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We propose a new estimator of the regression coefficients for a high-dimensional

linear regression model, which is derived by replacing the sample predictor covari-

ance matrix in the ordinary least square (OLS) estimator with a different predictor

covariance matrix estimate obtained by a nuclear norm plus l1 norm penalization. We

call the estimator ALgebraic Covariance Estimator-regression (ALCE-reg). We make a

direct theoretical comparison of the expected mean square error of ALCE-reg with

OLS and RIDGE. We show in a simulation study that ALCE-reg is particularly

effective when both the dimension and the sample size are large, due to its ability to

find a good compromise between the large bias of shrinkage estimators (like RIDGE

and least absolute shrinkage and selection operator [LASSO]) and the large variance

of estimators conditioned by the sample predictor covariance matrix (like OLS and

principal orthogonal complement thresholding [POET]).
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1 | INTRODUCTION

Estimating the regression coefficients of a high-dimensional linear regression model is a relevant statistical challenge. Let us consider a

mean-centered n�p predictor matrix X and a mean-centered n�1 response vector y. The ordinary least square (OLS) estimator

β̂OLS ¼ arg min
β � ℝp

ðy�XβÞ0ðy�XβÞ¼ ðX0XÞ�1X0y¼ Σ̂�1
X σ̂XY , ð1Þ

where Σ̂X ¼ X0X
n is the sample covariance matrix of the predictors and σ̂XY is the vector of sample covariances between the response variable y and

the predictors, is not even computable when p≥ n and numerically very unstable when p is large compared with n, even when n> p. Therefore,

some strategies to regularize β̂OLS have been developed, as, when p is large, β̂OLS may present anomalously large absolute values and implausible

signs (see Hoerl, 2020 in the Special Issue appeared on Technometrics, ; Joseph, 2020 to celebrate the 50 years of ridge regression). The two best

known strategies lead to RIDGE estimator (Hoerl & Kennard, 1970), which is derived as

Abbreviations: ALCE-reg, ALgebraic Covariance Estimator-regression; LASSO, least absolute shrinkage and selection operator; OLS, ordinary least squares; POET, principal orthogonal

complement thresholding..
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β̂RIDGE ¼ arg min
β � ℝp

ðy�XβÞ0ðy�XβÞþkkβk22, ð2Þ

where kβk22 ¼ β0β¼
Pp

j¼1β
2
j and LASSO estimator (Tibshirani, 1996), which is derived as

β̂LASSO ¼ arg min
β � ℝp

ðy�XβÞ0ðy�XβÞþkkβk1, ð3Þ

where kβk1 ¼
Pp

j¼1jβjj. As clearly highlighted by Hastie (2020), RIDGE and LASSO estimators can be rephrased as constrained optimization prob-

lems, where the constraint is kβk2 <Ck in the case of RIDGE regression and kβk1 <Ck in the case of LASSO regression, for some Ck >0.

In Hastie (2020), the link between ridge regression and the spectral decomposition of the matrix X0X is elegantly pointed out, while Le et al.

(2020) describe the relationship between ridge regression and covariance matrix regularization. These results show that, when p≥ n, β̂RIDGE may be

extremely biassed, as also reported in Zou (2020). Although β̂LASSO tends to be slightly less biassed and a bit more variable, it is also subject to sev-

eral drawbacks in high dimensions, particularly when the coefficient vector β is not element-wise sparse. It follows that, when p is large, β̂OLS is

not feasible or extremely variable, while RIDGE and LASSO are very biassed.

In this paper, we explore the possibility to replace the sample covariance matrix of the predictors Σ̂X in the OLS estimator β̂OLS by a

regularized covariance matrix estimate, obtained by solving the specific regularization problem described in Farnè and Montanari (2020). Therein,

a high-dimensional covariance matrix estimator is proposed, under the assumption that the true covariance matrix of the predictors ΣX follows a

low rank plus sparse structure. This assumption is very natural as it results from an approximate factor model (Chamberlain & Rothschild, 1982)

imposed to the vector x. Principal orthogonal complement thresholding (POET) estimator (Fan et al., 2013) also assumes a low rank plus sparse

structure for ΣX . That algebraic structure has been analysed and retrieved in exact form in Chandrasekaran et al. (2011) and in approximate form

in Chandrasekaran et al. (2010). Following those proposals, in Farnè and Montanari (2020), ΣX is recast as the solution of a least squares problem

penalized by the nuclear norm of the low rank component (see Fazel et al. 2001) and the l1 norm of the sparse component of ΣX . The statistical

properties of such estimator, called ALCE (ALgebraic Covariance Estimator), have been studied in Farnè and Montanari (2020).

Given these premises, it sounds appropriate to replace the matrix Σ̂X by ALCE estimator in β̂OLS and to explore the statistical properties of the

resulting estimator of β. Our expectation is that the ALCE estimator of β is able to attain a convenient balance between bias and variance when p

is large, thus providing a valid alternative when OLS is too unstable and RIDGE/LASSO are too biassed.

The rest of the paper is structured as follows. Section 2 explores the theoretical framework behind our proposed high-dimensional regression

coefficient estimator. Section 3 describes in more detail the statistical properties of our proposed estimator. Section 4 contains a wide simulation

study, where a full p-dimensional regression coefficient vector is recovered, under different dimensions and sample sizes, by means of several

methods, which are thoroughly compared. Finally, Section 5 provides some concluding remarks.

1.1 | Notation

Given a p�p symmetric positive semidefinite matrix M, we denote by λiðMÞ, i� f1,…,pg, the eigenvalues of M in decreasing order. We recall the

following norm definitions:

1. Element-wise:

a. L0 norm: kMk0 ¼
Pp

i¼1

Pp
j¼11ðMij ≠0Þ, which is the total number of nonzeros;

b. L1 norm: kMk1 ¼
Pp

i¼1

Pp
j¼1jMijj;

c. Frobenius norm: kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1

Pp
j¼1M

2
ij

q
;

d. Maximum norm: kMk∞ ¼ max i≤ p,j≤ pjMijj.
2. Induced by vector:

a. kMk0,v ¼ max i≤ p
P

j≤ p1ðMij ≠0Þ, which is the maximum number of nonzeros per row–column;

b. Spectral norm: kMk2 ¼kMk¼ λ1ðMÞ.
3. Schatten:

a. Nuclear norm of M, here defined as the sum of the eigenvalues of M: kMk ∗ ¼
Pp

i¼1λiðMÞ.

We denote the rank of M as rkðMÞ and the sparsity pattern of M as sgnðMÞ, where sgnðMÞ is a p�p matrix whose ij entry is 1 if Mij >0, 0 if

Mij ¼0, �1 if Mij <0. We indicate with diagðMÞ a diagonal p�p matrix containing only the diagonal of M, and we define the matrix

off_diagðMÞ¼M�diagðMÞ.
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2 | THEORETICAL FRAMEWORK

The aim of this paper is to compare the performance of different estimators of the vector of linear regression coefficients in high dimensions and

to test the validity of a new proposal. The covariance structure of the vector of predictors x is crucial when deciding how to replace the matrix

ðX0XÞ�1
in β̂OLS with a feasible alternative when p≥ n. From Hoerl and Kennard (1970), we know that β̂RIDGE ¼ðX0XþkIpÞ�1X0y, where the

shrinkage term kIp has the effect of reconditioning the eigenvalues of X0X in a way that avoids singularity and guarantees invertibility, although at

the price of a large bias. Instead, the LASSO acts as a variable selector and is thus oriented to identify a restricted set of predictors from the

p input ones, even when in the true model β is not element-wise sparse.

When p is large, it is very likely to have a redundant set of predictors, that is, to have predictor multicollinearity, which inevitably affects the

conditioning properties of the sample covariance matrix of x. As a consequence, it is not unreasonable to postulate for the vector of predictors x

an approximate factor model of the following kind:

x¼ χþϵ, ð4Þ

where χ is the common component of x, that is, χ¼Bf, with B p� r matrix of factor loadings s.t. B0B¼ Ir , and f r�1 random vector of common

factors s.t. EðfÞ¼0 and EðfÞ¼ Ir , while ϵ is the vector of the so called unique factors of x, that is, a p�1 random vector s.t. EðϵÞ¼0 and

VðϵÞ¼ S ∗ , with S ∗ p�p sparse covariance matrix. From these assumptions,

VðxÞ :¼ΣX ¼BVðfÞB0 þVðϵÞ¼ L ∗ þS ∗ , ð5Þ

where L ∗ ¼BB0. In other words, (5) states that the covariance matrix of x, ΣX , admits a low rank plus sparse decomposition.

Let us analyse the OLS estimator β̂OLS ¼ðX0XÞ�1X0y¼ Σ̂�1
X σ̂XY , where Σ̂X ¼ X0X

n is the sample covariance matrix of x and σ̂XY is the vector of

sample covariances between the response variable y and the predictors x1,x2,…,xp. In order to obtain a computable estimator when p≥ n, RIDGE

regression replaces X0X by the matrix X0XþkIp, k >0, in β̂OLS. This plug-in process has the effect of reconditioning the eigenvalues of X0X, thus

producing a computable and very stable estimator of β, at the price of introducing a systematic bias in the estimate, also due to the inversion of

the matrix X0XþkIp. For this reason, the need arises to study an alternative estimator of ΣX able to limit this inevitable estimation bias, while

reconditioning Σ̂X , which is not positive definite when p≥ n.

For this purpose, we propose to exploit the low rank plus sparse structure of ΣX displayed in (5). In particular, since we have assumed the

covariance matrix of x to be low rank plus sparse, we can approach the estimation of ΣX by solving the following problem:

min
L,S � ℝp�p

kΣ̂X �ðLþSÞkF þψrkðLÞþρkSk0, ð6Þ

where ψ and ρ are threshold parameters. Unfortunately, this approach is not feasible, because the composite penalty ψrkðLÞþρkSk0 is nonconvex,

so that problem (6) is NP-hard. A possible way to overcome this drawback is by solving the following problem

min
L,S � ℝp�p

kΣ̂X �ðLþSÞkF þψkLk ∗ þρkSk1, ð7Þ

since it has been proved that kLk ∗ is the tightest convex relaxation of rkðLÞ and kSk1 is the tightest convex relaxation of kSk0 (see Fazel, 2002).

Problem (7) is thus nonsmooth but convex, which means it is solvable in polynomial time.

The pair of estimators ðL̂, ŜÞ¼ argminL,S � ℝp�pLðL,SÞþPðL,SÞ, where LðL,SÞ¼ kΣ̂X �ðLþSÞkF and PðL,SÞ¼ψkLk ∗ þρkSk1 are called ALCE

(ALgebraic Covariance Estimator, Farnè & Montanari, 2020). We denote the pair of ALCE estimators as ðL̂A , ŜAÞ, and the overall ALCE covariance

estimator as Σ̂A ¼ L̂Aþ ŜA. ðL̂A, ŜAÞ has been proved to be both algebraically and parametrically consistent, in the following sense.

Definition 1. A pair of symmetric matrices ðL,SÞ with L,S�ℝp�p is an algebraically consistent estimate of the low rank plus sparse

decomposition (5) for the covariance matrix ΣX if the following conditions hold:

(i) the low rank estimate L is positive semidefinite with rank rkðLÞ¼ rkðL ∗ Þ¼ r;

(ii) the residual estimate S is positive definite with the true sparsity pattern sgnðSÞ¼ sgnðS ∗ Þ;
(iii) Σ¼ LþS is positive definite.

Parametric consistency holds if the pair ðL,SÞ is close to ðL ∗ ,S ∗ Þ in some norm with probability approaching 1.

FARNÈ and MONTANARI 3 of 11
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Definition 2. A pair of symmetric matrices ðL,SÞ with L,S�ℝp�p is a parametrically consistent estimate of the low rank plus sparse

decomposition (5) for the covariance matrix ΣX if the norm gγ ¼ max kL�L ∗ k2
kL ∗ k2

, kS�S ∗ k∞
γkS ∗ k0,v

� �
, with γ �ℝþ, converges to 0 with probability

approaching 1.

Parametric consistency is a usual property in statistical analysis, while algebraic consistency is a typical feature of this approach. The word

‘ALgebraic’ in the ALCE acronym follows from the need to control the degree of transversality of the following algebraic manifolds:

LðrÞ¼fLjL�0,L¼UDU0,U�ℝp�r ,U0U¼ Ir ,D�ℝr�rdiagonalg, ð8Þ

SðsÞ¼ fS�ℝp�pjS≻0, jsuppðSÞj≤ sg, ð9Þ

where LðrÞ is the variety of matrices with at most rank r and SðsÞ is the variety of (element-wise) sparse matrices with at most s nonzero elements.

The two varieties LðrÞ and SðsÞ can be disentangled if L ∗ �LðrÞ is far from being sparse and S ∗ �SðsÞ is far from being low rank. It follows the

need to impose them to be close to orthogonality, which is enforced by bounding the following rank-sparsity measures:

ξðT ðL ∗ ÞÞ¼ max
L � TðL ∗ Þ,kLk2 ≤1

kLk∞, ð10Þ

μðΩðS ∗ ÞÞ¼ max
S � ΩðS ∗ Þ,kSk∞ ≤1

kSk2, ð11Þ

where TðL ∗ Þ and ΩðS ∗ Þ are the tangent spaces to LðrÞ and SðsÞ, respectively. Further, the algebraic and parametric consistency of ðL̂A, ŜAÞ
requires to control the magnitude of the eigenvalues of L ∗ , the sparsity pattern of S ∗ , the smallest eigenvalue of L ∗ and the minimum absolute

nonzero element in S ∗ with respect to ξðT ðL ∗ ÞÞ and μðΩðS ∗ ÞÞ. The latent random processes f and ϵ are imposed to be independent and identi-

cally distributed, with sub-Gaussian tails. We stress that the r eigenvalues of L ∗ are imposed to scale to γαp
α, with γα >0 and α� 1

2 ,1
� �

, which cor-

responds to allowing for weak factors in (4) and that the sparsity pattern of S ∗ is controlled by imposing kS ∗ k0,v ≤ γδpδ, with γδ >0 and δ� 0, 12
� �

,

which corresponds to limit the cumulation of residual covariances in a specific row. We refer to Farnè and Montanari (2020) for more technical

details.

In this paper, we focus on the ALCE estimator of the regression coefficient (ALCE-reg), defined as β̂ALCE ¼ Σ̂�1
A σ̂XY . Following Farnè and

Montanari (2020), we also perform the unshrinkage of estimated latent eigenvalues, as this operation improves the sample total loss as much as

possible in the finite sample. Once we set r̂A ¼ rkðL̂AÞ and we define the spectral decomposition of L̂A as L̂A ¼ ÛAD̂AÛ
0
A, with ÛA p� r̂A matrix such

that Û
0
AÛA ¼ Ir̂A and D̂A r̂A� r̂A diagonal matrix, we can get the UNALCE (UNshrunk ALCE) estimates as follows:

L̂U ¼ ÛAðD̂Aþψ IrÞÛ
0
A, ð12Þ

diagðŜUÞ¼diagðΣ̂AÞ�diagðL̂UÞ, ð13Þ

off_diagðŜUÞ¼off_diagðŜAÞ, ð14Þ

where ψ >0 is any chosen eigenvalue threshold parameter. Importantly, it can be proved (Farnè & Montanari, 2020) that it holds

L̂U, ŜU
� �

¼ arg min
L � L̂ðr̂AÞ,S � Ŝdiag

1
2
kΣ̂X �ðLþSÞk2, ð15Þ

where

L̂ðr̂AÞ¼ fLjL�0,L¼ ÛADÛ
0
A,D�ℝr�rdiagonalg, ð16Þ

Ŝdiag ¼fS�ℝp�pjdiagðLÞþdiagðSÞ¼diagðΣ̂AÞ,
off_diagðSÞ¼off_diagðŜAÞ,L� L̂ðr̂AÞg:

ð17Þ

4 of 11 FARNÈ and MONTANARI
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For each threshold pair ðψ ,ρÞ, we can finally compute the overall UNALCE estimate Σ̂U ¼ L̂Uþ ŜU and derive the UNALCE estimator of the

regression coefficient (UNALCE-reg) as β̂UNALCE ¼ Σ̂�1
U σ̂XY .

3 | ESTIMATION FRAMEWORK

We set the standard linear regression model

y¼Xβþ ε, ð18Þ

where ε, the residual vector, is assumed to be distributed asMVNð0,σ2InÞ and uncorrelated with the p�1 vector of predictors x. First, we consider

the OLS coefficient estimator β̂OLS ¼ Σ̂�1
X σ̂XY . We know that VARðβ̂OLSÞ¼ σ2ðX0XÞ�1

. We write the sum of squared errors

L2OLS ¼ðβ̂OLS�βÞ0ðβ̂OLS�βÞ. We know from Hoerl and Kennard (1970) that EðL2OLSÞ¼ σ2tr ðX0XÞ�1
h i

, which leads to Eðβ̂0OLSβ̂OLSÞ¼ β0βþ
σ2tr ðX0XÞ�1

h i
and that VðL2OLSÞ¼2σ4tr ðX0XÞ�2

h i
. Following Hoerl and Kennard (1970), we also get that EðL2OLSÞ¼ σ2

Pp
j¼1

1
λjðnΣ̂XÞ

and

VðL2OLSÞ¼2σ4
Pp

j¼1
1

λjðnΣ̂XÞ
2, whose lower bounds are σ2

λpðnΣ̂XÞ
and 2σ4

λpðnΣ̂XÞ
2, respectively. Similarly, we know that β̂OLS is obtained by minimizing the sum

of squares ϕðβÞ¼ ðy�XβÞ0ðy�XβÞ. For a generic estimator β̂, we thus know that

ϕðβ̂Þ¼ ðy�Xβ̂OLSÞ
0ðy�Xβ̂OLSÞþðβ̂� β̂OLSÞ

0
X0Xðβ̂� β̂OLSÞ: ð19Þ

When p≥ n, however, ðX0XÞ�1
does not exist, so that β̂OLS is unfeasible. Moreover, when p is large, due to the Marcenko–Pastur law

(Marčenko & Pastur, 1967), it is likely that λpðnΣ̂XÞ is really small, thus making EðL2OLSÞ and VðL2OLSÞ explode. Therefore, the need to recondition the

eigenvalues of Σ̂X rises, in order to limit the expected sum of squared errors and its variance. For this reason, first, we construct an alternative

estimator of the coefficient vector with this aim, and second, we compare its statistical properties with the OLS and the RIDGE ones.

Let us consider the ALCE-reg estimator β̂ALCEðψ ,ρÞ¼ Σ̂�1
A ðψ ,ρÞσ̂XY , where the dependence on the threshold pair ðψ ,ρÞ is made explicit.

Suppose that (5) holds. We note that solving the following problem

L̂Aðψ ,ρÞ, ŜAðψ ,ρÞ
� �

¼ arg min
L,S � ℝp�p

kΣ̂X �ðLþSÞkF þψkLk ∗ þρkSk1 ð20Þ

is equivalent to solve the problem

L̂Aðψ ,ρÞ, ŜAðψ ,ρÞ
� �

¼ arg min
L,S � ℝp�p

kΣ̂X �ðLþSÞkF ð21Þ

subject to kLk ∗ ≤ϕψ and kSk1 ≤ϕρ, for some ϕψ ,ϕρ >0. Then, we can write Σ̂Aðψ ,ρÞ¼ L̂Aðψ ,ρÞþ ŜAðψ ,ρÞ.

Theorem 1. Suppose that λpðΣXÞ¼Oð1Þ. Under all the assumptions and conditions of Theorem 1 in Farnè and Montanari (2020), there

exists a positive ζA such that for all p�ℕ as n!∞, P 1
pαþδ kΣ̂

�1
A ðψ ,ρÞ�Σ�1

X k2 ≤ ζA
ffiffiffiffiffiffiffi
logp
n

q� 	
!1.

In light of Theorem 1 (proof reported in Section S1), the definition of β̂ALCEðψ ,ρÞ is thus well-posed. In practice, the ALCE solution pair

L̂Aðψ ,ρÞ, ŜAðψ ,ρÞ
� �

is computed by the algorithm in Section S2. At this stage, we need to decide how to optimally select the thresholds ψ and ρ.

We select them under a validation set scheme, that is, by selecting the pair ðψval,ρvalÞ¼ argminψ � φ,ρ � ϱðy�Xβ̂ALCEðψ ,ρÞÞ
0ðy�Xβ̂ALCEðψ ,ρÞÞ, where,

φ, the vector of candidate eigenvalue thresholds, ψ , is composed by multiples of 1
p, and ϱ¼φ=

ffiffiffi
p

p
. It is worth stressing that here, differently from

Farnè and Montanari (2020), the tuning parameters ψ and ρ are chosen in order to optimize Σ̂Aðψ ,ρÞ taking the linear dependence between X and

y into account. In the same way, we derive β̂UNALCEðψval,ρvalÞ¼ Σ̂�1
U ðψval,ρvalÞσ̂XY , where Σ̂Uðψval,ρvalÞ¼ L̂Uðψval,ρvalÞþ ŜUðψval,ρvalÞ, with

L̂Uðψval,ρvalÞ and ŜUðψval,ρvalÞ computed as in (12), (13) and (14).

Under all the assumptions and conditions of Theorem 1 in Farnè and Montanari (2020), Σ̂Aðψ ,ρÞ is both algebraically and parametrically

consistent, in the sense of Definitions 1 and 2, respectively. Under the same conditions, A.7 in Farnè and Montanari (2020) ensures that Σ̂X is also

parametrically consistent wrt ΣX in spectral norm. Moreover, imposing λpðΣXÞ¼Oð1Þ, the same rate also holds for its inverse, although the strict

requirement p< n is needed.

Theorem 2. Suppose that λpðΣXÞ¼Oð1Þ and p< n. Under all the assumptions and conditions of Theorem 1 in Farnè and Montanari

(2020), there exists a positive ζX such that, for all p�ℕ as n!∞, P 1
pα kΣ̂

�1
X �Σ�1

X k2 ≤ ζX
ffiffiffiffiffiffiffi
log p
n

q� 	
!1.

FARNÈ and MONTANARI 5 of 11
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Then, it is possible to prove that, provided that Theorem 1 in Farnè and Montanari (2020) holds, Σ̂Aðψ ,ρÞ is the estimate with the most

concentrated possible eigenvalues around the true ones among the estimators Σ¼ LþS, under the constraints kLk ∗ ≤ϕψ and kSk1 ≤ϕρ.

Theorem 3. Let us define ηΣX
¼ trðΣXÞ=p. Under the assumptions of Theorem 1 in Farnè and Montanari (2020), once fixed Σ̂X, the

following statement holds for all p�ℕ as n!∞:

L̂Aðψ ,ρÞ, ŜAðψ ,ρÞ
� �

¼ arg min
L,S � ℝp�p

1
p

Xp

j¼1
ðλjðLþSÞ�ηΣX

Þ2
h i

,

under the constraints kLk ∗ ≤ϕψ and kSk1 ≤ϕρ.

Theorem 3, proved in Section S1, is a guarantee that Σ̂Aðψ ,ρÞ presents the best possible conditioning properties under the constraints

kLk ∗ ≤ϕψ and kSk1 ≤ϕρ, for all p�ℕ as n!∞.

Let us consider L2ALCE ¼ðβ̂ALCE�βÞ0ðβ̂ALCE�βÞ. It naturally holds EðL2ALCEÞ¼ σ2
Pp

j¼1
1

λjðΣ̂Aðψ ,ρÞÞ
and VðL2ALCEÞ¼2σ4

Pp
j¼1

1

λjðΣ̂Aðψ ,ρÞÞ
2, whose lower

bounds are σ2

λpðΣ̂Aðψ ,ρÞÞ
and 2σ4

λpðΣ̂Aðψ ,ρÞÞ
2, respectively. It follows that, when p≥ n, or p is large, ALCE-reg solution provides a clear improvement over

OLS, due to the maximum eigenvalue concentration property of Theorem 3. Also, recalling Corollary 5 in Farnè and Montanari (2020), we learn

that UNALCE has more stringent requirements for positive definiteness compared with ALCE, such that λpðΣ̂Uðψval,ρvalÞÞ< λpðΣ̂Aðψval,ρvalÞÞ by

construction. Therefore, although UNALCE is also improving considerably the explosive value of L2OLS, it is nonetheless expected to perform worse

than ALCE, because it is systematically closer to nonpositive definiteness on average.

We now formally compare the performance of β̂ALCE to the one of β̂OLS and β̂RIDGE . Let us define Σ̂R ¼ X0X
n þ k

n Ip. We can alternatively define

RIDGE estimator as β̂RIDGE ¼ Σ̂�1
R σ̂XY . Then, (4.6) in Hoerl and Kennard (1970) shows that EðL2RIDGEÞ¼ γR1ðkÞþ γR2ðkÞ, where γR1ðkÞ¼ σ2

Pp
j¼1

λjðnΣ̂XÞ
ðλjðnΣ̂XÞþkÞ2

is the variance of β̂R, and γR2ðkÞ¼ k2β0ðnΣ̂RÞ
�2
β is the squared bias of β̂RIDGE . In Hoerl and Kennard (1970), the authors claim that there always

exists a value of k such that the overall sum of squared errors L2RIDGE is lower than L2OLS. Comparing L2RIDGE to L2ALCE , since the variance of

β̂ALCEðψval,ρvalÞ, γA1ðψval,ρvalÞ, can be written as γA1ðψval,ρvalÞ¼EðL2ALCEÞ¼ σ2
Pp

j¼1
1

λjðnΣ̂Aðψval ,ρvalÞÞ
, because the expected squared bias of β̂ALCE is

γA2ðψval,ρvalÞ¼0 under the conditions of Theorem 1, we first learn that EðL2ALCEÞ can be much lower than EðL2OLSÞ when p is large, due to Theorem

3, and, second, that it will be harder to find a value of k ensuring that EðL2RIDGEÞ<EðL2ALCEÞ, because γA1ðψval,ρvalÞ< γO1 for the maximum eigenvalue

concentration property of Theorem 3.

We can state the following corollary (proved in Section S1) on the error rate of β̂ALCE .

Corollary 1. Under the conditions of Theorem 1, for some positive ζβ it holds 1
pαþδ kEAk≤ ζβ

ffiffiffiffiffiffiffi
log p
n

q
with probability approaching 1, for all

p�ℕ as n!∞.

Corollary 1 provides the error rate of β̂ALCE , which is related to the spikiness degree of the eigenvalues of L ∗ and the sparsity degree of S ∗ .

When α¼1 and δ¼0 (like in Fan et al., 2013), which corresponds to the case of pervasive latent factors and negligible residual sparsity, the

rescaling term 1
pαþδ boils down to 1

p.

Let us finally analyse and compare in detail the estimation errors of the three methods. We define the estimation error matrices EA,ER ,EO as

EA ¼ Σ̂�1
A σ̂XY �Σ�1

X σXY , ER ¼ Σ̂�1
R σ̂XY �Σ�1

X σXY , EO ¼ Σ̂�1
X σ̂XY �Σ�1

X σXY , respectively. First, we can write

kEAk�kERk¼O
pαþδffiffiffi

n
p

� 	
�O

pαffiffiffi
n

p þ k
n

� 	
, ð22Þ

because Σ̂R ¼ ÛX D̂X þ k
n Ip

� �
Û

0
X , with Σ̂X ¼ ÛXD̂XÛ

0
X . Therefore, the comparison as k varies will also depend on the value of n. If n is not that large,

it may be the case that kEAk�kERk< 0, also because kERk becomes larger and larger after a certain value of k, due to the increasing estimation

bias (see Figure 1 in Hoerl & Kennard, 1970). It follows that, if p is large and n is not, ALCE may overcome RIDGE due to the excessive bias in the

RIDGE estimate, provided that Theorem 3 holds.

The difference kEAk�kEOk will intrinsically depend on the p=n ratio. When p=n is not smaller than 1, OLS is not feasible. When p=n is slightly

below 1, the expected sum of squared errors is such that ALCE is going to prevail, because they are both asymptotically unbiassed, but

γA1ðψval,ρvalÞ� γO1 . Moreover, a high sparsity degree in the residual covariance component S ∗ will also certainly favour ALCE, because it leads to

even better conditioned covariance matrix estimates. When p is reasonably small and n is large, instead, the situation will be drastically different,

with OLS likely to prevail.

Concerning prediction error, we stress that the optimal threshold pair ðψval,ρvalÞ is specifically chosen by minimizing ϕðβ̂ALCEðψ ,ρÞÞ in a valida-

tion set. Similarly, in practice, the penalization parameter k is chosen by minimizing ϕðβ̂RIDGEðkÞÞ under a cross-validation scheme. Theoretically

6 of 11 FARNÈ and MONTANARI

 20491573, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.548 by C

ochraneItalia, W
iley O

nline L
ibrary on [10/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



speaking, it is thus enough to note that ϕðβ̂ALCEðψ ,ρÞÞ¼ kXEAk, ϕðβ̂RIDGEðkÞÞ¼ kXERk, ϕðβ̂OLSÞ¼ kXEOk, to claim that the properties of regression

coefficient estimators are directly transmitted to the predictions based on estimated coefficients.

4 | SIMULATION STUDY

4.1 | Data generation

In this section, we describe the simulation study carried out to explore the performance of different estimators of a high-dimensional regression

coefficient vector. We set the regression model for i¼1,…,n:

yi ¼ x0iβþ εi , ð23Þ

where we draw βj �Nð10,1Þ, j¼1,…,p. The data vector xi is generated in order to have a covariance matrix ΣX respecting (5), which is a typical

situation in a real high-dimensional setting. For this purpose, we set xi ¼Bfiþϵi, where fi �MVNð0, IrÞ, B is a semi-orthogonal p� r matrix

such that trðBB0Þ ¼ θ, θ¼0:8, and ϵi �MVNð0,S ∗ Þ, where S ∗ is element-wise sparse positive definite such that trðS ∗ Þ¼1�θ. We set

εi �MVNð0,σ2ðn,SNRÞÞ, with σ2ðn,SNRÞ¼ β0X0Xβ
nSNR2 , SNR¼10.

The key simulation parameters are as follows: the dimension p and the sample size n; the rank r and θ, the variance proportion of ΣX explained

by L ∗ ; the number of off-diagonal nonzeros s in the sparse component S ∗ ; the percentage of nonzeros πS ∗ over the number of off-diagonal

elements; the percentage of the (absolute) residual covariance ϱS ∗ ; the condition number of ΣX , cðΣXÞ¼ λ1ðΣXÞ
λpðΣXÞ; N¼100 replicates for each setting.

Table 1 describes the scenarios used to test estimation performance. We set three values of p, that is, p¼100,250,500, and two values of n,

that is, n¼100,250. Apart from Scenario 1, which is a classical p< n scenario, all the other scenarios present a p≥ n situation, where the OLS esti-

mator β̂OLS ¼ðX0XÞ�1
X0y does not exist, because Σ̂X is not positive definite. Under all scenarios, ΣX follows a low rank plus sparse decomposition

of type (5), where the nonzero elements of S ∗ are extremely small (ϱS ∗ close to 0). The proportion of residual nonzeros πs is really similar across

scenarios and close to 2.5%. The condition number of ΣX increases as p increases.

4.2 | Performance metrics

For each scenario, we calculate β̂OLS ¼ðX0XÞ�1
X0y, and β̂POET ¼ Σ̂�1

POET σ̂XY , where Σ̂POET is derived by POET as in Fan et al. (2013), with the sparsity

threshold selected by cross-validation. Then, we derive β̂ALCEðψval,ρvalÞ by the algorithm in Section S2, β̂UNALCEðψval,ρvalÞ as in (12), (13), (14), and

we compute β̂RIDGE�min and β̂LASSO�min , which are, respectively, the RIDGE/LASSO estimate with k¼ kmin, that is, the value of k returning the

minimum cross-validated mean square error of predictions.

On each replicate t¼1,…,N of model (23), we calculate the estimates Σ̂t ¼ L̂tþ Ŝt, obtained by ALCE, UNALCE and POET and the

matrix Σ̂R,min ¼ 1
n ðX

0Xþkmin IpÞ. We derive the two following metrics: LossΣ,t ¼kΣ̂t�ΣXk and cðΣ̂tÞ¼ λ1ðΣ̂tÞ
λpðΣ̂tÞ

. We focus on the estimated coefficient

vector β̂ via all considered methods, that is, OLS, POET, ALCE, UNALCE, RIDGE and LASSO. Then, we measure their estimation performance as

follows: Mðβ̂Þ¼ 1
N

PN
t¼1β̂t and bβ̂ ¼Mðβ̂Þ�β; VARt,β̂ ¼ðβ̂t�Mðβ̂ÞÞ2; MSEt,β̂ ¼ðβ̂t�βÞ2. We generate for each replicate t ∗ ¼1,…,N one test

observation, ðxt ∗ ,yt ∗ Þ, from model (23), we calculate the prediction ŷt ∗ ¼ β̂
0
xt ∗ , and we derive the prediction mean square error

errŷ ¼
PN

t ∗ ¼1ðŷt ∗ �yt ∗ Þ2.
Finally, we obtain the following overall performance metrics:

• b̂M ¼Avg bβ̂

n o
j¼1,…,p

;

TABLE 1 Scenarios 1–6: key parameters.

p n p=n SNR r s θ ρS ∗ cðΣXÞ

Scenario 1 100 250 0.4 10 2 256 0.8 4.01E-05 59.82

Scenario 2 100 100 1 10 2 256 0.8 4.01E-05 59.82

Scenario 3 250 250 1 10 5 1563 0.8 6.39E-05 89.97

Scenario 4 250 100 2.5 10 5 1563 0.8 6.39E-05 89.97

Scenario 5 500 250 2 10 10 6372 0.8 9.35E-05 116.77

Scenario 6 500 100 5 10 10 6372 0.8 9.35E-05 116.77

FARNÈ and MONTANARI 7 of 11
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• cSDM ¼Avg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1VARt,β̂

qn o
j¼1,…,p

;

• dRMSEM ¼Avg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1MSEt, β̂

q
g
j¼1,…,p



;

where b̂M, cSDM and dRMSEM are the average bias, standard deviation and root mean square error across all the coefficients, respectively. Two

more performance metrics are then derived by just averaging over the N replicates: LossΣ ¼MðLossΣ,tÞ, cðΣ̂ÞM ¼MðcðΣ̂tÞÞ.

4.3 | Simulation results

Here, we report the simulation results about coefficient estimation and prediction performance. For the results on the performance of low rank

and sparse component estimates, we refer to Section S3.

We start by the analysis of Scenario 1, which is the most favourable to OLS. In Table 2, we report the error metrics relative to the overall

covariance matrix estimates and the regression coefficients. We can note that OLS is by far the best method to estimate β in this case. LASSO is

the second best, due to a very limited variance. Note that LASSO does not estimate any zero coefficient in this case. RIDGE is not doing so well,

due to a strong bias. Then, we note that UNALCE, ALCE and POET, that is, the methods based on a low rank plus sparse assumption, work poorly

in this case. This happens because, in a n> p case, the unnecessary variance introduced by estimation mechanisms involving thresholding proce-

dures leads to too variable estimates. This is also reflected in the prediction performance.

Concerning Scenario 2, Table 3 shows that OLS cannot be computed when p≥ n. RIDGE regression is extremely biassed. UNALCE performs

better than the competitors in terms of covariance loss but worse in terms of coefficient estimates. ALCE offers the best compromise between

bias and variance in coefficient estimation, apart from LASSO, which anyway reports an average percentage of zero coefficients equal to 27.75%.

Focusing on prediction performance, we note that LASSO is the best in this case, followed by RIDGE and ALCE.

Analysing the performance in Scenario 3, we can observe in Table 4 that ALCE is able to overcome in the RMSE even LASSO, which presents

an average of 25.71% zero coefficients in the estimated β. Concerning prediction error, ALCE comes first while UNALCE comes second in this

case. POET performs instead very badly, due to its excessive variability, coming from bad conditioning properties. In contrast, RIDGE covariance

estimate is too regularized and therefore very biassed.

TABLE 2 Scenario 1: Performance metrics on covariance matrix and regression coefficient estimates.

OLS POET ALCE UNALCE RIDGE LASSO

LossΣ 0.1275 0.0288 0.0240 0.1041 0.0249

cðΣ̂ÞM 50.3784 50.5221 4.7703 335.3218 3.2322

b̂M 0.0329 �1.0325 �1.9723 �0.4451 �2.0337 -0.0649

cSDM
2.0002 10.6623 5.2994 6.3342 1.8812 2.0282

dRMSEM
2.0084 10.7909 5.6985 6.3880 2.7806 2.0371

errŷ 1.5249 5.0667 2.9282 3.2580 1.6926 1.5501

Abbreviations: ALCE, ALgebraic Covariance Estimator; LASSO, least absolute shrinkage and selection operator; OLS, ordinary least square; POET, principal

orthogonal complement thresholding; UNALCE, UNshrunk ALCE.

TABLE 3 Scenario 2: Performance metrics on covariance matrix and regression coefficient estimates.

OLS POET ALCE UNALCE RIDGE LASSO

LossΣ 0.1744 0.1782 0.1660 0.3258

cðΣ̂ÞM 85.3694 54.5152 68.1953 5.4656

b̂M �1.0325 �2.1540 �0.5621 �9.3732 �4.2476

cSDM
10.6623 8.3666 10.1546 0.5867 6.1503

dRMSEM 10.7909 8.7133 10.2351 9.4786 7.4959

errŷ 5.0667 4.2558 4.8431 3.9065 3.5836

Abbreviations: ALCE, ALgebraic Covariance Estimator; LASSO, least absolute shrinkage and selection operator; OLS, ordinary least square; POET, principal

orthogonal complement thresholding; UNALCE, UNshrunk ALCE.
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In Table 5, we observe that under Scenario 4 RIDGE and LASSO are prevailing in the RMSE, but ALCE is really close and is the second best

(behind RIDGE) in the prediction error. On the contrary, UNALCE and (even more) POET lie far. This occurs because a more biassed estimate of

ΣX , but with a lower condition number, results to be more effective for estimating β. We stress however the extreme bias of RIDGE and that

LASSO in this case produces an average of 83.8% zero coefficients.

Table 6 shows that, under Scenario 5, POET is completely out of target for coefficient estimation, while ALCE is prevailing in the RMSE

against RIDGE and LASSO by a good margin, showing the best balance between bias and variance. Concerning prediction error, ALCE, RIDGE and

LASSO are really close, although LASSO presents 76.23% zero coefficients on average. It is remarkable that, when comparing the median squared

prediction error, ALCE is prevailing over all the competitors. This means that, when p is large, the larger variance of ALCE and UNALCE coeffi-

cients compared with RIDGE and LASSO may occasionally impact on prediction error, while preserving the goodness of systematic performance.

In the end, concerning Scenario 6, Table 7 shows that the variance of ALCE explodes, in a way that awards RIDGE and LASSO in the RMSE.

The gap with RIDGE/LASSO is particularly important in the prediction error, although we must note that 93.95% of coefficients are estimated as

zero by LASSO. All in all, the ratio p=n is too large in this case to ensure the effectiveness of Theorems 1 and 3.

TABLE 4 Scenario 3: Performance metrics on covariance matrix and regression coefficient estimates.

OLS POET ALCE UNALCE RIDGE LASSO

LossΣ 0.0901 0.1444 0.1142 0.6875

cðΣ̂ÞM 110.8359 51.4028 71.1490 2.5419

b̂M �0.7465 �4.7092 �2.8010 �9.4508 �4.2132

cSDM
10.5739 5.5576 7.6022 0.5517 6.0189

dRMSEM 10.6538 7.3308 8.1497 9.5235 7.3738

errŷ 4.6145 3.5863 3.6945 4.5236 3.8776

Abbreviations: ALCE, ALgebraic Covariance Estimator; LASSO, least absolute shrinkage and selection operator; OLS, ordinary least square; POET, principal

orthogonal complement thresholding; UNALCE, UNshrunk ALCE.

TABLE 5 Scenario 4: Performance metrics on covariance matrix and regression coefficient estimates.

OLS POET ALCE UNALCE RIDGE LASSO

LossΣ 0.1464 0.1879 0.1600 0.3518

cðΣ̂ÞM 211.5288 59.4695 85.1038 3.8387

b̂M �3.2978 �4.7464 �2.7805 �9.5795 �8.7588

cSDM
18.2251 9.0520 12.5209 0.6903 3.9818

dRMSEM 18.6312 10.3005 12.9046 9.6712 9.9294

errŷ 8.5758 5.0294 6.5145 4.8290 5.1829

Abbreviations: ALCE, ALgebraic Covariance Estimator; LASSO, least absolute shrinkage and selection operator; OLS, ordinary least square; POET, principal

orthogonal complement thresholding; UNALCE, UNshrunk ALCE.

TABLE 6 Scenario 5: Performance metrics on covariance matrix and regression coefficient estimates.

OLS POET ALCE UNALCE RIDGE LASSO

LossΣ 0.0824 0.1232 0.0987 0.1529

cðΣ̂ÞM 223.6059 59.8279 85.3687 6.0234

b̂M �3.9754 �5.6329 �4.0860 �9.4855 �8.2014

cSDM
15.5912 6.6111 8.9797 0.6941 4.6687

dRMSEM 16.1936 8.7460 9.9287 9.5737 9.6415

errŷ 7.3630 4.3897 4.7376 4.3087 4.2394

Abbreviations: ALCE, ALgebraic Covariance Estimator; LASSO, least absolute shrinkage and selection operator; OLS, ordinary least square; POET, principal

orthogonal complement thresholding; UNALCE, UNshrunk ALCE.
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5 | CONCLUSIONS

In this paper, we have proposed a new estimator of a high-dimensional regression coefficient vector, named ALCE-reg, based on estimating the

covariance matrix of the predictors by nuclear norm plus l1 norm penalization under the low rank plus sparse structure assumption. We have

shown that, theoretically speaking, ALCE-reg may improve over RIDGE/LASSO when both p and n are large (allowing for p≥ n), because of a

systematically much lower bias. The new method also relevantly outperforms OLS, which is unfeasible if p≥ n or very unstable when p is large.

A wide simulation study shows that adopting for threshold selection a tailored method which targets prediction error turns out to be an

advantage for full regression coefficient vector estimation in high dimensions. Another relevant finding is that a relatively biassed covariance

matrix estimate with a low condition number performs better in terms of regression coefficient estimation than a good covariance matrix estimate

with a systematically worse conditioning. Additionally, when p=n is slightly smaller or larger than 1, ALCE-reg also systematically improves the

prediction error.

In light of these findings, we have discovered that ALCE-reg represents a good compromise between methods like OLS and POET, too much

affected by sample eigenvalues, which results in a large estimation variance, and RIDGE/LASSO, characterized by large estimation bias. ALCE-reg

is particularly effective compared with competitors when both p and n are large, and the ratio p=n is not too far from 1. In the future, it will be

interesting to conduct further experiments under different coefficient or covariance structures and to add to simulation study competitors based

on direct eigenvalue shrinkage.

ACKNOWLEDGEMENTS

We thank Trevor Hastie for inspiring us this work with his talk “Ridge Regularization: An Essential Concept in Data Science” delivered at ISI 2021

in a session named “Data Science and Statistics” and two anonymous referees for their kind and constructive comments. Open Access Funding

provided by Universita degli Studi di Bologna within the CRUI-CARE Agreement.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in UCI Repository at http://archive.ics.uci.edu/ml/datasets. These data were derived

from the following resources available in the public domain: - Arrhythmia Data Set, http://archive.ics.uci.edu/ml/datasets/Arrhythmia.

ORCID

Matteo Farnè https://orcid.org/0000-0002-2403-6599

REFERENCES

Chamberlain, G., & Rothschild, M. (1982). Arbitrage, factor structure, and mean-variance analysis on large asset markets.

Chandrasekaran, V., Parrilo, P. A., & Willsky, A. S. (2010). Latent variable graphical model selection via convex optimization. In 2010 48th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), IEEE, pp. 1610–1613.
Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., & Willsky, A. S. (2011). Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization,

21(2), 572–596.
Fan, J., Liao, Y., & Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 75(4), 603–680.
Farnè, M., & Montanari, A. (2020). A large covariance matrix estimator under intermediate spikiness regimes. Journal of Multivariate Analysis, 176, 104577.

TABLE 7 Scenario 6: Performance metrics on covariance matrix and regression coefficient estimates.

OLS POET ALCE UNALCE RIDGE LASSO

LossΣ 0.1385 0.1587 0.1475 0.5606

cðΣ̂ÞM 1877789 70.5391 102.8426 2.8386

b̂M 8.5758 �5.6909 �4.0805 �9.6669 �9.5867

cSDM
�3.2978 10.9784 15.2220 0.7840 2.6333

dRMSEM 18.2251 12.4715 15.8731 9.7615 10.1526
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