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General Methods

NMR spectra were recorded with a Varian Mercury 400 spectrometer (400 MHz for *H-NMR and
100 MHz for 3C-NMR spectra) and Agilent NMR spectrometer 500 MHz (500 MHz for H-NMR,
470.322 MHz for **F-NMR and 125 MHz for *C-NMR spectra).

The chemical shifts (8) are reported in ppm (parts per million) referred to the signals of the residual
solvents (*H CHCl; =7.26 ppm and DMSO =2.48 ppm; 3C CHCl3 =77.0 ppm and DMSO =40.0 ppm).
Coupling constants (J) are reported in Hz and multiplicity are named by the following abbreviations:
singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), multiplet (m), broad (b) and
impurity or residual solvent (*).

MS spectra were taken by electron impact (El) ionization at 70 eV on a Trace 1300 GC, 1SQ Single
Quadrupole MS, Thermo Fisher Scientific and the sample was introduced to the ion source region
via a direct exposure probe (DEP); they are reported m/z and relative intensity of main fragments.
ATR FT-IR spectra were recorded with Agilent Cary 630 FTIR spectrophotometer and the spectra are
expressed by wavenumber (cm™).

Commercially available chemicals were purchased from Sigma Aldrich and Fluorochem and used
without any further purification; Reduced Graphene Oxide (rGO) partly reduced with Carbon
content of about 85% atomic in powder was purchased from Abalonyx, chromatographic
purification was done with 40-63 um Merck (Geduran) silica gel.

XPS spectra were acquired by using a Phoibos 100 hemispherical energy analyzer (Specs) using Mg
K, radiation (hw =1253.6 eV). The X-ray power was 125 W. The spectra were recorded in the
constant analyser energy (CAE) mode with analyser pass energies of 10 eV for the high-resolution
spectra. Charging effects were corrected by energy calibration on C 1s at 284.6 eV. Overall resolution
of 0.9 eV was determined on Ag 3ds;;. The base pressure in the analysis chamber during analysis
was 5x107° mbar. High resolution XPS spectra of C 1s were analysed by CasaXPS (Casa software, Ltd),
the curve fitting was carried out using Gaussian/Lorentzian curves shape (GL(30)) for C-O groups
with a full width half-maximum of 1.4 eV and an asymmetric Voigt for the C-C sp2. Shirley
background was subtracted prior the fit. The C 1s signal was fitted only in case of pristine rGO and
GO, revealing the relative amounts of functional groups:! aromatic carbon (C-C sp?, 284.4 eV),
aliphatic carbon (C-C sp?, 285.0 eV), hydroxyl (C-OH, 285.7 eV), epoxy (C-O-C, 286.7 eV), carbonyl
(C=0, 288.0 eV), carboxyl (0-C=0, 289.1 eV) and aromatic carbons near vacancies (C-C* sp?, 283.5).2
More detail on consistency of the fitting procedure are reported in our previous work on C 1s fit.!
In case of aryl functionalized rGO or GO the C 1s was directly compared by subtracting the
correspondent reference sample in order to underline the signal differences. GO was measured as
a dry powder deposited on conductive carbon tape.

Raman spectroscopy was performed by LabRam instrument (Jobin Yvon). He-Ne laser
excitation and Olympus BX 40 microscope with 100x objective (632.1 nm) were used. The
spot size of laser was about 1 um and for each sample 8 different spot were measured and
results mediated.
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General procedure for the synthesis of Arylazo mesylates 1

All compounds were prepared from the corresponding anilines via a two-steps sequence involving
the formation of the aryldiazonium tetrafluoroborate salt and its subsequent conversion to the
target compound by addition of sodium methanesulfinate.

Aryldiazonium tetrafluoroborate salts were prepared via a slight modification of a known
procedure.?
NH, N,BF,

NaNO, HBF, (aq.)
H,0, 0°C
The appropriate aniline (10 mmol) was dissolved in a mixture of 4 mL of deionized H,0 and 3.4 mL
of 48 wt. % aqueous HBF,. (For 3-aminopyridine, precursor for compound 1o, EtOH was used instead
of H,0 in the whole procedure).
After cooling the reaction mixture to 0 °C, NaNO; (10 mmol, 690 mg in 2 mL of H,0) was added
dropwise in 5 min. The resulting mixture was stirred at 0 °C for 45 min and the precipitate was

collected by filtration, washed with cold H,O, diethyl ether and dried under vacuum to vyield
aryldiazonium tetrafluoroborate salt in 50-90% yield.

Diazonium salts were converted to the arylazo mesylates 1 via the procedure described by Protti
etal®

N,BF, N,SO,Me
NaSO,Me
DCM, 0 °C tor.t.

To a cooled (0 °C) suspension of the appropriate aryldiazonium salt (5 mmol, 1 eq) in 10 mL of DCM
was added NaSO;Me (5 mmol, 514.5 mg, 1 eq) in one portion. The temperature was allowed to rise
to room temperature and the solution stirred overnight. The resulting mixture was then filtered,
and the obtained solution evaporated. The raw solid was purified by dissolution in cold DCM and
precipitation by adding n-hexane.

1

Cl
1a.
Pale yellow solid; yield = 92%. Spectral data match those reported
in the literature.”

N,SO,Me

cl 1b.

Orange solid; yield = 69%. Spectral data match those reported in
the literature.®

N,SO,Me
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1c.
Yellow-orange solid; yield = 77%. Spectral data match those
reported in the literature.®

N,SO,Me
Cl Cl
1d.
\©/ Yellow solid; yield = 48%. Spectral data match those reported in
the literature.”
N,SO,Me
F
le.
Yellow solid; yield = 51%. Spectral data match those reported in
the literature.”
N,SO,Me
F
1f.
©/ Yellow solid; yield = 76%. Spectral data match those reported in the
literature.”
N,SO,Me
CF;

avs

N,SO,Me

1g.
Yellow solid; yield = 71%. Spectral data match those reported in
the literature.”

N2802Me

1h.

Orange solid (m.p. = decomposition above 120 °C); yield = 74%.
'H-NMR (400 MHz, CDCl3) 6 ppm: 8.41 (s, 2H), 8.17 (s, 1H), 3.30 (s,
3H)

13C-NMR (100 MHz, CDCls) & ppm: 149.3, 133.7 (q, J = 34.3Hz),
127.7 (m), 124.3 (d, J = 3.8Hz), 122.4 (q, J = 272.3Hz), 35.2.
19E.NMR (470.322 MHz, CDCls) & ppm: -63.11.

ATR FT-IR: 3218, 3086, 3024, 1610, 1500, 1462, 1331, 1276, 1193,
1127.

MS-DEP (m/z): 241.0 (16%), 213.0 (100%), 163.0 (17%).

)

N2802Me

1i.
Yellow solid; yield = 85%. Spectral data match those reported in
the literature.

Br

'e

stOZMe

1j.
Orange solid; yield = 55%. Spectral data match those reported in
the literature.”
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Q,

1k.
Yellow solid; yield = 78%. Spectral data match those reported in
the literature.’

N2802Me
1l.
Br Orange solid (m.p. = decomposition above 120 °C); yield = 60%.
'H-NMR (400 MHz, DMSO-ds) § ppm: 8.22 (s, 2H), 3.48 (s, 3H).
13C-NMR (100 MHz, DMSOds) 8§ ppm: 144.4, 136.6, 126.1, 117.4,
35.5.
Br Br ATR FT-IR: 3102, 3069, 3040, 2933, 1558, 1536, 1496, 1327, 1154,
N2SO.Me MS-DEP (m/2): 391.6 (4%), 340.6 (52%), 312.6 (100%), 234.78
(46%), 154.88 (25%).
|
Im.
Orange solid; yield = 93%. Spectral data match those reported in
the literature.®
N2802Me
1n.
Ocher solid (m.p. = decomposition above 120 °C); yield = 50%.
1H-NMR (400 MHz, DMSO-ds) & ppm : 8.2 (dd, J =7.6Hz, J = 1.2Hz,
1H), 7.65 - 7.57 (m, 2H), 7.48 (m, 1H), 3.44 (s, 3H).
I 13C-NMR (100 MHz, DMSO-ds) & ppm : 148.6, 141.2, 137.2, 130.3,
N,SO,Me 118.1, 106.1, 35.5.
ATR FT-IR: 3020, 1570, 1478, 1456, 1321, 1257, 1154.
MS-DEP (m/z): 230.9 (28%), 202.9 (100%), 76.0 (41%).
| =N 1o.
Z Pale orange solid; yield = 15%. Spectral data match those reported
. . 5
N,SO,Me in the literature.
1p.
Orange solid (m.p. = decomposition above 120 °C); yield = 70%.
1H-NMR (400 MHz, DMSO-ds) 6 ppm: 7.76 (d, J=1.2Hz, 1H), 3.83 (s,
NZSOZMS 3H), 3.34 (S, 3H), 2.26 (d, J=1.2Hz, 3H).

Me
| —co,Me
s

13C.NMR (100 MHz, DMSO-ds) & ppm: 160.8, 148.8, 134.4, 131.3,
129.9, 53.4, 34.6, 16.2.

ATR FT-IR: 3114, 3023, 2933, 1738, 1703, 1437, 1316, 1291, 1239,
1154.

MS-DEP (m/z): 233.9 (24%), 201.9 (56%), 183.0 (69%), 139.9
(100%), 125.0 (65%).
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1q.

Dark red solid (m.p. = decomposition above 120 °C); yield = 76%.
1H-NMR (400 MHz, DMSO-ds) & ppm : 7.96 (dd, J=8.4Hz, J=2.4Hz,
2H), 7.76 (dd, J=8.4Hz, J = 2.0Hz, 2H), 7.42 (d, J=4.0Hz, 1H), 7.13
(d, J = 4.0 Hz, 1H), 7.08 (d, J = 3.6Hz, 1H), 6.73 (d, J=3.6Hz, 1H),
3.23 (s, 3H), 2.82 (t, J = 7.6Hz, 2H), 1.74 — 1.66 (m, 2H), 1.42 - 1.28
(m, 6H), 0.92 (m, 3H).

13C-NMR (100 MHz,CDCl3) § ppm : 147.6, 146.8, 141.0, 140.6,
139.8, 134.0, 126.6, 125.9, 125.7, 125.1, 124.3, 124.3, 34.9, 31.5
(2C), 30.2, 28.7, 22.6, 14.1

ATR FT-IR: 2922, 2850, 1727, 1591, 1499, 1457, 1435, 1336, 1311,
1141

MS-DEP (m/z): 340.9 (20%), 269.9 (20%), 207.0 (100%)

1r.

Yellow-orange solid (m.p. = decomposition above 120 °C); yield =
48%.

'H-NMR (400 MHz, CDCl3) § ppm: 8.12 —8.07 (m, 4H), 7.96 (bs, 1H),
7.84 (d, J=9.2 Hz, 2H), 3.27 (s, 3H).

13C-NMR (125 MHz, CDCl3) § ppm: 148.9, 144.5, 141.3, 132.6 (q, J=
33.3 Hz), 128.6,127.4 (m), 125.4,123.1 (g, J = 271.3 Hz), 122.3 (m),
34.9.

F-NMR (470.322 MHz, CDCl3) 6 ppm : -62.9.

ATR FT-IR: 1602, 1472, 1373, 1338, 1275, 1121.

MS-DEP (m/z): 151.99 (25%), 201.00 (35%), 221.04 (15%), 289.96
(100%).

S6




Procedures for the synthesis of aniline precursors 2q and 2r

Pd(dppf)Cl,
Hex Sl \__.0 NH, KF, KOH (aq.) s /M
s~ B 4 Hex
\_/ o) Toluene : MeOH \ /) S
| MW irradiation, 80 °C NH,
2q

4-lodoaniline (0.9 mmol, 197 mg, 1 eq), 2-(5'-hexyl-[2,2'-bithiophen]-5-yl)-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane (0.95 mmol, 357 mg, 1.05 eq), KF (7.2 mmol, 420 mg, 8 eq) and [1,1'-
bis(diphenylphosphino)ferrocene]dichloropalladium(ll) complex with dichloromethane (0.09 mmaol,
70 mg, 10 mol%) were added to a mixture of 5 ml KOH aqueous saturated solution, 10 ml toluene
and 10 ml methanol. The reaction mixture was irradiated for 45 minutes at 80 °C (power max 200
watt) in a microwave reactor (CEM, Discover-SP; MAG. FREQ. 2455 MHz).

After completion, the organic layer was separated, the aqueous layer was extracted with DCM x 2
and the combined organic layers were washed with water.

The combined organic layers were dried over Na,SO,, the solvent was evaporated and the residue
was purified by silica gel flash chromatography (n-pentane: EtOAc 95:5 -> 80:20). Finally, the
collected product was crystallized from toluene and cold pentane to yield 2q as brown solid.

2q.

Light brown solid (m.p. = 142 - 146 °C); yield 75%.

'H-NMR (400 MHz, Acetone-d¢) & ppm: 7.40 — 7.35 (m; 2H),

7.11 (d, J/=3.6Hz; 1H), 7.08 (d, J=3.6Hz; 1H), 7.02 (d, J=3.6Hz;

1H), 6.76 (d, J=3.6Hz; 1H), 6.72 — 6.67 (m, 2H), 4.86 (br; 1H),
7\ s NH, 2.84 —2.77 (m; 2H), 1.72 = 1.63 (m; 2H), 1.42 — 1.23 (m; 6H),

Hex” s \ 0.89 (t, J= 6.8Hz; 3H).

13C-NMR (100 MHz, Acetone-ds) 6 ppm: 148.5, 144.5, 143.9,

135.0, 134.3, 132.6, 126.4, 125.1, 123.8, 122.7, 121.1, 114.4,

31.5,31.4,29.5, 28.5, 22.3, 13.4.

ATR FT-IR: 3424, 3384, 3300, 3197, 2922, 2854, 1623, 1603,

1507, 1451, 1269, 1181.

MS-DEP (m/z): 341.0 (28%); 269.9 (100%).

Aniline 2r, precursor for compound 1r, was synthetized via Suzuki coupling between 3,5-
bis(trifluoromethyl)phenyl boronic acid and 4-bromoaniline, according to a known procedure.’
Spectral data match those reported in the literature.

FoC N, Pd(OAC),, P(oTols FoC
i e OO
+
2 Br Toluene : EtOH : H,O 2
FsC 80 °C, 2h FoC or
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General procedure for the light promoted functionalization of rGO

1 H,0:CH,CN (1:1)
r, 24 h

A 20 mL screw-capped vial was charged with arylazo mesylate 1 (0.5 mmol), rGO powder (30 mg), 5
mL H,0 and 5 ml CH3CN. The reaction vessel was sealed and stirred under blue light irradiation (Blue
LED stripe, 461 nm, 23 W, distance about 10 cm) at room temperature for 24 hours.

The mixture was then filtered on a paper filter and the solid was washed with DCM until the
washings become colorless, followed by MeOH, H,0 and acetone. The solid was collected and dried
under vacuum to yield functionalized 1-rGO. (32.5 — 41.1 mg, see Table S1 below).

Table S1. Quantity of recovered functionalized 1-rGO for each substrate
and corresponding aryl content (atomic %, XPS).

Entry Ar (1) Aryl [%] Recovered
content material

(mg)
1 4-CI(CeH4) (1a) 34+3 37.0
2 3-Cl(CeHa) (1b) 38+4 38.4
3 2-Cl(CgHa4) (1c) 37+5 38.2
4 3,5-Cly(CeHs) (1d) 33+3 37.9
5 3-F(CsHa) (1e) 31+3 38.8
6 4-F(CeHa) (1f) 21+3 40.4
7 4-CF3(CeHa) (1g) 31+3 38.4
8 3,5-(CF3)2(CeHs) (1h) 26+3 36.4
9 4-Br(CeHa) (1i) 40+ 4 40.8
10 3-Br(CgHa) (1j) 31+3 38.0
11 2-Br(CeHa) (1k) 37+4 38.4
12 2,4,6-Brs(CeH2) (11) 1542 35.9
13 4-1(CeHa) (1m) 24+3 41.1
14 2-1(CeHa) (1n) 10+2 36.5
15 3-pyridyl (10) 23+3 32.5
16 1p 13+2 35.8
17 1q 76 £ 4 41.0
18 1r 45+ 4 40.8
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Figure S1. Experimental set-up of the “photochemical-well” with LEDs off (left) and on (right).

S9



XPS characterization of the functionalized 1-rGO materials

In order to evaluate the functionalization degree of all molecules covalently grafted to rGO we used
a quantitative parameter named “aryl functionalization”, that was directly obtained from the
stoichiometry of each molecule. The ratio between the overall number of atoms (except H, that is
not detectable by XPS) that compose each molecule, divided by the number of target atoms (i.e. Cl,
F, Br, I, N, S) can be used for calculate the overall “aryl content”:

total atom in target molecule

aryl content (%) = Target XPS concent (at.%) -
target atoms

By using this parameter, we were able to compare the functionalization degree of extremely
different molecules, i.e. 1e and 1h, that have quite different amounts of F: 3 and 11 % respectively,
but the ratio presents a comparable aryl functionalization of 21 and 26 %, respectively.

Moreover, these values can be confirmed by XPS C 1s analysis: the C atom corresponding to C-F3
bond in 1g-rGO and 1h-rGO present a univocally associated chemical shift respect to the main C 1s
signal (Aromatic carbon) of +7.6 eV. The aryl functionalization can be further calculated by using the
same stoichiometric considerations on C-F; relative abundance on C 1s:

total atomin 1g
C atoms bonded F

C 1s aryl content (%) = C — F3(%) -

S10



XPS of rGO functionalized with Chlorine-bearing target molecules
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Figure S2. XPS survey spectra of covalently grafted rGO by molecules containing Cl: 1a (orange), 1b
(yellow), 1c (purple) and 1d (green). O 1s, N 1s, C 1s, Cl 2p and S 2p signals are present. Inset: high
resolution Cl 2p signal fitted by doublet.

Table S2. Chemical composition and overall aryl content of target molecules containing Cl.

Entry Ar (1) aryl [%] Cl (%) o/C N (%) S(%)
content
1 4-CI(CeHa) (1a) 34 13 4.8+03 0.16:0.01 0.8t0.1  0.40.1
2 3-CI(CsHa) (1b) 38 +4 6.3+0.4 0.14+0.01 09#0.1  0.5%0.1
3 2-CI(CsHa) (1c) 37 +4 6.240.5 0.14+0.01 1.3+0.2  0.5%0.1
4 3,5-Cl,(CeHs) (1d) 3343 11.1+0.8 0.14+0.01 0.5#0.1  0.2+0.1
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XPS of rGO functionalized with Fluorine-bearing target molecules

x10*
T T T T 15000 T I
3k Fis G0 | c1s N -
rGO-1e it
rGO-1f H
rGO-1g 10000 i !1'\
i .t
25 rGO-1h ";, ,‘;\ .
,'l ’:I
5000 A\
o 2 of A =1
% O1s e e
~ 695 690 685 680
%‘ 15 N1s Binding Energy (eV) |
c —
2
£
b Ay g proyuY
1 T S 2p —
05 shgfoh o .
e
2 e
et Al i,
ok I I L I I t = T =
800 700 600 500 400 300 200 100 0

Binding Energy (eV)

Figure S3. XPS survey spectra of covalently grafted rGO by molecules containing F: 1e (orange), 1f
(yellow), 1g (purple) and 1h (green). F 1s, O 1s, N 1s, C 1s, and S 2p signals are present. Inset: high
resolution F 1s signal fitted by single component.

Table S3. Chemical composition and overall aryl content of target molecules containing F.

Entry Ar (1) Aryl [%] F (%) o/Cc Cl (%) N (%) S(%)
content
1 3-F(CeHa) (1e) 2143 3.0:03 0.16+0.01 0.1%0.1 0.5 +0.1 1.5 £0.1
2 4-F(CeHa) (1f) 3143 4403 0.16+0.01  0.1+0.05 0.9 0.1 0.4 0.1
3 4-CF3(CeHa) (1g) 31 43¢ 93405 0.15+0.01  0.2+0. 0.90.1 0.5 +0.1
4 3,5-(CFs)s(CeHs) (1h) 2637 11.0+0.8 0.16+0.01  0.1+0.05 0.5 +0.1 0.3 0.1

@ Qverall aryl content confirmed by C 1s analysis for molecules 1g (28%) and 1h (19%).
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XPS of rGO functionalized with Bromine-bearing target molecules
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Figure S4. XPS survey spectra of covalently grafted rGO by molecules containing Br: 1i (orange), 1j
(yellow), 1k (purple) and 1e (green). O 1s, N 1s, C 1s, and Br 3d signals are present. Inset: high
resolution Br 3d signal fitted by doublet.

Table S4. Chemical composition and overall aryl content of target molecules containing Br.

Entry Ar (1) Aryl [%] Br (%) o/C Cl (%) N (%) S(%)
content
1 4-Br(CgHa) (1i) 40 +4 58404 0.14+0.01 02+0.1 1.1+0.1 0.410.1
2 3-Br(CsHa) (1)) 3143 4.4+03 0.17+0.01 02+0.1 0901 0401
3 2-Br(CsHa) (1k) 37 44 53405 0.13+0.01 02+0.1 1402 0.410.1
4 2,4,6Brs(CeHa) (1) 15 +2 51404 0.19#0.01 02+0.1 2203 0.420.1
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XPS of rGO functionalized with Pyridine and thiophene-bearing target molecules
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Figure S5. XPS survey spectra of covalently grafted rGO by molecules containing pyridine N, 10
(orange) and thionyl S 1p (yellow) and 1q (purple). O 1s, N 1s, C 1s, and S 2p signals are present.
Insets: high resolution N 1s and S 2p signals.

Table S5. Chemical composition and overall aryl content of target molecules containing pyridine N

and thiophene S.

Entry Ar (1) Aryl [%] S 2p (%) o/C Cl (%) N (%) S (%)
content C-S-C S-0;

1 3-pyridyl (10) 23 13 - 0.15:0.01 0.2+0.1 3.9%0.1 0.4 0.1

2 1p 13 +2 1.3+0.2 0.24#0.01 0.1+0.05 2.00.3 0.7 0.1

3 1q 76 t4 6.910.4 0.07+0.01 <0.1 1.2+0.1 0.410.1
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XPS of rGO functionalized with lodine-bearing target molecules.
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Figure S6. XPS survey spectra of covalently grafted rGO by molecules containing I: 1m (orange), 1n
(yellow). O 1s, N 1s, C 1s, and | 3d signals are present. Inset: high resolution | 3d signal fitted by
doublet.

Table S6. Chemical composition and overall aryl content of target molecules containing I.

Entry Ar(1) aryl [%] I (%) Fils o/Cc Cl (%) N (%) S(%)
content
1 4-1(CeHa) (Im) 2443 3.4+03 - 0.17¢0.01 0.1+0.05 2.6+0.3  1.0£0.1
2 2-1(CeHa) (1n) 10 #2 1.5¢0.2 - 0.17¢0.01 0.2+0.1 2.0#0.1  0.70.1
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XPS characterization of the functionalized 1-GO materials

The covalent grafting of 1a and 1g was attempted on GO with the same procedure used for rGO, the
results are reported in Table S7. The functionalization degree was remarkably lower respect to rGO
due to the lower abundance of sp? aromatic carbon on GO (about 50%). Moreover, GO is less stable
in reaction conditions. Reduction of the material is observed upon irradiation with Blue LED light:
the O/C ratio decreases from 0.40 in pristine GO down to 0.32 after irradiation. Reduction is
observed as well in the control reaction run in the dark with GO and 1a: the O/C ratio in this case
decreases to 0.27.

GO, differently from rGO, presents Cl, N and S atoms within its structure (in amount lower than 1%),
thus the variations of N and S are less informative about the incorporation of N and S containing
fragments. In case of substrate 1a the control reaction in the dark shows a Cl content of 0.7 %,
identical to the pristine GO content, while irradiation increases the Cl content up to 1.4%. For
substrate 1g we observe a similar behaviour: GO+1g in the dark shows 1.9% F, while under LED
irradiation the F content increases up to 2.7%. In both cases the overall aryl content is similar (c.a.
10%).

Table S7. Chemical composition and overall aryl content of target molecules containing Cl and F on
GO.

Entry Description Aryl [%] F (%) o/c Cl (%) N (%) S(%)
content

1 Pristine GO - - 0.40+0.01 0.8+0.1 0.940.1 0.310.1

2 GO + Blue LED - - 0.32+0.01 0.5+0.3 0.840.1 0.4 0.1
23W (461nm)°

3 GO +1a ! 5+1 - 0.27¢0.01 0.7+0.1 1.2+0.1 0.5+0.1

4 GO + 1a + Blue 10+1 - 0.28+0.01 14+0.1 1.2+£0.1 0.3x0.1
LED 23W (461nm)

5 GO +1g° 6t1l 19+03 039001 05+0.1 0.7£0.1 1.3+0.1

6 GO + 1g + Blue 9t1 2.7+03 0.35+0.01 0.3+0.1 0.8t0.1 0.4+0.1
LED 23W (461nm)

?Absence of 1a or 1g.  Absence of LED illumination.
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Figure S7. XPS survey spectra of covalently grafted GO by molecules containing Cl (1a) and F (1g).
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Procedure for the Suzuki coupling on functionalized 1m-rGO.

[Pd(PPhg),4] (1 mol)
K;COj3, THF/H,O
70°C, 16 h

A dry Schlenk tube was charged with functionalized material 1m-rGO (20 mg), K2CO5 (138 mg, 1
mmol, 1.2 eq), 3,5-Bis(trifluoromethyl)phenylboronic acid (103.2 mg, 0.4 mmol, 1 eq), Pd(PPhs)4 (4.6
mg, 0.004 mmol, 1 mol%), THF (1 mL) and H,O (0.5 mL). The mixture was stirred overnight at 70°C
and then diluted with MeOH. The mixture was centrifugated, the supernatant was discarded and
MeOH (5 mL) was added. Centrifugation was repeated 3 times washing with MeOH and 2 times
washing with H,0. Finally, the solid was collected, washed with MeOH and dried under vacuum to
yield functionalized material 1r-rGO.

Table $8. Chemical composition and overall aryl content of 1r-rGO prepared by both Path a
(substitution of | on material 1m-rGO via Suzuki coupling described above) and path b (via light
promoted functionalisation with 1r according to general procedure).

Entry Ar (1) aryl [%] I (%) F1s o/c Cl (%) N (%) S(%)
content

1 1r (path a) F=16%2 0.5£0.1 6.7+0.4 0.15%0.01 <0.1 1.5+£0.2 0.6

=41 0.1

2 1r (path b) F=451+4 - 13.5¢0.5 0.11+0.01 0.10£0.05 0.710.1 0.2

0.1
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XPS Binding Energies and C 1s fits

All spectra were calibrated to C 1s at 284.6 eV, absolute error on Binding Energy was +0.1/+0.2 eV.
Reference values taken from literature were adjusted to B.E. of C 1s at 284.6 eV. C 1s is usually fitted
by several components corresponding to C-C and C-O bonds, but in the presence of heteroatoms
such as halogens, nitrogen and sulphur in significant amount, the fit model would require too many
components, many of those in uncertain position, thus we decided to plot the C 1s and the
difference of the grafted rGO and the pristine one. Some features emerged from this plot as
effective peaks, particularly evident in case of 1g-rGO, where the chemical shift was +7.6 eV, in
excellent agreement with literature. In all other cases the peak corresponding to C-heteroatom

bond was found closer to sp? aromatic carbon (chemical shifts in order of 1-2 eV).

Table S9. Binding Energies of rGO functionalised by target molecules containing Cl. Cl 2p 3/2 value

with C 1s calibration at 284.6 eV.

Entry Ar (1) Target atom Cls O0O1s Cl2p N 1s S 2ps3;2
reference
1 rGO pristine 284.6 538.8 199.8 - -
2 4-Cl(CeHa) 285.6 532.8 200.2 399.4 168.4
(1a)
3 3-Cl(CgHa) 532.6 200.1 399.3 168.3
(1b)
4 2—CISC6H4) 532.7 200.2 399.3 168.3
(1c)
5 3,5-Cly(CsH3) 285.6 532.7 200.1 399.4 168.4
(1d)
6 N-SO,-C*¥! 168.1-
168.8
7 C-N=N-ci*¥ 284.6 399.4
8 CeHs-CI12] 200.1*
2500 2500
a) b)

2000

1500

GO-1a |
GO
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1000

Intensity (CPS
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Figure S8. XPS C1s spectra of covalently grafted rGO by molecules containing Cl. The Chemical shift

of C-Cl was about leV.
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Table $10. Binding Energies in eV of rGO functionalised by target molecules containing F obtained

in present work and from refs 13 and 14.

Entry 1 Ar (1) Target atom C1sC-F F1s O1ls Cl2p Ni1s S
reference 2ps3n
1 3—F((1C6)H4) 285.4/286.6 686.8 532.4 200.0 399.3 167.9
e
2 4_F((1cf6)H4) 285.4/286.6 686.9 532.7 200.0 399.3 168.3
3 4-CF3(CeHa) 292.2 687.8 532.7 200.2 399.2 168.2
(1g) (+7.6)
3,5- 292.2 687.6 532.7 200.0 399.0 167.9
(CF32iLC)6H3) (+7.6)
5 Ar-CF;*3 292.3
6 Ar-F grafted by - 687.0°
Diazonium**
7 Poly(vinyl 292.3* 687.8°
trifluoroacetate)
R-CFs¥°

9F 1s value with C 1s calibration at 284.6 eV.

3000

2500 a) 2500 b)

2000 2000

1500 1500
S 1GO-1e C-F Q 1GO-1g C-F,
2 GO 2 GO
a 1000 Difference 2 1000 Difference
o 2
£ 500 £ 500

0 0
-500 -500
295 290 285 280 295 290 285
Binding Enerqy (eV) Binding Energy (eV)

280

Figure S9. XPS C1s spectra of covalently grafted rGO by molecules containing F. The Chemical shift
of C-F3 was about 7.6 eV, while C-F present a +2 eV chemical shift.
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Table S11. Binding Energies of rGO functionalised by target molecules containing Br.

Entry Ar (1) Target C1sC-Br Br3d O 1s Cl 2p N1s S2ps3p»
atom
reference
1 4'Br§¢6"'4) 285.4 70.1 532.6 200.0 399.3 168.1
(i) (+1.0)
2 3'Br§C6H4) 70.0 532.9 200.0 399.5 168.0
(1j)
3 2—Br{C6H4) 70.1 532.7 200.0 399.3 168.0
(1k)
4 2,4,6- 285.6 70.1 532.4 199.9 399.2 167.8
Br3(CeH>) (11) (+1.2)
5 Ar-Br® - 70.2 - - - -
6 Ar-Br'4 70.4
2500
2000 a) b)
2000
~ 1500 —_
g g 1500
-9:; 1000 gg-u cB3 9‘:; 00 ggm c8r|
é 500 ifference é i ifference
0 0
-500 -500
295 290 285 280 295 290 285 280

Bindina Eneray (eV) Bindina Eneray (eV)

Figure S10. XPS C1s spectra of covalently grafted rGO by molecules containing Br. The Chemical shift
of C-Br was about leV.
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Table S12. Binding Energies of rGO functionalised by target molecules containing N and S.

Entry Ar (1) Target Cls Fl1s O1s Cl 2p N 1s S S
atom 2p32  2p3p
reference S0O2 S-C
1 3-pyridyl (1o) 2853 - 5324 2000 3988 168.0
C-N
2 P4VP Aromatic N 399.3
3 1p C-S - 5329 1999 399.2 168.0 163.9
286.0
4 1q - 532.6 - 399.5 167.7 163.8
5 P3HTY  Aromatic S 164.0
3000
2500 a) 1500 b) o0 C)
2500
2000
& & 1000 & 2000
'g 1000 Difference 'g 500 Difference 'g 1000 Difference
Z 500 £ . = 500
0 0
-500 -500 -500
295 290 285 280 295 290 285 280 295 290 285 280
Bindina Enerav (eV) Bindina Enerav (eV) Bindina Enerav (eV)

Figure S11. XPS C1s spectra of covalently grafted rGO by molecules containing N (a) and thiophenes
(b,c). C-N group present a +0.9 eV chemical shift.

Table S13. Binding Energies of rGO functionalised by target molecules containing I, and 1r-rGO prepared by
both path a (substitution of | on material 1m-rGO via Suzuki coupling) and path b (via light promoted
functionalisation with 1r according to general procedure).

Entry1  Ar(1) Target atom C1sC-F | 3ds/2 F1s O 1s Cl 2p N1s S2psp

reference

1 4- 620.6 - 532.7 199.9 399.5 168.3
I((C6H4)
im)

2 2- 620.5 - 532.8 200.0 399.5 168.3
1(CeHa)
(1n)

3 1r a 620.3 688.3 532.7 - 399.5 168.2
Path a

4 1r 292.2 687.6 532.7 199.8 399.0 168.1
Path b

5 Ar-1'8 620.6

@C 1s was superimposed to K 2p, identified by spin orbit split of 2.4 and presence of K 2s.
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Raman characterization of the functionalized 1a-HOPG

In order to evaluate the effective covalent grafting Raman spectroscopy of Higly Oriented
Pyrolitic Graphite (HOPG) was achieved, since HOPG presents extremely low residual
defects and no D peak. Measurement was perform on clear area of HOPG surface, avoiding
small crystals and edges occasionally present.

HOPG was cleaved by scotch tape and set in the same reactor used for rGO and GO,
immersed for 24 in a solution of 1a in CH3CN at room temperature. Control sample (1a-
HOPG Dark) was done in the same condition, but with no LED light. Representative Raman
spectra and optical microscope images of measured areas are reported in Figure S12.
Unfortunately, the results of Raman spectroscopy are indicative mainly for HOPG: as a
matter of fact, a high amount of sp3 defects are already present on rGO and particularly on
GO, so that the ID/IG ratios in these materials are close to unity. Moreover, in GO and rGO
the grafting obtained by using aryl radicals from arylazocarboxylic tert-butyl esters in the
presence of trifluoroacetic acid, as reported by Eigler!®, showed a sp® increase that
corresponds to decrease in ID/IG (in highly defective materials the D band decreases in
intensity respect to the G-band when the defects are increased, contrary to HOPG or
pristine graphene, where the D-band increase with increasing defectivity) and to a broader
2D-band. In the above-mentioned paper was also demonstrated that aryl radical
functionalization activated by acid environment is effective on both GO and pristine
graphene. Therefore, the validation of covalent grafting obtained on HOPG can be extended
for GO and rGO.
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Absorption spectra [Arylazo mesylates (5 mM) H,0:CH;5CN 1:1]
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NMR Spectra of new compounds
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