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Abstract
Aims: Ellenberg-type indicator values are expert-based rankings of plant species ac-
cording to their ecological optima on main environmental gradients. Here we extend 
the indicator-value system proposed by Heinz Ellenberg and co-authors for Central 
Europe by incorporating other systems of Ellenberg-type indicator values (i.e., those 
using scales compatible with Ellenberg values) developed for other European regions. 
Our aim is to create a harmonized data set of Ellenberg-type indicator values applica-
ble at the European scale.
Methods: We collected European data sets of indicator values for vascular plants and 
selected 13 data sets that used the nine-, ten- or twelve-degree scales defined by 
Ellenberg for light, temperature, moisture, reaction, nutrients and salinity. We com-
pared these values with the original Ellenberg values and used those that showed 
consistent trends in regression slope and coefficient of determination. We calculated 
the average value for each combination of species and indicator values from these 
data sets. Based on species’ co-occurrences in European vegetation plots, we also 
calculated new values for species that were not assigned an indicator value.
Results: We provide a new data set of Ellenberg-type indicator values for 8908 
European vascular plant species (8168 for light, 7400 for temperature, 8030 for 
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1  |  INTRODUCTION

Bioindication of abiotic site conditions from environmental re-
lationships of plant species has a long tradition (Cajander,  1926; 
Iversen, 1936). Seminal work was done by the German vegetation 
ecologist Heinz Ellenberg, who published a comprehensive data 
set of indicator values for vascular plant species (Ellenberg, 1974). 
These values were based on field observations and partly also mea-
surements, mainly from Germany. Ellenberg defined indicator val-
ues for seven abiotic environmental variables: light, temperature, 
continentality, moisture, soil reaction, nutrient (nitrogen) content, 
and salinity. While the first two variables relate mainly to above-
ground conditions, the last four describe substrate (soil or water) 
conditions. Ellenberg originally defined indicator values for nitrogen 
content, but later studies suggested that they rather reflect general 
soil fertility, such as the combined availability of both nitrogen and 
phosphorus (Boller-Elmer, 1977; Briemle, 1986; Hill & Carey, 1997). 
Therefore, Ellenberg's original nitrogen values are nowadays more 
often called nutrient values (Ellenberg et al., 1992), while there are 
attempts to develop separate indicator values for these two nutri-
ents (Tyler et al., 2021).

Ellenberg indicator values were defined on ordinal scales that 
characterize the relative position of the centroid of a species' real-
ized one-dimensional niche related to the respective environmen-
tal variable. A low value corresponds to the position of the species’ 
optimum towards the lower end of the environmental gradient, 
whereas a high value corresponds to the position at the higher end. 
For example, low values of the light scale are assigned to shade-
tolerant species, whereas high values are assigned to species that 
occur in full light.

Ellenberg's system was inspired in part by the ideas of 
Cajander  (1926), who used associations of plant species to eval-
uate forest types and productivity, and Iversen  (1936), who ar-
ranged plants into response groups to environmental variables 
relevant to plant growth. However, Ellenberg  (1948, 1950, 1952) 
was the first to use numerical codes instead of verbally defined 
levels of environmental gradients. Ellenberg  (1948) also pro-
posed using these codes to calculate community means based on 

species presence and community-weighted means based on spe-
cies cover-abundances. Subsequently, other authors (e.g., Zólyomi 
et al.,  1967; Zlatník et al.,  1970) adopted Ellenberg's concept of 
bioindication by creating regional systems of indicator values for 
other parts of Europe. Not only vascular plants but later also bryo-
phytes and lichens were characterized by indicator values follow-
ing the same system (Ellenberg et al., 1992). Similar systems were 
developed to indicate disturbance (Briemle & Ellenberg,  1994; 
Herben et al., 2016; Midolo et al., 2023).

Repeatedly updated and refined, Ellenberg indicator values 
(Ellenberg et al., 1992, 2001; Ellenberg & Leuschner, 2010) are a widely 
used tool for rapidly estimating environmental conditions without 
direct measurements (Diekmann,  2003; Holtland et al.,  2010). In 
the Web of Science database, 907 articles with the keywords (in-
cluding words used in abstracts) ‘Ellenberg’ AND ‘Indicator’ were 
registered between 1 January 1974 and 30 June 2022, indicating 
their importance to plant ecologists. Several studies found a good 
agreement between community means (weighted or non-weighted) 
calculated from Ellenberg indicator values and values of environ-
mental variables measured in situ (Ellenberg et al., 1992; Herzberger 
& Karrer,  1992; Hill & Carey,  1997; Ertsen et al.,  1998; Schaffers 
& Sýkora,  2000; Wamelink et al.,  2002; Diekmann,  2003; Chytrý 
et al.,  2009; Sicuriello et al.,  2014). Some authors also discussed 
the consistency of indicator values between different geograph-
ical areas (Diekmann & Lawesson, 1999; Gégout & Krizova, 2003; 
Godefroid & Dana, 2007; Wasof et al., 2013). Because Ellenberg's 
original data set focused on plants occurring in the western part of 
Central Europe, other authors proposed indicator values for other 
European regions. These data sets included many species that were 
missing from Ellenberg's original data set and often contained dif-
ferent values for the same species, reflecting shifted optima of their 
realized niches between regions (e.g. Landolt, 1977; Tsyganov, 1983; 
Jurko, 1990; Karrer, 1992; Borhidi, 1995; Mayor López, 1996; Böhling 
et al., 2002; Zarzycki et al., 2002; Hill et al., 2004; Pignatti, 2005; 
Landolt et al.,  2010; Didukh,  2011; Chytrý et al.,  2018; Domina 
et al., 2018; Guarino & La Rosa, 2019; Jiménez-Alfaro et al., 2021; 
Tyler et al., 2021). Specialized data sets of indicator values for spe-
cies limited to a specific habitat type but covering large areas were 

moisture, 7282 for reaction, 7193 for nutrients, and 7507 for salinity), of which 398 
species have been newly assigned to at least one indicator value.
Conclusions: The newly introduced indicator values are compatible with the original 
Ellenberg values. They can be used for large-scale studies of the European flora and 
vegetation or for gap-filling in regional data sets. The European indicator values and 
the original and taxonomically harmonized regional data sets of Ellenberg-type indi-
cator values are available in the Supporting Information and the Zenodo repository.

K E Y WO RD S
bioindication, Ellenberg indicator values, light, moisture, nutrients, reaction, salinity, 
temperature, vascular plants
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also created (e.g. Hájek et al., 2020 — mires; Dítě et al., 2023 — saline 
habitats).

The increasing number of synthetic and macroecological studies 
on European vegetation, catalyzed by the launch of the European 
database of vegetation plots (European Vegetation Archive, EVA; 
Chytrý et al., 2016), require a coherent system of species-level in-
dicator values. Although regional systems of indicator values have 
been widely used for a long time, no consensual system of indicator 
values for European plants has been developed so far. Therefore, we 
have compiled a harmonized data set of vascular plant indicator val-
ues for light, temperature, moisture, soil (or water) reaction (related 
to base saturation), nutrients (site productivity), and salinity suitable 
for a large part of Europe, using the same numerical scales as defined 
by Ellenberg. In this article, we describe the content of the new data 
set and the methods used to compile it.

2  | METHODS

We compiled a database of 13 published European data sets of in-
dicator values for vascular plant species defined on the same nine-
degree scale (or 10-degree scale for salinity and 12-degree scale 
for moisture) as the original Ellenberg indicator values (Ellenberg 
et al., 1992, 2001). We refer to these data sets as Ellenberg-type in-
dicator values. Data sets with scales containing a lower number of 
degrees, i.e., with a coarser resolution, were not included. If the scale 
had a higher number of degrees than nine (or 10 for salinity or 12 for 
moisture), we accepted it, provided that: (1) the additional degrees 
represented an extension of the environmental gradient, while the 
other degrees retained the same meaning as in the original Ellenberg 
data set (e.g. extending the nine-degree temperature scale originally 
defined for Central Europe to 12 degrees to reflect Mediterranean 
conditions; Pignatti,  2005) or (2) the additional degrees repre-
sented intermediate values on the nine-  or 12-degree scale (e.g. 
the 17-degree temperature scale and the 23-degree moisture scale 
in Didukh,  2011). We considered only data sets based entirely or 
largely on expert knowledge and excluded those based on values re-
calculated from vegetation plots without expert-based assessment 
of values for individual species (e.g. Lawesson et al., 2003 for the 
Faroe Islands).

The 13 indicator-value data sets that met the above conditions 
included: Great Britain (Hill et al., 2000); the Cantabrian Mountains in 
Spain (Jiménez-Alfaro et al., 2021); France (Julve, 2015); Switzerland 
and the Alps (Landolt et al., 2010; temperature values only, as the 
other values use coarser scales than Ellenberg); Germany (Ellenberg 
et al., 2001, taken from Ellenberg & Leuschner, 2010); Czech Republic 
(Chytrý et al., 2018); Austria (Karrer, 1992); Hungary (Borhidi, 1995); 
Ukraine (Didukh,  2011; only the light, temperature and moisture 
values, as the others cannot be matched to the Ellenberg scales); 
Italy (Guarino & La Rosa, 2019, a corrected version prepared by R. 
Guarino for this study); South Aegean region of Greece (Böhling 
et al., 2002); European mires (Hájek et al., 2020); and saline habitats 
in Central Europe (Dítě et al., 2023). The scales of these 13 data sets 

had 12 degrees for moisture and some of them also for temperature, 
10 degrees for salinity, and nine degrees for the other values. The 
Italian values originally also had 12 degrees for light, but we replaced 
the values 10–12 with 9 and had the result manually checked by the 
first author of the original data set. Therefore, we integrated the 
data sets using 12-degree scales for temperature and moisture, a 
10-degree scale for salinity and nine-degree scales for light, reaction 
and nutrients. We did not include the Swedish indicator values for 
moisture and nitrogen (Tyler et al., 2021), which were expressed on 
the same scales but published after we completed our calculations.

We omitted the indicator values for continentality because 
they are based on species’ geographical ranges. Continentality val-
ues may have an ambiguous meaning at the local scale since they 
may correlate with different factors, including seasonal differences 
in temperature and precipitation, diurnal differences in tempera-
ture, annual minimum temperatures, and drought. Moreover, Berg 
et al.  (2017) identified methodological weaknesses in the original 
Ellenberg approach to continentality values, proposed an improved 
protocol for their compilation, and defined new formally-verified 
values.

We unified the taxonomy and nomenclature of all vascular plant 
taxa across the 13 data sets according to the Euro+Med PlantBase 
(http://europ​lusmed.org). We merged subspecies, varieties and 
forms at the species level and removed hybrids and rare alien species 
(mostly casual neophytes; Richardson et al., 2000). We also merged 
as ‘aggregates’ those taxonomically related species that are difficult 
to identify and, therefore, are often misidentified or not identified at 
all, such as species of the Achillea millefolium group in the A. millefo-
lium aggr. The aggregates used were those defined in the Euro+Med 
PlantBase (Euro+Med, 2021) and the EUNIS-ESy expert system for 
EUNIS Habitat Classification (Chytrý et al., 2020). Unlike the aggre-
gates defined in some data sets on the national or regional scales, 
these aggregates are valid at the European scale. For infraspecific 
taxa within the same species or species within the same aggregate, 
we used the arithmetic mean of their indicator values as the indica-
tor value for the species or aggregate. In addition, we calculated the 
median, minimum, and maximum of indicator values for each species 
and aggregate. Some databases provided indicator values for both 
individual species and aggregates. Although some of these aggre-
gates are not regularly used in vegetation science, have a regional 
validity and do not fit the concept of Euro+Med and EUNIS, we kept 
them on the list to avoid losing information.

The new system of indicator values was prepared by calculat-
ing the arithmetic mean for each combination of species and in-
dicator value across all compatible regional data sets in which an 
indicator value was defined for the target species. As a first step, 
we tested whether the indicator values of each of the 12 data sets 
(other than the original Ellenberg data set) were compatible with 
the Ellenberg values. We conducted two comparisons. For the first 
one, we tested a direct pairwise relationship between the original 
Ellenberg values (Ellenberg & Leuschner, 2010) for individual species 
(independent variable) and values for the same species in a differ-
ent data set (dependent variable; species-based regression). For the 
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second comparison, we used vegetation plots from the EVA data-
base (Chytrý et al., 2016) to calculate the unweighted means of the 
original Ellenberg values (independent variable) and indicator values 
from the other 12 data sets (dependent variable; plot-based regres-
sion). A total of 1,790,582 vegetation plots covering a wide range of 
vegetation types sampled across Europe were used. The territory 
of Russian Federation, Georgia, Armenia, and Azerbaijan were not 
included due to their peripheral biogeographical location, lack of 
indicator-value data sets compatible with Ellenberg scales, and low 
density of plots in the EVA database. Species nomenclature was uni-
fied in the same way as in the indicator-value databases (see above). 
We selected only vegetation plots that contained at least five spe-
cies with indicator values, both from the original Ellenberg data set 
and from other indicator-value data sets, resulting in 622,402 plots 
for light indicator values, 413,832 for temperature, 615,301 for 
moisture, 490,617 for reaction, 575,406 for nutrients and 673,141 
for salinity.

Based on the regression analyses described above, we se-
lected data sets that showed consistent trends in both the direct 
species-based and indirect plot-based regressions against the origi-
nal Ellenberg indicator values. In order to compare these trends, we 
selected two regression characteristics: the coefficient of determi-
nation (R2) and slope. The coefficient of determination shows the 
amount of variation in the dependent variable explained by the re-
gression. However, the same R2 can be obtained with vastly different 
slopes. Therefore, we also used slope, which mainly indicates dif-
ferences at the ends (extremes) of the indicator value range. Based 
on the empirical assessment of the regression results, we selected 
only indicator values for which the regression slope was within the 
range from 0.5 to 1.2 and R2 was higher than 0.5. The only excep-
tion was the salinity data set for Central Europe (Dítě et al., 2023), 
which, in contrast to Ellenberg salinity values, did not include any 
non-halophytic species.

When different indicator values occurred in different data sets 
for the same species and the same environmental variable, we calcu-
lated the mean of these values. If the difference between the mini-
mum and maximum values across all original taxa that were merged 
into the same species or aggregate was more than three indicator 
value units across all data sets, and the range crossed the central 
value (i.e. a value of 5 for the nine-degree scales, a value of 4.5 for 
the 10-degree salinity scale and a value of 6.5 for the 12-degree 
scales), we reported no indicator value. The condition of crossing 
the central degree filtered out generalist species occurring under in-
termediate conditions while preserving values for species occurring 
under more extreme conditions. All indicator values resulting from 
either the averaging or median calculation that had more than one 
decimal place were rounded to one decimal place.

To assign indicator values to species for which indicator val-
ues were not available in any of the data sets but which occurred 
in at least 50 EVA vegetation plots, we used the method described 
by Chytrý et al.  (2018). First, for each of these target species, we 
searched for the set of other species that had the most similar oc-
currence pattern across EVA plots. We measured the degree of 

co-occurrence of species pairs using the phi coefficient of associa-
tion (Sokal & Rohlf, 1995). For each species with no indicator value, 
we listed all species with an indicator value that had a similar oc-
currence pattern (interspecific association of phi > 0.1). If there were 
at least five such species, we calculated the mean (rounded to one 
decimal place) of their indicator values and assigned it as the indica-
tor value for the target species with no indicator value. If more than 
20 species met these conditions, we considered only the 20 species 
with the highest phi value. If there were fewer than five such species, 
no new indicator values were calculated.

Mean indicator values always have a narrower range than the 
original scale of indicator values (see Hill et al., 2000), which reduces 
the compatibility between the newly calculated and original indica-
tor values. To standardize the range of indicator values for species 
with newly-calculated values, we first calculated indicator values for 
species that occurred in at least one data set of indicator values and 
for which we knew the original indicator values in the regional data 
sets. For a set of these species, we calculated a linear regression 
between the values estimated from species co-occurrence (indepen-
dent variable) and average indicator values from the regional data 
sets (dependent variable). Then we used the formula of the regres-
sion line to adjust indicator values for species with values estimated 
only from species co-occurrence, i.e., those for which indicator val-
ues were not previously available.

Any subjective adjustment of indicator values was avoided. 
However, indicator values for obligatory epiphytic hemiparasites 
germinating on trees (Arceuthobium, Loranthus and Viscum) were not 
included in the final list in the case of nutrients, reaction and salinity.

We tested the validity of the harmonized European data set of 
indicator values using an example of indicator values for tempera-
ture by regressing them on an independent source of gridded tem-
perature data. We calculated the unweighted community mean of 
temperature indicator values across species in each EVA plot that 
contained at least five species (413,832 plots) and related them 
to modelled mean summer temperatures from the Chelsa data-
base (Karger et al.,  2017; bio10 —  daily mean air temperatures of 
the warmest quarter for the period of 1981–2010). Data process-
ing and analyses were performed using the programs JUICE v. 7.1 
(Tichý, 2002) and R v. 4.0.3 (R Core Team, 2022).

3  |  RESULTS

Of the 12  Ellenberg-type indicator-value data sets (i.e., exclud-
ing the original Ellenberg data set), 11 were found to be at least 
partially compatible with the original Ellenberg data set (Table  1, 
Appendix S1) after being tested with species-based regression and 
plot-based regression (Appendix S2). Outlier data sets that did not 
meet our compatibility conditions were excluded from further analy-
ses. Indicator values for the Cantabrian Mountains were excluded 
entirely. For the Southern Aegean data set, we retained the indica-
tor values for moisture and salinity but excluded the other values 
for lack of compatibility. For the Ukrainian data set, we retained the 
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indicator values for light and moisture, but excluded temperature 
(thermal climate or thermoregime).

The final data set contained 8,908 European vascular plant spe-
cies with at least one indicator value. Indicator values for all six en-
vironmental variables were defined for 5,398 species. At least one 
indicator value was newly assigned for 398 species not listed in any 
regional data set. The matrix of correlations between indicator val-
ues and frequency histograms for individual indicator values, both 
for species and community means calculated for EVA plots, are 
shown in Figures 2 and 3.

The set of 1,790,582 vegetation plots from the EVA database 
contained 11,161 species of vascular plants after standardizing the 
nomenclature. Of these, 7,918 (70.9%) had at least one indicator 
value derived from at least one of the 12 retained data sets or esti-
mated from species co-occurrences. The new indicator values were 
defined mainly for frequent species. Therefore, at least one indicator 
value was available for 99.7% of all species occurrences in the EVA 
vegetation plots.

Linear regressions between community-mean values for EVA 
vegetation plots calculated from the new data set of European 
indicator values for temperature and the mean summer tempera-
ture from the Chelsa data set showed a stronger relationship 
(R2  =  0.49) than regressions calculated from each regional data 
set individually (Appendix S3). Community means for temperature 
values showed negligible differences in slope and coefficient of 
determination when calculated with or without the species for 
which the indicator value had been derived from the EVA-based 
estimations.

4  | DISCUSSION

We created an extensive data set of indicator values for six main en-
vironmental variables that affect plant distribution and community 
composition under natural conditions. This data set covers a large 
part of Europe and is suitable for European studies of flora and veg-
etation. Although it does not include all the European species, it con-
tains most of the widespread and common species, and represents 
the broadest harmonized source permitting sound comparisons. Our 
indicator values were created by mathematically integrating data 
from the original Ellenberg values and 11 compatible data sets for 
other European regions. In addition, we estimated indicator values 
for species for which no values had been published based on species 
co-occurrences in vegetation plots from the EVA database.

Alternative approaches to calculating Ellenberg-type indica-
tor values from vegetation plots were proposed by ter Braak and 
Gremmen (1987) and Hill et al. (2000). They calculated indicator val-
ues by reciprocal averaging of community means of species indicator 
values from vegetation plots. ter Braak and Gremmen  (1987) also 
proposed the maximum likelihood method. However, both methods 
utilized community means as a source for species’ indicator estima-
tion or correction. Our experience from a previous study (Chytrý 
et al., 2018) shows that the calculation of indicator values for new 
species from community means can be negatively affected by the 
fact that a few widespread and common generalist species are found 
in many plots and account for a relatively high proportion of the total 
number of species in individual plots. For example, only 477 out of 
11,164 vascular plant species in the selection from the EVA database 

TA B L E  1 Regional data sets of Ellenberg-type indicator values used as a potential source for the European data set

Data set Source Light Temperature Moisture Reaction Nutrients Salinity

Germany Ellenberg and 
Leuschner (2010)

2478 2191 2407 3778 2315 2495

Austria Karrer (1992) 1006 724 938 1198 855 1000

Cantabrian Range Jiménez-Alfaro et al. (2021) NA NA NA NA NA –

Czech Republic Chytrý et al. (2018) 2191 2194 2194 2192 2192 2194

European mires Hájek et al. (2020) – – 1479 – – –

France Julve (2015) 3815 3763 3750 3758 3764 3792

Great Britain Hill et al. (2000) 1684 – 1684 1684 1684 1684

Greece (South Aegean) Böhling et al. (2002) NA NA 1831 NA NA 1922

Hungary Borhidi (1995) 2028 2028 2028 2026 2028 2028

Italy Guarino and La Rosa (2019) 5136 4985 5092 4869 5049 5121

Saline habitats Dítě et al. (2023) – – – – – 335

Switzerland/Alps Landolt et al. (2010) NC 4380 NC NC NC NC

Ukraine Didukh (2011) 2877 NA 2895 NC NC NC

FINAL 8168 7400 8030 7282 7193 7507

Note: Numbers are given where indicator values are present in the source data set and were used for the calculation. The numbers are, in turn, 
counts of species or aggregates (after nomenclature standardization) with indicator values. ‘NA’ (not accepted), the indicator value exists and the 
authors stated that it follows the Ellenberg concept, but it did not meet our compatibility criteria and was excluded from further analyses; ‘NC’ (not 
considered), the indicator value exists, but its concept or scale differs from Ellenberg indicator values; ‘–’, the indicator value does not exist in the 
source data set. Information on the percentage distribution of indicator value classes within each data set is provided in Appendix S1. The bottom 
row (FINAL) reports the number of species and aggregates included in the final harmonized European data set.
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used for this study occur in more than 1% of plots. There are many 
vegetation plots in which these widespread species are the only spe-
cies with an indicator value. In the case of temperature, for instance, 
this concerns 10.4% of all plots. As a result, some specialized spe-
cies with missing indicator values may receive inappropriate values 
if only the average values for generalist species are used. Therefore, 
we suggest using only the values for the most specialized and most 
similarly distributed species for calculating new indicator values 
based on vegetation plots. The advantage of the method proposed 
by Chytrý et al. (2018) and used in this work is that it does not aver-
age all species in plots but assigns missing indicator values based on 
averaging the values for a limited number of species with the most 
similar co-occurrence patterns. Although this method calculates in-
dicator values only for species that frequently co-occur with other 

species that already have indicator values, the calculated values are 
more reliable.

Ellenberg (1974) and other authors defined indicator values on or-
dinal scales, which has sometimes been criticized (Dierschke, 1994). 
Ellenberg et al.  (2001) argued that at least part of their scales have 
equidistant segmentation of the interval scale, which allows for cal-
culating community means. ter Braak and Barendregt (1986) showed 
that community means calculated from indicator values best estimate 
environmental conditions when each indicator value is the centroid 
of the symmetric (normally distributed) species response curve to the 
given environmental variable. Other authors (Pignatti et al.,  2001; 
Marcenò & Guarino, 2015; Wildi, 2016) have also shown that in large 
data sets, Ellenberg indicator values can be evaluated with para-
metric tests because they tend to be normally distributed. Because 

F I G U R E  1 Correlation matrix of Ellenberg-type indicator values for Europe. Histograms show the relative frequency of species for a 
particular value along the environmental gradient. Boxes below the diagonal show Pearson correlation coefficients with their significance, 
and scatter plots above the diagonal show the distribution of species in a pairwise comparison between two corresponding indicators (each 
black dot represents one species). ***, p < 0.001; **, p < 0.01; *, p < 0.05.
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many recent studies have also estimated environmental conditions 
using community means (e.g. Ahl et al., 2021; Baumann et al., 2021; 
Dwyer et al., 2021; Jaroszewicz et al., 2021), we considered all scales 
of published indicator values to be interval scales. Differences among 
published sources were smoothed by calculating means with decimal 
precision. The new data set of indicator values retains the range of 
the original Ellenberg scales of nine, 10 or 12 degrees, so it is compat-
ible with other data sets defined on the same scales.

As our indicator-value data set is prepared for broad-scale anal-
yses, it uses a relatively coarse taxonomic resolution at the level 
of species or, in some cases, species aggregates. However, differ-
ent subspecies of the same species or different narrowly-defined 
species within an aggregate may differ substantially in their 

ecological requirements for some environmental variables (e.g. 
Landolt et al., 2010). Therefore, for some species or aggregates in 
our data set, no indicator value was given for some environmental 
variables. As a result, only 4,946 (44.3%) of the vascular plant spe-
cies occurring in the EVA vegetation plots had an indicator value 
for all six environmental variables. Another reason for the relatively 
low number of such species was that only a half of the data sets 
contained indicator values for less than six environmental variables 
compatible with the Ellenberg scales (Hill et al.,  2000; Böhling 
et al., 2002; Landolt et al., 2010; Didukh, 2011; Hájek et al., 2020; 
Dítě et al., 2023).

The original Ellenberg values had been estimated primarily by 
expert knowledge. Cornwell and Grubb  (2003) demonstrated that 

F I G U R E  2 Correlation matrix of the community means of Ellenberg-type indicator values for Europe calculated for EVA vegetation plots. 
Histograms show the relative frequency of plots for a particular value along the environmental gradient. Boxes below the diagonal show 
Pearson correlation coefficients with their significance, and scatter plots above the diagonal show the distribution of vegetation plots in a 
pairwise comparison between two corresponding indicators (each black dot represents one vegetation plot). ***, p < 0.001; **, p < 0.01; *, 
p < 0.05.
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Ellenberg species values for different environmental conditions are 
often not independent. For example, they found a significant rank 
correlation for the relationship between nutrients and moisture 
(rs = 0.362, p = 0.001), which is also found in our harmonized data set 
(Figure 1). Similar trends of the relationship between environmental 
factors can be seen in Figure  2, where we compared unweighted 
community means calculated for vegetation plots of the EVA da-
tabase. The reason for the significance of most partial correlations 
between indicator values for individual species is not so obvious as 
for community means, in which the indication of ecological factors 
is not related to the species, but related directly to site conditions.

Independent verification of the validity of our data set of indi-
cator values in relation to measured local environmental variables is 
difficult because there are no standardized measurements of local 
environmental conditions at the European scale at the sites where 
the vegetation was sampled. The only exception is temperature, 
which has both local and macroscale components considered in the 
indicator values. Therefore, the community-mean indicator values 
can be compared with interpolated data from temperature measure-
ments at climate stations. Such data represent macroclimate, but 
Ellenberg (1974) also derived temperature indicator values from spe-
cies’ occurrence in altitudinal belts in Germany and the Alps. There 
was a strong relationship between mean summer temperatures 
from the Chelsa database (Karger et al., 2017) and community-mean 
temperature indicator values for vegetation plots from the EVA da-
tabase. However, we did not account for differences in local con-
ditions, such as slope, aspect, and shading from trees, shrubs, and 
adjacent topographic features, which can affect local temperatures 

but are not available for all vegetation plots. Community means cal-
culated from directly assigned indicator values, and those calculated 
using species co-occurrences showed negligible differences in R2 
values (Appendix S3), as also shown in Ewald  (2003). Species with 
indicator values calculated based on species co-occurrences repre-
sented only about 3% of the species in the EVA database, and these 
were mainly rare species.

The 12 regional data sets of species indicator values in-
tegrated into our unified data set cover most of Central and 
Western Europe. However, their reliability decreases with dis-
tance from their area of origin (Herzberger & Karrer,  1992; 
Englisch & Karrer,  2001; Coudun & Gégout,  2005; Godefroid & 
Dana, 2007), as some species may change their realized niche or 
be represented by genotypes adapted to different fundamental 
niches (ecotypic adaptation; Hájková et al.,  2008). For example, 
the niche width of some European species increases northward, 
making Ellenberg indicator values less applicable in Northern 
Europe (Diekmann, 1995; Hedwall et al., 2019). In contrast, some 
species shift and narrow their niche towards the edges of their 
distribution range (Papuga et al., 2018) relative to their centre of 
distribution (Englisch & Karrer, 2001). This is consistent with our 
comparisons of regional data sets, which showed the largest de-
viations from the original Ellenberg values for data sets from re-
gions that are geographically and climatically farthest away from 
Germany, e.g., the Cantabrian Mountains in Spain (Jiménez-Alfaro 
et al.,  2021) and the South Aegean region of Greece (Böhling 
et al., 2002). It is also likely that local endemics in these marginal 
regions outcompete species with broader geographic ranges from 

F I G U R E  3 Recommended area for application of the harmonized European data set of Ellenberg-type indicator values. Europe is divided 
into a grid of 0.6° for latitude and 1° for longitude. Shades of green represent the density of 413,705 georeferenced vegetation plots from 
the EVA database that contain at least five species with an indicator value for each environmental variable: light, temperature, moisture, 
reaction, nutrients, and salinity. The black dotted line defines the approximate area for which we recommend using the data set of indicator 
values for all environmental variables. The orange dotted line indicates an additional area where light and moisture values can be safely 
used, and the blue-dotted line is an additional area where moisture and salinity values can be safely used.
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a part of their fundamental niche, resulting in the narrowing of 
the realized niche. Therefore, we did not consider or only partially 
used these data sets from distant areas. As a result, we consider 
the new data set of indicator values to be mainly representative of 
Central and Western Europe, Italy and adjacent areas (Figure 3). 
For the Iberian Peninsula, Greece, Turkey and other areas, new 
systems of ecological indicator values need to be developed based 
on local observations, expert knowledge and careful comparisons 
with indicator values already established in other parts of Europe.

Although the primary motivation for our work was to create 
a data set of Ellenberg-type indicator values that can be used for 
broad-scale international studies of macroecological patterns of 
the European flora and vegetation, this data set can also be used in 
local studies. Its advantage is that it retains the traditional Ellenberg 
scales. Thus, if a local study uses a regional system of Ellenberg-type 
indicator values from a nearby region, our harmonized European 
data set can be used to add values for species that are missing from 
the regional system but occur in the study area. It is likely that most 
regional systems of indicator values provide more accurate esti-
mates of site conditions in their region than the European data set, 
which is based on averaging indicator values from different regions. 
For example, species that behave as generalists on the European 
scale and thus were not assigned an indicator value in the European 
data set may have narrower niches and be good indicators in partic-
ular regions. Therefore, it is reasonable to continue to use regional 
systems of indicator values for local studies in regions where such 
systems exist. Nevertheless, if local studies from different regions 
use the European system of indicator values, their results can be 
directly compared.
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