
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

L. Gigli, L. Sciullo, F. Montori, A. Marzani and M. Di Felice, "Blockchain and Web of

Things for Structural Health Monitoring Applications: A Proof of Concept," 2022 IEEE

19th Annual Consumer Communications & Networking Conference (CCNC), Las

Vegas, NV, USA, 2022, pp. 699-702

The final published version is available online at

https://dx.doi.org/10.1109/CCNC49033.2022.9700679

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/CCNC49033.2022.9700679

Blockchain and Web of Things for Structural Health

Monitoring Applications: A Proof of Concept

Lorenzo Gigli∗, Luca Sciullo∗, Federico Montori∗‡, Alessandro Marzani †‡, Marco Di Felice∗‡,
∗ Department of Computer Science and Engineering, University of Bologna, Italy

† Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Italy
‡ Advanced Research Center on Electronic Systems “Ercole De Castro”, University of Bologna, Italy

Emails: {lorenzo.gigli, luca.sciullo, federico.montori, alessandro.marzani, marco.difelice3}@unibo.it

Abstract—Interoperable and secure data management tech-
niques are fundamental for most of large-scale Structural Health
Monitoring (SHM) systems. Indeed, given the relevance of SHM
critical measurements, data integrity must be protected against
tampering or falsifications. In this paper, we propose a four-layer
SHM architecture that allows to build an effective data pipeline
from sensors to consumer applications, passing through the cloud.
The architecture is built on top of the MODRON platform and
exploits the recent advances of the W3C Web of Things (WoT)
standard for interoperability. We then discuss how third-party
services can take benefit of the W3C WoT architecture to retrieve
the SHM critical data and to publish them on the Ethereum
Blockchain through an SHM-specific Smart Contract, for data
protection and traceability purposes. We test the effectiveness of
the Smart Contract implementation in terms of latency and costs
under simulated workloads.

Index Terms—Internet of Things, W3C Web of Things, Struc-
tural Health Monitoring (SHM), Blockchain, Smart contracts

I. INTRODUCTION

Structural Health Monitoring (SHM) denotes a broad

interdisciplinary research area focused on methods and

technologies for the continuous assessment of the conditions

of civil and industrial buildings and infrastructures. Current

deployments of SHM systems can take advantage of the

Internet of Things (IoT) solutions for enhanced scalability

and cost effectiveness [1]. At the same time, while increasing

attention has been dedicated to the sensing operations,

some data-related and software-related issues are still barely

explored and may affect the deployments of SHM systems on

the large scale. In this paper, we address a major requirement

of SHM systems, namely data protection, which takes into

account the relevance of information gathered by SHM

systems for the safety of workers and end-users. Hence,

data about critical events must be preserved from possible

tampering, yet made available to the stakeholders to enable

further diagnoses.

In this paper, we make use of a generic platform for data

acquisition and management in heterogeneous SHM scenarios,

called MODRON [2], developed within the INAIL MAC4PRO

project. MODRON natively addresses interoperability across

heterogeneous IoT platforms and devices, by defining uniform

interfaces on how the IoT components should interact with

each other through the W3C Web of Things (WoT) standard

[3]. The standard introduces the concept of Web Thing (WT)

as a physical (e.g. an IoT device) or virtual entity (e.g. a

micro-service) whose capabilities are described through a stan-

dardized collection of metadata called the Thing Description

(TD). We consider a scenario where SHM stakeholders (e.g.

public authorities) can take advantage of the W3C WoT-

oriented architecture to query the WTs and store their critical

data over a Blockchain network. The latter has emerged as a

breakthrough technology in many IoT use-cases for distributed

data replication and securing, e.g. for traceability of IoT

operations. Through the definition of a new Smart Contract for

the SHM domain, we enable push operations of critical SHM

data (e.g. alerts caused by anomalies or over/under threshold

values) onto the Ethereum Blockchain, hence making them not

alterable by the SHM data providers.

More in detail, to protect the integrity of SHM measure-

ments, we describe the integration of our W3C WoT archi-

tecture with a controller service, built on top of MODRON

platform, which retrieves critical SHM data and publishes

them on the Ethereum blockchain. To this aim, we detail

the implementation of a Smart Contract for SHM, including

basic functionalities of measurements reading/writing. We then

validate the operations of MODRON in real-world SHM use-

cases from the MAC4PRO project, related to the real-time,

continuous monitoring of civil structures. In addition, we eval-

uate the effectiveness of the implementation of the proposed

Smart Contract in terms of latency and pricing under simulated

workloads. The performance evaluation demonstrates that the

proposed implementation of the Smart Contract is able to scale

under increasing workloads, and to greatly reduce latency/-

costs metrics when compared to naive solutions.

II. PROPOSED WOT-BASED ARCHITECTURE FOR SHM

We consider the four-layer logical architecture of a generic

SHM system, depicted in Figure 1. The Sensing Layer is in

charge of measuring the physical quantities useful to assess

the structural health of the target entity, hence including the

wired/wireless sensor networks installed on the monitored

structure. The Edge Layer is a software stratum providing

a uniform representation of the heterogeneous sensing de-

vices, in order to ease their remote management and data

retrieval, while hiding most of the details related to their

implementation. In our case, the representation is based on

the W3C WoT standard [3] as detailed in [2]. The software

stratum is implemented by one or more Edge Processing Units

(EPUs) located in the proximity of the monitored structure.

The Cloud Layer addresses SHM data storage, aggregation,

processing, visualization, and export via dedicated APIs. Due

to the computational requirements, we assume that this layer

is hosted on a remote private/public cloud, connected to the

EPUs via an Internet connection. Finally, the Service Layer

is constituted by third-party services/applications, external to

the SHM platform but able to access its data in order to

offer additional visualization/processing functionalities to the

stakeholders. The main contribution of this paper involves the

Service layer, where a third-party service, the SHM Controller,

accesses sensor data from the Cloud and stores critical values

onto a Smart Contract deployed on an Ethereum blockchain

(detailed in the next section). The Edge and the Cloud layers

are implemented within the MODRON platform [2], while

some details of the Sensing layer technologies used in our

test-beds are provided in [4].

Fig. 1. The MODRON architecture and its integration with the Service Layer.

III. BLOCKCHAIN INTEGRATION

The SHM Controller is a service we developed that enables

the integration with the Blockchain. It is external to the

MODRON platform and designed to be used by a third-

party, since it is designed to reduce the risk of data alteration

in the pipeline from sensors to cloud; at the same time, it

exploits the W3C WoT-oriented architecture of MODRON

and, more specifically, the presence of WTs to retrieve data

from heterogeneous sensors. As shown in Figure 1, the SHM

Controller retrieves the list of active Sensor WTs; then, it

consumes the TDs and receives the measurements directly

from the WTs. Due to costs and performance issues, it may

not be realistic to store all the SHM data on the Blockchain,

therefore the SHM Controller applies a filter over them, i.e.

only the measurements outside a safety range are passed to

the Smart Contract. In the following, we detail the API of the

Smart Contract and its internal implementation.

A. Smart Contract: Overview and Data Structures

The sensitive data coming from the SHM Controller is

stored by a Smart Contract deployed on the Ethereum

blockchain called “SHMController Smart Contract” (SSC).

In the following, we outline the structure and the main features

of the SSC, in particular: (i) The data structures used as

storage, and (ii) the methods for uploading new data points and

for querying the knowledge base on top of certain parameters.

It is necessary to highlight how producing an efficient Smart

Contract requires to minimize the number of executed opera-

tions, as, the more complex and long a procedure is, the more

resources will be consumed. The metric reflecting the amount

of computational effort to run Smart Contract operations, and

related fee required, is also called gas in Ethereum. Hence,

minimizing gas consumption is the must-have property of a

Smart Contract implementation. On a side note, this might

not be directly true for “pure” and “view” methods (i.e. those

not directly altering the data structures), which do not cause

gas consumption per se, however, it becomes so in side cases,

for instance when the Smart Contract gets queried by a non-

view/pure method of another Smart Contract. Since the SSC

stores data points that ideally identify critical or abnormal

sensor measurements over a monitored structure, we would

not expect continuous bursts of data, rather, few occasional

measurements that denote important events. The listing below

shows the structure of a single on-chain measurement:

struct Measurement {

uint64 timestamp;

string structureId;

string sensorId;

string sensorType;

string data;

}

Here, the timestamp is a Unix time – exact to the ns – and the

data field encodes the data value in a string. The latter happens

because data might not always consist of only one number (e.g.

accelerometers have three values, one for each axis) and values

themselves are not processed on-chain, therefore expensive

encoding and decoding operations are left to the clients. The

actual data structures where data is saved are the following

three “mappings” (key-value dictionaries):

mapping(uint256=>Measurement) private measurements;

mapping(uint256=>uint256[]) private dateMap;

mapping(string=>uint256[]) private structureMap;

The first data structure is a list that maps each measurement

with a progressively generated identifier. The choice for a

progressive number, rather than a randomly generated one (e.g.

UUID), is important because it speeds up filtering operations.

Every time a new measurement is loaded into the SSC, it will

be pushed back in the measurements list and will be assigned

the highest identifier, therefore, the list is chronologically

sorted by construction. The second mapping dateMap maps

a day with a list of measurement identifiers. Thus, every time

a new measurement is loaded into the SSC, its identifier will

also be appended at the end of the list for the current day,

ensuring that each sublist is sorted by construction. The third

mapping structureMap maps a structure id with a list

of measurement identifiers. Such as above, each sublist is

sorted by construction. For efficiency purposes, the maximum

number of days and structures handled by a single contract is

fixed (any excess should be handled by additional contracts).

B. Smart Contract: Methods

The SSC can be invoked by clients via the methods pro-

totyped below. The design of such methods focuses on their

computational efficiency, in order to prevent wastage of gas.

function insert(uint256 date, Measurement calldata

measurement) external onlyOwner

function getByDates(uint256[] calldata dates)

external view returns (Measurement[] memory)

function getByStructures(string[] calldata

structureIds) external view returns (Measurement

[] memory)

function getByDatesAndStructures(uint256[] calldata

dates, string[] calldata structureIds) external

view returns (Measurement[] %memory)

The insert method is used by a client to load a new

measurement onto the SSC. This operation only costs O(1)
because the new measurement is appended at the end of the

measurement list, as well as at the end of the respective two

lists in the mappings. The getByDates is a view method

invoked to obtain all the measurements that were registered

within the days given in input. Considering n as the number

of total measurements stored in the SSC, then this operation is

O(n) in the worst case, as it needs to retrieve the measurement

identifiers for the requested days from the dateMap and

extract the information of each of them from the measurement

list. The getByStructures method has a similar behavior

to the previous one, with the measurement identifiers extracted

from the structMap instead; therefore, the cost of the

operation is still O(n). The getByDatesAndStructures

view method extracts measurements that belong both to the

days and to the structures in input. For this reason, the method

needs first to apply getByDates and getByStructures,

then find the common identifiers in the two results. In or-

der to do so efficiently, the results of getByDates and

getByStructures need to be sorted by identifier. The first

one is already sorted by construction, while the second one

is composed by a set of sorted arrays. Sorting them onto a

single array – the merge step of a Mergesort algorithm –

is a polynomial operation, since the maximum number of

structures is fixed. Finally, the algorithm compares the two

sorted arrays and outputs only the intersection, which is again

a polynomial operation. In conclusion, this method scans the

list of measurements a fixed number of times, therefore its

complexity is still O(n).

IV. PERFORMANCE EVALUATION

In this Section we validate the above-defined SSC through

extensive experiments, then we show a practical usage of it

through the deployment of a mobile client. The SSC was

developed in Solidity (version 0.8.2) by using Hardhat (version

2.3.3) as a development environment. We performed local

testing of the SSC and calculated the metrics of execution

time and consumed gas over the Hardhat network through a

dedicated plugin. The SSC is fully upgradable thanks to the

ERC 1967 Proxy pattern by OpenZeppelin. Finally, the SSC

is deployed online on the Rinkeby Ethereum Test Network1.

All the tests were performed on an Intel Core i7 (6th Gen)

6700HQ / 2.6GHz with 16GB RAM and Linux Ubuntu 20.04.

A. Results

Using the above experimental setup we carried out sev-

eral performance tests, which are reported here in Fig-

ure 2. In particular, we test the scalability of the three view

methods – namely getByDates, getByStructures and

getByDatesAndStructures – which are the only ones

affected by the amount of data stored in the SSC. For each

of them, as a comparison, we implemented a naı̈ve version

without the mappings. More in detail, the naı̈ve getByDates

cycles over all the measurements and, for each of them, it

cycles over the dates passed in input and checks for matches.

The naı̈ve getByStructures has a similar behavior, while

the naı̈ve getByDatesAndStructures calls both meth-

ods and intersects the resulting arrays by checking the presence

of every element of the first array in the second, resulting

in a quadratic complexity. All the figures compare the SSC

with its naı̈ve counterpart described above. More in detail,

the first two tests measure the scalability of the SSC for

an increasing number of measurements, with dates fixed to

30 and structures fixed to 15. Each query requests 6 dates

and/or 3 structures. Figure 2(a) shows the execution time of

the function in milliseconds. It is worth noting that, even

if in normal conditions view methods would not consume

any actual gas, their execution is interrupted if they run out

of (hypothetical) gas, just as if they were. This is the case

of Naı̈ve SSC, which takes a significantly higher amount

of time compared to our implementation, to the point that

the getByDates and getByStructures method do not

terminate if the number of measurement is above ∼ 1500.

The much more demanding getByDatesAndStructures

can barely return with ∼ 400 measurements. Conversely, our

SSC can stand more than 3000 measurements with similar

performance for all three methods. We can observe also how

the time increases linearly with the size of the input for both

SSC and Naı̈ve SSC. In fact, even though the computational

1https://www.rinkeby.io/

Fig. 2. Performance tests by increasing the number of measurements (structures fixed to 15) in (a) and (b); increasing the number of structures (measurements
fixed to 1600) in (c) and (d).

complexity is linear in either case, yet the number of opera-

tions performed by the Naı̈ve SSC is much higher. This is not

true for getByDatesAndStructures, which, in its naı̈ve

version, features a quadratic complexity. Figure 2(b) shows a

similar trend, however it measures the hypothetical gas. The

price for the (hypothetical) unit of gas is fixed to 35gwei –

a base unit of measure for gas transactions; 1gwei equals

to 10−9ETH – consumed by invoking one of the methods.

A different trend can be observed in Figures 2(c) and 2(d),

where the number of measurements is fixed to 1600 and the

number of structures increases. In the SSC implementation

we can observe how the time and the gas consumed by

getByStructures and getByDatesAndStructures

monotonically decreases, as, the more structures are deployed,

the less measurements are hosted by a single structure. Log-

ically, getByDates is unaffected. A similar trend can be

observed for Naı̈ve SSC, however the resource consumption is

much higher; in fact, getByDatesAndStructures does

not even run, as it runs out of gas instantaneously.

B. SSC Client Application

Fig. 3. The web dashboard of the SSC client application.

The client application is a Web dashboard (DApp), whose

goal is to retrieve and visualize the SHM data stored in the

Blockchain. More in detail, the application allows the user to

specify the network type, the SSC address, and the endpoint

of the chain from the settings page. Then, it automatically

connects to the chain and gets ready for reading the anomalous

values generated by the structure. As shown in Figure 3, users

can use a form for filtering the SHM data by Structure ID and

dates. Filtered data points are displayed through a scatter plot

and a bar plot. The client is an Angular 10.1.2 application that

relies on the Infura APIs to access the chain and on the Ethers

library to access the Ethereum features.

V. CONCLUSION AND FUTURE WORKS

In this paper we addressed data management issues in IoT-

based SHM applications, by investigating how the traceabil-

ity and immutability of SHM measurements can be granted

through Blockchain technologies; to this aim, we discussed

how to deploy an SHM-oriented Smart Contract on top of our

architecture, and we evaluated its performance in terms of gas

and execution time. The joint adoption of WoT and Blockchain

technologies in the SHM domain is quite new, and can open

the way to extensive evaluations of the Blockchain integration

over large-scale SHM scenarios.

ACKNOWLEDGEMENTS

This work has been funded by INAIL within the

BRIC/2018, ID=11 framework, project MAC4PRO (“Smart

maintenance of industrial plants and civil structures via inno-

vative monitoring technologies and prognostic approaches”).

The authors would like to thank Prof. Luca De Marchi and

his group for the deployment of the testbeds.

REFERENCES

[1] C. Arcadius Tokognon, B. Gao, G. Y. Tian, and Y. Yan, “Structural
health monitoring framework based on internet of things: A survey,” IEEE

Internet of Things Journal, vol. 4, no. 3, pp. 619–635, 2017.
[2] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, F. Zonzini, L. De Marchi,

M. Di Felice, A. Marzani, and T. S. Cinotti, “Modron: A scalable and
interoperable web of things platform for structural health monitoring,”
in 2021 IEEE 18th Annual Consumer Communications & Networking

Conference (CCNC). IEEE, 2021, pp. 1–7.
[3] W3C Working Group. (2020) WoT Reference Architecture (Proposed

Recommendation 9 April 2020). [Online]. Available: http://www.w3.org/
TR/wot-architecture/

[4] F. Zonzini, C. Aguzzi, L. Gigli, L. Sciullo, N. Testoni, L. De Marchi,
M. Di Felice, T. S. Cinotti, C. Mennuti, and A. Marzani, “Structural
health monitoring and prognostic of industrial plants and civil structures:
A sensor to cloud architecture,” IEEE Instrumentation & Measurement

Magazine, vol. 23, no. 9, pp. 21–27, 2020.

