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ABSTRACT Linked Open Data (LOD) is the largest, collaborative, distributed, and publicly-accessible
Knowledge Graph (KG) uniformly encoded in the Resource Description Framework (RDF) and formally
represented according to the semantics of the Web Ontology Language (OWL). LOD provides researchers
with a unique opportunity to study knowledge engineering as an empirical science: to observe existing
modelling practices and possibly understanding how to improve knowledge engineering methodologies and
knowledge representation formalisms. Following this perspective, several studies have analysed LOD to
identify (mis-)use of OWL constructs or other modelling phenomena e.g. class or property usage, their
alignment, the average depth of taxonomies. A question that remains open is whether there is a relation
between observed modelling practices and knowledge domains (natural science, linguistics, etc.): do certain
practices or phenomena change as the knowledge domain varies? Answering this question requires an
assessment of the domains covered by LOD as well as a classification of its datasets. Existing approaches
to classify LOD datasets provide partial and unaligned views, posing additional challenges. In this paper,
we introduce a classification of knowledge domains, and a method for classifying LOD datasets and
ontologies based on it. We classify a large portion of LOD and investigate whether a set of observed
phenomena have a domain-specific character.

INDEX TERMS Intelligent web services and semantic web, knowledge engineering methodologies,
knowledge and data engineering tools and techniques.

I. INTRODUCTION
Linked Open Data (LOD) is based on the Resource Descrip-
tion Framework (RDF), therefore its formal interpretation is
assumed to comply with the semantics of the Web Ontology
Language (OWL).1 Nevertheless, OWL constructs are often
used with a different semantics than the prescribed one. For
example, owl:sameAs is used with several intended mean-
ings (e.g. similar to) as observed in [1], [2], and [3]. From a
formal-logic perspective, these are errors. But, as observed
by [1], the misuse of owl:sameAs is so diffuse and sys-
tematic that it may suggest requirements from ontology and
knowledge graph designers that are overlooked by knowledge
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1Or with RDF Schema

representation languages (e.g. additional constructs). Fol-
lowing a similar approach, relevant effort has been spent
to observe ontology design practices. For example, in [4],
resources such as DBpedia [5] and YAGO (Yet Another Great
Ontology) [6] are analysed to identify common modelling
patterns that sometimes show anti-patterns or errors. The
results of these studies is crucial to inform knowledge engi-
neering methodologies and to improve the quality of com-
mon practices and guidelines. This line of research is called
empirical semantics: the study of meaning and conceptual
modelling using observational tools as opposed to only using
the prescriptive approach of formal semantics based on logic
and theoretical computer science.2

2Inspired by https://wouterbeek.github.io/presentation/Empirical-
Semantics# and https://www.slideshare.net/Frank.van.Harmelen/empirical-
semantics
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A. EMPIRICAL KNOWLEDGE ENGINEERING
With LOD, the largest knowledge graph ever [7] encoded
with a logic-based language (OWL), there is an unprece-
dented opportunity to empirically studying knowledge engi-
neering. However, only few studies analyse LOD at large.
One of them is [8] that analyses the emerging, global LOD
ontology resulting from the network of interlinked ontologies
published in LOD. The focus of [8] is on class and property
hierarchies to assess their usage in instance data and their
level of reuse (alignments). The results show that the number
of explicit alignments between classes/properties is very low
and that there is a significant number of classes/properties
with empty extension. It is also observed that property hier-
archies are mainly flat, while class hierarchies have varying
depth degree, although most of them are flat too. This paper
is inspired by the open question whether these are generalised
phenomena. For example, why are there so many classes
and properties with empty extension? We could speculate
that ontology designers tend to overgeneralise their ontolo-
gies including concepts that are never directly instantiated.
Another hypothesis can be that the phenomenon (empty
extension) characterises some community of practice rep-
resenting specific knowledge domains. For example, many
ontologies in the biomedical knowledge domain have empty
extension and a possible explanation could be that they
are - so far - mostly used as terminological resources to
support natural language processing tasks or to annotate,
index/retrieve, and exchange documents e.g. clinical records
of patients [9]. This leads to reformulate the question as: have
these observed phenomena a domain-specific character? If
this is the case, it might suggest that certain practices have
developed and are established in certain communities instead
of others, motivating additional research to understand why.

B. KNOWLEDGE DOMAINS COVERED BY LINKED
OPEN DATA
Addressing this question requires to cope with challeng-
ing preliminary steps: to identify the knowledge domains
covered by LOD and to classify LOD datasets3 according
to them. Only by knowing to which knowledge domains a
class/property belongs to, will it be possible to associate an
observed phenomenon with them. There is valuable research
to address LOD dataset classification [10], [11], [12], [13],
[14], [15], [16], [17].Most of thesemethods are experimented
on small scale data and use limited classification systems
(e.g. keywords associated with the Linked Open Vocabu-
laries (LOV) [18], LOD cloud labels [19]. They address
single-label classification with the exception of [13], which
shows low performance (cf. Section II). We aim at perform-
ing multi-label classification of datasets at LOD-scale and
we adopt a machine learning based approach. Therefore,

3In this paper the terms LOD dataset and knowledge graph are used as
synonyms. A knowledge graph contains RDF triples expressing instance
data, called Assertion Box (ABox), as well as OWL axioms expressing
ontology statements, called Terminological Box (TBox). Sometimes we use
RDF dataset (ABox) or ontology (TBox).

we need both a classification system and a dataset for train-
ing and testing classification algorithms. We build on top
of the resources and lessons learned from existing work
and develop a classification system of knowledge domains
represented by 59 concepts, with a top-level of (additional)
6 concepts. This classification system is available online
as a Simple Knowledge Organisation System (SKOS).4 We
reduce the dataset classification task to a text classification
task by creating a ‘‘Virtual Text Document’’ (VTD) for each
LOD dataset. To create a reference training/testing corpus
we extend the Topic Profiling Benchmark (TPB) [13] (which
includes 198 datasets) to maximise its represented knowledge
domains, with datasets retrieved from LOD. The resulting
corpus contains 1002 datasets and is manually annotated
with three knowledge domains per dataset.5 We experiment
with six multi-label classification algorithms, all of them
show very high precision. The best performance (in terms
of F1 score6) is obtained with eXtreme Gradient Boosting
(XGBoost), a tree-boosting approach for learning classifica-
tion models. If we compare the F1 scores, our method outper-
forms the existing approaches to multi-label classification of
LOD datasets.

C. OBSERVING LOD THROUGH KNOWLEDGE DOMAINS
We use XGBoost trained on our corpus to classify all datasets
included in LOD Laundromat [20]. This allows us to observe
whether and how the behaviour of LOD ontologies vary as
the knowledge domain varies. A set of metrics are defined
to assess the knowledge domains addressed by LOD and
to observe, across domains, how entity reuse is performed,
how empty extensions are distributed, and how the depth of
taxonomies varies. It is also noticed that there are signifi-
cant correlations between pairs of metrics: some of them are
obvious, others show interesting behaviour that may be worth
further investigation.

The results of this research may impact on multiple lines of
research. The empirical observations presented in this paper
give an overview on how standard languages are used in
practice, which may inform standardisation effort as well as
the development of tools to facilitate adoption and application
of good practices e.g. alignment. The classification method
and its associated classification system can be used to enrich
metatada collected by central repositories (e.g. LOV [18],
LOD Cloud [19]). This, in turn, may improve indexing,
summarising and searching ontologies and knowledge graphs
(KG) on the web.
Contribution: The main contribution of this paper can be

summarised as follows:

• a LOD-scale analysis of knowledge domains coverage;
• a classification system of knowledge domains4;

4https://w3id.org/eke/kds
5https://dx.doi.org/10.21227/7h2p-7b38
6F1 is a measure of the accuracy of the classification. It is defined as the

harmonic mean of precision and recall.
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• a curated corpus of annotated datasets (with knowledge
domains)5;

• a novel method for multi-label classification of knowl-
edge graphs;

• a set of metrics to perform observations on the changing
behaviour of LOD knowledge graphs as the knowledge
domain changes.

The reminder of the paper is organised as follows.
Section II discusses related work. Section III gives an
overview on the conceptual framework introduced in [8] and
illustrates its extension, proposed in this paper. The knowl-
edge domain classification system is presented in Section IV.
Section V describes a novel method for classifying LOD
datasets according to their Knowledge Domains. Section VI
presents the manually annotated corpus of LOD datasets.
A LOD-scale analysis of LOD datasets based on their
knowledge domain is presented in Section VIII. Section IX
concludes the paper and discusses future research.

II. RELATED WORK
Relevant work related to our research include the classifica-
tion of LOD datasets according to their knowledge domain
(often referred to as topical classification) and the empirical
analysis of LOD.

A. TOPICAL CLASSIFICATION OF LOD DATASETS
Topical classification is the task of associating a LOD dataset
(or an ontology) with one or multiple knowledge domains
(or topics). Domain annotation has been used for enhancing
semantic web archives and search engines [10], [12], for
assessing provenance and quality of data [21], [22], and for
improving performance in learning tasks [23]. We iden-
tify two types of topical classification approaches: machine
learning-based and alignment-based.

1) MACHINE LEARNING-BASED APPROACHES
Machine learning-based approaches involve training and test-
ing a classifier by applying a supervised learning algorithm.
They differ in the classification system they use - a taxonomy
of knowledge domains (i.e. target labels for the classifier) -
the feature engineering method, the learning algorithm and
the training dataset.

Patel et al. [10] propose to treat ontologies as plain text
and to train a single-label classifier (with Naïve Bayes, Prob-
abilistic Indexing or K-Nearest Neighbours) over the DMOZ
dataset.7 They show good results but the experiments use
a limited number (five) of knowledge domains, making the
classification too general for many applications e.g. index-
ing/searching. It is unaddressed how the method would per-
form with a larger classification system. Meusel et al. [11]
suggest feeding a single-label classifier (trained using learn-
ing algorithms such as K-Nearest Neighbours, J48 or Naïve
Bayes) with a set of features extracted from the dataset under
study, such as the URI (Universal Resource Identifier) of the

7https://dmoz-odp.org/

vocabularies used by the dataset, the URIs of the classes and
properties occurring in it, the labels and the local names of the
entities of the dataset, the top-level web domain of the dataset
(e.g. com, gov), and its incoming/outgoing link degree. The
method is evaluated on a corpus containing 1014 datasets
crawled from LOD and annotated with LOD cloud labels [19]
(cf. Section IV). The experiments show a maximum accu-
racy of ∼80% in the single-label classification. Our method
performs multi-label classification with high performance on
a finer-grained classification system of knowledge domains
(8 vs. 65 knowledge domains). Pister and Atemezing [12]
present a method for classifying LOV ontologies according to
the 43 LOV keywords [18]. LOV is a project collecting LOD
ontologies along with a set metadata, including a set of key-
words, provided by the ontology designers (cf. Section IV).
The approach consists of the following steps: (i) building a
Virtual Text Document (VTD) for each ontology from labels
and comments associated with their entities; (ii) computing
the Term Frequency-Inverse Document Frequency (TF-IDF)
of the terms in the VTDs; (iii) lowering the dimensionality
of the corpus using the Truncated Single Value Decompo-
sition; (iv) training (and testing) a multi-label classifier by
experimenting with four classification algorithms in a One-
vs-rest strategy (Support Vector Machine, Multi-Layer Per-
ceptron, K-Nearest Neighbours and Random Forest). The
performance of the method is low with F1=0.36. In our
method, we use a similar notion of VTD but create it with a
different approach. We also introduce a classification system
that encompasses the main existing ones, including LOV, and
show high performance on large scale data. Spahiu et al. [13]
introduce the Topic Profiling Benchmark (TPB) for the task
and experiment with both single- and multi-label classifica-
tion. The benchmark consists of 198 datasets crawled from
LOD and annotated with the LOD cloud classification sys-
tem [19]. They use the same set of features used in in [11]
and show a maximum F1 = 0.43 in the multi-label clas-
sification experiments. We reuse TPB (cf. Section VI) to
create a larger (1002 datasets) training and testing corpus
(Section VII). Nogales et al. [14] propose a deep learning
architecture for assigning a (single) label to LOV ontologies.
The authors build a corpus of Wikipedia articles annotated
with Wikipedia Categories. The corpus (its word embedding
representation) is used to train and test a classifier with the
Random Multimodel Deep Learning approach. Although the
authors demonstrates high accuracy on the Wikipedia corpus
(∼93%), the accuracy drops significantly in the classification
of LOV ontologies (∼44%).

2) ALIGNMENT-BASED APPROACHES
Alignment-based methods exploit the linking structure of
LOD, in particular the existing alignments between a dataset-
to-classify and the knowledge domains in the classification
system.

OntClassifire [15] selects a sample of datasets as repre-
sentative for each domain. The classification is based on a
score indicating the similarity between the dataset-to-classify
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and the samples. The similarity score is based on linguis-
tic, structural and axiomatic features extracted from the
dataset. The approach was evaluated over a corpus containing
34 ontologies belonging to 6 domains. The approach shows
good performance in terms of precision and recall. Although
promising, the experiment is conducted on a small scale and
the classification system is very limited. It is unclear how
the sample datasets representing the domain are selected.
Lalithsena et al. [16] propose to classify datasets on the basis
of their (existing or discovered) alignments to a background
knowledge graph (KG) e.g., Freebase. The assumption is
that individuals of the dataset-to-classify are aligned with the
individuals of the background KG, and the individuals of the
background KG belong to classes associated with a knowl-
edge domain. The authors reported a good classification per-
formance (F1=0.72), but the experiments involved a limited
number of datasets (30), thus demanding further investigation
to demonstrate the generalisability of the approach. Similarly,
the method introduced by [17] assigns a ranked list of topics
to a dataset by linking its individuals to DBPedia categories.
It consists of three steps: (i) Extracting a sample of instances
from the dataset; (ii) Concatenating literal values associated
with each entity (essentially, building a VTD for each entity);
(iii) Identifying DBpedia entities mentioned in the text using
an Entity Linker (i.e. DBpedia Spotlight); (iv) Retrieving
and ranking the categories associated with the mentioned
DBpedia entities. The authors evaluated the method over
a collection of 129 datasets and demonstrated a maximum
Normalised Discounted Cumulative Gain (NDCG) of 0.4.
The NDCG measures the relevance (or gain) of a document
topic on its position in the result list. Even if the NDCG is not
directly comparable to F1 and accuracy (which are themetrics
used in the other studies), it gives us a rough indication of the
precision of the method.

The advantage of alignment-based methods is their unsu-
pervised nature. Their main disadvantage is the potential lim-
ited coverage and errors that may accompany the alignments,
which affects the performance.

B. EMPIRICAL ANALYSES OF LOD
Large-scale analyses of LOD have been performed since the
early years of the Semantic Web. We provide an overview of
the approaches most relevant to this paper.

1) OBSERVING PATTERNS AND MODELLING STYLE IN LOD
This class of works targets: (i) methods and tools for observ-
ing modelling practices; (ii) insights on common modelling
practices in LOD. This paper extends a framework presented
in [8] for observing the linking structure of classes and prop-
erties in LOD, the depth of their hierarchies, and their usage
in instance data.

A technique for extracting common conceptual compo-
nents (CC) from a corpus of ontologies is proposed in [24].
CCs are general concepts such as membership, partici-
pation, authorship, etc. that many (if not all) ontologies

have in common although they implement them in dif-
ferent ways. The authors show that CCs can be used
for indexing ontologies to support knowledge engineering
tasks such as ontology understanding, ontology reuse, and
ontology alignment. Another notion of pattern is extracted
by ABSTAT-HD [25] which summarises large knowledge
graphs as sets of Abstract Knowledge Patterns (AKPs) of the
form ⟨subjectType, predicate, objectType⟩. In [4], the authors
introduce an approach to identify anti-patterns and errors in
large KGs such as DBpedia and YAGO. The method devel-
oped in this paper may be used in combination with these
approaches e.g. to observe domain-specific CCs, AKPs and
anti-patterns.

2) ASSESSING (MIS)USE OF STANDARD KNOWLEDGE
REPRESENTATION LANGUAGES
A strand of research focuses on assessing the use and misuse
(i.e. the improper or incorrect use of classes and properties
with respect to their intended semantics) of standard repre-
sentation languages, such as RDF and OWL. Several stud-
ies [1], [2], [3], [26], [27] analyse the use of owl:sameAs
in practice. Mallea et al. [28] show that blank nodes, although
discouraged by guidelines, are prevalent on the Semantic
Web. Paulheim and Gangemi [29] analyse the coherence of
large LOD datasets, such as DBpedia, by leveraging foun-
dational ontologies. Observations on the presence of founda-
tional distinctions in LOD are reported in [30].

We share a common goal with these studies: to answer how
knowledge representation is used in practice, in the Semantic
Web. All existing work overlook the potential dependency
or association of phenomena with the knowledge domains
addressed by the analysed datasets. An exception is the
analysis performed by Schmachtenberg et al. [21]. Consid-
ering a small number of knowledge domains (LOD cloud
labels), the authors contextualise their analysis on how link-
ing, vocabulary usage and metadata provision are performed
in LOD. They only use domains provided by the dataset
owner and require manual annotation of datasets without
explicit domain.

We introduce a general methodology and tool support for
performing this type of analyses automatically and by cover-
ing a larger spectrum of knowledge domains.

III. EQUIVALENCE SET GRAPHS AND METRICS
To conduct large-scale semantic analyses on LOD, it is neces-
sary to calculate the deductive closure of very large hierarchi-
cal structures. To this end, [8] introduces the formal notion of
Equivalence Set Graph (ESG). Figure 1 shows an example of
ESG (Figure 1b) extracted from an RDF Knowledge Graph
(Figure 1a).

ESGs enable: (i) reducing the dimension of large hierarchi-
cal structures while keeping the desired semantic information
to be analysed; (ii) implementing efficient algorithms to per-
form large-scale semantic analysis on LOD; (iii) defining a
set of metrics that synthesise the semantic dimensions that we
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FIGURE 1. An example of RDF knowledge graph and its corresponding equivalence set graph.

aim to observe; (iv) observing the usage of classes, properties
and individuals in LOD.

Formally, an Equivalence Set Graph (ESG) is a tuple

⟨V, E, peq, psub, pe, ps⟩

For example, the ESG in Figure 1b is computed from
the RDF KG in Figure 1a by analysing equivalence and
specialisation relations between its classes. The nodes
V of the ESG are equivalence sets of entities e.g.,
{dbo:Person, dul:Person, foaf:Person}. The
directed edges E of the ESG are specialisation relations
(e.g. {dbo:Person,dul:Person,foaf:Person} spe-
cialises {dul:Agent, foaf:Agent}). Notice that the
edges of an ESG can be designed to also capture other mean-
ings e.g. disjointness.
peq is an equivalence relation (owl:equivalentClass)

that must hold between entities that belong to a same ESG
node. psub is a partial order relation that determines the
specialization relation between the equivalence sets (e.g.
rdfs:subClassOf).

It is possible to define equivalences and specialisations of
peq and psub by using pe and ps, respectively. This allows to
build ESGs based on more than one relation. All properties
that are equivalent to/specialisation of peq and psub will be
retrieved and used for building the ESG. For example, it is
possible to define

pe = owl:equivalentProperty

ps = rdfs:subPropertyOf

and then assert that

:myEquivalentClass pe owl:equivalentClass

:mySubClassOf ps rdfs:subClassOf

This will cause all triples using :myEquivalentClass
to contribute to the build the equivalent sets of the ESG
(along with owl:equivalentClass) and all triples
using :mySubClassOf to contribute to the specialisa-
tion relations between the nodes of the ESG (alogn with
rdfs:subClassOf) - cf. Figure 1.

In [8], two ESGs are computed from LOD-a-lot [31]
(LOD-a-lot integrates the 650K datasets crawled by LOD
Laundromat [20] into a single self-indexed RDF-HDT [32]
file which can be queried with a limited memory footprint):
one with nodes containing classes and one with nodes con-
taining properties. We reuse these ESGs and compute over
them a set of measures to observe the semantic structure of
LOD hirerachies, the level of their alignments, and the level
of usage/population of their classes. Observations reported in
Section VIII enrich the set of measures computed over these
ESGs and explore the relation between equivalence sets and
knowledge domains.

In this paper, we extend the ESG framework with the
knowledge domains addressed by entities and equivalence
sets of an ESG (cf. Section V). We also introduce the fol-
lowing metrics that can be computed by querying the ESG
and the knowledge domain annotations:

Percentage of observed entities belonging to a domain
(%OE): the number of entities (indicated as OE) of a domain
divided by the total number of entities in the ESG (expressed
as decimal).

Percentage of equivalence sets belonging to a domain
(%ES): the number of equivalence sets (indicated as ES) of
a domain divided by the total number of equivalence in the
ESG (expressed as decimal).

Ratio (R) between the number of equivalence sets and the
number of entities belonging to a certain domain (i.e. ES

OE ):
it indicates to what extent equivalence is used among the
observed entities of a certain domain. If equivalence is rarely
used, R approaches 1.0.

Percentage of non-instatiated entities of a domain
(%Ud): the ratio between non-istantiated entities of a domain
d and the number of entities belonging to d (expressed as
decimal). This indicates the tendency of a certain domain
(as observed in the considerd sample) to have non-instatiated
entities.

Percentage of non-instatiated entities (%Ut): the num-
ber of non-istantiated entities of a domain divided by
the total number of non-instatiatied entities in the ESG
(expressed as decimal). This metric measures the impact of
the non-istantiated entities of a domain on the whole graph.
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Density (D). The graph density is the ratio between the
number of edges connecting nodes (in a certain domain) and
the total number of edges in the ESG. The density indicates
how much the specialisation relation is used in a domain.

Domain Assortativity (A) indicates the likelihood of a
node (i.e. an equivalence set) to be connected to others of
the same domain. It ranges between 1 (assorative graph, i.e.
nodes of the same domain tend to be connected together)
and −1 (disassortative graph). In assortative graphs, there
is high likelihood that two nodes of the same domain are
connected, while in disassortative ones the likelihood is low.
When A is close to zero, the graph is neither assortative nor
disassortative.

Height of Nodes (H).The height h(v) of a node v is defined
as the length of the shortest path from a leaf to v. The maxi-
mum height of an ESG is defined as H = argmaxv∈V h(v).

IV. A REFERENCE CLASSIFICATION SYSTEMS OF
KNOWLEDGE DOMAINS
A Knowledge Domain (KD) is a topic identifying the sub-
ject area covered by a knowledge graph. KDs can be hier-
archically related by means of specialisation/generalisation
relations, i.e. narrower than/broader than. Several hierarchies
of KDs have been proposed as classification systems for
books, articles, web pages, lexical senses, or datasets. They
differ in their expressivity, coverage, structure, design prin-
ciples and purpose. A classification system should have a
large coverage of KDs, however it is a challenge to find a
good balance for their dimension: a too large classification
system makes the classification task hard for both humans
and machines, while a too small one makes the classifica-
tion less effective in concrete applications such as searching,
indexing, etc. Instead of defining yet a new hierarchy from
scratch, we align and integrate popular KD classification
systems: Wikipedia Categories,8 Dewey Decimal Classi-
fication,9 Library of Congress Classification,10 WordNet
domains [33], BabelNet domains [34], LOD cloud classifi-
cation [19], LOV keywords [18].

A. WIKIPEDIA CATEGORIES
Wikipedia is a web-based encyclopedia that anyone can edit.
EachWikipedia entry is associated with at least one category.
Wikipedia categories are often interpreted as KDs (e.g. [14])
since they form one of the richest KD hierarchies available
today containing over 2M concepts. Wikipedia categories are
hierarchically related, meaning that each category is linked
to broader and narrower categories, forming a conceptual
network often used in knowledge engineering for classify-
ing entities. This network can be formally represented as a
directed and non-acyclic graph. However, this graph is noisy:
it has many cycles thus hindering the possibility of applying a
full-fledged taxonomical reasoning and it contains concepts

8https://en.wikipedia.org/wiki/Wikipedia:Contents/Categories
9https://www.gutenberg.org/files/12513/12513-h/12513-h.htm
10https://www.loc.gov/catdir/cpso/lcco/

used only for administrative purposes (e.g. Articles created
by bots) or very narrow (e.g. 21st-century Roman Catholics)
which are unsuitable for our purpose. Therefore, similarly
to previous approaches (e.g. [14], [34]), we consider only
a limited set of manually curated categories that classify a
subset ofWikipedia ‘‘featured articles’’11 (the articles serving
as guide forWikipedia editors). These categories change over
time (at the time of [34] they were 34, at the time of writing
this article they are 30).

B. DEWEY DECIMAL CLASSIFICATION
The Dewey Decimal Classification (DDC) is one of the most
used library classification systems for organising the contents
of a library, it divides all KDs into 10 groups. The DDC
assigns 100 numbers to each group: 000-099 computer sci-
ence, information and general works; 100-199 philosophy
and psychology; 200-299 religion; 300-399 social sciences;
400-499 language; 500-599 science; 600-699 technology;
700-199 arts and recreation; 800-899 literature; 900-999 his-
tory and geography. These groups are further divided into
more specific subgroups (e.g. science is divided into: 510-519
Mathematics; 520-529Astronomy; 530-539 Physics etc.) and
subgroups are further divided (e.g. Mathematics is divided
into: 511 General principles; 512 Algebra etc.). The DDC is
also the basis of the Universal Decimal Classification (UDC)
which further specialises DDC numbers.

C. LIBRARY OF CONGRESS
Similarly to DCC, the Library of Congress Classification
(LCC) is a system of library classification developed by the
Library of Congress in the United States aimed at organ-
ising the content of a library. The LCC defines 21 classes
knowledge domains: (A) General Works; (B) Philosophy,
Psychology, Religion; (C) Auxiliary Sciences of History;
(D) World History; (E) History of America; (F) Local His-
tory of the Americas; (G) Geography, Anthropology, Recre-
ation; (H) Social Sciences; (J) Political Sciences; (K) Law;
(L) Education; (M) Music; (N) Fine Arts; (P) Language
and Literature; (Q) Science; (R) Medicine; (S) Agriculture;
(T) Technology; (U) Military Science; (V) Naval Science;
(Z) Bibliography, Library Science.

D. WordNet DOMAINS AND BabelDomains
TheWordNet Domains Hierarchy [33] is a collection of∼200
hierarchically organised KDs exhibiting specific terminology
and lexical coherence. These KDs are used for annotating
WordNet synsets (each synset is associated with at least one
KD). Similarly, Camacho-Collado and Navigli [34] propose
a method for automatically annotating BabelNet’s synsets,
with the categories of the Wikipedia’s featured articles page.
Differently from WordNet Domains, in BabelDomain the
association synset-domain is weighted with a score ranging
from 0 (unrelated) to 1 (highly related).

11https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
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E. LOD CLOUD CLASSIFICATION
The LOD Cloud website [19] collects metadata describing
LOD datasets published on the web voluntarily submitted
from their maintainers, and publishes a graphical representa-
tion of them: the LOD cloud. These datasets are categorised
by the contributors according to a classification system con-
sisting of nine classes: 1) Cross Domain, 2) Geography,
3) Government, 4) Life Sciences, 5) Linguistics, 6) Media,
7) Publications, 8) Social Networking, 9) User Generated.

F. LOV KEYWORDS
Linked Open Vocabularies (LOV) [18] is a project collecting
vocabularies (ontologies) used for publishing Linked Data.
It provides an indexing/searching service based on metadata
provided by the vocabulary maintainers. Among the metadata
fields, the contributors are required to provide a set of key-
words describing the submitted vocabulary. Therefore, the set
of keywords may expand over time. In this paper, we refer
to a LOV snapshot downloaded on 2022-01-09 (available
online at12) which contains 43 keywords. In most cases the
keywords indicate the KDs addressed by the vocabulary (e.g.
Biology, Music, Geography). Some keywords may indicate
the project in which the ontology has been defined (e.g.
SPAR, SSDesk) or the type of the vocabulary (e.g. RDF,
W3C’s Recommendation).

G. DESIGN PROCESS
Our goal is to define a classification system that encompasses
all the KDs defined by the existing, just described, ones. Such
a classification system consists in a collection of concepts D,
and a set of hierarchical relations among themH.We approach
the design of D and H as an alignment problem. We perform
the following process. (i)We add to D all the KDs belonging
to the top level of each classification system. As for the
WordNet classification we also include the second level of
KDs since the first level is very general compared to the other
classification systems. (ii)We discard catch-all concepts (e.g.
Cross-domain from LOD Cloud, General&Upper from LOV,
Factotum from WordNet, General Works from LCC). This
strategy is also adopted for building Topic Profiling Bench-
mark (TPB) [13]. (iii) We manually align the concepts in
D. Similar concepts are merged (e.g. Geographic from LOD
Cloud expresses the same concept denoted by Geography
from LOV). Hierarchical relations are specified in H to link
broader/narrower concepts. (iv) We homogenise the labels
of the concepts and define a description for all of them. (v)
We remove from D narrow concepts (e.g. History of America
and History of Americas from Library of Congress). The
resulting classification system is summarised in Table 3 and
is available online as a SKOS vocabulary4. It consists of
59 concepts generalised by 6 (additional) concepts. It is used,
in the remainder of the paper, as the reference classification
system to automatically classify LOD datasets.

12https://w3id.org/eke/KDA/InputRDF/lov.nq

V. AUTOMATIC CLASSIFICATION OF LOD DATASETS
BASED ON KNOWLEDGE DOMAINS
We approach the problem of LOD dataset classification as
a multi-label classification task using a machine learning
method. Multi-label classification is the problem of predict-
ing a set of categories to which an entity belongs, given
a set of examples for each category, called a training set.
The training set is processed by an algorithm to learn a
predictive model based on the observation of a number of fea-
tures (features can be categorical, ordinal, integer-valued or
real-valued).

Most of existing approaches require the extraction of sev-
eral features such as the URIs of the classes, properties and
vocabularies occurring in the dataset, the name of the host
publishing the dataset etc. - cf. Section II). Our method uses
a different approach and relies on the extraction of a textual
representation for each dataset, called Virtual Text Docu-
ment (VTD). A VTD is used to classify its corresponding
dataset, thus reducing the dataset classification task to a text
classification problem. We experiment with six multi-label
classification algorithms: Random Forest, K-nearest neigh-
bours, Extra Trees, XGBoost, Ada Boost andMulti-layer Per-
ceptron. Details and results of the experiments are provided
in Section VII. This approach (VTD) improves the generality
of the predictive model, since tokens are more likely to be
found across datasets than URIs. It also reduces the depen-
dency of the features from the modelling style of the creator
of the dataset. For example, in the Linnean Taxonomy pat-
tern,13 the ranks of the taxon are classes (e.g. lt:Species,
lt:Genus,lt:Family etc.), while the uniprot ontology14

models the rank as a property (i.e. up:rank) connecting a
up:Taxon (e.g. Engraulis encrasicolus15) to a up:Rank
(e.g. up:Species). If we would train a classifiers only
with URIs of classes and properties, we would not consider
up:Species as a feature of the uniprot ontology since in
uniprot it is an individual of the class up:Rank. This would
reduce the similarity with the Linnean Taxonomy pattern.

EXTRACTING VTDs FROM DATASETS
To extract the VTD from a dataset we parse the dataset twice.
The first parsing collects all the entities (i.e. URIs and Blank
Nodes) occurring in the dataset with their labels:
(i) the process iterates over the triples to find a matching

with the following pattern: ?entity ?labelPredicate
?label where ?labelPredicate is rdfs:label or
one of its equivalents or sub-properties (a query for retrieving
equivalent or sub-properties is needed in case those proper-
ties are not provided as input of the process - for example
by retrieving them from a pre-computed Equivalence Set
Graph [8]); (ii) if multiple labels are associated with the same
entity these are concatenated; (iii) if a dataset does not provide
a label for an entity, the ID of the entity (the rightmost part

13http://ontologydesignpatterns.org/wiki/Submissions:LinnaeanTaxonomy
14https://www.uniprot.org/
15http://purl.uniprot.org/taxonomy/184585
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of its URI or the id of a Blank Node) is indexed instead. The
second parsing builds, for each triple, a sentence of the form
‘‘subject predicate object’’ where: (i) subject
and predicate are the labels of the subject and predicate
of the triple, respectively; (ii) object is either the label of
the object of the triple (if the object is a URI or a blank node)
or a string (in case the object is a literal). The concatenation
of these sentences forms the VTD for a dataset. For example,
consider the sample dataset below:

@prefix ex: <http://example.org/>.
@prefix rdfs: <http://www.w3.org/2000/

01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/

22-rdf-syntax-ns#>.
@prefix foaf: <http://xmlns.com/foaf/

0.1/>.

ex:monitor rdfs:label ‘‘monitor’’.
ex:monitor rdfs:comment ‘‘A Computer

monitor is an output device that
displays information in pictorial
or text form’’.

ex:label rdfs:subPropertyOf rdfs:label.
ex:monitor ex:label ‘‘screen’’.
ex:monitor rdf:type ex:Device

The corresponding VTD is the following:

monitor screen label monitor
monitor comment A Computer monitor is an

output device that displays
information in pictorial or text form

label subPropertyOf label
monitor screen label screen
monitor screen type Device

EXTRACTING FEATURE VECTORS FROM VTDs
The process for extracting feature vectors from the VTDs
consists of three activities: (i) Pre-processing; (ii) Vectorisa-
tion; (iii) TF-IDF computation.

The pre-processing phase reduces the randomness and
inflectional forms of the text and it involves the following
activities: (i) Camel case removal (e.g. ‘‘subPropertyOf’’ →

‘‘sub Property Of’’); (ii) Tokenisation (by evaluating the reg-
ular expression [a-zA-Z][a-zA-Z]+) and conversion to
lowercase (e.g. ‘‘label sub Property Of label’’ → ‘‘label’’,
‘‘sub’’, ‘‘property’’, ‘‘of’’, ‘‘label’’); (iii) Lemmatisationwith
simplelemma16 (e.g. ‘‘displays’’ → ‘‘display’’ or ‘‘is’’ →

‘‘be’’); (iv)Stopword removal with python stop-words pack-
age17 and by also stripping a list of tokens very common in
RDF datsets and OWL ontologies (such as: label, comment,

16https://pypi.org/project/simplemma/
17https://pypi.org/project/stop-words/

ontology, class, property etc.) which contribution is irrelevant
to the KD of the dataset.

The vectorisation phase transforms a VTD into a
integer-valued vector whose values are associatedwith tokens
of the document. A dictionary containing all the tokens men-
tioned in the VTDs is built, and a vector of the size of the
dictionary is created for each document (i.e. each position in
the vector corresponds to a token of the dictionary, uniquely).
To compute the values of the vectors, we experiment with
two kinds of vectorisation: (i) Binary in which the value 1 is
assigned to the positions associated with tokens contained in
the VTD, 0 otherwise. (ii)Count in which the value represents
the number of times the token is mentioned in the VTD.

Finally, for each token of the VTD we compute its TF-IDF
score. The TF-IDF is a real number indicating how relevant
a token is to a document with respect to a collection of
documents. The TF-IDF score is the product of the token
frequency within a document (TF) with the frequency inverse
of the token within the whole corpus (IDF).

Binary and TF-IDF vectors are used for training and test-
ing the predictive model, while the Count vectors serve for
computing TF-IDF scores only.

A simplified vectorisation of a VTD is the following.

A. PROPAGATION OF KNOWLEDGE DOMAINS
The classification of the datasets according to their KDs
allows us to observe the varying behaviour of LOD, at dataset
level. To observe the behaviour at entity level (classes and
properties), LOD entities need to be classified according
to the KDs. To this end, we propagate KDs assigned to a
dataset to its entities (classes and properties occurring in the
dataset). It is worth noticing that an entity, formally identified
by a URI, may occur multiple times in multiple datasets.
Therefore, an entity is classified by a set of all KDs assigned
to all the datasets in which the entity occurs in.

To observe the varying behaviour of knowledge domains
through equivalence and specialisation relations, we propa-
gate domain classification to equivalence sets. Specifically,
KDs assigned to an entity are propagated to the equivalence
set which includes the entity.

VI. A REFERENCE CORPUS FOR LOD CLASSIFICATION
To experiment with our classification approach
(cf. Section V), we create a reference corpus of LOD
datasets manually classified according to the classifica-
tion system presented in Section IV. The resulting corpus
includes datasets from three sources: (i) ontologies indexed
by LOV [18], (ii) datasets crawled by LOD Laundromat [20],
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(iii) the Topic Profiling Benchmark (TPB) [13]. The corpus
is available online 5.

A. SELECTING A SAMPLE OF LOD DATASETS
A representative sample of LOD datasets satisfies the fol-
lowing requirements: (i) it must contain a similar amount
of RDF graphs (ABox) and ontologies (TBox); (ii) it must
provide examples for (ideally all) the KDs of the reference
classification. To the best of our knowledge, the Topic Pro-
filing Benchmark (TPB) [13] is the only collection that par-
tiallymeets these requirements. TPB consists of 198 datasets
crawled from the LOD Cloud and only covers the KDs from
the LOD cloud classification. Therefore, to cover as many
KDs as possible, we add datasets and ontologies crawled
from the Linked Open Data. We also consider the possibility
of filling this gap with text articles, e.g. from Wikipedia.
Nevertheless, as reported by Nogales et al. [14], a predictive
model learned from a corpus of text articles is likely to show
low performance when applied on VTDs (from ∼93% of
accuracy on text articles to ∼44% on VTDs).

Therefore, we collect datasets from two additonal sources:
(i) LOV [18], which contains 773 vocabularies used for
publishing Linked Data; (ii) LOD Laundromat [20], which
contains ∼650K RDF datasets crawled from LOD.
We add all ontologies from LOV having a textual descrip-

tion and associated with at least one keyword. Keywords and
descriptions are the minimal information needed for under-
standing the KD of an ontology. As a result, 751 ontologies
are added to the reference corpus.

To have an equal number of RDF graphs and ontolo-
gies, we select 751 RDF graphs from LOD Laundromat.
Differently from LOV which provides descriptive metadata
in natural language (e.g. keywords and descriptions), LOD
Laundromat stores only numerical indicators of the quality of
the collected datasets. Although these indicators are valuable
for assessing the syntactic quality of a dataset, it is useless in
identifying its KD. As a result, we face two challenges: (i) A
natural language description is to be automatically generated
from datasets in order to avoid the annotators to go through
the triples of the dataset during their job; (ii)A representative
sample of datasets is to be selected from the 650K datasets
crawled by LOD Laundromat.

To generate a dataset’s description, we resort to the notion
of VTD: we extract VTDs from the LOD Laundromat’s
datasets (as described in Section V), we compute the TF-IDF
of the terms within the VTDs and we associate with each
dataset a description consisting of the list of the 50 most
significative terms (those with the highest TF-IDF score).

While defining a strategy to select a representative sample
of LOD datasets, we observe that many datasets crawled by
LOD Laundromat come from few sources (e.g. ∼139K from
the Open Data of the World Bank,18 ∼10K from DBpedia,
∼18K from Eurostat19 etc.). A random selection would cause

18https://data.worldbank.org/
19https://ec.europa.eu/eurostat

a strong unbalance towards most represented sources. There-
fore, we cluster the datasets according to their source and
we go through all cluster randomly selecting one dataset at
each iteration until we reach the desired amount: 751. For
clustering the datasets we use the KMeans algorithm. The
optimal number of clusters, i.e. 128, was computed with the
Elbow method.

B. CLASSIFYING DATASETS WITH KNOWLEDGE DOMAINS
The datasets included in TPB are classified according to the
LOD cloud labels [13]. We exploit the links between LOD
cloud labels and the KDs in our classification system.

The datasets collected from LOV and LOD Laundromat
are manually annotated. The annotation involves 9 junior
researchers in knowledge engineering who were trained on
the reference KD classification system. Each dataset is clas-
sified by three researchers, independently. Each annotator
is asked to indicate up to three KDs. No classification was
indicated in case of general-purpose, cross-domain datasets
(e.g. the Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE)20).
We compute the inter-rater agreement using the Krippen-

dorff’s alpha coefficient (αk ). Values of αk range from −1
to 1, where 1 indicates perfect agreement, 0 indicates no
agreement and negative values indicate inverse agreement.
Krippendorff suggests that it is customary to require αk
greater than 0.8 and consider 0.667 as the lowest conceivable
limit. We measure both the αk considering all the anno-
tations of all datasets together, which indicates the overall
agreement of the annotators, and the αk for each dataset,
which expresses the inter-rater agreement on each dataset,
individually. As for the LOV datasets, the measured αk
was 0.64 (slightly under the threshold of 0.667) thus indi-
cating that the agreement is nearly sufficient. To select a
reliable collection of classified datasets for experimenting
with classification methods, we exclude the datasets clas-
sified with low inter-rater agreement (i.e. αk < 0.667) and
those (54) identified by all annotators as cross-domain. The
overall inter-rater agreement associated with the remaining
315 classified datasets increased to 0.90. The classification
sets provided by different contributors on a dataset may
differ (e.g. the Video Game Ontology, abbreviated VGO,21

was classified as Recreation by two researchers and
Recreation and Sport by the third). In such cases the
union of all the annotation sets (e.g. Recreation and
Sport for the VGO) is kept for the training data. From
this sample, we observe that the most common domains in
LOV are Computer Science (60/82 - 60 are the datasets
classified as Computer Science only, 82 in combination
with other domains), Geography (16/44), Linguistics
(16/19), Bibliography (12/17), Law (10/27).

As for LOD Laundromat, the value of αk is 0.85.
We exclude 67 datasets annotated as cross-domain by all

20http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
21http://purl.org/net/VideoGameOntology
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the contributors and those (199) having αk lower than
0.667. The αk increased to 0.98, showing a nearly per-
fect agreement between the contributors on classifying the
selected datasets (489). Most common domains in the
observed sample fromLODLaundromat areMeteorology
(388/401), Geography (14/19), Sociology (18/22),
Economy (8/17).

OVERVIEW OF THE REFERENCE CORPUS OF DATASETS
The reference corpus consists of 1002 datasets: 198 from
TPC, 315 fromLOV, and 489 fromLODLaundromat.We add
general KDs to the manual classifications by using the hierar-
chical relations from the classification system. For example,
if a dataset is classified byMeteorologywe also include its
super-domains Earth and Pure Science. We compute
the number of datasets belonging to each KD. Such distribu-
tion is summarised in Table 3 (column T). We observe that:

• 54 out of 65 KDs have at least one representative
dataset. 11 KDs are not represented: Dance, Plastic
Arts, Astrology, Astronomy, Paleontology,
Physics,Religion,Fashion,Naval Science,
Royalty and nobility, Physics, Astrono
my;

• The most represented KD is Pure Science which
comprises 523 datasets, mainly belonging to Earth
(494), Meteorology (405) and Geography (89).
Social Science (315), Applied Science
(128), and Bibliography (104) are also quite fre-
quent in the collection;

• 8 domains (Theatre, Archaeology, Oceanogra
phy, Philosophy, Psychology, Sexuality,
Literature, Drawing) are only addressed by one
dataset.

Although there are techniques for learning predictive models
from unbalanced training sets with classes having few exam-
ples (e.g. ML-SMOTE [35]), further research is needed to
handle unrepresented domains. As for this study, we exper-
iment with KDs that have at least one representative in the
reference corpus and leave to future work the investigation of
strategies to cope with this issue. The classified datasets are
available online5.

VII. EVALUATING THE AUTOMATIC CLASSIFICATION
OF LOD
We evaluate our classification method (cf. Section V) against
the reference corpus presented in Section VI. The datasets
from the corpus are vectorised according to the proce-
dure described in Section V. We test both the Binary and
the TF-IDF vectorisations. In both cases the corpus was
pre-processed as follows.

A. PREPROCESSING
The vectors have 1,492,822 components; therefore, the ref-
erence corpus is represented by a matrix of 1,002 rows and
1,492,822 columns. This matrix is very sparse (the sparsity

scored 0.9922) and unsuitable for classification algorithms.
A countermeasure to this issue is to perform a linear dimen-
sionality reduction by means of truncated singular value
decomposition (SVD). After this process, the number of
columns reduces to 100 (which is the recommended dimen-
sion for a corpus of 1K documents [36]) while preserving the
latent semantic of the matrix.
To validate the stability of the machine learning model,

we perform a 10-fold cross-validation. To this end, we extract
10 folds from the corpus using a stratified sampling technique
tailored for the multi-label classification problem [37] (the
implementation of the method is provided by the iterative
stratification library23). Each fold consists of a set of training
examples (90% of the original collection) and a set of test
examples (10%).
As illustrated in Table 3, the number of examples varies

a lot across domains. This would make the classifier
tend towards the most represented classes. Therefore, we
re-sample the training datasets using ML-SMOTE [35],
a technique for producing synthetic examples for the less
represented classes.
We standardise the training and testing datasets using:

(i) the sklearn’s Standard Scaler, which removes the mean
value of each feature and scale it by dividing by their standard
deviation (as a result each feature has 0 mean and unit vari-
ance); (ii) the sklearn’s Normalizer which scales each sample
to have unit norm.
Finally, we train and test, on each of the 10 fold (i.e. 90%

of examples for training, 10% for testing), six multi-label
classification algorithms: Random Forest, K-nearest neigh-
bours, Extra Trees, XGBoost, Ada Boost and Multi-layer
Perceptron. We refer to the scikit-learn24 and XGBoost25

libraries for the implementation of the algorithms. All the
algorithms are initialised with default hyperparameters. The
code and the instructions for reproducing the classification
experiments are available online.26

B. RESULTS
Table 1 reports the results of the classification experiments.
The results are expressed in terms of the mean and the
standard deviation (indicated as σ ) over the 10 folds of
the micro-averaged precision, recall, and F1. We remark
that the Multi-Layer Perceptron model failed to converge,
hence, the reported precision, recall and F1 are unreliable.
If we look at the precision only, all the classification algo-
rithms perform well. In fact, precision ranges from 0.79
and 0.90. The recall falls significantly in most cases. This
suggests that the trained models return a limited number of
labels but most of them are correct. Considering the purpose
of our study, high precision is desirable.

22The sparsity is calculated as 1 −
n
c where n is the number of non-zero

elements in the matrix and c is the total number of elements in the matrix.
23https://github.com/trent-b/iterative-stratification
24https://scikit-learn.org/
25https://xgboost.readthedocs.io/en/stable/
26https://github.com/empirical-knowledge-engineering/kda
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TABLE 1. Results of the classification.

We also observe that both vectorisation strategies (Binary
and TF-IDF) have comparable performance, but the Binary
performs slightly better (a similar behaviour has been
observed by [13]). Since Binary is also simpler than TF-IDF,
it can be considered as a default vectorisation strategy for this
classification task.

XGBoost shows the highest F1 measure, thus indicating
that it performs well in terms of both precision and recall.
Moreover, the metrics calculated across the different folds
are also the most stable (since the standard deviation is one
of the lowest for all the metrics). This designates XGBoost
as the preferable classification algorithm for annotating LOD
datasets.

VIII. OBSERVATIONS AND DISCUSSION
This section reports the observations that we perform on
Linked Open Data relying on the metrics summarised in
Table 3, presented in Section III. Note that, the table
reports twice the domains (i.e. Medicine, Biology,
Engineering, Architecture) that inherits frommulti-
ple domains and percentage values are expressed as decimal.
Coherently with the general research question introduced in
Section I, whether the observed phenomena reported in [8]
have a domain-specific character, we want to address the
following: (i) what KDs are covered by LOD; (ii) if and how
ontology reuse varies as the KDs vary; (iii) if and how the
empty-extension phenomenon is KD-dependent; (iv) if the
depth degree of class/property hierarchies varies as the KDs
vary.

A. KNOWLEDGE DOMAINS ADDRESSED BY LOD
The predictive model trained with XGBoost is used for classi-
fying all datasets included in LOD Laundromat [20], accord-
ing to the reference classification system of KDs defined
in Section IV. The results are summarised in Table 3. L is
the number of datasets per domain and %L indicates, the
percentage of LOD-Laundromat’s datasets classified by a
given KD (for completeness the table reports the value T : the
number of datasets classified by that domain that are present
in the training set).Moreover, Figure 2 depicts the distribution
of KDs in LOD Laundromat as a treemap. Each rectangle in

27Multi-Layer Perceptron failed to converge, hence, the reported preci-
sion, recall and F1 are not reliable.

the Figure is proportional to the (logarithm of the) number
of datasets in LOD Laundromat classified by that domain.
Note that the logarithmic scale improves the readability of the
low represented domains, but flattens the differences between
domains (e.g. Pure Science and Social Science
rectangles have nearly the same area, but they count ∼ 604K
and ∼ 35K datasets respectively).

1) KNOWLEDGE DOMAINS OF DATASETS
We observe that LOD Laundromat covers 35 KDs. Con-
sidering an individual dataset as our observation unit, 91%
of them (604K out of ∼658k) are classified by the Pure
Science KD. These include 594K Earth datasets, which,
in turn, are mostly from Meteorology (582K). Other
sub-domains of Pure Science that show good coverage
are Geography (10K), Chemistry (8.9K) and Geology
(7.8K). Social Science also shows a wide coverage
with 35K datasets mainly from Sociology and Economy.
Applied Science and Life Science are covered by
∼10K datasets each.

There are 8.3K unclassified datasets. A manual inspec-
tion (performed by one of the authors) reveals that ∼5.6k
of them are Cross-Domain - mainly coming from DBPedia
and the Billion Triple Challenge (BTC) [38]). The remaining
ones pertain Social Science (1,925), e.g. datasets from
Eurostats - and Scientific Research & Academy
(455), e.g. Semantic Web Dog food28). The presence of∼1%
of cross-domain datasets in LOD confirms previous obser-
vations in [11]. A possible explanation of a large number
of meteorological datasets is that it is a common publica-
tion strategy of this KD to release datasets daily (e.g. 29

and30 report on the air temperature observed on 2008-9-2 and
2009-9-17 by the KNOESIS Laboratory31). This raises a
question on how this aspect can be taken into account to
compute KD coverage of a distributed knowledge graph such
as LOD in a more precise way.

Considering thatChemistry,Geography andSocial
Science, Medicine, and Social Networking KDs
have a long tradition in LOD, it is reasonable to see them
among the most covered in LOD Laundromat. There are
nineteen KDs that are under-represented in LODLaundromat
(cf. Section VI): eight that are only addressed by one dataset
(each) and eleven that are not (yet) addressed.

2) KNOWLEDGE DOMAINS OF CLASSES AND PROPERTIES
Although LOD datasets are de facto coherent thematic units
constituting LOD, to assess KD coverage of LOD it is impor-
tant to analyse KDs at the level of knowledge graph entities
(classes and properties), as observational units. As explained
in Section V, an entity inherits (is classified by) the KDs

28https://old.datahub.io/dataset/semantic-web-dog-food
29https://w3id.org/eke/KDA/InputRDF/Laundromat/85/852b4b986c5f50

306c8a52f28377f68e/data.nq.gz
30https://w3id.org/eke/KDA/InputRDF/Laundromat/79/793bbbfdedd8aa

69457beedbef98242f/data.nq.gz
31https://engineering-computer-science.wright.edu/lab/knoesis
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TABLE 2. Pearson’s correlation coefficient domain-by-domain between pairs of metrics.

from the datasets that contain it, independently of whether
it is defined or reused in them. Based on this information,
the metrics presented in Section III are computed. They are
summarised here for the sake of readability: %OE (% of
entities in a KD), %ES (% of equivalent sets per KD), R
(equivalences among entities in a same KD), %Ud (% non-
intantiated entities in a KD), %Ut (% of non-instantiated
entities in a KD on the total of non-instantiated entities), D
(usage of specialisation relation in a KD), A (connections
between nodes of the same KD) and H (height of a node in
the ESG). The results are reported in Table 3.
Using an entity-driven perspective, we observe that

LOD Laundromat covers Pure Science and Social
Science in a similar way. If compared with the dataset
perspective, it can be noticed that Pure Science datasets
are 0.919 of the total number of datasets in LODLaundromat,
while the number of Pure Science entities is 0.214 of
the total number of LOD-Laundromat entities. The Social
Science domain is instead the largest one, with 0.262 of
the total number of entities. This indicates that the datasets
classified by Pure Science are generally smaller but
numerous. The dimension and numerousness of datasets may
be KD-dependent aspects. An interesting question is whether
they depend on dataset design strategies or other practice
followed by that domain’s community, e.g. the frequency of
update publications.

B. ONTOLOGY REUSE IN LOD
Following the definition by [39], we distinguish between
direct and indirect reuse of ontology entities. Direct reuse
is performed when an existing ontology is used to encode
a RDF graph. For example, instead of defining a class
my:Organisation to type individuals in a RDF graph,

the class dbo:Organisation from the DBpedia ontol-
ogy32 is reused. An ontology entity is indirectly reused
when an ontology links (aligns) to it by means of equiva-
lence or specialisation relations. For example, when a class
ex:MyOrganisation is defined in an ontology and then
linked as equivalent to (i.e. owl:equivalentClass)
foaf:Organisation.

1) DIRECT REUSE
As L approaches %OE (e.g. in the Pure Science
domain), classes and properties are more likely to be directly
reused by different datasets. This might indicate that the
community associated with the KDs showing this behaviour
prefer direct reuse (over indirect) of classes and proper-
ties, although further investigation is needed to support this
conclusion (e.g. by inspecting specific usage of classes and
properties). In light of this observation, we further investigate
the distribution of entities in LOD Laundromat datasets. For
each entity, we compute the number of datasets in which
it occurs. The results are available online at.33 We inspect
the 100 most frequent entities. The entities showing the
largest (direct) reuse are from the meteorological domain
(after excluding the entities from RDF and OWL standard
languages). For example, predicates and classes defined in
the Knoesis’s Sensor Observation ontology [40] occur in half
of LOD Laundromat datasets. This observation is inline with
the dataset classification results, since these entities belong
to the Meteorology KD. We also notice the occurrence
of entities from standard or very popular ontologies, such as

32https://dbpedia.org/ontology/
33https://github.com/empirical-knowledge-

engineering/kda/blob/main/EntityReuse.md
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TABLE 3. Summary of the statistics discussed throughout the paper.

Dublin Core,34 Friend Of A Friend (FOAF)35 and the W3C’s
Time Ontology.36 This observation also gives insights on the
most used ontologies across domains.

2) INDIRECT REUSE
Indirect reuse of entities through equivalence relations is
measured by R (see Table 3): the closer R is to 0 the higher
the reuse through equivalence relations, the closerR is to 1 the
lower the reuse through equivalence relations.

34https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
35http://xmlns.com/foaf/0.1/
36https://www.w3.org/TR/owl-time/

We observe that R varies as the KDs vary as far as reuse
of classes is concerned. For properties, low reuse by equiv-
alence looks a KD-independent practice, with a couple of
exceptions.

Looking at class reuse, Life Science (R = 0.960)
shows the highest values for R. The Pure Science
KD (R = 0.558) shows a very variable behaviour for
R when looking at its subdomains: the subdomain show-
ing the lowest reuse is Biology (R = 0.998), which
is also a subdomain of Life Science. The other sub-
domains have significantly higher level of reuse (R <=

0.334). Low reuse is also observed in Linguistics (R =

0.822) and Art, Architecture and Archeology
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FIGURE 2. The distribution of KDs in LOD Laundromat.

(R = 0.748). TheSocial ScienceKDalso show a rather
low level of reuse (R = 0.717), its subdomains have
a very variable behaviour: from Political Science
(R = 0.965) to Mediology (R = 0.073), which is
among the ones that shows the highest reuse of classes.
In summary, we can recognise a cluster of KDs showing a
high reuse of ontologies through class equivalence (R <=

0.14):Geography,Geology,Mediology,Political
Science,Sport, Recreation,Scientific Rese
arch, and Bibliography). And a cluster of KDs showing

low reuse of ontologies through class equivalence (R >=

0.9): Biology, Medicine, and Political Science.
This observation gives a good motivation to specialised
ontology alignment effort as these KDs may highly benefit
from it.

Looking at properties, it is confirmed that equivalence
is rarely used (as noted in [8]), with notable exceptions:
the Chemistry and Medicine KDs. These two KDs are
pioneers in publishing their data as LOD. This deviation in
the usage of the equivalence between properties could be
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partly explained with practices used for guaranteeing back-
ward compatibility of URIs.37 For instance, this behaviour
is observed (by manual inspection) in the healthcare vocab-
ulary.38 It is noticed that Chemistry shows high indirect
reuse for both classes and properties, while Medicine is
among the KDs with lower indirect reuse, for classes.

3) USAGE OF SPECIALISATION RELATION
The specialisation relation is more used between classes than
between properties (D significantly differs for the majority
of KDs). Exceptions to this behaviour are observed for the
Medicine and Bibliography domains, in which inher-
itance is more frequent between properties than classes.

We find that entities tend to attach to others of differ-
ent KDs (A scores are usually less than 0.2). A different
behaviour is observed in the Biology KD in which classes
tend to attached within the same KD, exclusively (A =

0.962).
The common modelling practice in defining huge hier-

archies of taxa (e.g. Linnean Taxonomy) may contribute to
increment the assortativity in this KD. Nevertheless, it is also
observed that Biology datasets are often published in cen-
tral repositories (e.g. BioPortal39) and we can speculate that
this practice fosters the findability of entities, thus providing
LOD practitioners with better support for linking entities in
their same KD.

C. EMPTY EXTENSIONS
We observe that among the ∼3M classes with empty exten-
sions there are 987K blank nodes. For them, the lack of
individuals is easily justified. After removing these entities,
the majority of classes with empty extension (Ut = 0.249)
are from Life Science. We remind that this domain is
the third most covered in LOD Laundromat (%OE = 0.125),
with ∼757k entities and ∼10k datasets. It is also among the
ones showing the lowest ontology reuse. Let us consider its
subdomains Biology and Medicine. Although we cannot
provide a comprehensive explanation of this phenomenon,
we can inspect some of the most popular datasets to formu-
late hypotheses. As for Biology, most classes have empty
extension (Ud = 0.997), while properties are instantiated.
This is compatible, for example, with the design practice of
the Gene ontology40 where all terms are defined as classes
under a top level of three classes (Molecular Funcion,
Cellular Component, andBiological Process).
These classes are used, in practice, as subjects and objects
of triples applying de facto OWL punning. One question is
whether the modelling practice of the Gene ontology repre-
sents a general modelling pattern from this KD and why. The
other subdomain Medicine shows a different behaviour:

37To maintain semantic coherence, entities that change URIs across dif-
ferent releases of the same dataset are aligned by equivalence axioms.

38https://purl.org/healthcarevocab/v1
39https://bioportal.bioontology.org/
40http://geneontology.org/

classes are instantiated while most of the properties have
empty extension (Ud = 0.819).
The rest of non-inistantiated entities mainly belong to the

Social Science KD. A question that raises is whether
the two KDs (Life Science and Social Science)
use LOD for similar types of applications and whether this
impacts on their modelling practice. And similarly, whether
the other KDs showing a different behaviour are characterised
by different application usage of LOD.

D. DEPTH DEGREE OF HIERARCHIES
Finally, we observe that, except the Sociology KD, which
hierarchies reaches up to the 33 levels, hierarchies have
maximum 7 levels (H is maximum 7). We manually inspect
the deepest hierarchy in the Sociology domain to find
that its entities occur in a dataset from the BTC.41 This
dataset collects information about people (mainly represented
with FOAF). It also contains a hierarchy of 33 levels of
classes defined in the FlyBase ontology42 (FlyBase is a
database of Drosophila genes, hence, the ontology belongs
to the Biology domain). The FlyBase’s classes included
in the BTC’s dataset have little contextual information (just
the URIs of the entities and the specialisation relations),
therefore, the classifier fails in associating them to the correct
domain (i.e. Biology). With the exception of this hierarchy,
the depth of the class taxonomies from the Sociology KD
is in line with the other KDs (i.e. 6). This result confirms that
LOD hierarchies are mostly flat as observed in [8], which
may suggest a generalised design practice. A question is
whether this observation can suggest a reference practice for
the design of class and property taxonomies.

E. METRICS CORRELATION
To understand whether certain phenomena are related by
potential causation, we compute the correlation between pairs
of metrics, and analyse them domain-by-domain. We calcu-
late the Pearson’s correlation (ρ) coefficient over pairs of
metrics computed for each domain and we assess the signif-
icance (p) of the result. Table 2 reports the pairs of metrics
having high/very high correlation (ρ > 0.7) with significance
p < 0.001, i.e. extremely significant (note that the notation
‘‘Metric_c’’ (‘‘Metric_p’’) indicates that the metric has been
computed considering only classes (properties)).

Most of the reported correlations are predictable. For
example, the percentage of classes (%OE_c) and properties
(%OE_c) increase as the total number of entities (%OE)
increases. It is also expected that the higher the number of
entities in a domain (%OE) the higher the (indirect) reuse
of classes and properties: through equivalence (%ES_p and
%ES_c) and specialisation relations (D_c and D_p).

Interestingly, we report that the density of specialisa-
tions increases as the percentage of equivalence sets classes
increases (since the high positive correlation between D_p

41http://km.aifb.kit.edu/projects/btc-2010/btc-2010-chunk-243.gz
42http://purl.obolibrary.org/obo/fbsp.owl
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and ES_c). Further investigation is required to interpret this
phenomenon. For example, we can assess whether the prop-
erties of the aligned classes (i.e. the properties having as
domain/range the aligned classes) are connected via special-
isation relations. If this is the case, a possible explanation
can be that the semantics of classes is more often compatible
among ontologies developed for different use cases, than
the semantics of properties, which may tend to be more
specific. Another interesting phenomenon is the high positive
correlation between Ut_p (i.e. percentage of properties with
empty extension) and Ut_c (i.e. percentage of classes with
empty extension). This may suggest that the ‘‘empty exten-
sion’’ phenomenon concerns entire modules of ontologies
rather than being scattered and distributed among indepen-
dent entities.

IX. CONCLUSION
In this paper, we investigate the relation between modelling
practices (e.g. linking, ontology design and ontology popula-
tion) with knowledge domains. Our goal is to assess whether
the observed phenomena in LOD have a domain-specific
character. To this end, we introduce a knowledge domain clas-
sification system and a novel method for multi-label topical
classification of LOD datasets. As additional contribution,
we manually curate a corpus of LOD datasets classified
according to the classification system that can be used to
reproduce our study as well as for further research on similar
tasks. We also introduce a set of metrics (Section III) to per-
form observations on knowledge domain-specific modelling
practices. The developed framework allowed us to report on
the changing behaviour of LOD as the knowledge domains
change, using LOD Laundromat as empirical basis.

We are working on additional metrics that can be computed
on ESGs, and on extending the framework to analyse other
kinds of relations (e.g. disjointness). We plan to develop qual-
ity indicators aiming at automatically assessing the design
quality of datasets on the basis of the proposed metrics.
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