SoftwareX 20 (2022) 101248

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

ScAFr1: A Scala DSL and Toolkit for Aggregate Programming)

Roberto Casadei ¥, Mirko Viroli, Gianluca Aguzzi, Danilo Pianini

Alma Mater Studiorum—Universita di Bologna, Italy

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 23 June 2022

Received in revised form 23 September 2022
Accepted 24 October 2022

Keywords:

Aggregate programming
Computational fields
Macro-level programming
Distributed computing
Scala toolkit

development.

Supported by current socio-scientific trends, programming the global behaviour of whole computa-
tional collectives makes for great opportunities, but also significant challenges. Recently, aggregate
computing has emerged as a prominent paradigm for so-called collective adaptive systems program-
ming. To shorten the gap between such research endeavours and mainstream software development
and engineering, we present ScAFi, a Scala toolkit providing an internal domain-specific language,
libraries, a simulation environment, and runtime support for practical aggregate computing systems

© 2022 Published by Elsevier B.V. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
Link to developer documentation/manual

Support email for questions

1.15
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00177

Apache 2.0

git

Scala; Scala.js

JDK 1.8+, SBT
http://scafi.github.io/docs/
roby.casadei@unibo.it

Software metadata

Current software version

Permanent link to executables of this version
Legal Software License

Computing platforms/Operating Systems
Installation requirements & dependencies
Link to user manual

Support email for questions

1.15
https://index.scala-lang.org/scafi/scafi/artifacts/
Apache 2.0

JVM; web

JDK 1.8+

http://scafi.github.io/docs/
roby.casadei@unibo.it

1. Motivation and significance

Current trends like the Internet of Things and edge computing
let us imagine a future of large-scale cyber-physical ecosys-
tems [1]. According to the pervasive computing vision [2], an
increasing number of devices capable of computation and com-
munication are expected to be seemingly deployed into the physi-
cal world in the near future. This leads to opportunities based on

* Corresponding author.
E-mail addresses: roby.casadei@unibo.it (Roberto Casadei),
mirko.viroli@unibo.it (Mirko Viroli), gianluca.aguzzi@unibo.it (Gianluca Aguzzi),
danilo.pianini@unibo.it (D. Pianini).

https://doi.org/10.1016/j.s0ftx.2022.101248

exploiting a large body of computational resources, sensing/ac-
tuation capabilities, and data, but also leads to a number of
challenges, including coordination, scalability, and maintenance.
Multiple research fields try to exploit these opportunities and
address the related challenges, including multi-agent systems [3],
self-* computing [4], and collective intelligence [5].

Specifically, a fundamental problem is how to practically en-
gineer and even program the collective adaptive (also called self-
organising) behaviour of a group of devices or agents [6]. A recent,
prominent approach is aggregate computing [7,8]. This approach
consists of two main elements:

2352-7110/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101248
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101248&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00177
http://scafi.github.io/docs/
mailto:roby.casadei@unibo.it
https://index.scala-lang.org/scafi/scafi/artifacts/
http://scafi.github.io/docs/
mailto:roby.casadei@unibo.it
mailto:roby.casadei@unibo.it
mailto:mirko.viroli@unibo.it
mailto:gianluca.aguzzi@unibo.it
mailto:danilo.pianini@unibo.it
https://doi.org/10.1016/j.softx.2022.101248
http://creativecommons.org/licenses/by/4.0/

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.

SoftwareX 20 (2022) 101248

|

% AKKA-REMOTING

SCAFI-TESTS % SCAFI-STDLIB-EXT depends on
\
I \\ T
1 ‘\ 1
1 N 1
1 \ 1
1 AY 1
1 A 1
\% J| \"
E SCAFI-SIMULATOR F---> SCAFI-CORE <--- SCAFI-DISTRIBUTED <- - -,
1
A : . :
1 1 1]
1 1 1]
1 1 1]
1 1 1
! \"2 \ .
1
% % _____ SPALA !
SCAFI-SIMULATOR-GUI SCAFI-COMMONS < (AC PLATFORM) !
(space-time abstractions) 1
A ' :
1 !]
1 !]
1 !]
1
1 v :
1
DEMOS AKKA-CORE '
1
1
I
7

Fig. 1. High-level architecture of the ScaFI toolkit.

1. aggregate execution model [9] — a “self-organisation-like”
distributed execution model based on “continuous” sens-
ing, computation, communication, and actuation, to be per-
formed by all the devices of the system;

2. field calculus [8,10] — a functional language based on a col-
lective data structure abstraction, the computational field,
supporting the definition of a single aggregate program
expressing the overall behaviour of the entire aggregate of
devices from a global perspective.

By letting every device in the system work according to the
aggregate execution model and repeatedly evaluate the aggregate
program against its up-to-date local context, it is possible to
promote the emergence of robust, collective behaviour [11,12].

With respect to other approaches for collective adaptive sys-
tems programming [6,13,14] and more classical approaches for
multi-agent (e.g., JaCaMo [15]) and distributed systems program-
ming (e.g. actors [16]), aggregate computing arguably provides
benefits to development productivity as a result of the follow-
ing: (i) macro-level stance [17], promoting the ability to address
system-level behaviour globally; (ii) compositionality, promoting
construction of complex behaviour out of simpler behaviours; (iii)
formality, enabling theoretical investigations and analyses; and
(iv) practicality, with tools supporting actual programming and
simulation of resulting collective adaptive systems. A comparison
with metrics against traditional approaches can be found in [18].

So, engineering aggregate systems involves devising an aggre-
gate program and setting up the aggregate computing distributed
protocol for its collective execution according to the aggregate
execution model. In practice, the aggregate program could be
written in any programming framework featuring library-level or
programming-level aggregate computing mechanisms (e.g., [19-
22]). Then, the system should be evaluated and tested by simula-
tion before getting deployed on the execution platform of choice.
Proper software tooling is essential to support these phases and
hence the investigation of new self-organising algorithms and
variants or extensions of the programming model, promoting
scientific and technological progress.

In the following, we present the ScaF1 (Scala-Fields) software:
an aggregate programming toolkit that comprises an internal DSL
(language and virtual machine) as well as supporting components
for the simulation and execution of aggregate systems.

2. Software description

ScaF1 is a multi-module Scala project hosted on GitHub.? It
provides a DSL and API modules for writing, testing, and running
aggregate programs, namely programs expressed according to
the aggregate programming paradigm [7,8]. Stable versions of
ScaF1 are delivered through the Maven Central Repository. All
the artifacts are collected under group it.unibo.scafi. ScAFI's
build process and dependency management leverages the Simple
Build Tool (SBT), and a continuous integration/delivery pipeline
on GitHub Actions (GHA) is in place to ensure that changes do
not break existing functionality. ScAF1 cross-compiles for Scala
2.11, 2.12, 2.13 and targets both the JVM and the JavaScript
platform (through Scala.js). Besides functional testing, the qual-
ity assurance pipeline includes tools that enforce a consistent
programming style (ScalaStyle), perform static analysis for early
intercepting code smells (codiga.io), track and report code cov-
erage (codecov.io), and enforce git commit messages consistency
(commitlint).

2.1. Software architecture

The high-level architecture of ScaF1 is depicted in Fig. 1. It con-
sists of the following main components (where each component
is an SBT module and deployable artifact):

e scafi-commons — provides basic abstractions and utilities
(e.g., spatial and temporal abstractions);

1 https://scafi.github.io
2 https://github.com/scafi/scafi

https://scafi.github.io
https://github.com/scafi/scafi

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.

it.unibo.scafi

SoftwareX 20 (2022) 101248

Language {]

CNAME

Core $:]

Context

Constructs

Core
def nbr[A](exp: => A): A A
def rep[A](init: =>A)(f: (A)=>A): A ~

def selfld: ID

def exports(): Iterable[(ID,Export)]

def sense[T](Is: CNAME): Option[T]

def nbrSense[T](ns: CNAME)(nbr:ID): Option[T]

Export

def root[A](): A

4

Semantics $:]

SpatialAbstraction {]

TimeAbstraction $:]

RoundVM ‘

l P H D “Space[E]!

[

ExecutionTemplate

def round(ctx: Context): Export

f

Engine E

l Contextimpl H Exportimpl ‘
[1L 1

l factory : EngineFactory l
[]

Incarnation $:]

StandardLibrary %:]

|| [5ume] (e
(o] [

AggregateProgram

StandardSensors

def nbrRange(): D
def currentTime(): Time

Fig. 2. Design of the core of ScaF1 (DSL).

e scafi-core — provides an aggregate programming DSL
(syntax, semantics, and a virtual machine for evaluation of
programs), together with a “standard library” of reusable
functions;

e scafi-stdlib-ext — provides extra library functional-
ity that requires external dependencies and is hence kept
separated from the minimalist scafi-core;

e scafi-simulator: provides basic support for simulating
aggregate systems;

e scafi-simulator-gui — provides a GUI for visualising
and interacting with simulations of aggregate systems;

e spala (“spatial Scala”—i.e., a general Aggregate Computing
platform?) — provides an actor-based aggregate computing
middleware (independent of the ScaF1 DSL and potentially
applicable to other aggregate programming languages as
well) based on the Akka toolkit [24];

e scafi-distributed — ScaFi integration-layer for spala,
which can be leveraged to set up actor-based deployments
of ScaFi-programmed systems.

ScAF1 leverages the concept of an incarnation, namely a con-
crete “family of types” [25] that is progressively refined through
inheritance, composed, and finally instantiated into an object (cf.
the Scala cake pattern [25,26]) which ultimately provides access
to a type-coherent set of features.

Fig. 2 provides an excerpt of the main Scala traits with some
of the types and objects they define. Trait Core provides the
abstract fundamental types: CNAME for capability names, ID for
device identifiers, Context for the input environment of com-
putation rounds, and Export for the outcomes of computation
rounds. Trait Language provides the syntax of the DSL in terms

3 Aggregate computing is rooted in spatial computing [23].

of methods, through interface Constructs. Trait Semantics
and Engine implement the DSL construct semantics, providing
a template for AggregateProgram base class defined in the
Incarnation trait. The incarnation also exposes StandardSen-
sors in terms of, e.g., SpatialAbstraction’s and TimeAb-
straction’s types for positions (P), distances (P), and time. The
StandardLibrary is provided by leveraging what an incarna-
tion provides, providing traits of functionality to be mixed into
AggregatePrograms.

2.2. Software functionalities

Expressing aggregate programs through a Scala DSL

Module scafi-core exposes, through incarnations, an Ag-
gregateProgram trait that provides access to aggregate pro-
gramming constructs—following a variant of the field calculus [8,
10] formalised in [22,27]. This single program defines - from a
global perspective - the collective adaptive behaviour of an entire
ensemble of computational devices. Besides the core constructs,
this module also provides “standard library” traits providing ac-
cess to reusable functions of aggregate functionality. For instance,
by mixing trait Gradients into an AggregateProgram subclass,
a developer gets access to gradient functions [11,28], used to con-
tinuously compute (over space and time) the self-healing field of
minimum distances of each node from a set of source nodes. Sev-
eral such traits are available to provide other key building blocks
for self-organising applications [11,29] (e.g., BLlockG for gradient-
wise information propagation, BlockC for gradient-wise infor-
mation collection, BlockS for sparse choice or leader election)
or experimental language features (e.g., the spawn function for
concurrent aggregate processes [12,30], for modelling indepen-
dent and overlapping aggregate computations). Even more func-
tionality is available in module scafi-stdlib-ext, which cur-
rently provides Shapeless-leveraging [31] typeclasses to extend

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.

Boundedness constraints (required by some library functions) to
arbitrary product types.

Virtual machine for the local execution of aggregate programs

An AggregateProgram instance is a function mapping a
Context (the set of inputs needed by an individual device to
properly evaluate the program locally) to an Export (the tree
of values that has to be shared with neighbours to effectively
coordinate and promote emergence of collective behaviours).
Using this API, a developer can integrate “aggregate functionality”
into its system—what remains to be specified are the details of
the aggregate execution model and the communication among
devices, that may change in different applications. Devices must
continuously run the aggregate program, but the scheduling
of these computation rounds can be tuned as the application
needs [32]. Exports must be shared with neighbouring devices
to allow them to properly set up their Contexts, but the network
protocol to be used to do so can be selected independently of the
program.

Simulation support

In order to simulate an “aggregate system”, it is necessary
to (i) define the set of computational devices that make up the
aggregate, including their sensors and actuators; (ii) define the
aggregate topology, i.e., some application-specific neighbouring
relationship from which the set of neighbours of each device can
be determined; (iii) define the aggregate program to be executed;
(iv) define a certain dynamics of the system by proper scheduling
of computation rounds, and the environment by proper schedul-
ing of changes in sensor values. Module scafi-simulator pro-
vides this basic support. It exposes some factory methods to
configure simulations properly (e.g., it supports ad-hoc and spa-
tial distance-based connectivity rules) and an API to run and
interact with simulations. Then, module scafi-simulator-gui
provides a convenient graphical user interface to launch and
visually show simulations in execution. We remark that these
modules currently support basic simulation scenarios and are
mainly meant for quick experiments or as a starting basis for
ad-hoc simulation frameworks; a further option for sophisticated
simulations and data analysis is to use ScaF1 within the Alchemist
simulator for pervasive computing systems [33,34].

Experimental or work-in-progress features: 3D simulation frontend
and actor-based middleware

ScaF1 also includes a front-end for 3D simulations (renderer-
3d), which are already supported by an execution perspective.

Regarding the construction of actual systems, ScAFI provides
an actor-based implementation of the aggregate execution model
[35], in the spala (Spatial Scala) module, which is instrumen-
tal for integrating aggregate computing into existing systems
and distributed architectures [35]. Indeed, aggregate computing
systems can be designed, deployed, and executed according to
different architectural styles and concrete architectures [9]. So,
ScAF1 provides two main implementations of the middleware, in
package it.unibo.scafi.distrib.actor, for purely peer-to-
peer (sub-package p2p) and server-based designs (sub-package
server). The main abstraction is the DeviceActor, which ex-
poses a message-based interface for controlling and interacting
with an individual logical node of the aggregate system. Then,
an object-oriented facade API is provided to set up a system of
middleware-level actors.

SoftwareX 20 (2022) 101248

3. Illustrative examples

3.1. Hello scaf1: building an aggregate system that computes a
gradient, from scratch

This complete example, shown in Fig. 3 and available online,”
illustrates how ScaFi1 can be used to program a (simulated) aggre-
gate system for computing a self-stabilising gradient field [11,28]
where the output of each device self-stabilises to its minimum
distance from an appointed source device. Development comes
into two parts: (i) definition of the aggregate program, namely
the logic of collective behaviour (Fig. 3(a))*®; and (ii) definition
of an “aggregate execution protocol” determining how devices
communicate and act upon their environment (Fig. 3(b)).

3.2. Self-organising coordination regions in simulation

As a more complex example, consider a ScAF1 implementation
of the Self-Organising Coordination Regions (SCR) pattern [36].
The idea of SCR is to organise a distributed activity into multiple
spatial regions (inducing a partition of the system), each one
controlled by a leader device, which collects data from the area
members and spreads decisions to enact some area-wide policy.
This pattern can be easily implemented in ScAFI1 using its standard
library functions, and simulated through the feature provided by
scafi-simulator.

For instance, consider the following scenario: temperature
monitoring and control in a large environment. For distributed
summarisation, we could create areas of uniform sizes and let
the devices collectively compute the area’s average temperature.
Then, we could create an alarm based on collective information,
for more coarse-grained analysis and intervention. We imple-
mented this scenario in the repository’: Fig. 4 shows a simple
ScaF1 implementation of SCR and a snapshot taken from the ScaF1
simulator.

4. Impact

ScaF1 has been used in aggregate computing-related research
[12,18,27,37-43], touching themes such as software engineering,
computational models, and distributed systems/algorithms. This
thread has also several intersections with fields like multi-agent
systems, self-organisation, collective intelligence, and scenarios
like the Internet of Things, cyber-physical systems, and edge
computing. Artifacts published on permanent repositories (like
Zenodo) using ScAF1 include [44-46]. Aggregate programming
languages have been used in industry [47,48]. The impact of
ScAF1 can be understood in terms of existing and prospective
contributions, discussed in the following.

Interplay between programming language design and foundational
research

The implementation of the ScAF1 DSL has inspired a variant of
the field calculus which arguably supports easier embeddability
into mainstream programming languages [22,27].

4 https://github.com/scafi/hello-scafi

5 For a detailed explanation of this gradient implementation, please refer to
eg. [12].

6 Concerning source code listings, we highlight symbols as follows: we use
blue for Scala keywords, red for ScaFi DSL constructs, purple for ScaFi library
functions, and brown for other ScaF1 API symbols (e.g., types, objects, constants,
and methods).

7 https://github.com/scafi/scafi- softwarex-scr-example

https://github.com/scafi/hello-scafi
https://github.com/scafi/scafi-softwarex-scr-example

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.

// 1. Define/import an incarnation,
object MylIncarnation extends

it.unibo.scafi.incarnations.BasicAbstractIncarnation
// 2. Bring into scope the stuff from the chosen incarnation
import MyIncarnation._
// 3. Define an "aggregate program" using the ScaFi DSL
// by extending AggregateProgram and specifying a "main"
class GradientProgram extends AggregateProgram {

def isSource: Boolean = sense()

override def main(): Any = rep(Double.PositiveInfinity)(d => {

mux (isSource){ 0.0 } {
foldhoodPlus (Double.PositiveInfinity)(Math.min){ nbr(d) + 1.0 }

which provides ScaFi types and classes

expression

1300

(a) Program definition

// 4. In your program, implement an "execution loop" whereby
// your device or system executes the aggregate program
object HelloScafi extends App {

case class DeviceState(self: ID, exports: Map[ID, EXPORT],
localSensors: Map[CNAME, Anyl, nbrSensors: Map[CNAME, Map[ID, Anyll) {
def updateExport(dev: ID, export: EXPORT): DeviceState =

this.copy(exports = exports + (dev -> export))

}

val devices =1 to 5 // (1,2,3,4,5), i.e., 5 devices

val sourceld = 2 // device 2 is the source of the gradient

val scheduling = devices ++ devices ++ devices ++ devices ++ devices

val program = new GradientProgram()

def neighboursFrom(id: ID): SeqlInt] = // topology: [1]1-[2]-[3]1-[4]-[5]
Seq(id - 1, id, id + 1).filter(n => n > 0 && n < 6)

// Now let’s build a simplified system to illustrate the execution model

var state: Map[ID, DeviceState] = (for {
d <- devices
} yield d -> DeviceState(d, Map.empty, Map(-> false),

Map (NBR_RANGE -> (neighboursFrom(d).toSet[ID]
.map (nbr => nbr -> Math.abs(d - nbr).toDouble)).toMap))).toMap
state = state + (sourceld -> state(sourceId).copy(localSensors =

SoftwareX 20 (2022) 101248

state (sourceId).localSensors + (

val ctx = factory.context(selfId =
lsens =

println(s

val export = program.round(ctx)
// update d’s state

println(s

// The cycle simulates scheduling&communication by read/write on

for(d <- scheduling){ // run 5 rounds for each device
// build the local context for device d

d, exports =

state(d).localSensors ,nbsens =

// run the program against the local context

state += d -> state(d).updateExport(d,
// Simulate sending of messages to neighbours
state(d).nbrSensors (NBR_RANGE) .keySet.foreach (

nbr => state += nbr -> state(nbr).updateExport(d,

-> true))) // set source

‘state
‘d‘, round-robin
state(d).exports,
state(d).nbrSensors)

)

export)

export))

(b) System and execution definition

Fig. 3. Complete example: an aggregate system computing a gradient.

Platform for experimenting new aggregate programming language
features

ScaF1 includes extensions to the basic field calculus. In partic-
ular, it supports the aggregate process abstraction [12], enabled
by the spawn construct [49], which provides a way to specify a
dynamic number of collective computations running on dynamic
ensembles of devices. Another extension is the exchange prim-
itive [18,44], which subsumes previous communication prim-
itives (like nbr [10]) and enables differentiated messages for
neighbours. In general, as the aggregate programming DSL is
exposed as a “plain-old library”, it is arguably easier to im-
plement new features, as the developer does not need to deal
with parser, compilers, type systems, or language workbenches—
of course, at the expense of (syntactic and analytic) constraints
exerted by the host language. Moreover, the research orientation
of Scala [50] makes it a powerful environment for experimenting
new language features and mechanisms.

High-level programming models

The previous discussion makes the case for “DSL stacking”
[51]. Indeed, by leveraging the aforementioned aggregate process
extension, it is possible to reduce the abstraction gap needed to
implement situated tuples [42], which is a Linda-like model [52]
for coordinating processes where tuples and tuple operations
are situated in space. By mapping high-level specifications into
aggregate programs, it is sometimes straightforward to develop
resilient distributed implementations—as in [53], where transla-
tion rules from spatial logic formulas to field calculus expressions
enable seamless construction of decentralised monitors for such
formulas.

Web-friendliness

By leveraging Scalajs [54], ScAF1 can be easily accessed
through JavaScript, which promotes cross-platform language de-
sign and reuse of functionality in the browser (to support web

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.

SoftwareX 20 (2022) 101248

(leader, zoneTemperature)

class SCR extends AggregateProgram with BuildingBlocks with StandardSemnsors {
val radius = 300 // average area of interest
val leader = S(radius, nbrRange)
val potential = distanceTo(leader)
val averageTemperature = collectMean(potential, temperature)
val zoneTemperature = broadcast(leader, averageTemperature)

// Coloring following leader information

(a) SCAFI program

(c) Simulated temperature distribution.

Fig. 4. SCR pattern in ScaF1. Colours denote the temperature perceived by the devices (the redder the higher the temperature).

applications without the need of server-side components). This
paved the path to ScAFI-WEB [55], a web playground for aggregate
programming.

Developer-friendliness

With respect to other programming frameworks for aggregate
computing like Proto [19], Protelis [20], and FCPP [21], the ScAF1
toolkit provides a privileged environment for developers. Proto
has been discontinued. Its successor, Protelis, is a standalone DSL
with duck typing and no support for the definition of new data
structures, and whose support for syntax highlighting and code
completion is only available for the Eclipse IDE (being based on
the Xtext framework [56]). Relatively to FCPP, which is based
on C++, ScaF1 benefits from the higher level of abstraction pro-
vided by Scala and the integration with the Java ecosystem. A
more detailed account of this comparison between aggregate
programming languages can be found in [8,27].

Engineering of complex systems and collective intelligence (and re-
lated research)

The paradigm embodied by ScaF1 provides a means to ex-
plore complex systems themes [57] (including collective intelli-
gence [5], self-organisation [58], socio-technical collectives [59],
emergence [60], etc.), and to do so by an engineering and program-
ming perspective. For instance, in [12] the ability to self-organise
into dynamic groups is exploited to provide forms of intelligent
behaviour at the edge; in [36], a self-organisation pattern has
been discovered that enables dynamic adjustment of the diameter
of feedback-regulated networks and hence of the level of decen-
tralisation in a system, for intelligent use of resources. In [37],
reinforcement learning is used to learn policies for determining
what actions to execute, in “holes” of ScAFI programs, to improve
the dynamics of collective algorithms. We foresee that accessible
software toolkits such as ScAFI aimed at programming collective
adaptive systems could have an important role in these research
threads.

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.
5. Conclusion

This paper presents ScAFI, an open-source Scala-based toolkit
for aggregate computing, enabling the development of collective
adaptive systems. It provides an internal DSL for the field calculus,
a library of reusable aggregate behaviour functions, as well as
support components for simulating and executing aggregate sys-
tems. Compared to other aggregate programming languages such
as Protelis and FCPP, it provides a more high-level platform that
might support agile prototyping for research and easier integra-
tion with other tools and environments for distributed systems
(cf. the Web and Android). We believe it represents a valu-
able tool for potential scientific and technological developments
related to intelligent collective systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgements

This work has been partially supported by the MUR PRIN
2020 Project “COMMON-WEARS” (2020HCWWLP) and the EU/-
MUR FSE REACT-EU PON R&I 2014-2020. We also would like to
thank Prof. Ferruccio Damiani and Dr. Giorgio Audrito for their
contribution to the formal underpinnings of the ScaF1 DSL, and
the students at the University of Bologna that contributed to the
tool.

References

[1] Abowd GD. Beyond weiser: From ubiquitous to collective computing.
Computer 2016;49(1):17-23. http://dx.doi.org/10.1109/MC.2016.22.
Satyanarayanan M. Pervasive computing: Vision and challenges. IEEE Wirel
Commun 2001;8(4):10-7. http://dx.doi.org/10.1109/98.943998.

[3] Ferber J. Multi-agent systems - an introduction to distributed artificial

intelligence. Addison-Wesley-Longman; 1999.

Kephart JO, Chess DM. The vision of autonomic computing. Computer

2003;36(1):41-50. http://dx.doi.org/10.1109/MC.2003.1160055.

He F, Pan Y, Lin Q, Miao X, Chen Z. Collective intelligence: A taxonomy and

survey. IEEE Access 2019;7:170213-25. http://dx.doi.org/10.1109/ACCESS.

2019.2955677.

Nicola RD, Jdhnichen S, Wirsing M. Rigorous engineering of collective

adaptive systems: Special section. Int] Softw Tools Technol Transf

2020;22(4):389-97. http://dx.doi.org/10.1007/s10009-020-00565-0.

Beal], Pianini D, Viroli M. Aggregate programming for the Internet

of Things. Computer 2015;48(9):22-30. http://dx.doi.org/10.1109/MC.2015.

261.

Viroli M, Beal], Damiani F, Audrito G, Casadei R, Pianini D. From

distributed coordination to field calculus and aggregate computing. J Log

Algebraic Methods Program 2019;109. http://dx.doi.org/10.1016/j.jlamp.

2019.100486.

Casadei R, Pianini D, Placuzzi A, Viroli M, Weyns D. Pulverization in cyber-

physical systems: Engineering the self-organizing logic separated from

deployment. Future Internet 2020;12(11):203. http://dx.doi.org/10.3390/
fi12110203.

[10] Audrito G, Viroli M, Damiani F, Pianini D, Beal]. A higher-order calculus
of computational fields. ACM Trans Comput Log 2019;20(1):5:1-55. http:
//dx.doi.org/10.1145/3285956.

[11] Viroli M, Audrito G, Beal], Damiani F, Pianini D. Engineering resilient
collective adaptive systems by self-stabilisation. ACM Trans Model Comput
Simul 2018;28(2):16:1-28. http://dx.doi.org/10.1145/3177774.

[12] Casadei R, Viroli M, Audrito G, Pianini D, Damiani F. Engineering collective
intelligence at the edge with aggregate processes. Eng Appl Artif Intell
2021;97:104081. http://dx.doi.org/10.1016/j.engappai.2020.104081.

12

[4

[5

[6

[7

8

[9

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

SoftwareX 20 (2022) 101248

Pinciroli C, Beltrame G. Buzz: A programming language for robot swarms.
IEEE Softw 2016;33(4):97-100. http://dx.doi.org/10.1109/MS.2016.95.
Alrahman YA, Nicola RD, Loreti M. Programming interactions in collec-
tive adaptive systems by relying on attribute-based communication. Sci
Comput Program 2020;192:102428. http://dx.doi.org/10.1016/j.scico.2020.
102428.

Boissier O, Bordini RH, Hubner], Ricci A. Multi-agent oriented pro-
gramming: programming multi-agent systems using JaCaMo. MIT Press;
2020.

Ricci A, Haller P, editors. Programming with actors - state-of-the-art and
research perspectives. In: Lecture notes in computer science, vol. 10789,
Springer; 2018, http://dx.doi.org/10.1007/978-3-030-00302-9.

Newton R, Morrisett G, Welsh M. The regiment macroprogramming sys-
tem. In: Abdelzaher TF, Guibas L], Welsh M, editors. Proceedings of the
6th international conference on information processing in sensor networks.
ACM; 2007, p. 489-98. http://dx.doi.org/10.1145/1236360.1236422.
Audrito G, Casadei R, Damiani F, Salvaneschi G, Viroli M. Functional
programming for distributed systems with XC. In: Ali K, Vitek], editors.
36th European conference on object-oriented programming. LIPIcs, vol.
222, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik; 2022, p. 20:1-28.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2022.20.

Beal], Bachrach]. Infrastructure for engineered emergence on sensor/actu-
ator networks. IEEE Intell Syst 2006;21(2):10-9. http://dx.doi.org/10.1109/
MIS.2006.29.

Pianini D, Viroli M, Beal]J. Protelis: practical aggregate programming. In:
Wainwright RL, Corchado JM, Bechini A, Hong], editors. Proceedings of
the 30th annual ACM symposium on applied computing. ACM; 2015, p.
1846-53. http://dx.doi.org/10.1145/2695664.2695913.

Audrito G. FCPP: An efficient and extensible field calculus framework. In:
IEEE international conference on autonomic computing and self-organizing
systems. IEEE; 2020, p. 153-9. http://dx.doi.org/10.1109/ACS0S49614.2020.
00037.

Casadei R, Viroli M, Audrito G, Damiani F. FScaFi : A core calculus for
collective adaptive systems programming. In: Margaria T, Steffen B, editors.
Leveraging applications of formal methods, verification and validation:
engineering principles - 9th international symposium on leveraging ap-
plications of formal methods, ISOLA 2020, Rhodes, Greece, October 20-30,
2020, Proceedings, Part II. Lecture notes in computer science, vol. 12477,
Springer; 2020, p. 344-60. http://dx.doi.org/10.1007/978-3-030-61470-6_
21.

Beal], Dulman S, Usbeck K, Viroli M, Correll N. Organizing the aggregate:
Languages for spatial computing. 2012, CoRR abs/1202.5509, arXiv:1202.
5509.

Roestenburg R, Bakker R, Williams R. Akka in action. first ed.. USA:
Manning Publications Co.; 2015.

Odersky M, Zenger M. Scalable component abstractions. In: Johnson RE,
Gabriel RP, editors. Proceedings of the 20th annual ACM SIGPLAN
conference on object-oriented programming, systems, languages, and
applications. ACM; 2005, p. 41-57. http://dx.doi.org/10.1145/1094811.
1094815.

Hunt]. Cake pattern. In: Scala design patterns: patterns for practical
reuse and design. Cham: Springer International Publishing; 2013, p. 115-9.
http://dx.doi.org/10.1007/978-3-319-02192-8_13.

Audrito G, Casadei R, Damiani F, Viroli M. Computation against a
neighbour: Addressing large-scale distribution and adaptivity with func-
tional programming and scala. 2020, http://dx.doi.org/10.48550/ARXIV.
2012.08626, arXiv, URL https://arxiv.org/abs/2012.08626.

Beal], Bachrach], Vickery D, Tobenkin MM. Fast self-healing gradients.
In: Wainwright RL, Haddad H, editors. Proceedings of the 2008 ACM
symposium on applied computing. ACM; 2008, p. 1969-75. http://dx.doi.
org/10.1145/1363686.1364163.

Wolf TD, Holvoet T. Designing self-organising emergent systems based
on information flows and feedback-loops. In: Proceedings of the first
international conference on self-adaptive and self-organizing systems. IEEE
Computer Society; 2007, p. 295-8. http://dx.doi.org/10.1109/SAS0.2007.16.
Testa L, Audrito G, Damiani F, Torta G. Aggregate processes as distributed
adaptive services for the Industrial Internet of Things. Pervasive Mob Com-
put 2022;85:101658. http://dx.doi.org/10.1016/j.pmcj.2022.101658, URL
https://www.sciencedirect.com/science/article/pii/S1574119222000797.
Gurnell D. The type Astronaut’s guide to shapeless. Lulu.com; 2017, URL
https://books.google.it/books?id=c9evDgAAQBA].

Pianini D, Casadei R, Viroli M, Mariani S, Zambonelli F. Time-fluid field-
based coordination through programmable distributed schedulers. Log
Methods Comput Sci 2021;17(4). http://dx.doi.org/10.46298/Imcs-17(4:13)
2021.

Pianini D, Montagna S, Viroli M. Chemical-oriented simulation of compu-
tational systems with ALCHEMIST.] Simulation 2013;7(3):202-15. http:
//dx.doi.org/10.1057/jos.2012.27.

http://dx.doi.org/10.1109/MC.2016.22
http://dx.doi.org/10.1109/98.943998
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb3
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb3
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb3
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/ACCESS.2019.2955677
http://dx.doi.org/10.1109/ACCESS.2019.2955677
http://dx.doi.org/10.1109/ACCESS.2019.2955677
http://dx.doi.org/10.1007/s10009-020-00565-0
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.1145/3285956
http://dx.doi.org/10.1145/3285956
http://dx.doi.org/10.1145/3285956
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.1109/MS.2016.95
http://dx.doi.org/10.1016/j.scico.2020.102428
http://dx.doi.org/10.1016/j.scico.2020.102428
http://dx.doi.org/10.1016/j.scico.2020.102428
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb15
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb15
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb15
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb15
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb15
http://dx.doi.org/10.1007/978-3-030-00302-9
http://dx.doi.org/10.1145/1236360.1236422
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2022.20
http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1145/2695664.2695913
http://dx.doi.org/10.1109/ACSOS49614.2020.00037
http://dx.doi.org/10.1109/ACSOS49614.2020.00037
http://dx.doi.org/10.1109/ACSOS49614.2020.00037
http://dx.doi.org/10.1007/978-3-030-61470-6_21
http://dx.doi.org/10.1007/978-3-030-61470-6_21
http://dx.doi.org/10.1007/978-3-030-61470-6_21
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://arxiv.org/abs/1202.5509
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb24
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb24
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb24
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1145/1094811.1094815
http://dx.doi.org/10.1007/978-3-319-02192-8_13
http://dx.doi.org/10.48550/ARXIV.2012.08626
http://dx.doi.org/10.48550/ARXIV.2012.08626
http://dx.doi.org/10.48550/ARXIV.2012.08626
https://arxiv.org/abs/2012.08626
http://dx.doi.org/10.1145/1363686.1364163
http://dx.doi.org/10.1145/1363686.1364163
http://dx.doi.org/10.1145/1363686.1364163
http://dx.doi.org/10.1109/SASO.2007.16
http://dx.doi.org/10.1016/j.pmcj.2022.101658
https://www.sciencedirect.com/science/article/pii/S1574119222000797
https://books.google.it/books?id=c9evDgAAQBAJ
http://dx.doi.org/10.46298/lmcs-17(4:13)2021
http://dx.doi.org/10.46298/lmcs-17(4:13)2021
http://dx.doi.org/10.46298/lmcs-17(4:13)2021
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27

Roberto Casadei, Mirko Viroli, Gianluca Aguzzi et al.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Viroli M, Casadei R, Pianini D. Simulating large-scale aggregate MASs with
Alchemist and Scala. In: Ganzha M, Maciaszek LA, Paprzycki M, editors.
Proceedings of the 2016 federated conference on computer science and
information systems. Annals of computer science and information systems,
vol. 8, IEEE; 2016, p. 1495-504. http://dx.doi.org/10.15439/2016F407.
Casadei R, Viroli M. Programming actor-based collective adaptive systems.
In: Ricci A, Haller P, editors. Programming with actors - state-of-the-
art and research perspectives. Lecture notes in computer science, vol.
10789, Springer; 2018, p. 94-122. http://dx.doi.org/10.1007/978-3-030-
00302-9_4.

Pianini D, Casadei R, Viroli M, Natali A. Partitioned integration and coordi-
nation via the self-organising coordination regions pattern. Future Gener
Comput Syst 2021;114:44-68. http://dx.doi.org/10.1016/j.future.2020.07.
032.

Aguzzi G, Casadei R, Viroli M. Towards reinforcement learning-based aggre-
gate computing. In: ter Beek MH, Sirjani M, editors. Coordination models
and languages - 24th IFIP WG 6.1 international conference, COORDINATION
2022, held as part of the 17th international federated conference on
distributed computing techniques, DisCoTec 2022, Lucca, Italy, June 13-17,
2022, proceedings. Lecture notes in computer science, vol. 13271, Springer;
2022, p. 72-91. http://dx.doi.org/10.1007/978-3-031-08143-9_5.

Casadei R, Viroli M. Coordinating computation at the edge: A decentralized,
self-organizing, spatial approach. In: Fourth international conference on fog
and mobile edge computing. IEEE; 2019, p. 60-7. http://dx.doi.org/10.1109/
FMEC.2019.8795355.

Casadei R, Tsigkanos C, Viroli M, Dustdar S. Engineering resilient collab-
orative edge-enabled IoT. In: Bertino E, Chang CK, Chen P, Damiani E,
Goul M, Oyama K, editors. 2019 IEEE international conference on ser-
vices computing. IEEE; 2019, p. 36-45. http://dx.doi.org/10.1109/SCC.2019.
00019.

Casadei R, Aldini A, Viroli M. Towards attack-resistant aggregate computing
using trust mechanisms. Sci Comput Program 2018;167:114-37. http://dx.
doi.org/10.1016/j.scico.2018.07.006.

Casadei R, Aguzzi G, Viroli M. A programming approach to collective
autonomy.] Sens Actuator Netw 2021;10(2):27. http://dx.doi.org/10.3390/
jsan10020027.

Casadei R, Viroli M, Ricci A, Audrito G. Tuple-based coordination in large-
scale situated systems. In: Damiani F, Dardha O, editors. Coordination
models and languages - 23rd IFIP WG 6.1 international conference,
COORDINATION 2021, held as part of the 16th international federated
conference on distributed computing techniques, DisCoTec 2021, Valletta,
Malta, June 14-18, 2021, proceedings. Lecture notes in computer science,
vol. 12717, Springer; 2021, p. 149-67. http://dx.doi.org/10.1007/978-3-
030-78142-2_10.

Casadei R, Pianini D, Viroli M, Weyns D. Digital twins, virtual devices,
and augmentations for self-organising cyber-physical collectives. Appl
Sci 2022;12(1). http://dx.doi.org/10.3390/app12010349, URL https://www.
mdpi.com/2076-3417/12/1/349.

Casadei R. Scafi/artifact-2021-ecoop-xc: v1.2. 2022, http://dx.doi.org/10.
5281/ZENODO0.6538810, Zenodo, URL https://zenodo.org/record/6538810.
Casadei R. Scafi/artifact-2021-ecoop-smartc: v1.2. 2022, http://dx.doi.
org/10.5281/ZENODO.6538822, Zenodo, URL https://zenodo.org/record/
6538822.

Aguzzi G, Pianini D. Cric96/experiment-2022-ieee-decentralised-system:
1.0.1. 2022, http://dx.doi.org/10.5281/ZENOD0.6477039, Zenodo, URL
https://zenodo.org/record/6477039.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

SoftwareX 20 (2022) 101248

Paulos A, Dasgupta S, Beal], Mo Y, Hoang KD, Bryan LJ, et al. A framework
for self-adaptive dispersal of computing services. In: IEEE 4th international
workshops on foundations and applications of self* systems. IEEE; 2019,
p. 98-103. http://dx.doi.org/10.1109/FAS-W.2019.00036.

Beal J, Usbeck K, Loyall JP, Rowe M, Metzler JM. Adaptive opportunistic
airborne sensor sharing. ACM Trans Auton Adapt Syst 2018;13(1):6:1-29.
http://dx.doi.org/10.1145/3179994.

Casadei R, Viroli M, Audrito G, Pianini D, Damiani F. Aggregate processes
in field calculus. In: Nielson HR, Tuosto E, editors. Coordination models
and languages - 21st IFIP WG 6.1 international conference, COORDINATION
2019, held as part of the 14th international federated conference on dis-
tributed computing techniques, DisCoTec 2019, Kongens Lyngby, Denmark,
June 17-21, 2019, proceedings. Lecture notes in computer science, vol.
11533, Springer; 2019, p. 200-17. http://dx.doi.org/10.1007/978-3-030-
22397-7_12.

Odersky M, Micheloud S, Mihaylov N, Schinz M, Stenman E, Zenger M, et
al. An Overview of the Scala Programming Language. Tech. Rep., 2004.
Humm BG, Engelschall RS. Language-oriented programming via DSL stack-
ing. In: Cordeiro JAM, Virvou M, Shishkov B, editors. ICSOFT 2010 -
proceedings of the fifth international conference on software and data
technologies, vol. 2. SciTePress; 2010, p. 279-87.

Gelernter D. Generative communication in Linda. ACM Trans Program Lang
Syst 1985;7(1):80-112. http://dx.doi.org/10.1145/2363.2433.

Audrito G, Casadei R, Damiani F, Stolz V, Viroli M. Adaptive distributed
monitors of spatial properties for cyber-physical systems.] Syst Softw
2021;175:110908. http://dx.doi.org/10.1016/j.js5.2021.110908.

Doeraene S. Cross-platform language design in Scalajs (keynote). In:
Erdweg S, d. S. Oliveira BC, editors. Proceedings of the 9th ACM SIGPLAN
international symposium on scala. ACM; 2018, p. 1. http://dx.doi.org/10.
1145/3241653.3266230.

Aguzzi G, Casadei R, Maltoni N, Pianini D, Viroli M. ScaFi-Web: A web-
based application for field-based coordination programming. In: Damiani F,
Dardha O, editors. Coordination models and languages - 23rd IFIP WG 6.1
international conference, COORDINATION 2021, held as part of the 16th
international federated conference on distributed computing techniques,
DisCoTec 2021, Valletta, Malta, June 14-18, 2021, proceedings. Lecture
notes in computer science, vol. 12717, Springer; 2021, p. 285-99. http:
//dx.doi.org/10.1007/978-3-030-78142-2_18.

Bettini L. Implementing domain-specific languages with Xtext and Xtend.
Birmingham: Packt Publishing Ltd., UK; 2016.

Mobus GE, Kalton MC. Principles of systems science. Springer Publishing
Company, Incorporated; 2014.

Yates F. Self-organizing systems: the emergence of order. Life science
monographs, Springer US; 2012, URL https://books.google.it/books?id=
liTvBWAAQBA]J.

Miorandi D, Maltese V, Rovatsos M, Nijholt A, Stewart]. Social collective
intelligence: Combining the powers of humans and machines to build a
smarter society. Springer Publishing Company, Incorporated; 2014.
Kalantari S, Nazemi E, Masoumi B. Emergence phenomena in self-
organizing systems: A systematic literature review of concepts, re-
searches, and future prospects. J Organ Comput Electron Commer
2020;30(3):224-65. http://dx.doi.org/10.1080/10919392.2020.1748977.

http://dx.doi.org/10.15439/2016F407
http://dx.doi.org/10.1007/978-3-030-00302-9_4
http://dx.doi.org/10.1007/978-3-030-00302-9_4
http://dx.doi.org/10.1007/978-3-030-00302-9_4
http://dx.doi.org/10.1016/j.future.2020.07.032
http://dx.doi.org/10.1016/j.future.2020.07.032
http://dx.doi.org/10.1016/j.future.2020.07.032
http://dx.doi.org/10.1007/978-3-031-08143-9_5
http://dx.doi.org/10.1109/FMEC.2019.8795355
http://dx.doi.org/10.1109/FMEC.2019.8795355
http://dx.doi.org/10.1109/FMEC.2019.8795355
http://dx.doi.org/10.1109/SCC.2019.00019
http://dx.doi.org/10.1109/SCC.2019.00019
http://dx.doi.org/10.1109/SCC.2019.00019
http://dx.doi.org/10.1016/j.scico.2018.07.006
http://dx.doi.org/10.1016/j.scico.2018.07.006
http://dx.doi.org/10.1016/j.scico.2018.07.006
http://dx.doi.org/10.3390/jsan10020027
http://dx.doi.org/10.3390/jsan10020027
http://dx.doi.org/10.3390/jsan10020027
http://dx.doi.org/10.1007/978-3-030-78142-2_10
http://dx.doi.org/10.1007/978-3-030-78142-2_10
http://dx.doi.org/10.1007/978-3-030-78142-2_10
http://dx.doi.org/10.3390/app12010349
https://www.mdpi.com/2076-3417/12/1/349
https://www.mdpi.com/2076-3417/12/1/349
https://www.mdpi.com/2076-3417/12/1/349
http://dx.doi.org/10.5281/ZENODO.6538810
http://dx.doi.org/10.5281/ZENODO.6538810
http://dx.doi.org/10.5281/ZENODO.6538810
https://zenodo.org/record/6538810
http://dx.doi.org/10.5281/ZENODO.6538822
http://dx.doi.org/10.5281/ZENODO.6538822
http://dx.doi.org/10.5281/ZENODO.6538822
https://zenodo.org/record/6538822
https://zenodo.org/record/6538822
https://zenodo.org/record/6538822
http://dx.doi.org/10.5281/ZENODO.6477039
https://zenodo.org/record/6477039
http://dx.doi.org/10.1109/FAS-W.2019.00036
http://dx.doi.org/10.1145/3179994
http://dx.doi.org/10.1007/978-3-030-22397-7_12
http://dx.doi.org/10.1007/978-3-030-22397-7_12
http://dx.doi.org/10.1007/978-3-030-22397-7_12
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb50
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb50
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb50
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb51
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1016/j.jss.2021.110908
http://dx.doi.org/10.1145/3241653.3266230
http://dx.doi.org/10.1145/3241653.3266230
http://dx.doi.org/10.1145/3241653.3266230
http://dx.doi.org/10.1007/978-3-030-78142-2_18
http://dx.doi.org/10.1007/978-3-030-78142-2_18
http://dx.doi.org/10.1007/978-3-030-78142-2_18
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb56
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb56
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb56
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb57
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb57
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb57
https://books.google.it/books?id=IiTvBwAAQBAJ
https://books.google.it/books?id=IiTvBwAAQBAJ
https://books.google.it/books?id=IiTvBwAAQBAJ
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb59
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb59
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb59
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb59
http://refhub.elsevier.com/S2352-7110(22)00166-2/sb59
http://dx.doi.org/10.1080/10919392.2020.1748977

	ScaFi: A Scala DSL and Toolkit for Aggregate Programming
	Motivation and significance
	Software description
	Software Architecture
	Software Functionalities
	Expressing aggregate programs through a Scala DSL
	Virtual machine for the local execution of aggregate programs
	Simulation support
	Experimental or work-in-progress features: 3D simulation frontend and actor-based middleware

	Illustrative Examples
	Hello ScaFi: building an aggregate system that computes a gradient, from scratch
	Self-organising Coordination Regions in Simulation

	Impact
	Interplay between programming language design and foundational research
	Platform for experimenting new aggregate programming language features
	High-level programming models
	Web-friendliness
	Developer-friendliness
	Engineering of complex systems and collective intelligence (and related research)

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

