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Abstract
This paper develops a formal string diagram language for monoidal closed categories. Previous work
has shown that string diagrams for freely generated symmetric monoidal categories can be viewed
as hypergraphs with interfaces, and the axioms of these categories can be realized by rewriting
systems. This work proposes hierarchical hypergraphs as a suitable formalization of string diagrams
for monoidal closed categories. We then show double pushout rewriting captures the axioms of these
closed categories.
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1 Introduction

Symmetric monoidal categories are algebraic settings for abstract functions (called morphisms
or arrows) between different sources and targets (called objects), which support both sequential
composition and parallel composition. These categories have two widespread notations: terms
and string diagrams. Term notation is generally regarded as the de facto standard; string
diagrams were once thought of as a “private device” useful for quick calculation, but which
“should be provided with a firm theoretical foundation” in order to be credibly used in
public [23].

Since (and including) Joyal and Street’s landmark paper in 1991, much scholarly work
has gone into the formalization of string diagrams. This has alternately supported and been
motivated by a proliferation of applications in compositional system modelling, for example
in the representation of Petri nets [28], (analog) electrical circuits [4], digital circuits [17],
quantum processes [14], differentiable programs [36], and signal flow graphs [8].

Separately, monoidal closed categories, particularly cartesian closed categories, have been
used in theoretical computer science as models for the simply typed lambda calculus and
functional programming languages. String diagrams in these contexts give an alternative
method for specifying, implementing, and reasoning about complex program transformations,
such as automatic differentiation [2]. There is unfilled need for a diagrammatic language to
reason in closed categories for these applications.

We propose hierarchical string diagrams as a language to represent morphisms in these
closed categories, which extend ordinary monoidal string diagrams with a bubble operation to
represent curried terms. Following [7, 5, 6], which formalizes string diagrams as hypergraphs
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29:2 Rewriting for Monoidal Closed Categories

and gives a formal notion of hypergraph rewriting, we formalize these hierarchical string
diagrams with hierarchical hypergraphs. Finally, we present a double-pushout rewriting
system which is sound and complete for the axioms of monoidal closed categories, and also
extensible to any other equational system.

Outline. In Section 2, we describe monoidal (closed) categories and their string diagrams.
We then formalize string diagrams for monoidal categories in Section 3 as certain hypergraphs.
We introduce hierarchical hypergraphs and formalize their rewriting in Section 4. Finally,
we establish connections to term rewriting. Further comparisons with related work can be
found in Section 6.

2 Monoidal closed categories and their string diagrams

In this section, we recall (strict symmetric) monoidal categories and their basic string
diagrams. Then we recall monoidal closed categories and reintroduce a proposed graphical
syntax for their morphisms, hierarchical string diagrams.

We assume familiarity with basic category theory. In this paper, the collection of objects
of a category C is denoted |C| and the set of morphisms from A to B is C(A, B). The
sequential composition of f : A→ B and g : B → C is f ; g : A→ C.1 The identity morphism
on an object A is denoted 1A. The set of lists with entries in the set X is denoted X∗ and
similarly the application of a function f : X → Y to a list from X∗ is denoted f∗.

2.1 Monoidal categories
▶ Definition 1. A category C is monoidal means it is equipped with both a bifunctor ⊗ :
C × C → C which is associative (up to a natural isomorphism) and an object I which is both
a left and right unit for ⊗ (up to a natural isomorphism).

The category is called strict monoidal when these natural isomorphisms are identities.
A strict monoidal category is called symmetric if there is a natural isomorphism σA,B :

A ⊗ B → B ⊗ A satisfying three properties: (1) 1A = σA,I , (2) σA,B; σB,A = 1A⊗B (3)
(1A ⊗ σB,C); (σA,C ⊗ 1B) = σA⊗B,C .

To reduce the use of grouping symbols, we adopt the convention that ⊗ binds tighter
than ; meaning, e.g., f ⊗ g; h is (f ⊗ g); h, not f ⊗ (g; h). We will refer to f ⊗ g as the parallel
composition (of f and g), and we call f ; g the sequential composition (of f and g).

For simplicity, we restrict our attention to strict monoidal categories, noting that every
monoidal category is monoidally equivalent to a strict monoidal category [26]. In every strict
monoidal category, the equations in the first two rows of Figure 1 hold; the last row holds
for strict symmetric monoidal categories.

(f ; g); h = f ; (g; h)
(f ⊗ g)⊗ h = f ⊗ (g ⊗ h)
f ⊗ g; σC,D = σA,B ; g ⊗ f

1A; f = f = f ; 1B

1I ⊗ f = f = f ⊗ 1I

1A⊗B = 1A ⊗ 1B

(f ; g)⊗ (h; k) = (f ⊗ h); (g ⊗ k)
1A⊗B = σA,B ; σB,A

σA,B⊗C = σA,B ⊗ 1C ; 1B ⊗ σA,C

Figure 1 Laws of strict (symmetric) monoidal categories.

1 In this paper, we use the relational order of composition, as opposed to the more common notation g ◦ f .
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String diagrams are a graphical syntax for morphisms in strict monoidal categories. In
this syntax, morphisms are represented by labelled boxes with labelled wires on either side:
the morphism f : A→ B is denoted f

A

B

. A sequential composition is formed by vertically

stacking the component string diagrams and joining corresponding wires, as in
f

g

A

C

B . Parallel

composition places the diagrams side-by-side as in f h

A

B D

C

.

Some advantages of string diagram notation become clear when considering the equations
of Figure 1. With the common conventions that the identity morphism on an object can be
denoted by a plain wire A and the identity morphism on the tensor unit I can be denoted
by a blank space, the string diagrams representing either side of many of these equations
appear the same up to some topological deformations.

A challenge in the use of string diagrams is the wire matching problem, where the operation
of “stack and join corresponding wires” may not be well-defined. For example, if we represent
k : X → A ⊗ C by k

X

A⊗ C

, we cannot match wires to compose with f h

A

B D

C

. A common

way to avoid this problem is to restrict attention to freely generated monoidal categories
where objects have unique representations. This ensures that every string diagram has a
canonical arrangement of input and output wires, and therefore ensures that string diagrams
for sequentially composable morphisms have matchable inputs and outputs.

Strict symmetric monoidal categories (SMCs) stipulate the existence of a family of
morphisms: σA,B . Following common convention, instead of using a box labelled σA,B as a
string diagram for this morphism, we use a pair of crossing wires: .

l

c1

c2

r

c1

c2

⇒⟨l,r⟩

Figure 2 A rewriting step.

Similar to [7, 5, 6], we consider string diagram rewriting. In a symmetric monoidal
category, a string diagram rewriting rule is a pair of parallel morphisms ⟨l, r⟩. A morphism
d rewrites directly to another morphism e under such a rule (denoted d ⇒⟨l,r⟩ e) if there
are morphisms c1, c2 and an object k such that d = c1; 1k ⊗ l; c2 and e = c1; 1k ⊗ r; c2. A
string diagram rewriting system is a collection of rewriting rules; a morphism d rewrites to
a parallel morphism e in a rewriting system if there is a sequence of direct rewrites in the
system starting with d and ending in e.

2.2 Term rewriting for morphisms in symmetric monoidal categories

Commonly, morphisms in a category are described with terms. (For example, the equations of
Figure 1.) Reasoning with these terms is performed by rewriting them with known equations.
We recall a formal treatment of this next.

FSCD 2022
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A monoidal signature Σ = (ΣO, ΣM , t) consists of a set of types ΣO, a set of constant
symbols ΣM and an assignment t : ΣM → Σ∗

O×Σ∗
O giving a list of input and output types to

each constant symbol; abusing notation we denote this assignment by ξ :t A1 ⊗ · · · ⊗An →
B1 ⊗ · · · ⊗Bm where ξ ∈ ΣM and Ai, Bj ∈ ΣO. We will often drop the subscript t. Again
abusing notation, we denote the empty list of types by I.

Morphism terms τ in this signature are generated by the following BNF grammar:
τ ::= ξ | f | 1I | 1A | σA,B | τ1; τ2 | τ1 ⊗ τ2 where ξ ∈ ΣM ranges over constants in the
signature, f ranges over a set of variables, and A, B ∈ ΣO range over types in the signature.
Terms are given lists of input and output types from ΣO; given a context Γ (i.e. a typing of
the variables denoted f :Γ X → Y ), a term is said to be well-typed as usual. A term is a
ground term if it contains no variables. An equation is a pair of terms of the same type in
the same context. Substitution of a term (β) for a variable (f) in another term (α) is defined
as usual and denoted α[β/f ].

The free strict symmetric monoidal category SΣ on a signature Σ has as objects lists of
types from the signature and as morphisms equivalence classes of well-typed ground terms in
the signature. The equivalence classes are the congruence classes generated by the equations
of Figure 1, except the last two equations in the last column. Note the set of terms does not
include identities or symmetries at product types (1A⊗B or σA,B⊗C): these are defined as
composites of other generators via the last two equations.

A term rewrite rule is a pair of morphism terms ⟨λ, ρ⟩. A substitution instance of a rewrite
rule ⟨λ, ρ⟩ is a pair of morphism terms ⟨ζ, ξ⟩ such that applying the same substitutions to
λ and ρ yields ζ and ξ, respectively. A term rewrite system R is a set of rewrite rules. A
context is a term with a single occurrence of a designated variable • called its hole. We
say a term α rewrites directly to the term β in the system R if there is a context C and a
substitution instance of a rewrite rule ⟨λ, ρ⟩ ∈ R such that C[ζ/•] = α and C[ξ/•] = β. In
this case, we write α →R β. A term α rewrites to the term β in a system R if there is a
sequence of direct rewrites starting from α and ending in β.

If α and β are morphism terms that rewrite to one another via the bidirectional rewrite
system formed from the equations of Figure 1), we say they are equivalent modulo the laws
of SMCs and write α =SMC β.

Though many mathematicians default to reasoning with terms, string diagram rewriting
possesses several powerful advantages. Emulating a string diagram rewrite step with terms
may require several intermediate steps invoking laws of SMCs to find the appropriate
representative of the term’s equivalence class. This redex search is made drastically easier in
string diagrams since morphisms are already quotiented by SMC laws.

However, string diagrams have disadvantages as well. Morphisms from a category are
not a natural candidate for automated manipulation, whereas terms have a clear inductive
structure. Additionally, due to the lack of variables, universally quantified equations (such
as f ; !B = !A) are emulated in string diagram rewriting system with a collection of rewrite
rules, possibly even a rule schema, rather than with a single rewrite rule.

Implementing string diagrams with hypergraphs [7, 5, 6] ameliorates many of these
computational disadvantages while retaining the automatic enforcement of SMC laws. We
show how these hypergraphs can be defined inductively on morphism terms, while satisfying
the SMC laws and thus serving as a functorial semantics for string diagrams. Following [7, 5, 6],
we then use double-pushout (DPO) graph rewriting to rewrite hypergraphs in analogy with
term rewriting and string diagram rewriting.
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2.3 Monoidal closed categories
▶ Definition 2. A monoidal (right) closed category is a monoidal category C satisfying for
every pair of objects B, C there is an object B ⇒ C and a morphism evB,C : (B ⇒ C)⊗B →
C, and for every triple of objects A, B, C there is an operation ΛA,B,C : C(A ⊗ B, C) →
C(A, B ⇒ C) satisfying three equations for all f : A⊗B → C and g : Z → A:
1. f = ΛA,B,C(f)⊗ 1B ; evB,C

2. 1B⇒C = ΛB⇒C,B,C(evB,C)
3. ΛZ,B,C(g ⊗ 1B ; f) = g; ΛA,B,C(f)

A more common equivalent definition is that the right tensor functor −⊗B : C → C has
a right adjoint B ⇒ −. The currying operation Λ represents one direction of the homset
presentation of this adjunction. The other direction is h 7→ h⊗ 1B ; evB,C .

If tensoring on the left has a right adjoint, the category is left closed. A symmetric
monoidal category is right closed if and only if it left closed; we simply call it closed.

This presentation of monoidal closed categories induces a manageable set of changes to
both the term calculus and the string diagram calculus. Though it is possible to present
adjunctions via string diagrams, for example with functorial boxes [27], here we only need a
representation for the currying operation Λ and some extra objects and morphisms.

Morphism terms for monoidal categories can be extended to terms for monoidal closed
categories by adding a type-forming operation (⇒), a new collection of constant terms (ev),
and a new term-forming operation (Λ). The BNF generating closed morphism terms is then
ρ ::= ξ | f | 1I | 1A | σA,B | evA,B | ρ1; ρ2 | ρ1 ⊗ ρ2 | Λ(ρ). The free symmetric closed
monoidal category can be defined again as equivalence classes of well-typed ground closed
morphism terms; term rewriting is again similar to the symmetric monoidal case.

f
f =

(a) β law.

=

(b) (Small) η law.

g

f

g

f
=

(c) Slide rule.

c1

c2

⇒⟨l,r⟩
d

c1

c2

e

(d) A hierarchical rewriting step.

Figure 3 Diagrammatic equations for monoidal closed categories and hierarchical rewriting.

For string diagrams, the new objects mean wires have some new labels available. For
convenience, we introduce the new morphism box shape , as syntactic sugar for a
box labelled ev. We diagrammatically represent Λ with a bubble operation. That is, if

f : A⊗ B → C, we write f

A

B ⇒ C

for Λ(f). We call these hierarchical string diagrams since

string diagrams may appear within wires of other string diagrams. The three equations of
Definition 2 are interpreted diagrammatically as in Figure 3a-3c.

Rewriting of these hierarchical string diagrams is similarly an extension of rewriting
string diagrams. A hierarchical rewriting rule is a pair of hierarchical string diagrams ⟨l, r⟩.
A hierarchical string diagram directly rewrites to another if it can be put in the form of
Figure 2 or the form of Figure 3d where d is a hierarchical string diagram that directly
rewrites to e with the same rule.

FSCD 2022
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3 String diagrams as hypergraphs

In this section, we formalize string diagrams as monogamous directed acyclic hypergraphs
(Definition 7). We further define a rewriting scheme for these hypergraphs based on double
pushout rewriting. In the next section, we will extend both of these notions to treat
hierarchical string diagrams as hierarchical hypergraphs with a similar rewriting scheme.

3.1 Hypergraphs with interfaces
▶ Definition 3. A (directed) hypergraph (with labels from Σ = (ΣV , ΣE)) is a tuple
(V, E, s, t, ℓV , ℓE) consisting of finite sets of vertices V and edges E, source and target
functions s, t : E → V ∗ and vertex and edge labelling functions ℓV : V → ΣV and
ℓE : E → ΣE.

When considering multiple hypergraphs, we distinguish their components by subscripting,
so VG is the vertices of G, sH is the source function for H, etc. Note that our hypergraphs’
edges come with lists (rather than sets) of source and target vertices. Despite this, we write
v ∈ s(e) when the vertex v occurs in the list of source vertices of the edge e.

We will depict hypergraphs graphically as in Figure 4a. In this hypergraph, there are
three edges (white boxes labelled +, × and δ), and seven vertices (black dots). The black
arrows indicate the source/target relationship: a vertex is a source of an edge if there is an
arrow from the dot to the box and a target if the arrow goes from the box to the dot. The
leftmost arrow at the top of the box corresponds to the first source vertex in the list, and
similarly the leftmost bottom arrow is the first target.

+ ×

δ I

A A B C

A ⊗ C

D

(a) Hypergraph without interfaces.

δ

A

A A

A

A

A B

A

B

B

A

σA,B

A B

(b) Hypergraphs with interfaces.

Figure 4 Example hypergraphs.

We borrow terminology from graph theory for hypergraphs. We say a hypergraph is
discrete if the edge set is empty. A directed path in a hypergraph is a finite list of alternating
vertices and edges (v0, e0, v1, . . . , vk) with the property that vi ∈ s(ei) and vi+1 ∈ t(ei) for
all 0 ≤ i < k. The length of the path is the number of edges in the path. A hypergraph is
directed acyclic if there are no postitive-length directed paths from a vertex to itself.

A sub-hypergraph G of the hypergraph H is a subset of H’s vertices and edges such that
the restrictions of s and t to G make it a hypergraph. A sub-hypergraph G is convex (in H)
if all directed paths in H between vertices in G are directed paths in G.

The in-degree of a vertex v is the number of pairs (e, i) ∈ E × N such that v is entry i in
the list t(e). Similarly, the out-degree is the number of occurrences of v in source lists.

▶ Definition 4. Suppose F and G are two hypergraphs with labels from Σ. A hypergraph
morphism from F to G is a pair of functions ϕV : VF → VG and ϕE : EF → EG compatible
with source and target labelling in the sense that (1) sF ; ϕ∗

V = ϕE ; sG, (2) tF ; ϕ∗
V = ϕE ; tG

(3) ℓV,F = ϕV ; ℓV,G, and (4) ℓE,F = ϕE ; ℓE,G
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Recall ϕ∗
V : V ∗

F → V ∗
G is the elementwise application of ϕV to the argument list.

Hypergraphs with a fixed set of labels and the morphisms between them form a category
which we denote by HypΣ.

▶ Definition 5. A hypergraph with (ordered) interfaces is a cospan n
f−→ F g←− m in HypΣ

where the n and m are discrete hypergraphs with a specified total ordering on their vertices,
and f and g are monos.

We often refer to the hypergraphs n and m in the cospan as the interfaces, and the
hypergraph F as just the hypergraph. Graphically, we distinguish interfaces with a blue
background, as in Figure 4b. Since the interfaces are finite sets with a total order, we may
also think of their vertex set as a list. (This happens, for example, in Definition 6.)

3.2 Monogamous directed acyclic hypergraphs
Next we will consider hypergraphs with labels drawn from a signature. When these hy-
pergraphs have certain extra properties, we can think of them as syntax for representing
morphisms from the free SMC on that signature. First, some preliminary notions.

▶ Definition 6. Suppose n −→ F ←− m is a hypergraph with interfaces whose vertex labels are
types in a signature Σ. The input object of the hypergraph is ñ = ℓ∗

V,n(Vn), and the output
object is m̃ = ℓ∗

V,m(Vm). For each edge e ∈ EF , the edge’s source object is s̃(e) = ℓ∗
V,F (s(e))

and its target object is t̃(e) = ℓ∗
V,F (t(e)).

We say these are source and target objects since these lists of types are objects in the free
SMC on Σ. As examples, the input object of the hypergraph of Figure 5 is A⊗B ⊗A⊗A,
the output object is C ⊗A, the source object of the edge labelled f is A⊗B, and the target
object of the edge labelled f is C.

▶ Definition 7. Suppose Σ = (ΣO, ΣM , t) is a signature and let (ΣA, Γ) be a set of variables
with a context. An mda-hypergraph (in Σ) is a hypergraph with ordered interfaces n

f−→ F g←−
m with labels from (ΣO, ΣM + ΣA) satisfying
1. directed acyclicity,
2. the in-degree and out-degree of every vertex of F is at most 1,
3. vertices of F with in-degree 0 are precisely the image of f ,
4. vertices of F with out-degree 0 are precisely the image of g,
5. for all e ∈ E with ℓE,F (e) ∈ ΣM , we have ℓE,F (e) :t s̃(e)→ t̃(e), and
6. for all e ∈ E with ℓE,F (e) ∈ ΣA, we have f :Γ: s̃(e)→ t̃(e).

In this case, we say F is an mda-hypergraph from the object ñ to the object m̃, and we
say ñ and m̃ are the source and target objects of F , respectively. Two mda-hypergraphs with
the same source and target objects are parallel.

Cospans satisfying (2)–(4) are called monogamous [5, Definition 9]; “mda-hypergraph”
is an abbreviation for “monogamous directed acyclic hypergraph”. Conditions (5) and (6)
are well-typing conditions. Condition (5) says if an edge is labelled by a constant, the input
and output objects of that edge match the typing required by the signature. Condition (6)
enforces the context’s typing for the inputs and outputs of variable-labelled edges.

Two mda-hypergraphs in Σ may have different variables or different contexts for those
variables. We say that two mda-hypergraphs are compatible if their contexts give the same
type to the variables they have in common.

FSCD 2022
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f +A

A B A A

A B A A

C

C

A

A

Figure 5 Example mda-hypergraph.

The hypergraph of Figure 4a fails to be an mda-hypergraph on at least three counts. It
does not have interfaces, the vertex labelled A⊗ C has in-degree 2, and there is a directed
cycle. The hypergraphs with interfaces of Figure 4b also are not mda-hypergraphs. The left
fails a monogamy condition: there is a vertex with out-degree 0 that is not in the image of
the output interface. The right fails a well-typedness condition since the morphism σA,B has
codomain B ⊗A but the target vertex labels of the edge labelled σA,B is A⊗B.

The hypergraph depicted in Figure 5 is an mda-hypergraph. Further positive examples
of mda-hypergraphs can be found in Figure 6.

Since we intend to use mda-hypergraphs to represent morphisms, it is not surprising that
these hypergraphs can be composed in various ways. Parallel composition is easiest.

▶ Definition 8. If n
f−→ F g←− m and h

b−→ G c←− k are compatible mda-hypergraphs in Σ, their
parallel composition F⊠G is the mda-hypergraph n+h

f+b−−→ F+G g+c←−− m+k. The ordering
on n + h has all the elements of n before all the elements of h and the given orderings within
n and h. Similarly for m + k.

▶ Lemma 9. Suppose F and G are mda-hypergraphs in Σ. If the source and target objects
of F are X and Y and the source and targets of G are Z and W , then the source and target
of F ⊠ G are X ⊗ Z and Y ⊗W .

Mda-hypergraphs can also be composed in sequence using pushouts.

▶ Definition 10. If n
f−→ F g←− m and m

b−→ G c←− k are mda-hypergraphs in C, their sequential
composition F # G is an mda-hypergraph formed by the pushout

F # G

F G

n m k

⌞
f g b c

In more detail, this pushout is the quotient of disjoint union of the hypergraphs F and G
where for each v ∈ Vm, we identify g(v) in the copy of F with b(v) in the copy of G. The
monogamy conditions ensure that after the output vertices of F are identified with the input
vertices of G, the resulting hypergraph again has the monogamy property.

▶ Lemma 11. Suppose F and G are mda-hypergraphs in a signature Σ. If the source and
target objects of F are X and Y and the source and targets of G are Y and Z, then the
source and target of F # G are X and Z.



M. Alvarez-Picallo, D. Ghica, D. Sprunger, and F. Zanasi 29:9

When considering non-freely generated monoidal categories, the labels of hypergraphs
may involve tensor products of objects. In such cases, hypergraphs with a common object
may not have composable interfaces. For this, an adapter hypergraph can be used.

▶ Definition 12. Suppose n and m are two discrete ordered hypergraphs with the property
that ñ = m̃. The n, m-adapter is the mda-hypergraph with a single edge e labelled 1A and
vertices n + m with s(e) = n, t(e) = m with vertex labels matching the corresponding vertices
in n and m.

This solves the wire-matching problem in non-freely generated monoidal categories, but
we continue to assume our categories are generated from a signature for clarity.

3.3 Mda-hypergraphs of morphism terms
Now we can define an mda-hypergraph interpretation for every morphism term.

▶ Definition 13. Suppose τ is a morphism term in the signature (ΣO, ΣM ) with context
(ΣA, Γ). The mda-hypergraph interpretation of τ is denoted τ̃ and is defined by induction.

ξ̃ where ξ :t A→ B is a constant is as in Figure 6a,
f̃ where f :Γ A→ B is a variable is as in Figure 6b,
1̃I , 1̃A, and σ̃A,B are as in Figure 6c-6e,
τ̃1 ⊗ τ2 = τ̃1 ⊠ τ̃2, and τ̃1; τ2 = τ̃1 # τ̃2.

If F is an mda-hypergraph of a ground term (i.e. without variables), then we call it a ground
mda-hypergraph.

ξ

A

B

A

B

(a) Morphism ξ̃.

f

A

B

A

B

(b) Variable f̃ . (c) Identity 1̃I .

A

A

A

(d) Identity 1̃A.

A B

A

A

B

B

(e) Symmetry σ̃A,B .

Figure 6 Interpretation of morphism terms as mda-hypergraphs.

▶ Lemma 14. If α =SMC β, then α̃ = β̃. Consequently, there is a strict symmetric monoidal
functor J−K from SΣ to Σ-labelled mda-hypergraphs.

3.4 Double pushout rewriting for mda-hypergraphs
String diagrams and morphism terms both support rewriting systems to facilitate equational
reasoning. Hypergraphs have a similar rewriting system based on double-pushout rewriting.
We recall this for the case of mda-hypergraphs next.

▶ Definition 15. An mda rewrite rule is a parallel pair of mda-hypergraphs L and R with
interfaces n and m. An mda rewrite system is a set of rewrite rules. We say that the
mda-hypergraph A with interfaces p and q rewrites directly to the parallel hypergraph B if

FSCD 2022
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there is a mono ι : L → A whose image is a convex subgraph of A,

there is an mda-hypergraph p + m
[ci,do]−−−−→ C [co,di]←−−−− q + n, and

the diagram below commutes and the two marked squares are pushouts.

L n + m R

A C B

p + q

ι

[li,lo]

[di,do]

[ri,ro]

⌝ ⌜

[ai,ao]
[ci,co]

[bi,bo]

As an example, consider an (instance of an) equation for a final map: f ; ωB = ωA. An
mda-rewrite turning f̃ ; ωB into ω̃A in ˜δA; g ⊗ (f ; ωB) is shown in Figure 7.

The mda-hypergraph C is A with the image of L deleted (except L’s interface vertices).
Inputs to L are then outputs of C and similarly outputs of L are inputs to C. The explains
the peculiar mixing of inputs and outputs in the cospan p + m

[ci,do]−−−−→ C [co,di]←−−−− q + n. In [5,
Definition 23], C is called a boundary complement, a strengthening of the notion of pushout
complement.

f
A A

ωB

A

ωA

L R

f

A

ωB

B

δA

g

A

C

A

B

C

A

AδA

g

A

C

B

AδA

g

A

C

B
ωA

C B

n

m

qp

Figure 7 Example rewrite step.

The connection between string diagram rewriting and (convex) double-pushout rewriting
of ground mda-hypergraphs is thoroughly examined in [7, 5, 6]. As long as the convex
embedding ι : L → A exists, this DPO rewriting step can be completed uniquely (up to
isomorphism).

Connecting term rewriting to double-pushout rewriting is similiarly possible, and requires
only a treatment of substitution. If f is a variable in the Σ-term α, then f̃ is an edge in α̃.
Since this is a convex subgraph of α̃, we can use DPO rewriting to replace an edge labelled
f with a parallel hypergraph β̃. The substitution α̃[β/f ] is then formed by subtituting all
edges labelled f in α̃ with β̃ in this manner. This allows the substitutions required both to
find substitution instances of rewrite rules and to create contexts in rewrite steps in DPO
systems.
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4 Hierarchical string diagrams

In this section, we embark on a similar project for hierarchical string diagrams for monoidal
closed categories. We devise a suitable combinatorial structure, called hypernets, and show
that two closed morphism terms are interpreted as the same hypernet whenever they are
equivalent modulo the laws of symmetric monoidal categories (Proposition 24). This allows
us to conclude that rewriting can be “implemented” as double-pushout rewriting of hypernets
(Proposition 26).

Hierarchical hypergraphs have been used before, see e.g. [10, 15, 31]. Our approach is
broadly similar, but with enough subtle differences that it is necessary to give our own
definitions. For a more detailed comparison, see section 6.2.

4.1 Hierarchical hypergraphs and hypernets
A hierarchical hypergraph is a hypergraph with an extra parent relationship determining the
hierarchical structure.

▶ Definition 16. A hierarchical hypergraph is a tuple (V, E, s, t, ℓV , ℓE , pV , pE) where
V, E, s, t, and ℓV are as in a hypergraph, the edge labelling is modified to include an extra
value ℓE : E → ΣE + 1, and parent functions pV : V → E + 1 and pE : E → E + 1.

The parent functions satisfy some conditions. First, an edge and any of its source and
target vertices must have the same parent: pV (v) = pE(e) = pV (v′) for all v ∈ s(e) and
v′ ∈ t(e), respectively. Second, the parent relation must be acyclic. More precisely, we assume
for all e ∈ E there is some k ≥ 1 such that (pE,⊥)k(e) = ⊥ where ⊥ is the element of 1 and
pE,⊥ : E + 1→ E + 1 is the extension of pE adding pE,⊥(⊥) = ⊥.

When the parent of a vertex or edge is the element ⊥ from the right summand, we say it
is an outermost vertex or outermost edge. If the label of an edge is ⊥, we say (with some
abuse) that it is unlabelled. When considering multiple hierarchical hypergraphs, we use
subscripts to disambiguate these data.

+

×

A A

A

A B

B

B ⇒ C

(a) Hierarchical hypergraph.

+

×

(b) Hierarchical string diagram.

+

×

B ⇒ B

A

B ⇒ B

A AB

A A

A

A B

B

B

(c) HHG with interfaces.

Figure 8 Example hierarchical structures.

In every hierarchical hypergraph F , associated to every edge ê is a subgraph, namely
the subgraph of edges e (and vertices v) satisfying pk

E,⊥(e) = ê (and (pE,⊥)j(pV (v)) = ê) for
some k ≥ 1 (and j ≥ 0). We denote this subgraph Fê and call it “the inner hypergraph of ê”.
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When depicting a hierarchical hypergraph, we indicate the inner hypergraph of an edge by
nesting the inner subgraph within its edge, like abstraction in hierarchical string diagrams.
If a subgraph G of a hierarchical hypergraph F has the property that Fê ⊆ G for all ê ∈ EG ,
we call G down-closed.

An example hierarchical hypergraph is shown in Figure 8a. This hierarchical hypergraph
has 3 edges, labelled +, ×, and one unlabelled. The unlabelled edge is the parent of the edge
labelled × (and its sources and targets), and so the × edge is depicted inside. This notation
echoes the bubble operation in hierarchical string diagrams. The corresponding hierarchical
string diagram for this hypergraph is depicted in Figure 8b.

▶ Definition 17. A morphism of hierarchical hypergraphs ϕ : F → G is a pair of functions
ϕV : VF → VG and ϕE : EF → EG, which is a morphism of the underlying hypergraphs and
respects the hierarchial structure in the following sense:
1. (pV,F ; ϕE)(v) = (ϕV ; pV,G)(v) if pV,F (v) ∈ EF
2. (pE,F ; ϕE)(e) = (ϕE ; pE,G)(e) if pE,F (e) ∈ EF

Note that we do not require that outermost vertices and edges are sent to outermost
vertices and edges. If ϕV and ϕE additionally satisfy the property that pV,G(ϕV (v)) = ⊥ and
pE,G(ϕE(e)) = ⊥ whenever pV,F (v) = ⊥ and pE,G(e) = ⊥, then the morphism is strict.

Hierarchical hypergraphs and the morphisms between them form a category. A hierarchical
hypergraph with interfaces is a cospan in this category, n

f−→ H g←− m with n and m discrete
and ordered. The input interface of the edge e ∈ EH is the subgraph of vertices v of n such
that (f ; pV,H)(v) = e. Similarly, the output interface of the edge e is the subgraph of m

satsifying (g; pV,H)(v) = e. The outermost input and output interfaces are the subgraphs of
the interfaces whose image has parent ⊥.

When labels from a hierarchical hypergraph are drawn from a signature, we define the
input and output objects for each of these interfaces as in Definition 6: the list of labels of
the vertices in the interface in the same order as the vertices.

An example hierarchical hypergraph with interfaces is shown in Figure 8c. Note that the
input interface has the B-labelled source vertex of the × edge in its image, and the output
interface similarly includes the B-labelled target vertex. These are internal interfaces for the
hierarchical hypergraph, since they are not outermost vertices. We separate the outermost
interface and internal interfaces in our graphical depiction with a vertical line.

▶ Definition 18. Suppose n
f−→ H g←− m is a Σ-labelled hierarchical hypergraph with interfaces.

Let e ∈ EH be an edge with ℓE(e) = ⊥, let P be the input object for the input interface of
e, and let C be the output object for the output interface of e. We say e is a well-typed
abstraction if there is an object B such that s̃(e)⊗B = P and t̃(e) = B ⇒ C.

Note also the difference between the “input/output object of an edge”, which considers
the edge’s sources and targets, and the “input/output object for the interface of an edge”,
which considers the dangling vertices whose parent is that edge.

As examples, the unlabelled edge in Figure 8a is not a well-typed abstraction, assuming
A, B and C are distinct generators. Its input, output, input interface, and output interface
objects are A, B ⇒ C, A ⊗ B, and B, respectively. There is no object X such that
A⊗X = A⊗B and B ⇒ C = X ⇒ B, so it is not a well-typed abstraction. On the other
hand, the unlabelled edge in Figure 8c is a well-typed abstraction: its output object has
been changed to B ⇒ B, so clearly X = B is an object satisfying the necessary conditions.

Hierarchical hypergraphs satisfying this well-typedness condition are our formal model
for hierarchical string diagrams. We call members of this restricted class hypernets.
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▶ Definition 19. A hypernet is a hierarchical hypergraph n −→ H ←− m with interfaces such
that (1) it is an mda-hypergraph when the hierarchical structure is forgotten, (2) if ℓE(e) ̸= ⊥,
then He is the empty hypergraph, and (3) if ℓE(e) = ⊥, then e is a well-typed abstraction.

If a hierarchical hypergraph only satisfies properties (1) and (2) only, we call it a weak
hypernet.

Hypernets can be composed in parallel just like mda-hypergraphs with interfaces. They
can be composed in sequence anytime their outermost interfaces match again using a pushout.

▶ Definition 20. Suppose ρ is a closed morphism term in a signature Σ. The hypernet
interpretation of ρ is denoted ρ̃, and again defined by induction on ρ. The cases shared in
common with morphism terms are as in Definition 13. The two new cases are ev and Λ(ρ),
which are defined as in Figure 9a and 9b.

ev

AA ⇒ B

B

(a) Evaluation ẽvA,B .

ρ̃

B ⇒ C

B ⇒ C

A B

A

A B

C

C

A

(b) Abstraction Λ̃(ρ).

f

B ⇒ C

A

A B

C

f

A B

C

f

B ⇒ (C ⊗ E)

A

A B

C

ξ

E

(c) Failure of pushouts.

Figure 9 Hypernet interpretations and pushouts.

4.2 Pushout rewriting of hypernets
We next consider pushouts in order to support double pushout rewriting. When allowing
all hierarchical hypergraph morphisms, the category of hierarchical hypergraphs does not
have all pushouts or even pushouts along monos. This is due to ambiguities in the parents
of outermost vertices and edges. Two non-strict morphisms can embed a graph into two
unmergeable parts of different graphs. As an example, the cospan of Figure 9c does not have
a pushout, even if we allow non-well-typed abstractions.

Consequently, much of the advanced categorical structure of hypergraphs which have
historically proven useful, such as the fact they form an adhesive category, cannot be used
when studying hierarchical hypergraphs or hypernets. However, the pushouts we need to
exist still exist.

As a running example, we will consider a hypernet rewriting rule corresponding to the slide
rule of Figure 3c. The hypernets corresponding to each of these terms are shown in Figure 10.
The most obvious difference between this span and a rewriting span for mda-hypergraphs is
that the interfaces for the left and right legs do not exactly match! In fact, we only need the
outermost interfaces to match: the interior interfaces are only important for enforcing the
well-typedness of abstractions.
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g

f

C ⇒ D

A

C ⇒ D

A C

A

A

B C

D

D

g

f

A

C ⇒ D

B C

A

B

B C

D

Figure 10 A hypernet span for the slide rule.

We have generally been using terms for hypergraphs also for hierarchical hypergraphs.
However, we must refine two important defintions for rewriting hypernets. We say that
two hierarchical hypergraphs are parallel if they have the same outermost input and output
interfaces. We say a subgraph is convex (in a larger hierarchical hypergraph) if it is convex
(as a hypergraph) and down-closed.

▶ Definition 21. A hypernet rewrite rule is a parallel pair of hypernets L and R with
outermost interfaces n and m. We say that the hypernet A with interfaces p and q and
outermost interfaces p and q rewrites directly to the parallel hypernet B if

there is a mono ι : L → A whose image is a convex subgraph of A,
there is a weak hypernet p + m

[ci,do]−−−−→ C [co,di]←−−−− q + n, and
the diagram below commutes and the two marked squares are pushouts.
L n + m R

A C B

p + q

ι

[li,lo]

[di,do]

[ri,ro]

⌝ ⌜

[ai,ao]
[ci,co]

[bi,bo]

δ

ev

C

A

A

D

CC ⇒ D

g

f

δ

ev

B

A

B C

D

A

D

CC ⇒ D

Bg

f

δ

ev

A

A

A

B

C

D

A

D

CC ⇒ D

g

f

C ⇒ D

A

A

B C

D

L

Figure 11 A rewriting span.

The primary difference between hypernet rewriting and mda-hypergraph rewriting (Defin-
ition 15) is that the diagram for hypergraph rewriting only places conditions on the outermost
interfaces, rather than the entire interface.
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Next we give an example application of the hypernet rewrite rule of Figure 10. The
leftmost morphism in Figure 11 is a convex embedding of the leftmost hypernet in the rewrite
rule, L, into a larger hypernet, A. The next hypernet, C, is the pushout complement of L in
A. Note that the outermost interface of C consists of the outermost interface of A together
with the outermost interface of L. This occurs exactly when the embedding morphism of the
left side of the rule is strict (sends outermost to outermost). If this matching were not strict
(sending L to an interior hypergraph), the outermost interface of L would still be part of the
interface of C, but would be an internal interface. Note also that internal interfaces in L are
not part of the interface of C, since all of L (except its interface vertices) are deleted in the
pushout complement. Finally, B is the pushout of C with R along their common interfaces.

▶ Proposition 22. Suppose ⟨L,R⟩ is a hypernet rewriting rule, A is a hypernet, and ι : L → A
is a mono with a convex image in A. Then the boundary complement C of Definition 21
exists, and further the pushout B is a hypernet.

Proof (Idea). The boundary complement is constructed as in hypergraphs. The unusual
part is that the boundary complement can fail to be a hypernet. This happens precisely
when the embedding ι is not strict. In this case, new interfaces are created inside an edge;
that edge fails to be a well-typed abstraction so C will only be a weak hypernet. Fortunately,
takng the pushout with a hypernet R with the same outermost interface as L restores the
well-typedness of the abstraction. ◀

5 Soundness and completeness

To describe the connection between term rewriting and hypernet rewriting, we first note that
the hypernets corresponding to the subterms of a term are always convex subgraphs of the
hypernet for the full term. The converse is not generally true: f̃ ⊗ h is a convex subgraph of
˜f ⊗ g ⊗ h, but f ⊗h is not a subterm of f ⊗ g⊗h, regardless of how the latter is constructed.

Note, however, that there is a term equivalent to f ⊗ g ⊗ h under SMC equations, namely
1⊗ σ; f ⊗ h⊗ g; 1⊗ σ, for which f ⊗ h does appear. This motivates our next definition and
result.

▶ Definition 23. A closed morphism term ρ is a possible subterm of another closed morphism
term α if there is a closed morphism term β =SMC α such that ρ is a subterm of β.

▶ Proposition 24. For every closed morphism term ρ, possible subterms of ρ and (isomorph-
ism classes of) convex sub-hypernets of ρ̃ are in bijective correspondence.

In particular, this implies that every hypernet has exactly one SMC equivalence class of
terms representing it.

The next critical notion is that of substitution. In terms, substitution replaces all instances
of a variable in a term with another term. Hypernet rewriting, however, may not be able
to mimic term substitution as a single rewrite if the subgraph of edges labelled with this
variable do not form a convex subgraph. However, it can always be accomplished in several
steps.

▶ Lemma 25. Suppose α and β are closed morphism terms and f is a variable. There is a
finite sequence of hypergraphs H0, . . . ,Hn such that α̃ = H0, α̃[β/f ] = Hn and Hi directly
rewrites to Hi+1 under the rule ⟨f̃ , β̃⟩.

In such a case, we say Hn is a substitution instance of H0. Finally, we can formalize the
correspondence between term rewriting and hypernet rewriting.
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▶ Proposition 26. Suppose α, β, λ, and ρ are closed morphism terms such that α→⟨λ,ρ⟩ β.
There are hypernets L and R, substitution instances of λ̃ and ρ̃ respectively, such that
α̃⇒⟨L,R⟩ β̃.

▶ Proposition 27. Suppose α, β, λ, and ρ are closed morphism terms such that α̃⇒⟨λ̃,ρ̃⟩ β̃.
There are closed morphism terms γ, δ such that α =SMC γ and β =SMC δ and γ →⟨λ,ρ⟩ δ.

These propositions, taken together, show an equivalence of expressiveness: every step in
one rewriting system can be accomplished in the other (though potentially in many steps).
Term rewriting has the advantage that substitution instances can be formed in a single
operation, where imitating this in hypernets requires each instance of the variable be replaced
individually. However, hypernet rewriting has the advantage that it is able to replace possible
subterms from a context, where term rewriting may need to do SMC rewriting steps first to
realize the possible subterm as an actual subterm before replacing.

6 Related work

6.1 String diagrams

Monoidal closed categories have been thoroughly studied in the context of logic and type
theory, because of the well-known correspondence of their internal language with (linear)
simply typed λ-calculus and linear logic [35, 19].

To the best of our knowledge, we provide the first fully specified string diagrammatic
language for closed categories. Our approach shares similarities with the formalisms of
sharing graphs for describing λ-calculus computations [25]. The main difference is that
string diagrams, albeit graphical in appearance, can be manipulated as a syntax, whereas
sharing graphs are usually studied as combinatorial objects. Unlike syntax, reasoning about
graphs algebraically requires a higher degree of technical sophistication [20]. Finally, sharing
graphs are typically used to study low-level computational models for functional languages,
in particular quantitative models [29], whereas our approach is more focussed on equational
reasoning and rewriting, and does not have the ambition of investigating the resources
employed during computation.

Monoidal closed categories also extend to ⋆-autonomous categories. These are relevant
to the study of multiplicative linear logic and have been extensively studied in terms of
proof nets. Our graphical calculus is essentially different from proof nets. The grammar of
morphisms does not stem from a sequent calculus, and we capture the intended semantics
via equations rather than a correctness criterion. But the connection might be made precise
relying on the existing translations between proof nets and string diagrams [22, 34]. Finally,
a different style of hierarchical string diagrams appear in the literature to represent universal
properties graphically such as Kan extensions [21] and free monads [32].

The only other proposal for a string-diagram language for monoidal closed categories
which we are aware of is that of [3]. To keep the language of types as simple as possible
and as strict as possible they propose an intriguing graphical innovation, a so-called clasp
operator on stems. The exponential type is represented using the clasp, and much like in our
own language, a bubble is used to represent currying.

Although not presented explicitly as a string diagram language, the treatment of closures
in [33] is related in methodology to our work, although the setting of partially-traced partially-
closed premonoidal categories is significantly different to ours.
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6.2 Hierarchical hypergraphs and rewriting

The notion of hierarchical hypergraph used in this paper is inspired by and a formalisation
of the graphs used in [18].

Although there is no consensus on a standard definition of hierarchical graphs, the
various approaches to these structures [10, 15, 31] give slight variations on the idea of graphs
containing other graphs and notions of morphisms between them. Some of the differences
are minor – ours are directed, others [15] are not – but other differences are fundamental.
Sometimes edges are permitted to connect vertices with different parents, as in [31, 10],
sometimes this is prohibited (as it is here). Some approaches consider only strict morphisms,
but others relax the notion of morphism. Due to the subtle but technically significant
differences between our requirements and the properties of previous works, it was not possible
to reuse previous work wholesale, and we found it necessary to introduce our own variation.

The formal correspondence between monoidal closed categories and hierarchical hy-
pergraphs lies in a tradition of analogous results relating string diagram rewriting and
double-pushout hypergraph rewriting, see [7, 5, 6]. To the best of our knowledge, such
correspondence has not been spelled out in the way presented in our work, although the
idea of linking the exponential structure of closed categories with the hierarchy structure of
hierarchical hypergraphs may be found in [13]. Although it does not uses string diagrams or
other categorical tools, the algebraic specification language for hierarchical graphs studied
in [9] is aiming towards similar goals. Representing intermediate stages of the compiler as
graphs is a long-established practice in compiler design and engineering. Graphs are an
efficient syntactic representation which are recognised as a better target for optimisation and
analysis than raw text. In its simplest incarnation the graph representation of terms is just
an abstract syntax tree, but more sophisticated representations were increasingly used [12],
sometimes leading to specific and novel optimisation techniques [30].

The use of graph-like representation outside of compiler engineering has a lot of untapped
potential, as advocated by some [16]. This is not entirely new, for example interaction nets
are a graph-like semantics of higher-order computation [24], albeit highly informal.

We would also like to point out recent work on M,N -adhesivity that can be used with
hierarchical graphs [11]. Though our category of hierarchical hypergraphs is not adhesive, it
is possible that choosing a different family of morphisms could make it M,N -adhesive. For
example, we believe this category with strict morphisms only is adhesive.

Finally, another related line of work which we found inspirational is the use of graph-like
languages inspired by proof nets to bridge the gap between syntax and abstract machines, in
order to provide a quantitative analysis of reduction strategies for the lambda calculus [1].

7 Conclusion and further work

In this paper, we have presented a hypergraph-based formalism for representing string
diagrams of monoidal closed categories. Our approach is based on interpreting morphism
terms as hypernets and comparing their rewriting systems. This makes it easy to express
universally quantified equations while retaining a simple redex search. An alternative
approach, closer in spirit to [7, 5, 6], would be to interpret the morphisms of the (closed)
monoidal category instead. This would make the interpretation functorial and has further
computational complexity benefits; we plan to develop this connection between hypernet
and hierarchical string diagram rewriting in further work.
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