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Abstract
Conventional methods for water and wastewater treatment are energy-intensive, notably at the stage of coagulation–floc-
culation, calling for new strategies to predict pollutant reduction because the amount of energy consumed is related to how 
much of the pollutant is treated. Here we developed a model, named Bio-logic, inspired by ecosystems, where pollutants 
represent organisms, coagulants are food, and the wider environmental conditions are the living environment. Artificial 
intelligence was used to learn the biological behavior, which enabled an accurate prediction of the amount of pollutant 
reduction. Results show that pseudo-biological objects that have a strong affinity for biological food, such as turbidity, total 
phosphorus, ammonia nitrogen and the potassium permanganate index, induced a strong correlation, between measured 
pollutant consumption capacity and predicted values. For instance, R2 correlation coefficients are 0.97 for turbidity and 0.92 
for the potassium permanganate index in the laboratory; and 0.99 for turbidity, 0.90 for total phosphorus, 0.75 for ammonia 
nitrogen and 0.63 for the potassium permanganate index in water treatment plants. Overall, our findings demonstrate that 
artificial intelligence can use the water Bio-logic model to predict the pollutant consumption capacity.

Keywords Drinking water · Coagulation · Bio-logic · Artificial intelligence · Pollutant removal

Introduction

Global water utilities are estimated to be responsible for 
nearly 2% of all greenhouse gas emissions and are focused 
on reducing its carbon footprint (UNFCCC 2022). Drinking 
water treatment has been the primary focus for the water 

industry from the very beginning (Qu et al. 2007; Teodosiu 
et al. 2018), making sure our drinking water is free from pol-
lutants is the focus of natural water and urban water systems 
and carries huge social responsibility (Mian et al. 2020). 
Coagulation–flocculation is the core of the treatment pro-
cess unit in a drinking water plant, and it is an important 
contributor to the total energy consumption (Zhu et al. 2016, 
2020, 2022; Lichtfouse et al. 2019).

Energy consumption during coagulation–flocculation 
is related to pollutant treatment, and being able to predict 
pollutant consumption essential for early planning of emis-
sion reduction technology. Since the effluents from drink-
ing water plants are subject to national standards, there is a 
continuous demand for improved effluent quality (Hu et al. 
2018; Crini and Lichtfouse 2019). The quality of output 
water is generally stable, and the quality of raw input water 
will determine the capacity for pollutant reduction, which 
can also be referred to as pollutant consumption capacity. 
However, the pollutant consumption capacity value of all 
pollutants is not balanced. Although some pollutants have 
been incorporated into the management system of drinking 
water quality standards, such as carbon and nitrogen com-
pounds, they still produce many carcinogenic disinfection 
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byproducts (Richardson et al. 2007; Srivastav et al. 2020; 
Kali et al. 2021).

Other pollutants that have not yet come under water 
management control include phosphorus, which can stimu-
late bacterial growth. Abu-Obaid et al. (2022) had promis-
ing success in removing phosphorous from wastewater in 
Canada through their polyacrylonitrile (PAN) electrospun 
nanofiber membrane (EN), fabricated with akageneite 
(Ak), and modified with benzyldimethyldodecylammonium 
chloride (BDDA). Morin-Crini et al. (2022) report many 
emerging industrial chemicals that have been identified 
as priority hazardous substances but cannot be eliminated 
from drinking water due to the inability of traditional waste-
water plants to remove them. Their study reviewed these 
wastewater problems in China, Portugal, Mexico, Colom-
bia, and Brazil. They noted the effluent quality indicators 
(such as turbidity) that are enforced in those countries, but 
their report highlighted the need for drinking water plants 
to guarantee pollutant consumption capacity that meets the 
requirements of water quality standards. The problem is that 
many of the uncontrolled pollutants are not covered by any 
mandatory limit in those countries; thus the pollutant con-
sumption capacity value depends on the existing level of 
process treatment based on the capabilities of the wastewater 
plants. Zhang et al. (2016) evaluated 3,508 wastewater treat-
ment plants in China. They found the average removal effi-
ciency of ammoniacal nitrogen was 80%. They determined 
that most wastewater plants need to be upgraded to meet the 
Grade I-A discharge standard of pollutants for municipal 
wastewater treatment plants (GB 18918–2002).

With the rapid economic development and improvement 
in social productivity, a large number of products are con-
sumed, and the control of pollutants is not robust, which 
inevitably leads to water pollution. The most significant issue 
is the risk to human the health from the persistence of pollut-
ants in drinking water (Qu and Fan 2010; Bian et al. 2018; 
Inyinbor Adejumoke et al. 2018; Sathya et al. 2022). Second, 
the general increase in water consumption or decrease in 
water quality will increase the pollutant consumption capac-
ity value. Furthermore, dosage and power consumption will 
inevitably increase, leading to increased economic demands 
for treatment (Gadipelly et al. 2014; Cai et al. 2020). There-
fore, the opportunity for intelligent technology in drinking 
water or wastewater plants is increasingly urgent in order to 
promote the efficient operation and management of drinking 
water and maintain the security of water quality (Gupta et al. 
2020; Mondejar et al. 2021).

The conventional treatment process of drinking water 
plants includes coagulation, sedimentation, filtration and 
disinfection (Ribau Teixeira et al. 2011; Lichtfouse et al. 
2022; Lin et al. 2022). These treatment processes have been 
used since the beginning of the twentieth century. They are 
widely applied and have been an effective water treatment 

technology until increased terrestrial runoff from agricul-
ture containing excess fertilizers with too much nitrogen 
and phosphorous have increasingly impacted on waterways 
worldwide. Additionally, a wide range of other substances 
such as pharmaceuticals, dyes, pesticides, potentially toxic 
elements from industrial wastewater, micro-plastics and 
other products have been found to increase the pollution 
burden on water systems (Vardhan et al. 2019). Studies 
of purification process in drinking water treatment plants 
have shown significant advances in coagulation. Wang et al. 
(2022) improved the coagulation–flocculation process by 
incorporating magnetic powder into a combined response 
surface methodology and an artificial neural network (RSM-
ANN) to treat wastewater. They optimized and improved the 
removal of total phosphorus (total P) to the point that the 
surface water class IV standard was met using the magnetic 
coagulation process. Their research is being considered for 
application in municipal wastewater treatment plants.

The removal method used in water treatment plants deter-
mines the effluent effect of the subsequent process units. 
Therefore, it has a significant impact on other operating units 
and becomes a key link to solving primary problems for 
the entire water resource system. Therefore, evaluation of 
pollutant consumption capacity for the coagulation unit is 
critical. Coagulation is affected by many factors, including 
strong nonlinearity. Artificial neural networks (ANN) have 
provided go-to algorithms for nonlinear complex processes, 
even with limited knowledge of the process (Kim and Par-
nichkun 2017). The ANN have provided significant advan-
tages in object recognition, classification and prediction 
(Singh et al. 2009; Li et al. 2021). It has a strong ability to 
capture nonlinear laws, short production times of prediction 
models, and convenient applications (Assémian et al. 2018; 
Hammoudi et al. 2019). Therefore, ANN has been applied 
in water quality monitoring and early warning systems of 
drinking water treatment plants for a long time (Hosseini-
Moghari et al. 2015; Peleato et al. 2018; Azimi et al. 2019). 
The neural network model is particularly relevant in this 
application because structural parameters become the main 
mechanism of neural network model optimization, e.g., opti-
mization learning rate, implicit, initial weight, and activa-
tion function. Even though other models rely on empirical 
knowledge and structural parameter exploration, the results 
generally have high uncertainty.

In this study, we explored a new idea to construct a pre-
dictive model for pollutant capacity consumption in water 
treatment units, taking coagulation–flocculation units as a 
case study to analyze pollutant capacity consumption and 
predict important parameters such as nitrogen, phosphorus 
and turbidity. We represent the coagulation–flocculation 
process as an “ecological reaction.” Firstly, coagulants do 
not act solely on one individual pollutant in the ecological 
environment. A food item is consumed by more than one 
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organism and therefore pollutant consumption or food con-
sumption is the result of a group action. Secondly, different 
types of pollutants will vary in their affinity for or response 
to coagulants which is similar to an organism’s affinity for 
food. Third, in the coagulation–flocculation process, there 
is a mutual behavior between pollutants, referred to as “bio-
action,” and coagulants acting to remove pollutants. In 
nature, the competition among organisms for food is univer-
sal. Therefore, the presence of pollutants and coagulants is 
similar to the characteristic relationship between organisms 
and food. As such, bio-behavior (bio-action) is defined as the 
relationship between a bio-object (the pollutant) and food 
(the coagulant, which is bio-food). Biological behavior is 
the result of the combined effects of the bio-object, environ-
mental conditions (bio-environment), and bio-food; thus, the 
output of the neural network is the product of the previous 
layer of neurons and weights. If the neural network is used 
to learn this biological behavior, the results of different bio-
logical behaviors competing with each other can reflect the 
results of the network output, which is consistent with the 
operation mechanism of the neural network. Therefore, the 
neural network has a potential to predict pollutants. A simple 
scheme of the water bio-logic model is shown in Fig. 1.

With the model, the synthetic effects of the pollutant, 
coagulant and treatment environment in the coagulation 
process are revealed using the bio-action learning. All 
effects related to bio-action, including bio-food and bio-
environment in the coagulation process, will be verified in 

the following analysis of the effective control of target pol-
lutants through a sensitive analysis of the bio-action.

In this study, the pollutant consumption capacity analysis 
of the drinking water pollutants, ammonium and phospho-
rus, as well as chemical demand oxygen introduced water 
bio-logic relationships. This study establishes the bio-action 
process and maps them to artificial intelligence networks 
for predictive learning of phosphorus and ammonia control. 
The study presents (1) collected coagulation unit data from 
drinking water treatment plants, (2) defines “bio-action” as 
a product of the bio-environment, bio-food and bio-object, 
and (3) transforms this biological behavior into an artificial 
input neuron layer used to machine learn a back propaga-
tion network and bring new data into the system. The accu-
racy of the model to predict pollutant consumption capac-
ity, the effect of biological behavior on coagulation, and 
the transfer behavior of biological process were evaluated 
to observe the model response in predicting pollutant 
consumption capacity.

Experimental

Data collection

We collected samples from the water source of the 
Xiangjiang River, Hunan Province, China carried out tank 
coagulation experiments, determined the water quality 

Coagulant Pollutant

Bio-environment

Bio-food Bio-object

Bio-action

Aluminum sulfate, ferric 
sulfate, polyaluminum 

chloride, polyacrylamide

Temperature, pH, Gt, 
flow rate, total 
dissolved solids

AI learning

Bio-action Bio-action

Bio-action Pollutant 
consumption capacity 

(PCC)

Turbidity, total 
phosphorus, total nitrogen, 

ammonia nitrogen, 
CODmn

Fig. 1  Flowchart for predicting pollutant capacity consumption in 
coagulation using a water bio-logic model. This flowchart briefly 
describes the correlation between the water quality indicators, the 
bio-action and artificial intelligence learning. In a real word, the 
behavior of organisms is the result of the interaction of biological 
objects, biological food and the living environment of the organisms. 
This biological behavior necessarily promotes their growth and death. 
We identify this behavior to also represent the consumption behavior 

of pollutants. The process of biological behavior is expressed through 
artificial intelligence learning. The strength of biological behavior is 
analyzed by the degree of correlation between the learning results 
and the actual results.  CODmn is the potassium permanganate index 
in the graph, representing the amount of potassium permanganate that 
was consumed during sample measurement. The GT is the multiplied 
value of velocity gradient and residence time
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parameters of raw water and settling water respectively, 
and collected 70 sets of data. Bio-food was the coagulant 
dosage. The bio-environment included temperature, pH, 
total dissolved solids (TDS), and flow rate (Syafrudin et al. 
2021). Bio-objects included turbidity, total nitrogen (Total 
N), total phosphorus (Total P), and the potassium perman-
ganate index (CODmn), used to determine the pollution 
level of water. Data from two different water plants in the 
city of Xiangtan, Hunan Province, China were also col-
lected. In water plant #1, 722 sets of data were included, 
and the bio-food received a coagulant dosage. The bio-
environment included temperature, pH, TDS, and flow 
rate. The bio-object included turbidity and total P. Water 
plant #2 included 424 sets of data. Bio-food included dos-
age. The bio-environment included temperature, pH, total 
hardness, and chromaticity, and the bio-object included 
turbidity, ammonia nitrogen and CODmn.

Definition of bio‑action

We defined bio-action as the interaction between bio-
object and bio-food in the bio-environment, and its for-
mula was expressed as follows:

where i represents a specific contaminant; N represents the 
amount of contaminant; Bio-object represents pollutants. 
Bio-environment represents environmental factors, and Bio-
food represents chemical dosage.

The bio-action expression of the data collected in this 
study is shown in Table S1. Bio-action is influenced by bio-
food and bio-environment. Theoretically, bio-food deter-
mines the biological consumption of bio-action. If bio-
objects have a strong affinity with bio-food, their biological 
activity (or bio-action activity) will be good, and the model 
prediction should also be good. If their affinity is weak, the 
bio-action will be poor and the model prediction will also 
be weak. In order to express the degree of this affinity, we 
used the principal component analysis (PCA) (Daffertshofer 
et al. 2004; Ouyang 2005; Mudge 2007) method to clas-
sify bio-food, bio-environment and bio-object, which can 
accurately analyze the correlations among factors (Bro and 
Smilde 2014; Liemohn et al. 2021) and define the degree 
of proximity to bio-food as the degree of affinity, so as to 
analyze their predicted effects. Their importance was deter-
mined by measuring the factor loading (Xue et al. 2011). 
The PCA was examined using IBM SPSS Statistics 21.0 
(IBM Corp. 2012) scientific software.

Bio - action =

N
∑

i

(Bio - object ∗ Bio - environment ∗ bio - food)

Architecture of bio‑action learning

Figure 2 shows a schematic diagram of the network training 
process. First, we used a typical back propagation neural 
network model to predict pollutant consumption capacity to 
verify the effectiveness of the water logic framework. The 
model is a widely used gradient descent algorithm consist-
ing of input, hidden, and output layers (Deh Kiani et al. 
2010). The number of input layers was the number of all 
bio-actions, while the number of hidden layers was equal to 
the number of bio-actions or bio-objects. The output layer 
was pollutant capacity consumption. This differs from tradi-
tional back propagation networks where we fixed the number 
of hidden layers to the number of Bio-objects.

Simulation was performed on a scientific platform in 
MATLAB 2010b (Mathworks Inc. 2010). The dimension 
of bio-action data was pretreated and fixed within a range 
between − 1 and 1 as determined by the equation (see Text 
S1) in order to increase the model’s accuracy, convergence, 
and consistency. The training and test samples were ran-
domly selected at 8:2. The initial weight and bias were opti-
mized using a genetic algorithm by varying genetic algebra 
(20), population size (20), crossing rate (0.8), and probabil-
ity of mutation (0.1), avoiding local over-fit of prediction.

Accuracy and sensitivity analysis

The accuracy of the model was determined by measuring 
the squared correlation coefficient of determination (R2) 
(Liemohn et al. 2021), root mean square error (RMSE) 
(Brisson et al. 2002; Liemohn et al. 2021), model efficiency 
(Huang et al. 2009), and consistency index (d) (Willmott 
1981). The Olden algorithm (Olden et al. 2004) determined 
the importance of predicting each bio-action by calculating 
the weight of the neural network model. The details about 
these indicators and the algorithm are shown in Text S2.

Results and discussion

To reveal the clustering and distribution characteristics of 
bio-actions, principal component analysis (PCA) was per-
formed. Subsequently, accuracy was assessed by measuring 
the square of the correlation coefficient (R2). Finally, the 
relationship between bio-action clustering, distribution char-
acteristics and accuracy was further discussed.

Bio‑action clustering and distribution characteristic

The results of PCA show a load plot for the first two princi-
ple components PC1 versus PC2 in various types of data, as 
shown in Fig. 3a–f. The factor clustering in Fig. 3a, c and e 
on the left reflects the bio-action interaction relationship in 
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Fig. 3b, d and f on the right. In Fig. 3a, b, they show factor 
loading plots of laboratory data. The factors were divided 
into five categories (i.e., Classes 1 to 5 as shown in Fig. 3a), 
including Class 1 (turbidity, potassium permanganate index 
(CODmn) and dosage), Class 2 (temperature, total phos-
phorus, i.e., total P), Class 3 (pH and GT), Class 4 (total 
nitrogen, i.e., total N), and Class 5 (total dissolved solid 
(TDS)). The results of the pollutant bio-action were divided 
into four categories (see Fig. 3b). Accordingly, water plant 
#1 and #2 performed cluster analyses in the same way as 
in the laboratory. In addition, in laboratory data, bio-food 
was clustered with two bio-objects including turbidity and 
CODmn. In the water plant #1, bio-food was clustered with 
two bio-objects (turbidity and total P). In water plant #2, the 
three bio-objects (turbidity, ammonia nitrogen, and CODmn) 
were not clustered with bio-food.

Figure 3g–j shows the variation characteristics of bio-
action data for different pollutants in the laboratory and in 
water plants. Figure 3g–h shows that the four-pollutant labo-
ratory bio-actions (turbidity, total P, total N, and CODmn) 
had the same trend, indicating that the interaction among 
these four bio-actions might produce the same prediction 
effect. Figure 3i shows that the trend of turbidity bio-action 
and total P bio-action in water plant #1 are also very similar. 
Figure 3j shows a change in water plant #2 data, in which the 
CODmn bio-action and ammonia nitrogen bio-action trends 

were similar (see Fig. S1), but the similarity with the turbid-
ity bio-action trend was small. Although the concentration 
of pollutants in water was different, this did not affect their 
trend characteristic analyses.

Accuracy

In this study, we analyzed the accuracy of the model to 
explore the feasibility of predicting pollutant consump-
tion capacity through bio-actions data. The results of square 
of the correlation coefficient (R2) for the observed pollut-
ant capacity consumption, and predicted value as well as 
its significance (P) values were shown in Fig. 4. The fitting 
results of the pollutant consumption capacity are shown in 
Fig. S2 and Table S2. The graphs for the laboratory study 
show excellent results for the predicted capacity consump-
tion of four pollutants. For example, the turbidity consump-
tion reached R2 (i.e., up to 0.97 (for training) and 0.97 (for 
testing), with corresponding P values of 0.98, and a root 
mean square error (RMSE) of 4.20 and 3.40. Efficiency fac-
tor was positive and the d value was close to 1. The fitting 
accuracy of other pollutant consumption (total P, total N, 
and CODmn) had the same accuracy. This may be affected 
by the trends in the bio-action characteristics. The trend in 
variability of the four bio-actions in the laboratory was the 
same; thus, each trend had the same biological behavior, 

Fig. 2  A architecture flowchart for bio-action learning through neural 
networks in pollutant capacity consumption prediction. It presents the 
running procedure for the water bio-logic model, where bio-food, bio-

object, and bio-environment interact to obtain bio-action as the input 
layer of the neural network. Because in different learnings, additional 
datasets will be involved, and “…” represents this in the figure
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Fig. 3  Loading diagrams for 
the first principle components 
(denoted as PC1) versus the 
second component principle 
PC2 (denoted as PC2), respec-
tively, related to water quality 
indicators and bio-actions: a, 
b in laboratory; c, d in water 
plant #1; e, f in water plant 
#2. It shows the variations of 
bio-actions for g and h in the 
laboratory, i water treatment 
plant #1 and j in water treatment 
plant #2. The results reflect the 
characteristic data trends for 
bio-actions in the laboratory 
and water plant # 1 and # 2. The 
degree of clustering between 
bio-object and bio-food affected 
the prediction results of pollut-
ant capacity consumption. The 
trends characteristics of the four 
bio-actions (turbidity, total P, 
total N, and  CODmn) appearing 
in the laboratory and in water 
plant # 1 were similar, while the 
trend of  CODmn bio-action and 
ammonia nitrogen bio-action 
in water plant # 2 were similar, 
but different from the turbidity 
bio-action. Therefore, the char-
acteristic trends in bio-action 
also influence the bio-action 
processes
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which resulted in good prediction results for the four lab-
oratory pollutant consumption capacity  tests, including 
total N and total P as long as they were not clustered with 
bio-food. In addition, bio-actions significantly affected the 
accuracy. When the chemical oxygen demand (CODmn) was 
not included in the bio-action, the accuracy of prediction 
for total P and total N was poor. However, the accuracy of 
prediction for turbidity consumption was still good. Thus, 
CODmn was more closely related to the bio-actions of total 
P and total N, which agrees with subsequent analysis.

All tests produced good results in the laboratory, but the 
accuracy in a water treatment plant while good, could not 
match it, especially when testing CODmn capacity consump-
tion value. The main reason is the difference in composition 
of the bio-action. For better accuracy, additional data collec-
tion in a water treatment plant is planned in future research.

From the predicted results of pollutant consumption 
capacity in water plant #1 and water plant #2, the predicted 
results of turbidity and total P consumption were better than 
the predictions concerning ammonia nitrogen and CODmn. 
The R2 of turbidity and total P remained above 0.89, with a 
maximum of 0.99. The R2 results for prediction of CODmn 
and ammonia nitrogen were only 0.63 (for testing) and 0.75 

(for testing), respectively. Therefore, the bio-action of tur-
bidity and total P were greater than that of ammonia nitrogen 
and CODmn in the current bio-environment. This may be 
related to the correlation between bio-object and bio-food in 
addition to the change characteristics. The turbidity and total 
P in water plant #1 are clustered with coagulant dosage, and 
the prediction results were good. In water plant #2, ammo-
nia nitrogen and CODmn were not clustered with coagu-
lant dosage, resulting in poor prediction results. Therefore, 
when the bio-object exhibits a stronger affinity for bio-food, 
it would enhance the prediction results of pollutant con-
sumption capacity. For turbidity consumption capacity, its 
relationship seems to be almost entirely self-serving, with-
out being affected by other factors. Overall, artificial intel-
ligence learning through water bio-logic behavior is positive 
for predicting the results of turbidity, total P, CODmn, and 
ammonia nitrogen.

In the study above, we used bio-actions composed of dif-
ferent factors for contaminant prediction in the laboratory 
and in water treatment plants. In this study, we also looked 
at the effects of bio-action composed of the same factors. We 
selected seven factors in water plant #1 and in the labora-
tory measuring dosage, turbidity, total P, temperature, pH, 

Fig. 4  Results of square of the correlation coefficient (R2) of observed 
pollutant capacity consumption and predicted value (on the bottom 
bar graph) as well as its significance (P) (on the top bar graph) values 
in laboratory with sample size 70, with sample size 722 in water plant 
#1 and a sample size 424 in water plant #2. The two bar graphs pre-

sented the same types corresponding to P and R2 values. The results 
from model prediction of treatment trials in laboratory and water 
treatment plants show excellent agreement for the correlation coeffi-
cient (R2)



 Environmental Chemistry Letters

1 3

TDS and GT. The same bio-action was calculated to pre-
dict turbidity and total P consumption capacity. Fig. S3a-b 
and Table S3 show that the fitting results of R2 for turbid-
ity consumption was 0.96 (for both training and testing) in 
laboratory, and was 0.97 (for both training and testing) in 
water plant #1. For the total P consumption in water plant #1 
(R2) was 0.85 for testing, but the  R2 results in the laboratory 
were at a poor level (R2 = 0.68 for testing) (see Fig. S3c-d 
and Table S3). We studied the clustering characteristics of 
pollutants. In water plant #1, the total P was clustered with 
bio-food. Bio-objects have a strong affinity for bio-food, 
so the prediction results were good. However, this was the 
opposite of the results of the laboratory. The reason for the 
poor prediction of total P capacity consumption was that 
they had different clustering characteristics (see Fig. S3e-
f). Based on the above analysis, it can also be inferred that 
the poor prediction results of ammonia nitrogen consump-
tion and CODmn consumption were also affected by other 
reasons and one of which was not being classified with bio-
food and having a weak affinity with bio-food. The water 
bio-logic model provides an important indication of the level 
of analytical prediction, which agrees with the biological 
behaviors. It demonstrated that the model is feasible.

Discussion

As noted above, the model was very effective for prediction 
of pollutant consumption capacity. We also investigated the 
bio-actions sensitivity to the accuracy of the model. Fig. 
S4a, e and g show the bio-action sensitivity results that affect 
turbidity consumption in water plant #1 and in the labora-
tory. The turbidity bio-action effect on turbidity capacity 
consumption accounted for more than 55.82% in each type 
of data, going up to 91.94% in water plant #1. Fig. S4b and 
f show the results of bio-action sensitivity affecting total P 
consumption. It can be seen that the total P bio-action was 
the main factor affecting the total P consumption, and the 
degree of influence was as high as 76.07% in water plant #1. 
The main reason for this was that according to the underly-
ing data of water bio-logic and bio-action, the affinity of 
turbidity and total P consumption for food (i.e., dosage) was 
stronger than that of other pollutants.

As can be seen from the results of the sensitivity analy-
sis (see Fig. S4 and Table S4), the main factors affecting 
turbidity and total P consumption capacity were attributed 
to their bio-action, while the total N (ammonia nitrogen) 
and CODmn capacity consumption were greatly affected 
by other pollutant bio-actions. Fig. S4c and i show the 
bio-action sensitivity results affecting the total N con-
sumption and ammonia nitrogen consumption, respec-
tively. They were less affected by their own bio-action and 
more affected by the other pollutant bio-actions. Fig. S4d 
and h also show the effect of each bio-action on CODmn 

consumption. The consumption of CODmn was almost 
unaffected by its own bio-action, and was greatly affected 
by turbidity bio-action. The main reason was that CODmn, 
ammonia, nitrogen and the total N had a lower affinity for 
coagulation than turbidity and the total P, thereby leading 
to a decrease in their coagulation efficiency. Therefore, 
water bio-logic activities can explain, predict, and reflect 
the degree of biological behavior of all biological objects 
(i.e., pollutants), thereby improving our understanding of 
process levels and giving a scientific basis for regulatory 
measures.

In addition to the above advantages, the use of water bio-
logic models can reveal the combined effects of pollutants, 
coagulants and the environment in the coagulation process, 
which helps us analyze the logical relationship between water 
plant data and quickly establish predictive models. This 
research clarifies the principle of network input construction, 
which improves the efficiency of model building.

Conclusions

In this study, through bio-action learning of data from one 
laboratory and two water treatment plants, we observed that if 
bio-object and bio-food had a strong relationship in a specific 
environment, their pollutant consumption capacity predic-
tions work well, which reflects the fundamental relationship 
of food competition in the biological world. In addition, when 
the bio-action exhibited the same change characteristics, the 
accuracy of prediction of pollutant consumption capacity  
would also be the same. This enabled the introduction of the 
artificial intelligence bio-action learning effect by analyzing 
the close relationship between bio-objects, bio-environments 
and bio-foods, as well as bio-action variations, which pro-
vides an efficient model building method and provides a 
method to analyze the influence relationship between factors, 
which strengthened our analysis of the modeling problems 
associated with water treatment process data and biological 
behavior characteristics, which limited our model construc-
tion ideas and methods before use of artificial intelligence. 
This approach shows powerful potential to aid staff running 
water treatment plants who struggle with organizing data for 
modeling. The purpose of this study was expedite effective 
analyses of the problem of pollutant consumption capacity. 
It has great potential in energy demand assessment of water 
plant operations and to assist in model construction within 
related fields.
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