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An application of maximum entropy model to evaluate 
the differential effect of cage aquaculture on the 
distribution of a native and an endemic fish species in 
Lake Maninjau, Indonesia

ivana Yuniartia,b,c, Klaus Glenkc, safran Yusrid and sutrisnob

aschool of geosciences, university of edinburgh, edinburgh, uK; bresearch centre for limnology and 
water resources, national research and Innovation agency, Indonesian Institute of sciences, cibinong, 
Indonesia; cDepartment of rural economy, environment and society, sruc, edinburgh, uK; dyayasan 
terumbu Karang Indonesia, Depok, Indonesia

ABSTRACT
Physical cage aquaculture structure can attract native fish species 
in marine and freshwater ecosystems. Most studies on the effects 
of cage farms on native fish distribution have been undertaken 
in marine environments and outside of asia as the main freshwater 
cage aquaculture producing region. Many studies have emphasised 
connections between native fish distribution and feeding time. 
Previous research also has shown the necessity to use modelling 
to monitor this effect to reduce data collection costs. here we 
analyse the distribution of an endemic fish species, Rasbora manin-
jau, and a native fish, Gobiopterus sp., associated with tilapia cage 
aquaculture occurrence using a Maximum entropy Model (Maxent). 
We find that the application of the Maxent model can produce 
reliable and accurate information on the impacts of cage aqua-
culture on the native fish species distribution aligning with the 
more expensive count data method. Our results also suggest that 
the species-specific interaction between the native fish and cage 
farms is mainly arising from an interaction between the ecological 
behaviour of the native fish with dimensions of the environmental 
condition such as turbidity. Our study therefore highlights the 
importance for improved appraisal of the ecology of native fish 
in the cage aquaculture risk assessment.

1.  Introduction

Growing global demand for fish has led to a rapid increase in freshwater cage aquacul-
ture (FAO 2016; Naylor et  al. 2021). In Asia, freshwater bodies in populous fish-eating 
regions have become centres of intensive cage aquaculture development (Newton et  al. 
2021; Taskov et  al. 2021). Freshwater cage aquaculture can contribute to nutritional 
security and its function as rural livelihood support has stimulated its growth in some 
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countries (Rajee and Mun 2017; Shava and Gunhidzirai 2017; Njiru et  al. 2018). However, 
there are increasing conflicts with other freshwater resource users, particularly where 
rapid expansion of cage aquaculture has resulted in eutrophication of reservoirs, declines 
in yields of native biota and increased occurrences of “fish kills” (Abery et  al. 2005; 
Endah et al. 2017; Taskov et  al. 2021).

The rapid expansion of freshwater cage aquaculture affects native fish communities 
in various ways. Firstly, the release of organic matter from feed remains results in 
increases in primary productivity which can lead to eutrophication, change in water 
quality (Abdel-Tawwab et  al. 2002; Baccarin et al. 2005; Canonico et  al. 2005; Chislock 
et  al. 2013; Verdegem 2013) and decrease of benthic fauna richness (Tomassetti et  al. 
2016). Secondly, native fish communities may be affected by alterations of habitat and 
water quality and exchanges of parasites and diseases between the native and cultured 
fish (Barrett et  al. 2018; Njiru et  al. 2018). Thirdly, native fish populations may be 
negatively impacted by competition for resources, predation, and hybridization, whether 
intentionally or accidentally (Barrett et  al. 2018).

Recent studies of cage aquaculture in freshwater systems have also investigated the 
effects of the cage structures on native fish populations (Demétrio et  al. 2012; Ramos 
et  al. 2013; Nobile et  al. 2018). The physical cage structure may act to aggregate wild 
fish, offer shelter, and attract wild fish to the continuous food input (Sanchez-Jerez 
et  al. 2011; Nobile et  al. 2018). Studies in neotropical reservoirs have suggested that 
cage structures can increase habitat complexity in freshwater bodies and provide 
protection from predation for native fish communities (Nobile et  al. 2018). However, 
studies in tropical lakes in other biogeographical regions, for example in Asia as the 
primary freshwater aquaculture fish producing region, are scarce. Further, previous 
research identifying species-specific relationships between marine cage farms and 
native fish species mainly emphasised the influence of feeding time and season (Uglem 
et  al. 2009; Bacher et  al. 2012; Ballester-Moltó et  al. 2015). Research addressing which 
factors affect the species-specific relationship between cage farms and native fish 
distribution in tropical lakes is rare. This study aims at filling these gaps by analysing 
the effects of tilapia cage farms on a native and an endemic species in Lake Maninjau, 
Indonesia.

Most research to date aimed at monitoring the cage aquaculture impact on native 
fish distribution relied on count data collection (Šegvić Bubić et  al. 2011; Bacher et  al. 
2015; Pereira et  al. 2019). Collecting count data such as abundance is time consuming 
and requires specific sampling techniques (Marini et  al. 2018; Siddiqui et  al. 2018) 
making it less affordable for lake managers in the study area and in many other areas 
in Indonesia and Global South Nations where monitoring efforts are limited. Research 
by Yuniarti et  al. (2021) revealed that the lake managers in the study area have voiced 
concern about limited monitoring resources such as time, funds, and human resources.

In this study, we employ Maximum Entropy Models (MaxEnt) to examine the dis-
tribution of two fish species (bada and rinuak) in relation to farm occurrence in Lake 
Maninjau. MaxEnt requires presence data only and environmental variables which can 
be collected with relative ease. MaxEnt models have been widely applied in conservation 
science to predict species distribution and habitat suitability (Sobek-Swant et  al. 2012; 
Moore et  al. 2016; Yi et  al. 2016; Zhang et  al. 2019; Zhang et  al. 2018) and has been 
proven useful when only small sample sizes are available (Elith et  al. 2006; Wisz et  al. 
2008; West et  al. 2016). Considering these merits, we test whether the model application 
can provide a more affordable monitoring approach for cage impacts of tilapia on bada 
and rinuak, and reflect on the wider applicability of the MaxEnt model approach for 
other inland water bodies.
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2.  Materials and Methods

2.1.  Site description

Lake Maninjau (Figure 1) is one of several large volcanic lakes in West Sumatra, 
Indonesia. The maximum depth in the lake is 165 m. It is 16.6 km from north to south, 
and 7.5 km at its widest point (Fakhrudin et  al. 2002).

Cage aquaculture was introduced to the lake in 1992 with the installation of 16 cage 
units which produced 96 tons of fish in three months (Syandri and Azrita 2013). The 
currently farmed fish species on Lake Maninjau is Nile tilapia (Oreochromis niloticus). 
The number of cage units present in Lake Maninjau has increased rapidly, with 4,000 
further units established in 2003, totalling 23,566 in 2016 (Syandri et  al. 2014; Agam 
Regency Fisheries Department 2017). (The increasing presence of cage aquaculture in 
the lake has caused concern that aquaculture development has exceeded the lake’s car-
rying capacity and accelerated eutrophication (Said et  al. 2020).

Long term satellite data showed that cage aquaculture proliferation has caused sig-
nificant decline of the lake’s water transparency (Setiawan et  al. 2019). Further, annual 
yet patchy data of the lake’s water quality revealed that the expansion of cage aquaculture 
operation is correlated with an decrease of oxic layer, an increase of total phosphorus 
concentration, and an elevation of trophic state index (Sulastri et  al. 2015).

2.2.  The fish species

The main fish catch of the lake consists of two benthopelagic fish species: Rasbora maninjau 
(Lumbantobing 2014) (local name: bada) and Gobiopterus sp. (local name: rinuak). Bada is 
an important endemic fisheries species and a local culinary icon (Dina et  al. 2019). 
Meanwhile, rinuak, is an important native fish for local communities around Lake Maninjau.

Studies on these two fish species, particularly on rinuak, are scarce and limited. Experts 
have not yet agreed on the classification and species name of rinuak. The species name 
for rinuak had not been assigned at the time of writing. A study by Roesma et  al. (2020) 
using, NCBI database (GenBank) described rinuak as a close relative to Gobiopterus, but 
did not specifically classify its genus. Further, research by Larashati (2019, unpublished 
data) using the BOLD database showed that it belongs to Gobiopterus. Moreover, its bio-
logical and ecological characteristics remain understudied (Kottelat et al. 1993). More 
importantly, its catch rates remain largely unknown. To the best of our knowledge, rinuak 
was known to be susceptible to tubo belerang − a local name for the turnover of water 

Figure 1. study site (Image is processed in QgIs 3.2.1 based on map provided by, retrieved on 2 March 2021).
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and toxic material (e.g. H2S) from hypolimnion to epilimnion layer adding more severe 
impacts to anoxia condition due to eutrophication (Yuniarti et  al. 2021b). It is also sus-
ceptible to the concentration of ammonia in the water (Yoga and Samir 2021).

On the contrary, bada shows higher survival capability during tubo belerang due to 
its agility and its strong connection with riverine waters, because they need to migrate 
when they are spawning (Hartoto and Mulyana, 1996 cited in Dina et  al. 2019; Dina 
et  al. 2019). Bada’s diet, which primarily consists of zooplankton, aquatic insects, and 
small portions of phytoplankton, was known to overlap with the food of wild tilapia 
(Yuniarti and Sulastri 2010; Dina et  al. 2019). It is reported that in recent years there 
has been a declining trend of bada production due to marble goby predation and over-
fishing (Dina et  al. 2019; Linggi et  al. 2020).

2.3.  Selection of environmental variables

To select the environmental variables (EVs) for the models, we adopted the approach 
presented by Yiwen et  al. (2016). Owing to the lack of ecological knowledge about bada 
and rinuak, we selected several EVs based on general fish ecological knowledge. The EVs 
that were selected a priori were cage presence, turbidity, presence of natural canopy, dis-
solved oxygen (DO), pH, conductivity, and water surface temperature (see Rosette et al. 2020)

2.4.  Data collection and availability

Prior to conducting the habitat survey, a focus group discussion with local fishers was 
conducted to ensure that we also include the natural habitat of the fish in the survey. 
We also engaged one of the fishers to guide us during the survey.

A survey of the presence and absence of the fish and measurement of environmental 
variables was conducted in April 2019. An underwater camera (GoPro Hero 7) was used 
to survey fish presence. The survey was conducted from 9:00 am to 5:00 pm for four 
days for each species representing feeding and non-feeding time. Fish presence was 
recorded from the water surface (0 cm) and in different depths depending on habitat 
type. We selected four habitat types based on information gathered from interviews 
from eleven fishers. Surveys were conducted in: (1) leafy canopy covered lake margins 
(depth of underwater video: 0 cm, 30 cm, and the lake’s bed); (2) the cage farm area 
(depth of the underwater video: 0, 30, 60, 90 and 130 cm – the average secchi depth 
in cage farm area at the time of sampling); (3) open waters 1 km from lake’s edge (depth 
of the underwater video: 0, 30, 60, 90, and 175 cm – the average secchi depth in open 
water area, no canopies, no cages); (4) shallow water with no canopy (0 and 23 cm – 
the lake’s bed). The water depth was measured using a secchi disk stick. However, we 
did not record any evidence fish presence below 50 cm. In total, we surveyed 36 sites 
for presence and absence of rinuak (Figure 2(a) and Table A), 23 sites for bada’s presence 
(Figure 2(b) and Table B), and 33 sites for environmental variables (EVs) (Figure 2(c)).

We conducted a second field survey in March 2020 to collect data on presence and absence 
(Go Pro sampling) for independent cross validation referring to the work of West et  al. 
(2016). The presence and absence data obtained from this second survey was used to validate 
models by providing ground data of the fish distribution. The survey was conducted randomly 
at 40 sites (Tables C and D). The random sampling sites were generated by using a research 
tool in QGIS by determining 1,000 metres as the minimum distance between points.

To verify that MaxEnt can be useful to assess the cage attraction to the fish compared 
to the usual method using count data, we conducted sampling of fish abundance in the 
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same month. The sampling was done following the work of Brandão et  al. (2013). We 
used the same habitat criteria as for the presence/absence sampling to determine the 
abundance sampling sites (native/control habitat, the farm area, and open waters). Rinuak 
were caught using a scoop net with three repetitions at each site (Figure 3(a)). It was 
sampled in the morning between 6:00 am to 11:00 am to coincide with first light and 
during the period of maximum fish activity as informed by the local fishers.

Abundance data sampling of bada (Figure 3(b)) was conducted by experienced fishers 
using gill nets (size 100 × 3 m, mesh size 19, 25, and 38 mm) in April 2019. Multiple mesh 
size gill nets were recommended to sample fish from freshwater and estuarine areas (Gray 
et  al. 2005). The nets were set from 2:00 am to 5:00 am following the guidance of the 
fishers and is the optimum period to catch this species, and not the farms’ feeding time. 
The sampling was repeated for three consecutive nights. The data is provided in Tables 
C and D. All data are available in https://github.com/ivanayuniarti02/Maxent.

Figure 2. sampling location (a) rinuak, (b) Bada, (c) environmental variables.

Figure 3. relative abundance sampling locations (a) rinuak, (b) Bada.

https://github.com/ivanayuniarti02/Maxent
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2.5.  Data analysis

Before building the models, to test if the EVs data are spatially correlated, we calculated 
local Moran’s I Index (I) using autoregressive STATA 15 (Anselin 1995; Kondo 2021). 
Local Moran’s I index shows the indication of spatially autocorrelated environmental 
variable data, which may be caused by selecting sampling points that are too close to 
each other. In other words, it is used to test if the data is affected by the observation 
of a nearby sampling site (Rousset and Ferdy 2014). The I indices and their p-values 
were calculated and presented for DO, pH, turbidity, conductivity, and temperature.

To test the effects of the spatially autocorrelated EVs data on the model performance, 
we built two sets of models for each species. The first set (referred as total variables/
TVM) included all EVs. The second set (partial variables/PVM) was constructed by 
removing those EVs which are indicated to be spatially autocorrelated.

In the model building process, we ran the models using presence only data for both 
species, because we do not have absence data for bada. MaxEnt automatically generates 
predicted absence data using the environmental predictors’ information to predict the 
absence of the species referred as pseudo-absence (Phillips and Dudı’k 2008). We run 
the model in default settings/auto features mode (linear, quadratic, product, hinge) to 
obtain the best fitting model following the work of Phillips and Dudı’k (2008), Jose et 
al. (2020), Yiwen et  al. (2016).

Specifically, we set the regularization multiplier (RM) to avoid overfitting − a mod-
elling error which happens when a function of the model relates too closely to a 
particular set of data looking the model too closely. We specified the RM at 0.5, 1.0, 
1.5, 2.0, 4.0 for both model sets (Jose et al. 2020). RM is a tool in MaxEnt which 
can be used to regulate how focused or closely-fitted the output distribution is 
(Waszkowiak et  al. 2002). Further, to obtain a stable model, we used a 5-fold 
cross-validation (CV) approach for both species in each model set (TVM or PVM). 
CV is a method to select the optimal model when the data is limited (De Bin 
et  al. 2016)

We categorized the model settings as type 1 (CV: 5; RM:0.5), type 2 (5, RM: 1), Type 
3 (5; RM:1.5); type 4 (5; RM:2), and type 5 (5; RM:4). Models were run with forty 
replications. Ten thousand random background data/grid points were selected to generate 
the model. In total, we constructed a total of 25 models for each species and each model 
set (5 models for each RM).

To compare models’ performance and to select the best fitting model, we used the 
Area Under Curve presence only (AUCPO) indicator. The AUCPO is produced in MaxEnt 
using presence only and pseudo-absence data (Yackulic et  al. 2013).

To validate the models using independent field data (obtained from the second pres-
ence data sampling), we calculated several indices, including sensitivity, specificity, and 
the True Skill Statistic (TSS) (Allouche et  al. 2006; West et  al. 2016) for the best fitting 
models (setting type 3 for both species). A cut-off point of 0.5 was used in this step 
to obtain predicted occurrence (probability ≥ 0.5 means presence, and otherwise).

To find the most influential environmental parameters, we used a stepwise removal 
method (Whittingham et  al. 2006; Yiwen et  al. 2016). The stepwise removal step was 
done on the best fitting models. We relied on the Jackknife analysis to generate indi-
cators of the environmental predictors’ importance. The process was repeated until two 
variables were obtained, because two variables are the minimum requirement for input 
data resulting in four level models for each species. Again, we used AUCPO to evaluate 
the performance of the model performance (Phillips et  al. 2016; Yang and Berdine 2017)
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In the end, to test if the results of MaxEnt aligns with the results of the count data 
method, we used a maximum likelihood mixed effect model (ML) drawing on the rel-
ative abundance data − numbers of individual per species per square metre of area. We 
used STATA 15 to perform the test. ML was selected because the model can analyse 
the impact of repeated measurement (pseudo-replication). We tested the models against 
the null model. The Akaike Information Criteria (AIC) and Likelihood Ratio Test (LRT) 
were used to compare the models.

3.  Results

3.1.  Spatial autocorrelation of environmental variables

The local Moran’s I indices (I) and the expected indices (E(I)) are generated to calculate 
the p-value (Table 1). The I values show that DO and pH are spatially autocorrelated, 
which means that the measurement of these parameters is influenced by the adjacent 
sampling sites. The p-values suggest that we can reject the null hypothesis that there is 
no spatial autocorrelation for both EVs. Further, the I values for both EVs are above 
zero indicating positive SAC, which means that the observation of DO and pH in one 
sampling point is affected by the results of observation in the nearby point. Meanwhile, 
SACs for the other three EVs are not detected. Considering the results, we built the 
models with and without these parameters to test whether removing the EVs with SAC 
would affect the models’ performance.

3.2.  Model selection

The estimated test statistics of Area Under ROC Curve (AUC) are quite similar for both 
model sets (Partial Variable Models/PVM and Total Variable Models/TVM). The values 
above 0.9 mean the models have good predicting capability. Therefore, that removing the 
spatially autocorrelated EVs does not dramatically change the model performance (Table 2).

The selected final models were partial variable models (PVM) to ensure that the 
explanatory variables were not spatially autocorrelated. Based on the optimum AUC 
values and the resulting maps, we selected PVM with model setting type 2 (5 replications 
with regularization multiplier 1) for rinuak. PVM with model setting type 1 (5 replica-
tions with regularization multiplier 0.5) is chosen for bada.

Drawing on the field validation using independent test data true statistic skill values 
(TSS) are estimated to be above zero indicating that the models performed better than 
random prediction for both species (Table 3) (Allouche et  al. 2006; West et  al. 2016).

The calculated TSS values reveal that the model is able to predict the actual occurrence 
of the fish as shown in Tables E and F. Although some predictions of the presence deviate 
from actual occurrence, most of the predicted absence aligns with the observed data.

Table 1. the local Moran’s I index of the environmental variables presenting spatial autocorrelation in Do and ph.

environmental 
variable I e(I) Z p-value

Doa 0.534 −0.029 3.899 p < 0.05
pha 0.581 −0.029 4.224 p < 0.05
turbidity 0.037 −0.029 0.519 0.302
conductivity 0.009 −0.029 0.274 0.392
temperature 0.040 −0.029 0.527 0.311

note: h0: spatial randomness
astatistically significant, indicating occurrence of spatial autocorrelation
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3.3.  Species distribution maps

The maps (Figure 4(a,b)) present the predicted pattern of occurrence of both species 
in response of the environmental variables (cage, temperature, turbidity, conductivity, 
and canopies). Overall, predicted presence decreases with the distance from the lake’s 
edge especially for rinuak. This species was mapped to be present mostly on the lake’s 
edge compared to bada, and almost overlapped with the cage farms (Figure 4(a) vs. 
Figure 4(c)). Meanwhile, although there was overlap in some spots, bada was also 
predicted to occur in the more open waters (Figure 4(b,c)).

3.4.  The important environmental variables affecting fish distribution

The results of the stepwise analysis shown in Table 4 are used to identify the principal 
environmental parameters influencing the occurrence of both species. Overall, tempera-
ture is the most influential variable for both rinuak and bada and turbidity ranks as 
the second most important variable for bada, and the third for rinuak. (Table 5). 
Meanwhile, cage presence, the second most influencing variable for rinuak distribution, 
is not closely associated to bada’s presence.

3.5.  Relative abundance in three habitat types

We could only find rinuak in leafy canopied and cage areas as the fish are absent in 
open water areas. Thus, we only use those two habitat types in the ML model for rinuak 
(Figure 5(a)). Meanwhile, the habitat types tested for bada are leafy canopied habitat, cage 
farms, and open waters as the fish were present in those three habitat types (Figure 5(b)).

The results of the mixed effects model (Table 5) show that only habitat types have sig-
nificant influence on rinuak’s relative abundance (Likelihood Ratio Test against null model/
LRT1 < 0.05 and LRT models with habitat and sampling location as variables and models 

Table 2. auc values of the constructed models to choose the fittest models.

species Model settings

total variable 
models (tVM)c

Partial variable 
models (PVM)d

test aucPo
a test aucPo

a

rinuak type 1 (cross validation: 5, regularization coefficient: 0.5) 0.928 0.928
type 2 (cross validation: 5, regularization coefficient: 1)b 0.943 0.930
type 3 (cross validation: 5, regularization coefficient: 1.5) 0.940 0.933
type 4 (cross validation: 5, regularization coefficient: 2) 0.937 0.933
type 5 (cross validation: 5, regularization coefficient: 4) 0.920 0.927

Bada type 1 (cross validation: 5, regularization coefficient: 0.5)b 0.952 0.977
type 2 (cross validation: 5, regularization coefficient: 1) 0.948 0.947
type 3 (cross validation: 5, regularization coefficient: 1.5) 0.952 0.943
type 4 (cross validation: 5, regularization coefficient: 2) 0.951 0.936
type 5 (cross validation: 5, regularization coefficient: 4) 0.935 0.919

note: aaucPo (auc Presence only) as proposed by (yackulic et  al. 2013) to indicate that the auc value is produced 
as a part of Maxent model building using presence only and pseudoabsence data.

bthe selected model settings
ctotal variable models (tVM): the models built with all included environmental variables. dPartial variable models 

(PVM): the models built with removing spatially correlated environmental variables (Do and ph).

Table 3. results of independent data field validation showing the good prediction ability of the models.

species sensitivity specificity tss

rinuak 0.60 0.80 0.40
Bada 0.70 0.71 0.41



JOURNal Of fReshWateR ecOlOGY 9

Figure 4. Maps of predicted species distribution in correlation with cage presence, red, yellow, and green colours 
show the predicted presence of the species (a) rinuak, (b) Bada, (c) cage farm.

Table 4. results of stepwise analysis to obtain the most important environmental variables.

species ranking of included variables test aucPo remark

rinuak te, ca, tur, con, can 0.930 excellent determination
te, ca, tur, con 0.900 excellent determination
te, ca, tur 0.921 excellent determination
te, ca 0.946a excellent determination

Bada te, tur, con, can, ca 0.949 excellent determination
te, tur, con, can 0.947 excellent determination
te, tur, con 0.957a excellent determination
te,tur 0.942 excellent determination

note: te: temperature; ca: cages; tur: turbidity; con: conductivity; and can: natural canopy
athe best models

Table 5. results of maximum likelihood mixed effect model (Ml) for rinuak and bada.

species
response 
Variable Mixed effects model df aIc ll lrtb lrtc

rinuak fish’s relative 
abundance

habitat + sampling 
locations

4 363.26 −177.63 p = 0.04 p = 1.00

habitata 3 361.26 −177.63 p = 0.01
null model 2 365.58 −180.79 –

Bada fish’s relative 
abundance

habitat + sampling 
locations

4 52.81 −22.41 p = 0.17 p = 0.10

habitat 3 53.48 −23.74 p = 0.34
null modela 2 52.39 −24.20 –

note: Df: degree of freedom; aIc: akaike information criteria; ll: log likelihood; lrtb: likelihood ratio test against 
null model, lrtc: likelihood ratio test between models with habitat and sampling location as variables and models 
with habitat only.

athe best model
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with habitat only variable/LRT2 > 0.05). The results for bada indicate no statistically significant 
effect of habitat types and sampling locations on its relative abundance (LRT1 < 0.05).

4.  Discussion

Water temperature is the most influential variable affecting the distribution of both 
species. Few studies have addressed the impacts of warming temperature to fish distri-
bution in tropical lakes (Cohen et  al. 2016; Barbarossa et  al. 2021). In general, rising 
temperature affects tropical freshwater fish distribution by decreasing their fitness due 
to increased stress physiology and required energy to reproduce and to survive, which 
forces the fish to be more actively find a suitable environment (Nivelle et  al. 2019; 
Alfonso et  al. 2020). The ability to find the suitable environment is constrained by 
limited habitat availability (Alfonso et  al. 2020; Nivelle et  al. 2019). Further, the warming 
temperature affects habitat availability by reducing water levels, jeopardising habitat 
connectivity, and disrupting riverine habitat (Ficke et  al. 2007; Miranda et  al. 2020; 
Barbarossa et  al. 2021). The effect of rising temperature on habitat connectivity will 
especially affect bada, which migrates to riverine habitat for spawning. Additionally, the 
warming temperature will cause water retention changes, exacerbate eutrophication 
leading to anoxia condition, and increase the toxicity of pollutants (Ficke et  al. 2007; 
Missaghi et  al. 2017; Miranda et  al. 2020). Thus, the impacts of increasing temperature 
on eutrophication will particularly affect rinuak, whose survival has been threatened by 
the tubo belerang event (Yuniarti et  al. 2021a).

Moreover, our data corroborate that turbidity affects both species, and especially bada, 
which aligns with the study of Dina et  al. (2019), which mentioned that bada prefers 
clean water. Turbidity may reduce bada’s visual ability to spot zooplankton as their main 
diet (cf. Sulastri et  al. 2010; Yuniarti and Sulastri 2010). Zooplankton can easily cam-
ouflage in the turbid water impeding bada’s foraging behaviour, as indicated by Lunt 
and Smee (2015). On the contrary, turbid water around the cages could be beneficial 
for rinuak to avoid predators due to its tiny translucent body. Turbid water and cage 
structures, which increase habitat complexity, help rinuak to reduce its predation risk 
by decreasing encounter rates and foraging ability of its predators as explained by 
Ajemian et  al. (2015) and McElroy et  al. (2018). Therefore, it is not surprising that 
small fish like rinuak occupy complex littoral habitat or artificial structures and avoid 
open water habitat (Ajemian et  al. 2015; Merz et  al. 2021).

Figure 5. relative abundance: (a) rinuak, (b) Bada.
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Turbidity is affected by the more frequent extreme weather predicted in Indonesia due 
to the warming temperature (Measey 2010; Supari et  al. 2017). The anticipated longer wet 
season and increased rainfall will increase sediment run-off will add more debris avalanches 
to the lake, which is naturally high given the occurrence of earthquake and heavy rain 
in the study area (Wils et  al. 2021). Turbidity was also predicted to be boosted by increas-
ing human activities in the lake’s watershed area (Antomi et  al. 2016). In addition to that, 
a strong connection between Lake Maninjau’s increased turbidity with the cage activities 
using long term satellite data has been identified (Setiawan et  al. 2019).

Considering that natural and anthropogenic factors influence environmental variables 
and affect fish distribution, we underline the importance of continuing monitoring to 
help mitigation planning, as suggested by Callier et  al. (2018) and Miranda et  al. (2020). 
We suggest using MaxEnt to overcome monitoring constrains because it has shown 
good prediction ability of the fish distribution in our case study, making it useful to 
guide ecosystem managers to focus scientific effort as suggested by West et  al. (2016) 
and Pearson et  al. (2007). The MaxEnt models, which can be built based on species 
presence and environmental variables data, help reduce sampling cost. Using MaxEnt 
also requires lower specific skills to collect the data than common count data collection. 
Moreover, MaxEnt models can also be developed to forecast the dynamics of fish dis-
tribution related to changing environmental variables, such as changing temperature 
driven by future climate scenarios (Qin et al. 2017; Borzée et al. 2019; Hadgu et al. 2019).

Further, the Jackknife analysis feature in MaxEnt is beneficial to illustrate the sig-
nificance of various environmental variables on fish distribution, including cage farming, 
one of the main anthropogenic activities in the study area. The results of the Jackknife 
analysis indicate that rinuak presence is highly related to the presence of the cage 
farms. However, the same does not apply for bada’s distribution. We argue that the 
cage farms offer additional habitat to rinuak because the cage farms are not built under 
leafy canopies and expand up to 1 km from the lake’s edge. The cage farms’ attraction 
to rinuak is related to the habitat services provisioning, as suggested by TEEB (2010). 
The services offered by the farms are shelter and food source (Sanchez-Jerez et  al. 
2011; Goodbrand et  al. 2013; Ramos et  al. 2013; Uglem et  al. 2014; Nobile et  al. 2018). 
The farm’s sheltering function is primarily associated with the provisioning of artificial 
physical structures acting like fish aggregating devices or artificial reefs (Dempster et  al. 
2011; Sanchez-Jerez et  al. 2011; Uglem et  al. 2014; Barrett et  al. 2018; Callier et  al. 2018).

The degree of association between wild fish distribution and farm cages is varied and 
species-specific (Sanchez-Jerez et  al. 2011; Arechavala-Lopez et  al. 2015; Ballester-Moltó et  al. 
2015). Our results support this finding by providing evidence that rinuak presence is strongly 
associated with cage farms, but not bada. As aforementioned, rinuak is likely to benefit from 
the complex structure of cage farms, waste feed, and turbid water, while bada does not rely 
on these aspects. Therefore, we suggest that the species-specific relationship between the cage 
farms and wild fish spatial distribution depends on the interaction between the ecology of 
the species and the environmental variables such as turbidity. This finding complements 
previous studies of cage farms’ attraction to wild fish, which highlighted that the wild fish-cage 
farm relationship was affected by feeding time, fish’ life stage, and seasonal event (e.g. repro-
ductive cycle) (Sudirman et  al. 2009; Uglem et  al. 2009; Sanchez-Jerez et  al. 2011; Šegvić 
Bubić et  al. 2011; Bacher et  al. 2012, 2015; Ballester-Moltó et  al. 2015).

Our Data has limitations that should be addressed in future research. First, collecting 
data at various points in the year is advisable considering that cage aquaculture operates 
all year round in the lake. Second, future research on similar topics should include the 
effects of nutrient concentration in the lake’s water, including total nitrogen, total phos-
phorus, and ammonia nitrogen, because these parameters are more sensitive to 
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aquaculture activities. They may have impacts on native fish distribution through the 
occurrence of harmful algae bloom and DO depletion.

5.  Conclusion

A species distribution model such as MaxEnt is shown to provide reliable information 
of the impacts of cage aquaculture on the distribution of native species compared to 
the more time consuming and expensive method using count data. Thus, we recommend 
using MaxEnt to help monitoring efforts in areas with limited monitoring capacities. 
The model can also be extended to advice the suitable area to move the cage aquaculture 
related to the future native fish distribution considering the warming temperature and 
increased turbidity. Further, we also emphasise the importance of an improved under-
standing of the ecology of native fish, including their interaction with café farms, for 
conducting environmental risk assessments of cage aquaculture.
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Table A. Presence-absence data for rinuak.

long lat Presence = 1/ absence = 0

100.1575 −0.27947 1
100.1588 −0.27964 1
100.1603 −0.65267 1
100.161 −0.27747 1
100.1629 −0.27333 1
100.1613 −0.28631 1
100.1678 −0.27219 1
100.1633 −0.29089 1
100.1706 −0.26308 1
100.1863 −0.25492 1
100.1896 −0.25917 1
100.209 −0.26281 1
100.2257 −0.29392 1
100.2237 −0.30147 1
100.2251 −0.31125 1
100.2255 −0.31125 1
100.2241 −0.31956 1
100.2241 −0.32603 1
100.2178 −0.33319 1
100.1596 −0.28472 1
100.1558 −0.28481 1
100.1643 −0.29983 1
100.1659 −0.30856 1
100.1665 −0.32233 1
100.1652 −0.33172 1
100.1652 −0.3445 1
100.1797 −0.35136 1
100.1834 −0.35569 1
100.1746 −0.35967 1
100.1694 −0.37956 1
100.1659 −0.38611 1
100.1862 −0.4006 0
100.1912 −0.33169 0
100.1878 −0.3445 0
100.1935 −0.35342 0
100.1905 −0.37 0

Supplementary materials
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Table B. Presence-absence data for Bada.

long lat Presence = 1; absence = 0

100.1655 −0.32767 1
100.1538 −0.29108 1
100.1819 −0.25942 1
100.1911 −0.25458 1
100.2111 −0.26339 1
100.1665 −0.32233 1
100.1659 −0.30856 1
100.1797 −0.35136 1
100.209 −0.26281 1
100.2255 −0.31125 1
100.1706 −0.26308 1
100.1575 −0.27947 1
100.1652 −0.33172 1
100.1628 −0.29753 1
100.1638 −0.30436 1
100.1638 −0.31325 1
100.1713 −0.29028 1
100.1755 −0.30594 1
100.1686 −0.30986 1
100.1678 −0.33364 1
100.1734 −0.32247 1
100.1633 −0.29089 1
100.2257 −0.29392 1
100.2255 −0.31125 1
100.1613 −0.28631 1
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Table C. abundance data of rinuak.

location repetition relative abundance (fish/m2) type of habitat

s 0.2847 e 100.1596 1 176.30 cage area
2 40.60 cage area
3 78.50 cage area

s 0.2998 e 100.1643 1 456.00 cage area
2 69.20 cage area
3 64.60 cage area

s 0.3445 e 100.1652 1 61.80 cage area
2 60.00 cage area
3 86.80 cage area

s 0.3861 e 100.1659 1 46.20 cage area
2 21.20 cage area
3 27.70 cage area

s 0.3858 e 100.1842 1 97.80 cage area
2 325.80 cage area
3 90.50 cage area

s 0.2981 e 100.1558 1 97.04 littoral zone
2 28.40 littoral zone
3 56.80 littoral zone

s 0.3086 e 100.1659 1 39.23 littoral zone
2 96.92 littoral zone
3 56.92 littoral zone

s 0.4984 e 100.1652 1 69.23 littoral zone
2 21.54 littoral zone
3 43.08 littoral zone

s 0.3317 e 100.1652 1 150.77 littoral zone
2 87.69 littoral zone
3 212.31 littoral zone

s 0.3534 e 100.1839 1 16.92 littoral zone
2 27.69 littoral zone
3 55.38 littoral zone

s 0.2859 e 100.1880 1 0.00 open waters
2 0.00 open waters
3 0.00 open waters

s 100.1917 e 0.3329 1 0.00 open waters
2 0.00 open waters
3 0.00 open waters

s 0.3348 e100.1889 1 0.00 open waters
2 0.00 open waters
3 0.00 open waters

s 0.3564 e 100 1935 1 0.00 open waters
2 0.00 open waters
3 0.00 open waters

s 0.3716 e 100.1917 1 0.00 open waters
2 0.00 open waters
3 0.00 open waters

Table D. relative abundance data of Bada.

no location repetition

relative abundance (fish/m2)

cage culture area littoral zone open waters

1 s 00 15.116’ e 100 11.759' 1 (26-02-19) 0.08 0.05 no data
2 (27-02-19) 0.05 0.11 0.99
3 (2-02-19) 0.10 1.10 0.25

2 s 00 18.603’ e 100 09.901' 1 (27/2/2019) 0.15 0.81 0.36
2 (27-02-19) 0.57 0.36 0.55

3 (1-02-1019) 0.64 0.56 0.23
3 s 00 19.729’ e 100 09.894' 1(28-02-2019) 0.56 0.94 1.78

2(1-3-2019) 0.47 0.19 0.85
3(1-3-2019) 0.56 0.38 1.69

4 s 00 15.778’ e 100 12.608' 1 (14-3-2019) 0.40 0.68 0.18
2 (15-3-2019) 0.71 0.57 0.39
3 (16-3-2019) 1.63 1.12 1.47
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Table E. expected and observed presence and absence for field data validation of rinuak.

no long lat expected observed

1 100.2204 −0.3017 0 1
2 100.2204 −0.3017 0 1
3 110.2239 −0.2812 0 0
4 110.2239 −0.2812 0 0
5 100.2132 −0.2741 0 0
6 100.2132 −0.2741 0 0
7 100.1992 −0.2605 0 1
8 100.1992 −0.2605 0 1
9 100.1931 −0.2597 1 0
10 100.1931 −0.2597 1 0
11 100.1867 −0.2596 0 0
12 100.1867 −0.2596 0 0
13 100.1783 −0.2668 0 0
14 100.1783 −0.2668 0 0
15 100.1706 −0.2652 1 0
16 100.1706 −0.2652 1 0
17 100.1667 −0.273 1 0
18 100.1667 −0.273 1 0
19 100.1637 −0.2921 0 0
20 100.1637 −0.2921 0 0
21 100.1683 −0.3017 0 0
22 100.1683 −0.3017 0 0
23 100.1721 −0.3035 0 0
24 100.1721 −0.3035 0 0
25 100.1763 −0.3058 0 0
26 100.1763 −0.3058 0 0
27 100.1686 −0.3227 1 0
28 100.1686 −0.3227 1 0
29 100.1854 −0.3565 0 0
30 100.1854 −0.3565 0 0
31 100.1951 −0.3983 0 0
32 100.1951 −0.3983 0 0
33 100.1964 −0.3979 0 0
34 100.1964 −0.3979 0 0
35 100.1954 −0.3918 0 0
36 100.1954 −0.3918 0 0
37 100.2174 −0.3405 0 0
38 100.2174 −0.3405 0 0
39 100.2213 −0.3213 0 0
40 100.2213 −0.3213 0 0
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Table F. expected and observed presence and absence for field data validation of Bada.

no long lat expected observed

1 100.2241 −0.3028 1 1
2 100.2204 −0.3017 1 1
3 100.2222 −0.2997 1 1
4 100.2205 −0.2973 1 1
5 110.2239 −0.2812 1 1
6 100.2183 −0.2801 0 1
7 100.2151 −0.2789 0 0
8 100.2132 −0.2741 0 0
9 100.2095 −0.2719 0 0
10 100.1992 −0.2605 0 1
11 100.1978 −0.2611 1 1
12 100.1931 −0.2597 1 1
13 100.1867 −0.2596 1 1
14 100.183 −0.2644 1 1
15 100.1783 −0.2668 1 0
16 100.1706 −0.2652 1 1
17 100.1667 −0.273 0 0
18 100.176 −0.2688 1 1
19 100.1637 −0.2921 1 1
20 100.166 −0.2991 1 1
21 100.1683 −0.3017 1 1
22 100.1721 −0.3035 1 1
23 100.1763 −0.3058 1 1
24 100.1733 −0.3119 1 1
25 100.1686 −0.3227 1 1
26 100.1679 −0.3309 1 1
27 100.1713 −0.3336 1 1
28 100.1854 −0.3565 1 0
29 100.1693 −0.38 0 1
30 100.1695 −0.3844 0 1
31 100.1729 −0.3877 0 1
32 100.1815 −0.3955 0 1
33 100.1881 −0.3983 0 1
34 100.1951 −0.3983 0 0
35 100.1964 −0.3979 0 1
36 100.1954 −0.3918 0 1
37 100.2174 −0.3405 1 1
38 100.2196 −0.3403 1 1
39 100.2213 −0.3213 0 1
40 100.2255 −0.3019 1 1
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