of bulimia or binge eating, consist-
ing of two subscales: the Symptom Scale, measur-
ing the degree of symptoms, and the Severity Scale, 
providing an index of the severity of symptoms [26]. 
A Symptom Scale score of 20 or more indicates the 
presence of binge eating symptoms; a Severity Scale 
score of 10 or more indicates a high degree of sever-
ity. High scores on both scales indicate a high prob-
ability that a participant will fulfill the criteria for an 
eating disorder diagnosis. BITE is considered a valid 
and reliable questionnaire [27] and is widely used to 
assess binge eating symptomology and to screen for 
bulimic symptoms and their severity;

–	 Three-factor eating questionnaire (TFEQ): a self-
report questionnaire, containing 18 items, widely 
used in eating behavior research in both OB and 
NW subjects [28]. Participants must rate each item 
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using a 4-point Likert scale in which 1 is definitively 
true and 4 is definitively false. TFEQ was designed 
to assess three cognitive and behavioral domains 
of eating (factors): cognitive restraint (CR), uncon-
trolled eating (UE), and emotional eating (EE). The 
CR scale contains six items and refers to the con-
scious restriction of food intake to control body 
weight or promote weight loss. The UE scale con-
tains nine items and refers to the tendency to eat 
more than usual because of a loss of control over 
intake. The EE scale contains three items and refers 
to overeating during dysphoric mood state. The 
TFEQ-18R was derived from a previous 51-item 
and 21-item version. The current version has shown 
a robust factor structure, good validity and internal 
reliability, and no significant ceiling or floor effects 
[29];

–	 Yale Food Addiction Scale (YFAS): a questionnaire 
developed by Gearhardt and colleagues to opera-
tionalize FA, including 25 items to assess signs of 
substance-dependence symptoms (e.g., tolerance, 
withdrawal, loss of control) in eating behavior over 
the past 12 months [11]. YFAS provides two scoring 
options: a symptom count version and a diagnostic 
version. To receive a diagnosis of FA, it is necessary 
to report experiencing three or more symptoms and 
clinically significant impairment or distress. Moreo-
ver, based on symptoms count, Gearhardt and col-
leagues suggested to dichotomize participants in high 
and low food addicted groups [12]. Consequently, 
participants with 3 or more symptoms were consid-
ered as highly food addicted while low food addicted 
participants scored two or fewer symptoms [23]. 
Accordingly, for the present study, OB participants 
were stratified into three groups: high addictive eat-
ing behavior, including participants with three or 
more symptoms and FA diagnosis (O_DHA); high 
addictive eating behavior, including participants 
with three or more symptoms but no FA diagnosis 
(O_HA); low addictive eating behavior, including 
participants with two or less symptoms (O_LA). The 
recently released YFAS 2.0 version [30] was not used 
in the present study because it was not available at 
the time of recruitment;

–	 Perceived Stress Scale (PSS): a 10-item, self-report 
questionnaire, assessing the individual experience of 
perceived stress over the past month [31, 32]. Par-
ticipants must rate the frequency with which they 
have perceived situations as stressful using a 5-point 
Likert scale in which 0 is never and 4 is very often. 
Scores ranging from 27 to 40 are considered high 
perceived stress. PSS has been shown to be a reliable 
and valid measure of psychological stress.

Nutritional questionnaires were also administered to 
obtain information on the frequency of consumption (no. 
of portions per month) of every category of food (Food 
Frequency Questionnaire, FFQ) [33]. Fiber intake was 
normalized to 1000  kcal, following the same approach 
as Rampelli et al. [7]. Information about personal/famil-
iar anamnesis, menstrual history and pregnancies, body 
weight curve (recall of body weight values since the age 
of 18 to the present, in order to identify the occurrence of 
“stress-related weight gain”), and prior and current medi-
cations was also collected.

Microbial DNA extraction
Total microbial DNA was extracted from fecal sam-
ples by the repeated bead-beating plus column method 
[34], with only slight modifications as reported by Bar-
one et al. [35]. Briefly, 250 mg of fecal samples were sus-
pended in 1  ml of lysis buffer (500  mM NaCl, 50  mM 
Tris–HCl pH 8, 50  mM EDTA, 4% (w/v) SDS), added 
with four 3-mm glass beads and 0.5 g of 0.1-mm zirco-
nia beads (BioSpec Products) and homogenized using a 
FastPrep instrument (MP Biomedicals) with three bead-
beating steps at 5.5 movements/sec for 1 min, and 5-min 
incubation in ice between treatments. After incubation 
at 95 °C for 15 min, stool particles were pelleted by cen-
trifugation at 14,000  rpm for 5  min. Nucleic acids were 
precipitated by adding 260 μl of 10 M ammonium acetate 
and one volume of isopropanol. The pellets were then 
washed with 70% ethanol and suspended in TE buffer. 
RNA was removed by treatment with 2 μl of DNase-free 
Rnase (10  mg/ml) at 37  °C for 15  min. Protein removal 
and column-based DNA purification were performed fol-
lowing the manufacturer’s instructions (QIAGEN). DNA 
was quantified with the NanoDrop ND-1000 spectropho-
tometer (NanoDrop Technologies).

16S rRNA gene sequencing and bioinformatics
The V3-V4 hypervariable regions of the 16S rRNA gene 
were amplified using the 341F and 805R primers with 
added Illumina adapter overhang sequences as previously 
reported by Barone et  al. [35]. PCR products of around 
460  bp were purified using a magnetic bead-based sys-
tem (Agencourt AMPure XP; Beckman Coulter). Each 
indexed library was prepared by limited-cycle PCR using 
Nextera technology and further purified as described 
above. The libraries were subsequently pooled at equi-
molar concentration, denatured with 0.2  N NaOH, and 
diluted to 6  pM with 20% PhiX control. Sequencing 
was performed on an Illumina MiSeq platform using a 
2 × 250 bp paired-end protocol, according to the manu-
facturer’s instructions (Illumina). Raw sequence data are 
available for download from the NCBI Sequence Read 
Archive (BioProject ID: PRJNA832282).
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Paired-end reads were processed combining PAN-
DAseq [36] and QIIME [37]. High-quality sequences 
were clustered into OTUs at 97% sequence similarity by 
UCLUST [38] and taxonomy was assigned against the 
Greengenes database (May 2013 release). All singleton 
OTUs were discarded. Alpha diversity was evaluated 
using two different metrics: Shannon index and num-
ber of observed OTUs. Beta diversity was estimated by 
computing weighted and unweighted UniFrac distances, 
which were used as input for principal coordinates anal-
ysis (PCoA). PCoA, heatmap, and bar plots were built 
using the R packages made4 [39] and vegan (http://​www.​
cran.r-​proje​ct.​org/​packa​ge=​vegan). The obtained OTUs 
were filtered for a prevalence in participants of at least 
20%, and hierarchical Ward linkage clustering based on 
Spearman correlation coefficients of the proportion of 
OTUs was used to identify microbiome steady states. 
Multiple testing using the Benjamini–Hochberg method 
allowed verifying that each cluster showed significant 
Spearman correlations between samples within the 
group. Significant differences between clusters were eval-
uated with permutational MANOVA using the Spearman 
distance matrix as input (function adonis of the vegan 
package in R).

Co‑abundance analysis
Co-abundance groups (CAGs) were identified as previ-
ously described [40]. Briefly, the dataset included the 
bacterial genera present in at least two samples with rela-
tive abundance > 0.1%. Kendall’s correlation test was used 
to evaluate associations between bacterial genera. The 
identified associations were visualized using hierarchi-
cal Ward linkage clustering with distance metrics based 
on Spearman’s correlation and used to determine the co-
abundance of bacterial groups. Significant associations 
were checked for multiple tests using the q-value method 
(false discovery rate, FDR ≤ 0.05) [41] and plotted within 
the networks. Permutational MANOVA using the Kend-
all distance matrix as input was applied to assess whether 
the CAGs were significantly different from each other. 
Cytoscape software was used to create Wiggum plot net-
works (http://​www.​cytos​cape.​org), as previously reported 
[40]. In such graphs, the size of the circle represents the 
bacterial abundance, while the connections between the 
nodes represent positive and significant Kendall correla-
tions between bacterial genera (FDR ≤ 0.05).

Shotgun metagenomic DNA sequencing and data analysis
Metagenomic DNA libraries were prepared using the 
QIAseq FX DNA Library Kit, following the manufac-
turer’s instructions (QIAGEN). Briefly, for each sample, 
100  ng of DNA were fragmented to 450-bp size, end-
repaired, and A-tailed using FX Enzyme Mix with the 

following thermal cycle: 4 °C for 1 min, 32 °C for 8 min, 
and 65  °C for 30  min. Samples were then incubated at 
20 °C for 15 min in the presence of DNA ligase and Illu-
mina adapter barcodes for indexing and adapter ligation. 
After two purification steps with Agencourt AMPure XP 
magnetic beads (Beckman Coulter), 10-cycle PCR ampli-
fication, and a further step of purification as above, sam-
ples were pooled at equimolar concentration of 4  nM. 
Sequencing was performed on an Illumina NextSeq 500 
platform using a 2 × 150  bp paired-end protocol, fol-
lowing the manufacturer’s instructions (Illumina). Raw 
sequence data are available for download from the NCBI 
Sequence Read Archive (BioProject ID: PRJNA832560). 
Species-level characterization of shotgun metagenomics 
data was conducted as previously described by Rampelli 
and colleagues [42]. In brief, shotgun reads were first fil-
tered by quality and human sequences by means of the 
human sequence removal pipeline and the WGS read 
processing procedure of the HMP Consortium [43]. The 
obtained reads were taxonomically characterized at spe-
cies level by MetaPhlAn2 [44].

RNA isolation, sequencing, and bioinformatics
RNA extraction was carried out using the RNeasy Pow-
erMicrobiome kit (QIAGEN), according to the manu-
facturer’s instructions. In brief, 250 mg of stool samples 
were processed by adding the chemical lysis buffer 
(PM1/β-mercaptoethanol) and subsequent homogeni-
zation using a FastPrep instrument (MP Biomedicals) at 
5.5 movements/sec for 1 min. DNA was removed by on-
column DNase treatment, followed by a washing step to 
remove the enzyme and any digested nucleic acids. The 
purified RNA was eluted in RNase-free water. For each 
sample, rRNA was depleted using the Ribo-Zero Gold 
kit for bacteria (Illumina) according to the manufac-
turer’s instructions. In short, total RNA was hybridized 
with rRNA Removal Beads (Illumina) and a subsequent 
clean-up was performed using the RNAClean XP beads 
(Illumina) following the RNA denaturation step. RNA 
libraries were prepared using the TruSeq Stranded Total 
RNA library kit (Illumina), according to the manufac-
turer’s instructions. In brief, after reverse transcrip-
tion, the synthesis of the second strand was performed 
with a combination of enzymes and optimized buffer 
solutions to allow the degradation of the RNA strand, 
the generation of a second cDNA strand, and the gen-
eration of blunt DNA ends. Subsequent addition of the 
A-base ensured efficient ligation of Illumina-compatible 
adapters. The generated RNA-seq libraries were PCR-
amplified, purified with magnetic bead-based clean-
ups (Agencourt AMPure XP; Beckman Coulter), and 
pooled at equimolar concentration of 4 nM before being 
loaded onto the flow cell. Sequencing was performed on 
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an Illumina NextSeq 500 platform using a 2 × 150  bp 
paired-end protocol, following the manufacturer’s 
instructions (Illumina). Raw sequence data are available 
for download from the NCBI Sequence Read Archive 
(BioProject ID: PRJNA832581).

Metatranscriptomic reads passed through the same 
pipeline used in the metagenomic dataset in order to 
remove low-quality bases, reads of human origin, and 
reads encoding for rRNA. Metatranscriptomes were 
functionally profiled using HUMAnN2 [45] to quan-
tify expression levels of genes and pathways. Reads 
were aligned to sample-specific pangenomes, i.e., all 
gene families in any microorganism detected in a given 
sample, using Bowtie and the UniRef90, MinPath, and 
KEGG databases [46–49]. Hits were counted per KEGG 
pathway and normalized for length, alignment quality 
score, and sequencing depth. HUMAnN2 RNA-level 
outputs (transcript abundances) were then normalized 
by the corresponding DNA-level outputs from metagen-
omic results to quantify microbial expression regardless 
of gene copy number. To this aim, the shotgun metagen-
omics data were analyzed with HUMAnN2 using the 
same parameters reported above for the metatranscrip-
tomic data.

Lipidomics analysis
The targeted lipidomics analysis included in our work 
was originally conducted by Matysik and colleagues [50]. 
Briefly, 2.5  ml of 70% isopropanol was added to each 
stool sample and homogenized in a gentleMACS disso-
ciator (Miltenyi Biotec GmbH). Samples were kept on 
ice between each preparation step. Overnight drying of 
1.0 ml of raw stool homogenate in a vacuum centrifuge 
was performed to determine stool dry weight. Samples 
were then diluted to a final concentration of 2.0-mg dry 
weight/ml and used for sterol extraction and bile acid 
analysis. For SCFA analysis, an aliquot of the diluted 
stool homogenate was centrifuged, and 50  μl of the 
supernatant was subjected to derivatization to 3-nitro-
phenylhydrazones, prior to measurement by liquid chro-
matography with tandem mass spectrometry (LC–MS/
MS). Sterols and stanols (coprostanol, 5α-cholestanol, 
sitosterol, 5α-sitostanol, 5β-sitostanol, campesterol, and 
5α-campestanol) were quantified by LC–MS/MS after 
derivatization to N,N-dimethylglycine esters. Bile acids 
were quantified by LC–MS/MS using a stable isotope 
dilution assay with a modified method for serum. Free 
bile acids ursodeoxycholic acid (UDCA), chenodeoxy-
cholic acid (CDCA), cholic acid (CA), deoxycholic acid 
(DCA), and lithocholic acid (LCA), as well as their gly-
cine (G)- and taurine (T)-conjugated species were also 
quantified.

Statistical analysis
The median along with the 25th and 75th percentile was 
used as descriptive statistics for anthropometric and 
biochemical/hormonal parameters; for psychometric 
parameters, mean and standard deviation were used. 
Kruskal–Wallis and post-hoc Wilcoxon rank-sum pair-
wise tests were applied for inter-group comparisons. 
Clinical data were analyzed by SPSS version 22.0 (SPSS 
Inc.). Two-tailed p ≤ 0.05 was considered statistically sig-
nificant, while 0.05 < p ≤ 0.1 a tendency.

As for -omics data, the statistical analysis was per-
formed by means of R Studio 1.2.1335 on R software 
v4.2.0 (https://​www.r-​proje​ct.​org, last accessed on 8 
June 2022) and the packages stats [51], vegan [52], and 
quantreg [53]. In particular, GM clusters were identi-
fied through hierarchical Ward linkage clustering based 
on the Spearman correlation coefficients of the propor-
tion of OTUs, filtered by subject prevalence of at least 
20%. Multiple testing using the Benjamini–Hochberg 
method was used to verify that each cluster showed sig-
nificant correlations between samples within the group. 
Permutational MANOVA using the Spearman distance 
matrix as input, performed using the function adonis of 
the vegan package in R [52], was used to verify that the 
clusters were statistically significantly different from 
each other. The distribution of women by weight status 
within the four GM clusters was tested using Fisher’s 
exact test. Significant differences among the GM clus-
ters in relative taxon abundance, alpha diversity, dietary 
data, and fecal lipid amounts, as well as among dietary 
groups (identified by application of Ward linkage clus-
tering and Euclidean distance metrics to the first axis 
of a Correspondence Analysis—see the paragraph “Diet 
impact on the gut microbiota of normal-weight and over-
weight/obese women” of the “Results” section) in the 
healthy food diversity (HFD) index [54], were assessed 
using the Kruskal–Wallis test. Wilcoxon rank-sum test 
was adopted as a post-hoc test to check for differences 
between each pair of groups, adjusting p values for mul-
tiple testing via Benjamini–Hochberg method. Wilcoxon 
test with FDR correction was also used to compare alpha 
diversity and relative taxon abundance of the GM pro-
files of NW and OB women. The permutation test with 
pseudo-F ratio (function adonis in vegan) was used to 
assess the significance of data separation in the PCoA. 
The envfit function of the vegan package of R was used 
to perform the superimposition of FFQ data on the PCoA 
space, in order to identify the food items most contrib-
uting to the ordination space. For CAG assignment and 
analysis, see the dedicated paragraph “Co-abundance 
analysis” in the “Methods” section. To find associations 
between -omics datasets, we performed a multi-omics 
analysis across the entire dataset without stratifying by 

https://www.r-project.org
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GM cluster. In particular, according to Chun and Keleş 
[55], we adopted the sparse partial least square (sPLS) 
regression analysis as implemented in the mixOmics 
package in R [56], modeling the dataset generated by 
metatranscriptomics (meaning transcriptionally active 
pathways and species) to lipidomics measures via multi-
ple regression. sPLS is indeed a good option for sample 
sizes smaller than the total number of variables [55], as in 
our study. All lipid variables were retained in the model 
along with the metatranscriptomic features present in 
at least 50% of the samples. Hierarchical clustering on 
the sPLS regression model was plotted with Pearson 
correlation as distance and complete linkage method. 
Host behavioral data and other health parameters were 
used for correlation analysis with GM compositional 
data by using quantile (median) age-adjusted regression 
tests through the R package quantreg, as already per-
formed by Claesson et  al. [40]. P values were corrected 
for multiple comparisons using the Benjamini–Hochberg 
method. FDR and p ≤ 0.05 were considered as statistically 
significant.

Results
Study cohort description
Across two EU FP7 projects (i.e., NeuroFAST and 
MyNewGut), a total of 100 premenopausal women were 
recruited at the Unit of Endocrinology and Prevention 
and Care of Diabetes of the S. Orsola Polyclinic Univer-
sity Hospital in Bologna, Italy. Anthropometric and labo-
ratory parameters as well as psychometric results of all 
recruited participants are reported in Table 1. The whole 
study cohort included 63 OB (with BMI from 25.6 to 
39.8 kg/m2) and 37 NW (with BMI from 18.5 to 24.6 kg/
m2) women. OB women showed significantly higher body 
weight, BMI, waist and hip circumference, and waist-to-
hip ratio compared to NW (p < 0.001, Wilcoxon rank-sum 
test). Systolic and diastolic blood pressure was higher in 
OB compared to NW (p ≤ 0.001), and three OB women 
were under antihypertensive treatment. OB women 
exhibited higher total cholesterol and triglycerides levels 
compared to NW (p ≤ 0.04), while HDL-cholesterol was 
higher in NW group (p = 0.003). Glucose metabolism 
indices (i.e., blood glucose, insulin, glycated hemoglobin 
and the area under the curve (AUC) of glucose and insu-
lin during oral glucose tolerance test) were higher in OB 
compared to NW women (p < 0.001). Five OB and one 
NW women had fasting glycaemia (≥ 100  mg/dl) but 
no one had a diagnosis of type 2 diabetes according to 
American Diabetes Association diagnostic criteria [54]. 
Finally, the OB group showed a significantly higher rate 
of insulin-resistant participants than NW (44.4% in OB 
group vs 0% in NW group, p < 0.001), consistent with 
a dependent relationship between insulin resistant/

sensitive phenotype and BMI status. Correction for 
effect size indicated good correlation (Cramer’s correla-
tion coefficient = 0.478, p < 0.0001). As for the psycho-
metric questionnaires, some of them were discarded for 
incomplete data: 12 BITE (Bulimic Investigatory Test 
Edinburgh), 10 TFEQ (three-factors eating question-
naire), and 4 PSS (perceived stress scale) were incom-
pletely filled in by the participants. One OB participant 
exhibited high scores in the two BITE subscales, indicat-
ing a high probability of fulfilling the criteria for a diag-
nosis of eating disorder. The mean scores obtained in the 
TFEQ subscales were as follows: TFEQ UE (uncontrolled 
eating), 16.91 ± 5.37; TFEQ CR (cognitive restraint), 
14.35 ± 4.27; TFEQ EE (emotional eating), 7.59 ± 2.98. 
Among the 100 participants who completed YFAS, 14 (all 
belonging to the OB group) received a diagnosis of FA, 
while the mean FA symptom score of the whole cohort 
was 2.28 ± 1.55. None of the NW women showed high 
FA scores. The mean PSS score was 16.03 ± 5.91; two OB 
patients exhibited high PSS scores. Compared to NW, 
OB participants exhibited significantly higher scores in 
BITE severity (p < 0.001), TFEQ CR (p < 0.001), TFEQ EE 
(p < 0.001), and FA symptom score (p < 0.001), as well as 
in FA diagnosis (p < 0.01).

Gut microbiota profiling and cluster identification
16S rRNA gene sequencing yielded a total of 6.5 million 
sequence reads, with an average of 73,152 (± 38,578, sd) 
paired-end reads per sample, for 11,874 operational taxo-
nomic units (OTUs) grouped at 97% of sequence identity. 
Considerable differences were identified in the GM diver-
sity and structure of OB and NW women (Fig. 1).

Hierarchical Ward linkage clustering based on the 
Spearman correlation coefficient of the proportion of 
OTUs allowed the identification of four participant 
clusters (named C1 to C4) (Fig. 2). Albeit in the absence 
of statistical significance (p = 0.38, Fisher’s exact test), 
one cluster included 48% of NW women (C1) while the 
remaining three clusters (C2-C4) comprised mostly OB 
women (72%, C2; 64%, C3 and C4). Interestingly, the 
four clusters also differed in biodiversity, with C1 and 
C3 showing the highest values, while C2 and C4 the 
lowest (p < 8 × 10−4, Kruskal–Wallis test). More pre-
cisely, the biodiversity in C2 was lower with respect 
to C1 and C3 (p < 3 × 10−4, Wilcoxon rank-sum test), 
while the cluster C4 showed lower levels compared 
to C1 (p = 0.05) (Fig.  2). To identify trends in the GM 
structure across the whole dataset, co-abundance asso-
ciations of genera were first established, and correlated 
bacterial taxa were subsequently clustered into five co-
abundance groups (CAGs) (Additional file  1: Fig. S1), 
named according to the dominant (i.e., the most abun-
dant) genus in each group: Bifidobacterium (violet), 
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Table 1  Baseline characteristics of enrolled women: anthropometric, biochemical and hormonal parameters, and psychometric data. 
For anthropometric, biochemical, and hormonal variables, the median along with the 25th percentile (p25) and 75th percentile (p75) 
are shown for all women (All), as well as for normal-weight (NW) and overweight/obese (OB) women. For psychometric parameters, 
mean and standard deviation (sd) are shown. P values obtained by Wilcoxon rank-sum test refer to the NW vs OB comparison 
(significant values are in bold)

* In groups with N < 4, p25 and p75 were converted to minimum and maximum (given the amount of missing data, such comparisons must be taken with caution)
(a) Both number and percentage of individuals with diagnosed addictive eating behavior are reported

BITE Bulimic Investigatory Test Edinburgh, TFEQ Three-factor eating questionnaire, UE Uncontrolled eating, CR Cognitive restraint, EE Emotional eating, YFAS Yale food 
addiction scale, PSS Perceived stress scale

All NW OB
N Median (p25-p75) N Median (p25-p75) N Median (p25-p75) p

Anthropometric, biochemical, and hormonal parameters
  Age (years) 100 34 (26–43) 37 33 (27–41) 63 38 (27–45) 0.240

  Body weight (kg) 100 75.3 (62.1–84.0) 37 58.0 (53.8–64.1) 63 81.0 (76.0–90.0)  < 0.001
  Body mass index, BMI (kg/m2) 100 28.1 (22.8–32.8) 37 21.6 (20.1–23.1) 63 30.9 (28.3–33.9)  < 0.001
  Systolic blood pressure (mmHg) 99 120.0 (110.0–130.0) 37 110.0 (110.0–120.0) 62 120.0 (110.0–130.0) 0.001
  Diastolic blood pressure (mmHg) 99 70.0 (70.0–80.0) 37 70.0 (65.0–73.0) 62 80.0 (70.0–80.0)  < 0.001
  Waist circumference (cm) 100 95.0 (84.0–103.0) 37 80.0 (73.5–86.5) 63 101.0 (95.0–107.0)  < 0.001
  Hip circumference (cm) 88 106.0 (97.3–115.0) 37 96.0 (91.5–100.0) 51 115.0 (107.0–121.0)  < 0.001
  Waist-to-hip ratio 88 0.86 (0.81–0.91) 37 0.82 (0.79–0.88) 51 0.89 (0.83–0.94)  < 0.001
  Total cholesterol (mg/dl) 100 180.0 (162.0–204.0) 37 169.0 (160.0–192.0) 63 191.0 (162.0–211.0) 0.044
  HDL-cholesterol (mg/dl) 100 54.5 (46.3–62.8) 37 59.0 (52.5–65.0) 63 52.0 (44.0–59.0) 0.003
  Triglycerides (mg/dl) 100 71.0 (53.3–99.8) 37 57.0 (45.5–71.0) 63 87.0 (59.0–110.0)  < 0.001
  LDL-cholesterol (mg/dl) 97 110.0 (96.5–130.5) 37 105.0 (95.0–116.5) 60 114.0 (97.3–140.8) 0.141

  Glycemia (mg/dl) 100 86.0 (80.0–90.0) 37 81.0 (79.0–85.5) 63 89.0 (82.0–93.0)  < 0.001
  Glycemia-AUC (mg/dl) 98 12,930 (10,901–14,632) 37 11,130 (10,275–12,735) 61 14,085 (12,495–16,050)  < 0.001
  Insulin (μU/ml) 100 6.8 (4.2–12.0) 37 3.7 (3.0–5.0) 63 10.1 (6.0–14.0)  < 0.001
  Insulin-AUC (μU/ml) 97 5110 (3500–8017) 37 3412 (2472–4326) 60 7163 (4750–9966)  < 0.001
  Glycated hemoglobin (%) 100 5.2 (4.9–5.4) 37 5.0 (4.8–5.2) 63 5.3 (5.1–5.4)  < 0.001
  Creatinine (mg/dl) 45 0.73 (0.63–0.83) 3 0.67 (0.58–0.73)* 42 0.74 (0.64–0.84) 0.300

  Alanine transaminase, ALT (mg/dl) 46 17.5 (12.0–24.0) 3 7.0 (6.0–24.0)* 43 18.0 (13.0–24.0) 0.163

  Aspartate transaminase, AST (mg/dl) 46 16.0 (14.0–20.0) 3 14.0 (13.0–23.0)* 43 16.0 (14.0–20.0) 0.643

  Uric acid (mg/dl) 43 4.3 (3.7–4.8) 3 3.4 (2.8–3.9)* 40 4.3 (3.9–4.9) 0.020
  Erythrosedimentation rate (mm/h) 44 11.5 (6.0–19.8) 3 2.0 (2.0–4.0)* 41 13.0 (7.0–20.0) 0.002
  C-reactive protein (mg/dl) 43 0.3 (0.1–0.5) 3 0.03 (0.03–0.07)* 40 0.3 (0.1–0.5) 0.004
  Thyroid stimulating hormone, TSH (mUI/
ml)

48 1.56 (1.30–2.11) 4 1.88 (1.48–2.94) 44 1.53 (1.11–2.11) 0.395

  Adrenocorticotropic hormone, ACTH 
(pg/ml)

45 17.0 (12.0–23.0) 3 11.0 (11.0–17.0)* 42 17.5 (12.8–23.0) 0.122

  HOMA-IR 100 1.43 (0.83–2.66) 37 0.74 (0.61–0.99) 63 2.16 (1.34–3.25)  < 0.001
  Matsuda Index 92 5.75 (3.62–9.47) 32 10.3 (7.88–15.08) 60 4.05 (2.83–5.83)  < 0.001

N Mean ± sd N Mean ± sd N Mean ± sd p
Psychometric parameters
  BITE severity score 88 4.48 ± 4.51 33 1.75 ± 1.27 55 6.11 ± 4.96  < 0.001
  BITE symptom score 88 6.53 ± 5.85 33 5.39 ± 3.43 55 7.21 ± 6.85 0.158

  TFEQ UE 90 16.94 ± 5.39 33 15.97 ± 4.93 57 17.51 ± 5.61 0.193

  TFEQ CR 90 14.35 ± 4.29 33 12.24 ± 2.90 57 15.58 ± 4.50  < 0.001
  TFEQ EE 90 7.56 ± 2.99 33 5.73 ± 2.22 57 8.65 ± 2.87  < 0.001
  YFAS symptoms 100 2.28 ± 1.55 37 1.08 ± 0.54 63 2.98 ± 1.52  < 0.001
  YFAS diagnosed addiction (a) 14 14% 37 0 63 14  < 0.001
  PSS 96 15.53 ± 6.39 35 14.2 ± 5.19 61 16.29 ± 6.91 0.123
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Ruminococcus (blue), Dorea (green), Prevotella (light 
blue), and Bacteroides (pink). Wiggum plots were then 
generated to depict the GM compositional relation-
ships for each of the four participant divisions—identi-
fied by OTU clustering—showing a peculiar abundance 
pattern of the five CAGs (Fig.  3). Each cluster (C1 to 
C4) constitutes a steady state, representing a group of 
individuals characterized by a GM layout significantly 

different from the other groups (p < 0.001, permuta-
tional MANOVA test on unweighted UniFrac data). 
However, it should be noted that the clusters did not 
significantly segregate in the weighted UniFrac-based 
PCoA (p > 0.05; data not shown), suggesting that the 
differences were not related to abundant GM com-
ponents. These results were confirmed by compari-
sons of the relative abundances of the main genera 

Fig. 1  The gut microbiota structure of overweight/obese women segregates from that of normal-weight women. a Alpha diversity measured 
using the Shannon index and the number of observed OTUs for overweight/obese (OB) and normal-weight (NW) women. * p < 0.02, Wilcoxon 
rank-sum test. b Principal coordinates analysis (PCoA) plot based on unweighted UniFrac distances between the gut microbiota profiles of OB and 
NW women (p = 0.007, permutation test with pseudo-F ratio). The ellipses represent the 95% confidence interval for each study group. c Boxplots 
showing the relative abundance distribution of significantly different bacterial genera between study groups (* p < 0.05; ** p < 0.01; *** p < 0.001; 
Wilcoxon rank-sum test). Only taxa found in at least 20% of the samples were considered
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(see Additional file 1: Table S1 for further details). The 
microbiota variation from the group comprising most 
of the NW women (i.e., C1) to the groups including 
predominantly OB women (C2-C4) was accompanied 
by distinctive CAGs dominance. Specifically, the clus-
ter C1 was characterized by the co-presence of all 5 
CAGs and a higher relative abundance of Prevotella, 
while in clusters C2-C4, the lack of at least one of the 
5 CAGs identified was observed. In cluster C2, despite 
the absence of the Bifidobacterium CAG, a represen-
tation of the other four CAGs was preserved. On the 
other hand, cluster C3 lost the Bifidobacterium CAG 
but showed an over-representation of Prevotella and 

Ruminococcus CAGs. Finally, cluster C4 was charac-
terized by a loss of Bacteroides while being enriched in 
Bifidobacterium CAG.

Associations between the microbiota clusters 
and clinical and behavioral measures in normal‑weight 
and overweight/obese women
Associations of demographic and clinical variables and 
eating behavior with the major axes of unweighted uni-
Frac PCoA analysis are shown in Fig.  3 and listed in 
Table 2 (see also Additional file 1: Fig. S2). In particular, 
based on a quantile (median) age-adjusted regression 
analysis when considering the whole cohort, a shift of the 

Fig. 2  The gut microbiota structure allows stratifying the whole dataset into four distinct clusters. a Hierarchical Ward linkage clustering based on 
the Spearman correlation coefficients of the relative abundance of OTUs, filtered for presence in at least 20% of the participants. Labeled groups 
in the top tree (basis for the four groups of Fig. 3) are highlighted by stars colored according to the microbiota configuration (C1–C4) (see d). 
OTUs are color-coded by family assignment in the vertical tree. Bacteroidetes phylum, blue gradient; Firmicutes, green; Proteobacteria, red; and 
Actinobacteria, yellow. The bar plot at the bottom shows the relative abundance of the family-classified microbiota profiles. Bar plots showing the 
percentage of normal-weight (NW) and overweight/obese (OB) women for each cluster (b) and the distribution of the latter in terms of BMI status: 
overweight (OW), class 1 obesity (OB1), and class 2 obesity (OB2) (c). d Alpha diversity measured using the Shannon index and the number of 
observed OTUs for the four microbiota clusters (C1–C4). * p < 0.04; ** p < 0.001; *** p < 3 × 10−4; Wilcoxon rank-sum test
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Fig. 3  Gut microbiota structure across normal-weight and overweight/obese women is associated with eating behavior. The PCoA plot shows 
four significantly different clusters of participants (C1 to C4; p < 0.001, MANOVA), as defined by hierarchical Ward linkage clustering analysis (see 
also Fig. 2). Pie charts represent the distribution of normal-weight (cyan) and overweight/obese (pink) women within each cluster. For each cluster, 
Wiggum plots are also shown, in which disc sizes indicate genus over-abundance compared to the average relative abundance in the whole 
cohort (see also Additional file 1: Fig. S1). Disc colors refers to CAGs shown in Additional file 1: Fig. S1, named according to the most abundant 
genus in each group: Bifidobacterium (violet), Ruminococcus (blue), Dorea (green), Prevotella (light blue), and Bacteroides (pink). Associations with 
host metadata are reported (see also Table 2 and Additional file 1: Fig. S2). BITE, Bulimic Investigatory Test Edinburgh; TFEQ UE, three-factor eating 
questionnaire, uncontrolled eating

Table 2  Associations between host metadata and microbiota composition (age-adjusted dataset). Quantile (median) regression tests 
of association between metadata and microbiota composition as measured by unweighted UniFrac PCoA in all women. Significant 
associations are in bold. No significant associations were found across normal-weight and overweight/obese women

RC range Regression coefficients scaled to the full variation along each PCoA axis, thus indicating direction and magnitude of the association, RC sd Regression 
coefficients scaled to one standard deviation, p Quantile regression p value, BITE Bulimic Investigatory Test Edinburgh, TFEQ UE Three-factor eating questionnaire, 
uncontrolled eating

Parameter PCo1 PCo2 PCo3

RC range RC sd p RC range RC sd p RC range RC sd p

Unweighted UniFrac PCoA for all women
  BITE symptoms 0.15971 0.02158 0.8  -1.15304  -0.28826 0.008  -0.44090  -0.12247 0.2

  TFEQ UE 0.12822 0.01732 0.9  -1.11807  -0.27951 0.005  -0.50707  -0.14085 0.2
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GM structure towards negative PCo2 values (as the low-
diversity cluster C4) was associated with higher BITE 
symptom score—indicative of binge eating behavior—
and TFEQ UE score—indicative of uncontrolled eating.

When comparing the baseline clinical conditions 
across the four clusters of participants, we found no 
difference in anthropometric data, as well as in bio-
chemical profile and inflammatory biomarkers. All 
the parameters considered were similar in all groups 
except for uric acid, which was higher in C2 than in C4 
(p = 0.02, Wilcoxon rank-sum test), although the values 
were still within the normal range (Table  3). Although 
statistical significance was not reached, cluster C2 par-
ticipants also tended to show higher levels of triglycer-
ides, insulin (AUC), and thyroid stimulating hormone 
compared to C3 or C4 (p ≤ 0.08). Finally, when compar-
ing C1-C4 groups, no difference in insulin-resistant rate 
was found (p = 0.47).

As for the psychometric measures, the C2 cluster 
showed the highest BITE severity score (p = 0.1, Kruskal–
Wallis test), while C4 the highest BITE symptom score 
(p = 0.1), consistent with the association found with the 
PCo2 axis (Fig. 3).

To further explore the relationship between GM clus-
ters and eating behavior, OB women were next strati-
fied according to the diagnosis of uncontrolled eating 
behavior, based on the YFAS questionnaire and tak-
ing into account the contribution of stress symptoms 
induced by eating behavior (see the “Methods” section 
for further details), in the following three groups: low 
addictive eating behavior (i.e., with 2 or fewer symp-
toms, O_LA) and high addictive eating behavior (i.e., 
with 3 or more symptoms) with (O_DHA) or with-
out (O_HA) FA diagnosis (Additional file  1: Fig. S3). 
C1 showed the lowest proportion of O_DHA women 
(7%), while C2 the highest (36%). On the other hand, 
C1 shared similar proportions of O_HA women with 
cluster C2 (C1, 19% vs C2, 18%). C4 showed the high-
est percentage of O_HA women (36%), followed by C3 
(27%). The proportion of O_LA women was the high-
est in C1 (26%), while similar in the other clusters (C2, 
18% vs C3, 18% vs C4, 14%). None of the NW women 
showed uncontrolled eating behavior.

Diet impact on the gut microbiota of normal‑weight 
and overweight/obese women
In order to identify the food types that contributed 
(p < 0.05, permutational correlation test) to the GM ordi-
nation, the food data from FFQs were superimposed on 
the unweighted UniFrac PCoA plot of Fig.  3 (Fig.  4a). 
A greater consumption of seasonings and condiments, 
olive oil, fried potatoes, and sausages, as well as sweet-
ened drinks, milk, and yoghurt was associated with the 

GM configuration of cluster C2. On the other hand, 
the cluster C4 was characterized by higher consump-
tion of cheese, while C1 and C3 by lower consump-
tion of all the above-mentioned foods. The fiber intake 
(grams/1000  kcal) showed a positive correlation with 
the first PCoA axis and appeared to be higher in women 
with C1 cluster (Fig. 4b). The other three clusters showed 
comparable fiber intake values, with C2 being lower than 
C1 (p = 0.03, Wilcoxon rank-sum test). An opposite trend 
was observed for total energy intake (kcal/day), being 
negatively correlated to PCo1, and higher in clusters C2, 
C3, and C4 (Fig. 4b). Consistent with a greater propensity 
to uncontrolled eating (TFEQ UE) and exacerbated BITE 
symptom score, cluster C4 showed a higher energy intake 
than C1 (p = 0.04). The average frequency values of daily 
food consumption for each of the four GM groups are 
shown in Additional file 1: Table S2, together with addi-
tional information on each food category. When focusing 
on the intake of macronutrients (Fig. 4c), increased car-
bohydrate intake and reduced fat intake were observed 
in C4 compared with C1 (p = 0.05 and 0.04, respectively). 
A lower fat intake was also observed in C3 than in C1 
(p = 0.01).

FFQ data were further explored in a Correspond-
ence Analysis, where the first axis, describing over 
13.7% of the dataset variance, contained most of the 
discriminating food types identified in the previous cor-
relation analysis of FFQ data on the microbiota PCoA 
(i.e., cheese, sweetened drinks, seasonings and condi-
ments). Application of Ward linkage clustering and 
Euclidean distance metrics to this axis allowed identi-
fying three dietary groups: D1 (“low protein/high car-
bohydrate”), D2 (“high protein/low carbohydrate”), and 
D3 (“high fat/high protein”) (Fig.  5a). In particular, D1 
was characterized by a greater consumption of sweet 
snacks, biscuits and eggs, D2 of salty snacks, fried food, 
meat, sliced ham, and homemade sandwiches, while 
D3 of dairy products (i.e., cheese, milk and yoghurt). 
The healthy food diversity (HFD) index, based on the 
number, distribution, and health value of consumed 
food [57], was subsequently calculated for each die-
tary group. According to HFD, D2, and D3 were the 
most diversified diets, while D1 the least (p = 0.0002, 
Kruskal–Wallis test) (Fig. 5b).

By matching the stratifications of women in dietary and 
microbiota groups, redundant combinations associated 
with the OB phenotype were sought (Additional file  1: 
Table S3). In particular, the combination of the less diver-
sified D1 diet and C2 microbiota was the most prevalent 
among OB women (25% of the OB dataset), especially in 
O_LA (14%) and O_DHA (6%) women, followed by the 
combinations D1-C4 (6%) in O_HA women. Interest-
ingly, none of the OB women possessed the combination 
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Table 3  Comparison of anthropometric, biochemical and hormonal parameters, and psychometric data across the four gut 
microbiome clusters. For anthropometric, biochemical and hormonal variables, the median along with the 25th percentile (p25) and 
75th percentile (p75) are shown. For psychometric parameters, mean and standard deviation (sd) are shown. P values were obtained 
by Kruskal–Wallis test; when significant values or trends (p ≤ 0.1) were obtained, post-hoc Wilcoxon rank-sum tests were performed. 
Significant p values are in bold. For YFAS diagnosed addiction, number and percentage of individuals with diagnosed addictive eating 
behavior are reported for each cluster (Fisher’s exact test)

C1 C2 C3 C4 p

N Median (p25-p75) N Median (p25-p75) N Median (p25-p75) N Median (p25-p75)
Anthropometric, biochemical, and hormonal parameters
  Age (years) 31 34 (26–42) 33 32 (26–44) 22 40 (30–45) 14 32 (27–41) 0.959

  Body weight (kg) 31 70.5 (58.0–80.0) 33 77.8 (65.5–89.5) 22 76.5 (57.5–85.5) 14 76.5 (59.6–89.4) 0.190

  Body mass index, 
BMI (kg/m2)

31 25.6 (21.2–30.5) 33 29.7 (24.4–33.0) 22 28.2 (21.8–31.8) 14 28.6 (22.6–32.9) 0.160

  Systolic blood pres-
sure (mmHg)

31 115.0 (110.0–125.0) 32 120.0 (111.3–130.0) 22 112.5 (108.8–130.0) 14 120.0 (110.0–130.0) 0.287

  Diastolic blood pres-
sure (mmHg)

31 70.0 (70.0–80.0) 32 77.5 (70.0–80.0) 22 70.0 (65.0–75.0) 14 80.0 (70.0–81.3) 0.150

  Waist circumference 
(cm)

31 88.0 (77.0–106.0) 33 96.0 (89.0–102.5) 22 95.5 (76.8–104.0) 14 94.0 (83.0–101.3) 0.258

  Hip circumference 
(cm)

28 105.0 (94.5–112.0) 27 109.0 (101.0–117.0) 20 103.0 (95.0–115.0) 13 106.0 (97.0–120.0) 0.274

  Waist-to-hip ratio 28 0.83 (0.79–0.92) 27 0.87 (0.83–0.91) 20 0.84 (0.81–0.90) 13 0.88 (0.79–0.92) 0.701

  Total cholesterol 
(mg/dl)

31 175.0 (164.0–202.0) 33 170.0 (155.5–211.5) 22 193.0 (168.3–208.8) 14 185.5 (161.8–194.0) 0.718

  HDL-cholesterol 
(mg/dl)

31 58.0 (47.0–64.0) 33 53.0 (47.5–59.0) 22 56.5 (45.5–59.8) 14 56.5 (46.0–68.5) 0.148

  Triglycerides (mg/dl) 31 69.0 (51.0–106.0) 33 85.0 (60.5–106.0) 22 70.0 (56.5–98.8) 14 63.0 (47.5–91.5) 0.077(a)

  LDL-cholesterol 
(mg/dl)

30 105.5 (96.8–125.0) 33 110.0 (91.0–131.5) 20 115.0 (100.0–143.8) 14 107.0 (92.8–126.0) 0.940

  Glycemia (mg/dl) 31 85.0 (80.0–89.0) 33 86.0 (81.0–91.0) 22 88.0 (84.8–90.8) 14 81.0 (78.5–90.3) 0.600

  Glycemia-AUC (mg/
dl)

31 12,630 (10,725–15,000) 31 13,095 (10,515–14,715) 22 13,148 (11,351–14,554) 14 12,998 (10,890–14,738) 0.911

  Insulin (μU/ml) 31 5.9 (3.2–13.0) 33 9.0 (4.8–12.0) 22 6.0 (4.1–13.0) 14 6.0 (3.9–10.6) 0.383

  Insulin-AUC (μU/ml) 31 4709 (2670–7095) 31 7155 (4430–9725) 21 4016 (3460–7379) 14 5264 (3735–7728) 0.054(b)

  Glycated hemo-
globin (%)

31 5.2 (4.9–5.4) 33 5.3 (5.0–5.4) 22 5.1 (4.9–5.4) 14 5.2 (4.7–5.4) 0.371

  Creatinine (mg/dl) 10 0.72 (0.63–0.85) 20 0.75 (0.60–0.82) 9 0.77 (0.63–0.90) 6 0.71 (0.67–0.77) 0.917

  Alanine transaminase, 
ALT (mg/dl)

10 19.0 (14.3–24.0) 21 18.0 (12.0–24.5) 9 17.0 (13.5–28.5) 6 14.0 (9.8–17.0) 0.180

  Aspartate transaminase, 
AST (mg/dl)

10 17.0 (14.8–22.3) 21 16.0 (13.0–20.0) 9 20.0 (15.0–23.5) 6 15.0 (12.3–17.0) 0.427

  Uric acid (mg/dl) 10 4.4 (3.7–4.8) 21 4.4 (4.0–5.1) 7 3.9 (3.6–4.3) 5 3.5 (3.4–3.9) 0.023(a)

  C-reactive protein 9 0.4 (0.1–0.5) 21 0.3 (0.1–0.5) 8 0.2 (0.1–0.4) 5 0.8 (0.5–0.23) 0.253

  Thyroid stimulating 
hormone, TSH (mUI/
ml)

10 1.43 (0.37–2.11) 20 1.85 (1.51–2.38) 10 1.48 (1.22–1.78) 7 0.84 (0.80–1.59) 0.059(a)

  Adrenocorticotropic 
hormone, ACTH (pg/
ml)

10 21.0 (11.0–29.3) 21 17.0 (12.5–23.0) 8 16.5 (13.0–23.8) 6 14.5 (11.5–22.0) 0.771

  HOMA-IR 31 1.24 (0.66–2.60) 33 1.91 (0.97–2.71) 22 1.37 (0.83–2.96) 14 1.17 (0.77–2.37) 0.466

  MATSUDA Index 29 6.90 (3.55–10.10) 30 5.15 (2.90–7.93) 20 7.05 (3.83–10.35) 13 5.20 (3.90–9.45) 0.442

N Mean ± sd N Mean ± sd N Mean ± sd N Mean ± sd
Psychometric parameters
  BITE severity score 30 4.73 ± 4.56 30 4.87 ± 5.24 19 4.31 ± 4.16 9 2.66 ± 1.73 0.124

  BITE symptom score 30 6.23 ± 5.63 30 5.40 ± 5.66 19 7.26 ± 6.64 9 9.77 ± 4.87 0.108

  TFEQ UE 29 17.10 ± 5.55 30 16.40 ± 5.87 19 16.95 ± 4.73 12 17.82 ± 5.21 0.254
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D2-C4. As for the NW sub-cohort, the three dietary groups 
were found to be equally distributed within the C1 micro-
biota configuration, with the combination D1-C1 being the 
most prevalent (19% of the NW dataset). Three out of five 
NW women with the C4 microbiota configuration (8%) 
were associated with the less diversified D1 diet, while the 
remaining two (5%) with the D2 diet.

Species‑level microbiome signatures of obesity 
and uncontrolled eating behavior
A subset of 45 DNA samples (31 from OB and 14 from 
NW women) was subjected to shotgun metagenomic 
sequencing, for a total of 15 Gb of paired-end reads. The 
metagenomics dataset was dominated by 8 bacterial spe-
cies, which contributed 52.5–56.6% to ecosystem variabil-
ity and were variously distributed among the four clusters 
(C1-C4): Faecalibacterium prausnitzii, Bifidobacterium 
adolescentis, Bifidobacterium longum, Ruminococcus bro-
mii, Eubacterium rectale, Akkermansia muciniphila, Bac-
teroides vulgatus, and Subdoligranulum spp. (Fig.  6a). In 
particular, the cluster C1 was found to be enriched in R. 
bromii when compared to C2 (p = 0.03, Wilcoxon rank-
sum test), as well as in F. prausnitzii compared to C3 and 
C4 (p < 0.03) (Fig.  6b). On the other hand, with respect 
to C1, the configuration C2 was enriched in Rumino-
coccus torques (p = 0.05), a mucolytic bacterial species 
known to compromise gut barrier integrity [57]. Moreo-
ver, C2 showed the lowest levels of the mucin degrader A. 
muciniphila with respect to C1 and C3 (p < 0.02) as well 
as R. bromii compared to C1 and C4 (p < 0.03). As for the 
other GM configurations predominantly characterizing 
OB women with uncontrolled eating behavior (i.e., C3 
and C4), C3 showed higher values of A. muciniphila and 
Subdoligranulum spp. compared to C2 (p < 0.02), while C4 
was enriched in E. rectale with respect to C3 (p = 0.008), 
as well as in B. adolescentis and Bifidobacterium bifidum 
compared to the other three clusters (p < 0.05), probably 
due to the greater consumption of cheese (as revealed by 
the analysis of FFQs).

The transcriptionally active fraction of the gut microbiome 
and fecal lipidomic profiles in obesity and uncontrolled 
eating behavior
RNA sequencing was performed on the same samples 
subjected to metagenomics to investigate the active spe-
cies-level fraction of the GM clusters and their transcrip-
tional activity.

According to our findings (Additional file 1: Fig. S4), the 
most transcriptionally active fraction of the C1 configu-
ration—mainly comprising NW women—included eight 
Bacteroides spp. (i.e., B. faecis, B. finegoldii, B. cellulosilyt-
icus, B. massiliensis, B. coprophilus, B. dorei, B. plebeius, 
B. vulgatus), two Bifidobacterium spp. (B. dentium and 
B. animalis), Coprococcus catus, Lachnospiraceae bac-
terium (5_1_63FAA), two Roseburia spp. (R. intestinalis 
and R. inulinivorans), and Escherichia coli. Regarding the 
configurations that included proportionately more OB 
women (i.e., clusters C2, C3, C4), the active microbiome 
fraction was found to be overall depleted of Bacteroides 
spp., while enriched in generally subdominant bacterial 
species (e.g., Anaerostipes hadrus and Anaerostipes fine-
goldii, as well as Gordonibacter pamelaeae in C4). More 
precisely, the C2 configuration—including the highest 
proportion of O_DHA women—showed a transcription-
ally active fraction mainly composed of A. hadrus, four 
Bacteroides spp. (i.e., B. thetaiotaomicron, B. fragilis, B. 
eggerthii, B. caccae), three Bifidobacterium spp. (i.e., B. 
pseudocatenulatum, B. breve, B. pseudolongum), Kleb-
siella pneumoniae, Lactobacillus ruminis, and Streptococ-
cus thermophilus. On the other hand, when compared to 
the other clusters (i.e., C1, C2, C4), the transcriptionally 
active fraction of the C3 configuration—including mostly 
O_HA women—was found to be the most biodiverse in 
terms of active species, being primarily characterized by 
the overabundance of three Alistipes spp. (i.e., A. finegol-
dii, A. onderdonkii, A. shahii), Megamonas hypermegale, 
two Coprococcus spp. (i.e., C. sp. ART55 1, C. eutactus), 
Parabacteroides distasonis, Barnesiella intestinihomi-
nis, three Bacteroides spp. (i.e., B. nordii, B. ovatus, B. 

(a) C2 vs C4
(b) C2 vs C3

BITE Bulimic Investigatory Test Edinburgh, TFEQ Three-factor eating questionnaire, UE Uncontrolled eating, CR Cognitive restraint, EE Emotional eating, YFAS Yale food 
addiction scale, PSS Perceived stress scale

Table 3  (continued)

  TFEQ CR 29 15.31 ± 5.30 30 14.36 ± 3.79 19 13.16 ± 2.77 12 13.92 ± 4.66 0.448

  TFEQ EE 29 7.06 ± 1.49 30 7.80 ± 2.98 19 7.42 ± 3.48 12 8.50 ± 2.35 0.198

  YFAS symptoms 31 1.93 ± 1.41 33 2.36 ± 1.56 22 2.41 ± 1.47 14 2.64 ± 1.95 0.968

  YFAS diagnosed 
addiction

2 6.4% 6 18.2% 4 18.2% 2 14.3% 0.242

  PSS 31 14.77 ± 6.27 32 16.06 ± 6.74 21 14.81 ± 6.88 12 17.33 ± 4.94 0.380
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vulgatus), three Ruminococcus spp. (i.e., R. torques, R. 
obeum, R. bromii), R. intestinalis, Methanobrevibacter 
smithii, two Eubacterium spp. (E. eligens, E siraeum), 
and E. coli. Finally, the C4 configuration—including the 
highest percentage of O_HA women—was found to be 

the least transcriptionally diversified, being characterized 
by few but extremely active bacterial species, including 
G. pamelaeae, Lactobacillus casei/paracasei, B. bifidum, 
Adlercreutzia equolifaciens, E. rectale, Roseburia hominis 
and S. thermophilus.

Fig. 4  Different food consumption characterizes the different microbiota structures. a PCoA based on unweighted UniFrac distances of the fecal 
microbiota. The biplot of the average food coordinates weighted by frequency of consumption per sample was superimposed on the PCoA plot 
to identify the foods contributing to the ordination space (blue arrows). Only the food categories showing a significant correlation with the sample 
separation (p < 0.05, permutational correlation test) were displayed. Samples are colored by participant group (C1–C4, see Fig. 1). The black arrows 
at the bottom indicate the direction of the microbiota diversity, energy, and fiber intake gradient along PCo1. b Summary of total energy intake (in 
kilocalories per day) and fiber consumption (expressed as grams of fiber per 1000 kcal consumed) and c percentage of macronutrient intake in all 
women, stratified by microbiome configuration (i.e., C1 to C4). * p < 0.05; Wilcoxon rank-sum test
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We next evaluated the core species and gene distribu-
tion within the four GM configurations, focusing on the 
KEGG pathways involved in carbohydrate, amino acid, 
lipid, and xenobiotic metabolism (Additional file  1: Fig. 
S4 and Fig. S5). We found that only C1 and C2 covered all 
the aforementioned metabolic activities with a discrete 
number of bacterial species. On the other hand, the C3 

cluster showed a higher biodiversity but mainly related 
to carbohydrate and amino acid metabolism, whereas 
C4 was the poorest consortium, and both clusters shared 
almost no xenobiotic metabolism. As for the distribu-
tion of KEGG pathways, glycolysis had the highest tran-
script abundance and, together with nucleotide sugar and 
pyruvate metabolism pathways, was over-transcribed 

Fig. 5  Dietary patterns discriminate women for the Healthy Food Diversity index. a Heat plot showing the three dietary groups (D1–D3) revealed 
through Ward linkage clustering using Euclidean distances applied to the first eigenvector in a Correspondence Analysis of data from Food 
Frequency Questionnaires. b Boxplots showing the distribution of the Healthy Food Diversity (HFD) index [57] across the dietary groups. * p = 0.02; 
*** p = 0.0001; Wilcoxon rank-sum test
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in all samples. Other metatranscriptome pathways 
actively transcribed across the entire dataset included 
the breakdown of simple sugars (e.g., fructose, mannose 
and galactose) and the non-oxidative pentose phosphate 
cycle—supporting nucleic acid synthesis—as well as 
essential and sulfur-containing amino acid metabolism 
(e.g., glycine, serine and threonine, cysteine and methio-
nine). Regarding cluster-specific features (Additional 
file  1: Fig. S6), C1 metatranscriptome was particularly 
enriched in the abovementioned housekeeping functions, 
suggesting an overall efficient basal metabolism by the 
corresponding GM layout. On the other hand, the cluster 
C2 showed a peculiar high transcript abundance for pro-
panoate metabolism. The transcriptomic landscape of C3 
cluster was overall the most active and diversified, with a 
high abundance of transcripts involved in the metabolism 
of several amino acids, fatty acid biosynthesis, butanoate 
metabolism, and pentose/glucuronate interconversion. 

The C4 transcriptome showed an increased abundance 
of transcripts devoted to glycerolipid and glycerophos-
pholipid metabolism, suggesting alterations in fatty acid 
digestion. It is also worth noting that both C3 and C4 
clusters showed increased transcription of genes involved 
in the biosynthesis of aromatic amino acids (i.e., pheny-
lalanine, tyrosine, tryptophan), which are known to be 
involved in gut-brain communication [58].

Finally, a lipidomics analysis performed on the same 
stool samples allowed us to identify some discriminant 
metabolites (Additional file  1: Fig. S7) [50]. In particu-
lar, higher SCFA (i.e., butyrate, acetate, propionate) lev-
els were found in C1 and C2 compared to C3 and C4 
(p ≤ 0.01, Kruskal–Wallis test). Cholesterol-to-copros-
tanol conversion was also reflected quite well within 
the former clusters. Clusters C3 and C4 were enriched 
in a number of converted sterols, such as coprostanol, 
5β-sitostanol, and 5β-campestanol (p ≤ 0.04). On the 

Fig. 6  Species-level signatures of microbiome configurations. a Species-level relative abundance of the metagenomics profiles of the gut 
microbiome of enrolled women, stratified by microbiome configuration (C1–C4). Data are shown in the bar plots for each sample and in pie charts 
as average values. b Boxplots showing the distribution of relative abundances of significantly enriched or depleted bacterial species between study 
groups. * p < 0.05; ** p < 0.005; *** p < 0.0005; Wilcoxon rank-sum test
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other hand, the highest levels of cholesterol were asso-
ciated with C2 (p ≤ 0.05, Wilcoxon rank-sum test). In 
accordance with the definition proposed by Matysik 
et  al. [50], C2 included many non- and low-cholesterol 
converters, whereas many high converters and no non-
converters were included in C3. As for bile acids, higher 
total amounts were found in C2 and C4, with the former 
being particularly enriched in cholic acid and chenode-
oxycholic acid (p ≤ 0.03, Kruskal–Wallis test).

When seeking for correlations between lipidomics 
measures and the transcriptionally active fraction of GM 
(meaning both pathways and species) by means of sPLS 
regression (Additional file  1: Table  S4 and Fig. S8), we 
found the strongest correlations between features of GM 
clusters that included predominantly OB women (espe-
cially C4). In particular, 5β-sitostanol (enriched in C3 
and C4) positively correlated with the secondary bile acid 
biosynthesis by F. prausnitzii (which showed transcrip-
tional activity for a specific gene involved in this pathway 
in C4—see next paragraph), as well as with B. longum 
pathways (related to galactose metabolism, glycolysis/
gluconeogenesis, and cysteine and methionine metabo-
lism, and actively transcribed across the entire dataset) 
and glyceroplipid metabolism by R. bromii (abundantly 
transcribed in C4 as discussed above). The latter, together 
with galactose metabolism by B. longum, also showed the 
strongest inverse correlations with the SCFAs acetate and 
propionate, consistent with their lower levels in C3 and 
C4.

Transcriptional variation in microbial genes related 
to metabolic homeostasis
Food intake and energy expenditure—ClpB and bile acids
Several GM-derived metabolites and bacterial proteins 
have been suggested to dialogue with the brain and regu-
late energy intake. Among them, the chaperon protein 
ClpB (caseinolytic peptidase B) has been proved to mimic 
the anorexigenic POMC (pro-opiomelanocortin)-derived 
alpha-MSH (alpha-melanocyte-stimulating) hormone, 
well known for its ability to influence host appetite [59]. 
On the other hand, bile acids contribute to the regulation 
of host energetic homeostasis due to their role in lipid 
absorption, as well as by activating host receptors involved 
in thermogenesis [60]. We therefore specifically assessed 
the transcriptional levels of ClpB and enzymes involved 
in the microbial metabolism of bile acids across the four 
GM clusters (Additional file 1: Fig. S9). ClpB was actively 
transcribed by A. muciniphila only in C1 configuration 
(mainly including NW women), by L. ruminis in C2 (i.e., 
mainly in O_DHA women), and by A. equolifaciens in C1, 
C3 and C4 clusters. As for bile acid metabolism, we found 
a cluster-specific transcriptional layout for three enzymes, 

i.e., choloylglycine hydrolase (K01442), 7-alpha-hydroxys-
teroid dehydrogenase (K00076), and 3-dehydro-bile acid 
delta 4,6-reductase (K07007). The microbial gene coding 
for K01442, the primary bile acid-deconjugating enzyme, 
was found to be actively transcribed by several microbial 
components of the clusters C1 and C3, namely R. intesti-
nalis, C. catus, B. animalis, Coprococcus comes, Eubacte-
rium ventriosum, Dorea longicatena, and A. shahii for C1 
and R. obeum, M. smithii, A. finegoldii, P. distasonis, Eubac-
terium hallii, A. onderdonkii, and A. equolifaciens for C3. In 
contrast, K01442 was exclusively transcribed by A. hadrus 
and L. casei/paracasei in clusters C2 and C4, respectively. 
As for K00076, involved in secondary bile acid biosynthe-
sis, it was found to be exclusively transcribed by E. coli in 
C1 cluster, while no transcriptional activity was observed 
for the configurations that included proportionately more 
OB women (clusters C2-C4), regardless of eating behavior. 
Finally, K07007, another enzyme involved in secondary bile 
acid biosynthesis, was exclusively transcribed by C. catus 
and M. smithii in C1, by R. obeum, A. shahii and E. rectale 
in C2, and by R. bromii, Coprococcus sp. ART55_1 and M. 
hypermegale in C3. As for C4, only a weak transcriptional 
activity by F. prausnitzii and R. hominis was observed.

Neuroendocrine signaling—tryptophan metabolites, opioids, 
endocannabinoids, and GABA
Patterns of microbial transcriptional activity specifically 
involved in the metabolism of tryptophan (Trp), endocan-
nabinoids (eCBs), and opioids, as well as in the biosynthesis 
of GABA, bioactive molecules able to interact with the cen-
tral nervous system and influence ingestive behavior [61, 
62], were subsequently investigated (Additional file 1: Fig. 
S9).

The clusters C1 and C4 showed comparable Trp-related 
transcriptional activity lower than C2 and C3, with only 
slight transcriptional activity responsible for the conversion 
of indole-3-pyruvic acid to indole-3-lactic acid (K03778), 
attributed to R. intestinalis and R. hominis, respectively. 
On the other hand, the configurations that included pre-
dominantly OB women (i.e., clusters C2, C3, C4) shared 
increased transcriptional activity for the conversion of 
pyruvate into acetyl-CoA by other genes (K00170 and 
K00172), although attributable to different bacterial actors. 
Interestingly, the C3 cluster—which mainly included O_
DHA women—was characterized by the highest micro-
bial activity devoted to directly converting Trp to indole 
through tryptophanase (K01667), with A. finegoldii, A. 
muciniphila, A. shahii, B. ovatus, and A. onderndonkii 
being the most transcriptionally active species.

With regard to the eCB system, we queried our tran-
scriptome dataset for microbial enzymes involved in 
the biosynthesis of precursors of endogenous ligands 
of cannabinoid receptors (i.e., anandamide and 
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2-arachidonoylglycerol). According to our findings, the 
enzyme triacylglycerol lipase (K01046), involved in the 
formation of diacylglycerol, a precursor of 2-arachi-
donoylglycerol [63], was actively transcribed exclusively 
in C1 by B. dentium. C2 showed a residual activity by B. 
dentium, while no transcriptional activity was observed 
in C3 and C4 clusters.

As for the opioid metabolism, the C1 configura-
tion showed the highest transcriptional levels of 
β-glucuronidase (K01995), the microbial enzyme 
involved in the metabolic pathways of morphine [64], 
by B. dentium and B. longum, as well as by B. finegoldii. 
On the other hand, Bifidobacterium and Bacteroides spp. 
were not found to be transcriptionally active in configu-
rations that included proportionately more OB women, 
with only a slight activity by E. coli in C2, F. prausnitzii in 
C3 and R. hominis in C4.

Finally, the glutamate decarboxylase gene involved in 
GABA production (K01580) was actively transcribed 
in C1 by B. faecis, B. cellulolyticus, B. uniformis, and B. 
finegoldii. On the other hand, for the GM configura-
tions that included predominantly OB women, the major 
contribution to K01580 transcription was provided by 
B. dentium and B. fragilis in C2, while Bacteroides egg-
hertii, B. nordii, B. caccae, B. ovatus and A. finegoldii in 
C3. Interestingly, low to zero transcriptional activity was 
observed within C4.

Discussion
To the best of our knowledge, this is the first study to use 
a multi-omics approach to explore associations between 
GM configurations, diet, and uncontrolled eating behav-
ior in obesity, by evaluating GM composition down to the 
species level (including co-abundance groups—CAGs), 
GM transcriptional activity with particular regard to 
genes related to food intake, energy expenditure and 
neuroendocrine signaling, and fecal lipid levels. All these 
data were integrated with dietary intake information and 
various clinical and psychometric measures to provide 
glimpses into the gut-brain axis communication in the 
obese phenotype characterization.

As already observed in other studies [65, 66], we first 
showed that the GM of OB women has some dysbiotic 
peculiarities compared to NW women, i.e., a reduc-
tion in diversity and compositional alterations, includ-
ing decreased proportions of typically health-associated 
taxa (mainly SCFA producers from the Lachnospiraceae 
and Ruminococcaceae families) while increased propor-
tions of opportunistic pathogens or pathobionts (e.g., 
[Ruminococcus]).

Next, in order to gain more insights into GM layouts, 
in terms of steady states, we used the same approach 
as Rampelli et  al. [7], which, by assessing the degree of 

similarity among GM profiles, identifies peculiar com-
positional clusters, each featured by distinct members 
and interconnections between them. Specifically, in the 
present study, we identified four GM clusters (C1 to C4), 
which differed in biodiversity, with C1 and C3 showing 
the highest values, while C2 and C4 the lowest, as well 
as in CAG abundance patterns. In particular, cluster C1 
was the most diverse, with the concomitant presence 
of all five identified CAGs (i.e., Bifidobacterium, Prevo-
tella, Ruminococcus, Dorea, and Bacteroides CAGs), 
while the other clusters lacked at least one CAG, namely 
the Bifidobacterium CAG for C2 and C3, and the Bacte-
roides CAG for C4. Furthermore, cluster C4 was char-
acterized by an over-representation of Bifidobacterium 
CAG. When exploring connections with host metadata, 
we found that women in cluster C2 differed in higher 
amounts of uric acid and showed a tendency to higher 
levels of triglycerides, insulin, and thyroid-stimulating 
hormone. Regarding eating behavior, binge eating behav-
ior and uncontrolled eating were specifically associated 
with cluster C4. This cluster included the highest pro-
portion of O_HA women, i.e., with high addictive eating 
behavior, as defined based on the YFAS questionnaire. 
On the other hand, C2 included the highest percentage 
of O_DHA women, i.e., with FA diagnosis—taking into 
account the contribution of eating behavior-induced 
stress symptoms—while C1 the lowest.

With regard to dietary habits, we found that total 
energy intake was higher in clusters that included propor-
tionately more OB women (i.e., C2 to C4) and especially 
in C4, consistent with the greater propensity for uncon-
trolled eating and exacerbated BITE symptom score. C4 
was also associated with increased carbohydrate and 
reduced fat intake compared to C1, while the latter was 
characterized by the highest fiber consumption. In terms 
of food groups, cluster C2 was associated with greater 
consumption of unhealthy foods and beverages, such as 
fried potatoes, sausages, and sweetened drinks, while C4 
with a higher intake of cheese. The relationship between 
GM and health-associated dietary patterns has recently 
been investigated in a population-level cohort, highlight-
ing the segregation of favorable and unfavorable micro-
bial clusters based on food source heterogeneity, quality, 
and dietary patterns, as well as identifying reproducible 
microbial indicators of obesity [67]. Our findings are also 
in line with the recent work by Medawar and colleagues 
on associations between eating behavior and dietary fiber 
intake, which suggested that beneficial bacteria belonging 
to the Ruminococcus genus (poorly represented in clus-
ter C2) correlated with healthier eating behavior [68]. As 
recently discussed, the tendency of some GM profiles to 
represent more the altered metabolic phenotype of obe-
sity (such as cluster C2 in our study) could however be 
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related not so much to the consumption of unhealthy 
foods as to the absence of Ruminococcaceae and Lachno-
spiraceae families, which are commonly related to benefi-
cial effects on insulin and glucose homeostasis [69, 70].

Shotgun metagenomics and metatranscriptomics 
were then applied with the aim of further exploring the 
taxonomic structure and functionality of the GM clus-
ters identified. The former allowed us to identify some 
discriminating species, such as the well-known ben-
eficial taxa R. bromii and F. prausnitzii [71, 72], which 
were enriched in cluster C1, and the mucus degrader A. 
muciniphila, which was most represented in C3. Identi-
fied as a next-generation probiotic candidate and exten-
sively studied for its involvement in improving metabolic 
health in metabolically impaired individuals [4], the 
genus Akkermansia has recently been negatively asso-
ciated with FA in OB women [73]. On the other hand, 
another mucolytic taxon, R. torques, was more present in 
cluster C2 (mainly including O_DHA women). Increased 
relative abundances of R. torques have been reported in 
patients with metabolic syndrome and inflammatory 
bowel disease [74]. Furthermore, this taxon has been 
shown to alter the microbial niche in the outer mucus 
layer by inhibiting the growth of A. muciniphila [75], as 
well as altering the gut barrier thus causing metabolic 
endotoxemia [76]. Finally, the configuration associated 
with the greatest proportion of O_HA women (i.e., C4) 
was mainly characterized by Bifidobacterium spp. This 
latter finding is apparently in contrast with the available 
literature, which shows that bifidobacteria can improve 
not only the body weight of OB women by impacting gut 
appetite hormones and GM composition [77], but even 
stress-, anxiety-, and depression-related behaviors as psy-
chobiotics [78]. Furthermore, Kohn and colleagues have 
recently evaluated associations between bacterial genera 
and brain network connectivity, providing evidence for 
a relationship between bifidobacterial abundance and 
attention- and potentially memory-related brain network 
activity [79]. On the other hand, the Bifidobacterium 
overrepresentation in C4 may be associated with high 
cheese consumption, as discussed above.

Overall metatranscriptomic data were in line with pre-
vious ones on the compositional structure of GM clus-
ters, i.e., that C1 and C3 were the most diverse also in 
terms of transcriptionally active species, while C2 and 
C4 were generally poor (especially C4) and tended to be 
transcriptionally dominated by only a few species. Fur-
thermore, all clusters that included predominantly OB 
women shared an overall depletion of Bacteroides spp. 
activity. Although conflicting data have been reported on 
Bacteroides levels in obesity [80], a recent study focusing 
on FA in OB women highlighted that this genus was neg-
atively associated with the connectivity of brain regions 

related to FA while positively with the neuroprotective 
metabolite, indolepropionate [73]. As for cluster pecu-
liarities, it is worth noting that C4 showed an increased 
activity of Bifidobacterium spp. but also of other gener-
ally subdominant species, including G. pamelae. The lat-
ter was first isolated from the colon of a patient suffering 
from acute Crohn’s disease, suggesting a possible pro-
inflammatory role, and found to be capable of metabo-
lizing only a small number of carbon sources [81], which 
could support the association of cluster C4 with a poorly 
diversified diet.

Even on a functional scale, cluster C4 was the poor-
est, with almost no transcripts involved in xenobiotic 
metabolism (as in C3), and only a greater abundance of 
transcripts related to lipid metabolism and biosynthe-
sis of aromatic amino acids (the latter shared with C3), 
whose metabolites are well known to stimulate gut-brain 
communication [58]. On the other hand, cluster C1 well 
covered all core metabolic activities and housekeeping 
functions (i.e., carbohydrate, amino acid, lipid and xeno-
biotic metabolism), consistent with its association with 
NW women. This was also true for cluster C2, mainly 
represented within O_DHA women, despite a peculiarly 
high abundance of transcripts for the metabolism of pro-
panoate, a SCFA recently shown to reduce anticipatory 
reward responses to high-energy foods [82]. When focus-
ing on specific microbial genes related to food intake and 
energy expenditure, as well as neuroendocrine signaling, 
we found some peculiar features that discriminated the 
clusters that included proportionately more OB women. 
In particular, genes involved in the biosynthesis of sec-
ondary bile acids were little or no transcribed in clusters 
C2-C4. This was supported by the lipidomics profiles 
[50], which showed an enrichment of primary bile acids 
in C2, and not unexpected given that primary bile acids 
are generally elevated in obesity and metabolic disorders, 
where they may contribute to loss of barrier function and 
inflammation, in addition to being closely related to the 
metabolic phenotype [83]. Another noteworthy finding 
is that numerous low- and non-cholesterol converters 
fell into C2, which among others lacked bacteria recently 
associated with cholesterol conversion (e.g., Ruminococ-
cus, Coprococcus, and Subdoligranulum) [84]. Consist-
ent with this, cluster C3 had the highest coprostanol 
concentrations, indicative of numerous high-converters. 
However, the coprostanoligenic activities of GM cluster 
members need to be verified and, as far as we know, no 
data are currently available on the possible relationship 
of bile acid metabolism and cholesterol conversion with 
uncontrolled eating behaviors. The clusters that included 
predominantly OB women, especially C3, were also dis-
tinguished by a greater transcriptional activity of some 
microbial genes linked to the production of Trp-derived 
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indoles. Indoles are commonly reduced in OB subjects 
[85], but it is worth mentioning that their overproduc-
tion has recently been demonstrated to result in distinct 
behavioral changes in an animal model, including anxi-
ety- and depressive-like behaviors [86], partially sup-
porting our findings. On the other hand, cluster C2-C4 
shared low mRNA levels of β-glucuronidase, an enzyme 
involved in the reversal of detoxification processes as 
well as in the morphine metabolic pathway, through the 
hydrolysis of the active metabolites morphine-3-glucu-
ronide and morphine-6-glucuronide [64]. This could be 
related to eating disorders, as suggested by recent work 
showing a link between the reduction of β-glucuronidase 
activity and tolerance to opioids [64], which are well 
known to be implicated in OB-related behaviors, such 
as hedonic experience and binge eating [87, 88]. Finally, 
cluster C4 showed low to zero transcriptional activity for 
two genes, one involved in the biosynthesis of diacylglyc-
erol, a precursor of 2-arachidonoylglycerol, which acts as 
an endogenous ligand of cannabinoid receptors, and the 
other involved in the production of GABA, the major 
inhibitory neurotransmitter in the mammalian brain. 
This last finding is fully consistent with the available lit-
erature, which reports reduced GABA levels in obesity 
and behavior alterations, such as anxiety and depression 
[89], and associates them with reduced inhibition of food 
intake in animal models [90, 91]. However, it should be 
noted that GABA production from glutamate decarboxy-
lation [92] has been observed to date in a large number of 
so-called psychobiotics, including Bifidobacterium spp. 
[93], which were found to be overrepresented and tran-
scriptionally active in the C4 cluster. This may suggest 
that such activity is not possessed by all bifidobacterial 
species/strains or that it is silenced in the context of cer-
tain microbial assemblages and host pathophysiological 
factors. As for the gene potentially related to the cannabi-
noid system, it is worth noting that clinical trials have 
shown that supplementing diacylglycerol-rich oil led to 
increased fat oxidation and better control of food intake 
by reducing the feelings of hunger, appetite and desire to 
eat [94]. It is therefore tempting to speculate that cluster 
C4, mostly represented in O_HA women, may contribute 
to an impaired satiety/hunger regulation system, as it is 
specifically poor in functions that control food intake.

In summary, through an exploratory multi-omics 
approach, merging data regarding GM layouts, ecologi-
cal networks, transcriptional activity and lipidomic pro-
files with dietary intake information, and clinical and 
psychometric results, we showed that GM can assume a 
series of configurations, featured by different biodiversity, 
microbial actors, and functionalities, which may reflect 
as many aspects of the host’s physiology, variously cor-
relating with host factors, including eating habits and 

behaviors (Additional file 1: Table S5). In particular, OB 
women with high uncontrolled behavior possessed over-
all low-diversity GM profiles (clusters C2 and C4), domi-
nated by a few species (R. torques and Bifidobacterium 
spp.), with limited transcriptional activity, especially in 
relation to metabolites that are known to play a crucial 
role in healthy gut-brain communication (e.g., secondary 
bile acids and GABA). Consistently, high amounts of pri-
mary bile acids as well as sterols, including cholesterol, 
were present in their feces. These GM clusters were also 
associated with increased energy intake. Nonetheless, 
clusters C2 and C4 showed distinctive features, such as 
higher uric acid, cholesterol and SCFA levels associated 
with the former, and higher fiber and carbohydrate intake 
associated with the latter, which deserve further attention 
for potential differential implications on human health. 
In contrast, NW women were characterized by a highly 
diverse GM layout (cluster C1), enriched in health-asso-
ciated taxa, such as R. bromii and F. prausnitzii, which 
were overall well interconnected and transcriptionally 
active, covering major bacterial metabolic pathways. 
Cluster C1 was also characterized by high fiber con-
sumption and high levels of SCFAs. It must be said that, 
although including predominantly OB women and being 
associated with reduced levels of SCFAs and a higher rate 
of converted sterols, cluster C3 shared numerous charac-
teristics with cluster C1, suggesting a configuration that 
is not irreparably altered and therefore perhaps more eas-
ily redirected. Despite the considerable amount of infor-
mation gathered and the interesting results emerged, 
some limitations should be mentioned: the participants 
had a screening visit for psychiatric disorders based on 
the MINI interview and completed a battery of psycho-
metric questionnaires, but nevertheless, the presence of 
symptoms of psychological distress could be completely 
ruled out; the small sample size (especially of OB women 
in the O-HA group); the potential inaccuracy related to 
self-reported FFQs; the lack of significance of the distri-
bution of NW/OB women across GM clusters; the lack of 
availability of clinical data for all women enrolled, which 
likely contributed to the failure to identify cluster-spe-
cific clinical features; the exploratory association analysis 
approach and the high probability of false positives for 
multiple inference tests; the lack of use of a more exhaus-
tive metabolomics approach to assess other molecules 
possibly contributed by GM in multiple biological sam-
ples; and the lack of mechanistic validation.

Conclusions
Our exploratory study allowed us to generate compel-
ling hypotheses on the system biology related to OB 
and uncontrolled eating behavior, by showing that pecu-
liar compositional and functional structures of GM are 
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strongly associated with eating habits and behaviors. 
In particular, the potential GM signatures found in OB 
women with high uncontrolled behavior suggest the 
involvement of a low-diversity ecosystem, dominated 
by few microorganisms, and characterized by a poor 
transcriptional and lipidomic landscape, which could 
negatively affect gut-brain communication. Our findings 
should be verified in larger patient cohorts and integrated 
with animal experiments to elucidate the underlying 
mechanisms. Once confirmed, these findings could pave 
the way for the implementation of precision microbiome-
tailored intervention strategies, mainly aimed at recov-
ering diversity, understood as microbial components, 
ecological interactions, and functions, for a diet-GM-gut-
brain axis that promotes healthy behaviors and prevents 
OB-related complications. 
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