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Featured Application: The proposed mechanism can be used as pre-processing module in any
image processing related application.

Abstract: In this paper, a convolved feature vector based adaptive fuzzy filter is proposed for impulse
noise removal. The proposed filter follows traditional approach, i.e., detection of noisy pixels based
on certain criteria followed by filtering process. In the first step, proposed noise detection mechanism
initially selects a small layer of input image pixels, convolves it with a set of weighted kernels to
form a convolved feature vector layer. This layer of features is then passed to fuzzy inference system,
where fuzzy membership degrees and reduced set of fuzzy rules play an important part to classify the
pixel as noise-free, edge or noisy. Noise-free pixels in the filtering phase remain unaffected causing
maximum detail preservation whereas noisy pixels are restored using fuzzy filter. This process is
carried out traditionally starting from top left corner of the noisy image to the bottom right corner
with a stride rate of one for small input layer and a stride rate of two during convolution. Convolved
feature vector is very helpful in finding the edge information and hidden patterns in the input image
that are affected by noise. The performance of the proposed study is tested on large data set using
standard performance measures and the proposed technique outperforms many existing state of the
art techniques with excellent detail preservation and effective noise removal capabilities.

Keywords: image de-noising; fuzzy logic; divide and conquer strategy; fuzzy reasoning;
adaptive threshold

1. Introduction

Image de-noising is a challenging pre-processing step in the domain of digital image
processing (DIP) and computer vision (CV). The main goal of image de-noising is to
reinstate the noisy pixel as close as possible to the original pixel using image de-noising
techniques. Noise is an uncertain phenomenon which may introduce in an image by faulty
sensors during image acquisition, storage or transmission, etc. Furthermore, when we
quantize on an image, we may lose some important details of that image [1]. If the image
contains noise, then succeeding image processing processes such as object detection, image
segmentation and tracking etc., may perform poorly on the input image [2]. Therefore,
image de-noising is a vital part and may require additional pre-processing steps in all the
domains that uses images as input.
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A number of linear and non-linear image de-noising techniques have been proposed
during the last few decades. Linear techniques replace noisy pixels by average value of
the kernel causing blurry effects on the edges due to the removal of crisp information. On
the other hand, non-linear techniques [3–10] are preferred over linear techniques [11–13]
because of their non-linear nature and robustness against noise. These techniques do not
interrupt the image details to great extent causing better restored results. In this review
section, we will focus mainly on non-linear techniques. The main filter in non-linear
techniques is median filter, easy in implementation, and is used as most common tool in
many other techniques. It gives best performance for images having smooth variations and
low level of impulse noise but gives inadequate performance for highly contrast detailed
images corrupted with high noise densities because its mechanism simply use median to
replace the central corrupted pixel in both the cases. Furthermore, edges [14] are most
important parts of the image and they are directly affected by the size of the kernel. So
design of the kernel in non-linear filters is equally important to avoid blurring effects at
edges. Kernel with a small size (say 3 × 3) is very effective for low noise densities or where
the total number of corrupted pixels are fewer than half of the size of kernel. Kernel sizes
greater than previously described size might smear lines and edges in detailed regions of
the image due to indiscriminate gray level substitutions.

In last few decades, a large number of variations [4–10,15–18] have been proposed in
median filter to enhance its computational power, detail preservation and noise suppres-
sion capabilities. Median filters based techniques [4–10] simply replace the degraded pixel
value by median of neighborhood pixels whereas weighted median techniques [5,6,8,16]
use weighing mechanism for good and bad ones. All of the above filters are efficient
against impulse noise but fail due to blurring [11–13] at edges and loss of actual de-
tails in an image. Switching mechanisms [9,17], fuzzy based techniques [19–28], direc-
tional filters [15,16,22,24] and others [29–39] are good de-noising filters against random
and universal noise but still lacking in detail preservation due to poor or no proper
edge detection.

Fuzzy logic has added excellent noise removal capabilities against different types of
noise due to uncertainty features [19–28,32]. A fuzzy logic based filtering mechanism is
proposed in [19] for additive noise, which is mainly, based on fuzzy image derivatives in
eight directions. This fuzzy filter gives good results but edges and sharp details of the
image are not well preserved. Schulte et al. in [20] proposed a fuzzy logic based nonlinear
filtering mechanism to address the problem in above said filter. Kang et al. in [22] proposed
a directional mechanism in four directions based on fuzzy reasoning. The main drawback
was in non-adaptive behavior of the threshold parameters. Toh et al. in [23] proposed
cluster-based approach for better classification of impulse noise but was unsuccessful at
low and very high noise densities. Hussain et al. in [24,25] proposed fuzzy reasoning
based clustering criteria of pixels to address the problems in above filters. Similar fuzzy
logic based other filters [26–28,32] address neighboring issues and hybrid approaches for
effective impulse noise removal.

In this paper, a new fuzzy inference system based impulse noise removal technique
is proposed that uses a convolved feature vector layer to effectively restore the corrupted
image details. The proposed technique first extracts a small layer of pixels from input
image, convolves it to form a convolved feature vector layer and forward this layer to fuzzy
inference system to determine the noise type in that particular patch. Fuzzy membership
degrees play a vital role in filtering phase to remove the corrupted pixels. Noise-free pixels
remain unaffected throughout this process contributing maximum detail preservation.

The paper is organized as follows: Noise model and reviews are presented in Sec-
tions 2 and 3, respectively. Methodology of the proposed filter is described in Section 4.
Experimental setup, results and discussions are briefly explained in Section 5 whereas
conclusions are drawn in Section 6.
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2. Noise Model

In this paper, we mainly focused on impulse noise [1] which can be categorized into
two types, fixed value impulse noise (FVIN) and random value impulse noise (RVIN). In
FVIN, corrupted image pixels are replaced with either 0 or 255 whereas in RVIN corrupted
pixels can be replaced by any grayscale value from [0–255]. It is clear from the above
description that removal of RVIN is more challenging than FVIN. Let Ni,j and xi,j represent
noisy and noise-free pixel values at (i,j) then impulse noise model for RVIN can be described
as follows:

Ni,j =

{
gi,j, with probability η

xi,j, with probability 1−η
(1)

where gi,j represents gray level value of corrupted pixel. The main sources of noise include
all those processes involved in acquisition, storage and transmission of the digital image.

3. Basic Reviews

In this part, we first review a couple of basic components that are widely used in
development of impulse noise removal filters.

3.1. Median Filter

In Section 1 (literature review), we have seen that median filter and its different
variants are still very effective and widely used for impulse noise removal as well as image
detail preservation. The mechanism of median filter is very simple, returns the central
value of any processing window/kernel after sorting in ascending or descending order. A
simple median filter can be modeled as,

M = Median {a1, a2, . . . , an} (2)

where an represent ordered list elements of the processing window/kernel.

3.2. Deviation from a Reference Point

Simple median filter and its variations are quite effective for the images having smooth
regions/variations or when the noise ratio in an image is very low. For all other cases, the
performance is badly affected due to non-utilization of neighboring pixels. To address this
problem, the second most important component used in filter design is absolute deviation
of each element/pixel from a certain reference point. This reference point can be any
constant number, median type variable or a statistical parameter which can be modeled as,

AD(pi,j) =
∣∣pi,j − r

∣∣, pi,j ∈ Ω (3)

where r is a reference point, pi,j represents each element of Ω which is a kernel in this case.
The subsequent values are then further checked with a certain value called ‘threshold’ to
construct a noise map (NM) as,

NM =

{
1, AD(pi,j) ≥ threshold
0, Otherwise

(4)

where ‘threshold’ can be fixed or adaptive.
The techniques explained above are essential part of most of the impulse noise re-

moval filters. Fuzzy logic based pixel density based models [19,20], reasoning model [22],
switching [23], directional [24], clustering model [25], computation models [27] and hybrid
filter [28] use generic linear and non-linear statistical methods which may produce good
results under certain conditions due to non-linear nature of the median filter but generality
is not true. Cluster based median filter (CMF) [25], region adaptive filter (RAF) [26], new
weighted mean (NWM) filter [29] and others [5–20,30–34] mainly use above said criteria’s
in noise detection phases. CMF works well against salt & peppers noise but gives unsat-
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isfactory results against random noise. CMF, RAF and NWM use fixed threshold values
(threshold = 12 to threshold = 22) during noise detection process which may give satisfactory
performance for certain type of images but may lead to wrong classification of noisy and
noise free pixels for large datasets against random noise.

3.3. Why Convolved Feature Vector (CFV)?

Most of the impulse noise removal techniques explained and reviewed in previous
sections use specific computational mechanisms to estimate the central pixel value of the
kernel to be noisy or noise-free. These mechanisms may produce good results under certain
conditions but generality is not true in all cases. For example, median filter outperforms
many filters if the input image is smooth and have low noise densities, i.e., when the number
of degraded pixels are fewer than half of the size of kernel. In all other cases, median filter
may replace incorrect pixel values causing blurry effects. This idea is explained in Figure 1
where a standard ‘Barbara’ image is artificially degraded with three types of impulses. In
Figure 1a, a smooth region is artificially degraded with RVIN, whereas Figure 1b,c are
degraded with high noise ratio of salt and peppers like impulses. In Figure 1b,c central
pixels are identified as noise-free when a simple median filter defined in (2) is used to
detect or remove the additive noise. Furthermore, absolute differences or deviations from
their medians and central pixels are zero, which indicates strong relationship among the
majority of neighboring pixels. In Figure 1c, two kernels are considered where the upper
kernel is degraded artificially with random noise and lower kernel is noise-free. Median
values of upper and the lower kernels are 171 and 169, respectively. Likewise, absolute
differences are 9 and 10, respectively. These features establish a fact that both the kernels
contain almost are similar features whereas one kernel is noise-free and the other one is
noisy. Similar noise detection and removal problems ascend in [35–37] due to ineffective
use of median filter and thresholds. In most cases, when features are alike, noise detection
and removal becomes problematic. Furthermore, when noise ratio becomes high in small
size kernels (as in Figure 1a,b), similar problem arises. To overcome this problem, we have
proposed a new convolved feature vector based fuzzy mechanism in this paper.
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Figure 1. Shows a Barbara image in which different regions are artificially corrupted with (a) random
value impulse, (b) salt like impulse and (c) pepper like impulse.

4. Proposed Methodology: Convolved Feature Vector Based Fuzzy Filter

Generally, in noise removal techniques, two key conventions are considered. Firstly,
the image that is noise-free usually comprises of smooth regions separated by edges
and lines. Secondly, smooth regions, edges and lines in a noisy image do not disclose
compatibility with neighboring pixels and intensity transformations are also very abrupt.
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Furthermore, kernel size is very important for feature extraction and analysis. Small size
kernel i.e., 3 × 3 is considered very effective in terms of computation but gives inadequate
performance at high noise. Also, the edge and texture information is limited in small size
kernel. Large size kernels, i.e., 5 × 5 and above adds more textures and edges information
around a certain pixel but they are cost effective in terms of computation. Furthermore,
median drifting problems usually occur in large size kernels causing blurry effects on
restored images.

Keeping in view the above assumptions and limitations, a convolved feature vector
(CFV) based fuzzy mechanism is introduced which consists of two steps, noise detection
followed by noise filtering. In noise detection phase, noisy pixels are judged based on its
neighboring pixels as well as fuzzy rules-based mechanism. Pixel having traces of noise
are filtered out in filtering phase based on fuzzy membership degrees.

4.1. Noise Detection Mechanism

Our noise detection mechanism plays a vital role to isolate the noisy pixels and is
mainly comprises of two steps: ‘divide and conquer strategy’ and fuzzy based
contextual model.

4.1.1. Divide and Conquer Strategy

Existing noise removal techniques use a typical style of noise detection, i.e., central
pixel is judged based on its neighboring pixels and some threshold. We have introduced
a new mechanism in which the central location of each kernel is changed all together by
adding more neighbors to existing kernel and dividing the new (large) kernel to produce
more kernels of the same size of original kernel. For example, if we have a 3 × 3 kernel
then by adding one neighbor along its each side will produce a 5 × 5 kernel with the same
center as shown in Figure 2a. Now, by diving 5× 5 kernel to the same size as of the original
kernel will produce 9 subsets of size 3 × 3 as shown in Figure 2b. It can be seen from the
Figure 2b that the position of central pixel has changed and is no more at central location
in eight kernels except one kernel lying at center. This strategy can be further extended
to 7 × 7, 9 × 9 and 11 × 11 based on noise ratio and noise type but we have restricted
our algorithm to just 5 × 5 to avoid computational complexity. Furthermore, in noise
detection mechanism, the most critical task is to differentiate the noisy and edge pixels
as they possess similar attributes. This division strategy will provide us an extra check to
evaluate the noisy and edge pixel lying at central location. Kernels with no or less traces of
noise are best candidates for noise estimation.

4.1.2. Fuzzy Based Contextual Model

Nadeem et al. in [38] used nine overlapping sub-windows as shown in Figure 3 for
basic processing of noise estimation. In case of low and medium noise, median values of
majority of the sub-windows remain unchanged and do not contribute enough in noise
estimation process except the limited number. In case of high noise, the probability of lack
of texture problem increases in most of the sub-windows. So, the use of all the nine sub-
windows increases the computational cost as well as reduces the noise detection capability
of the noise detector. The lack of texture problem usually arises when the number of
noisy pixels are in large number than half of the size of the kernel and the median value
which is now a noisy one replaces the central pixel value of the kernel, resulting in poor
detail preservation.
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Figure 2. (a) Shows a 5 × 5 conceptual window formed by padding additional rows and columns to 

original 3 × 3 image window. (b) Shows a divide and conquer strategy mechanism: division of a 5 × 
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Figure 2. (a) Shows a 5 × 5 conceptual window formed by padding additional rows and columns to
original 3 × 3 image window. (b) Shows a divide and conquer strategy mechanism: division of a
5 × 5 kernel to nine (09) subsets of 3 × 3 size kernels with new central locations x′i,j. (c) Shows a new
contextual model for noise detection.
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The problem described above can be addressed by selecting limited number of sub-
windows/kernels which ultimately help the noise detector for better decision making at
noise detection level. In this paper, we have used a simple mechanism for kernel selection,
i.e., kernels lying at corners as shown in Figure 2b are selected as potential candidates as
these kernels have large number of non-overlapping pixels. The selected kernels reduce the
computational cost as well as the lack of texture problem at high noise. These kernels act
like quadrants of a Cartesian plane as shown in Figure 2c. Let W =

{
xi−2,j−2, . . . , xi+2,j+2

}
be a kernel of size 5 × 5 centered at (i,j) containing twenty five (25) pixel locations. After
division and kernel selection, let QW

k , k = 1, 2, 3, 4, be the four subsets of W with new
central location at x′i,j. The pixel locations in four subsets/quadrants are as follows,

QW
1 =

{
xi+l,j+m : 0 ≤ l ≤ 2, 0 ≤ m ≤ 2

}

QW
2 =

{
xi+l,j+m : −2 ≤ l ≤ 0, 0 ≤ m ≤ 2

}
QW

3 =
{

xi+l,j+m : −2 ≤ l ≤ 0,−2 ≤ m ≤ 0
}

QW
4 =

{
xi+l,j+m : 0 ≤ l ≤ 2,−2 ≤ m ≤ 0

}
Median filter defined in Equation (2) can be used to extract the features from the above

four quadrants centered at new locations x′i,j as fellows,

Mk = MED
{

QW
k

}
, k = 1, 2, 3, 4, (5)

where Mk is a feature set of pixel locations in four quadrants namely top right, top left, bottom
left and bottom right kernels, respectively. Sort the feature set values Mk, k = 1, 2, 3, 4, in
descending order as m1 ≤ m2 ≤ m3 ≤ m4, where m1 and m4 are the lowest and highest
feature values, respectively.

→
V = (mk), k = 1, 2, 3, 4. (6)

D1 =
4

∑
2
(m i −mi−1) (7)

D1 is the rank order difference [19] of vector
→
V given in (6). An edge pixel can be

separated from noisy pixel if its directional rank-ordered absolute difference (DROAD) [25]
in any direction is minimum. For example, after division strategy when the central location
of small kernel (subset of large kernel) shifts from xi,j to a new central location x′i,j the new
and the previous location lie in a certain direction, which should be minimum in case of
edge pixel. DROAD values dk, k = 1, 2, 3, 4, in four direction can be calculated as,

dk =
∣∣x′ i,j − xi,j

∣∣, k ∈ Dirk (8)

D2 = Min (dk), k = 1, 2, 3, 4. (9)

D2 gives a measure of deviation of central pixel in a certain direction. Large values
of D1 and D2 indicate that the pixel under consideration is more likely to be a noisy pixel
and vice versa. Any crisp decision at this stage may lead to false prediction and ultimately
degradation of the restored image. To avoid this, fuzzy membership degrees can be used to
approximate the noise added to the pixels.
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We have utilized two fuzzy membership functions Small and Large [22] as shown in
Figure 3 and simplified rule base for two inputs of contextual model. Let Rule1, n = 1, 2, 3,
be reduced set of rule numbers defined as,

Rule1 = Small(D1, λ1, λ2)·Small(D2, λ1, λ2)

Rule2 = Small(D1, λ1, λ2) · Large(D2, λ1, λ2) | Large (D1, λ1, λ2) · Small(D2, λ1, λ2)

Rule3 = Large(D1, λ1, λ2) · Large(D2, λ1, λ2)

The two fuzzy membership functions Small and Large are as follows,

Small(D∗, λ1, λ2) =


1, D∗ < λ1(

D∗−λ2
λ1−λ2

)
, λ1 ≤ D∗ < λ2

0, D∗ ≥ λ2

(10)

Large(D∗, λ1, λ2) =


0, D∗ < λ1(

D∗−λ1
λ2−λ1

)
, λ1 ≤ D∗ < λ2

1, D∗ ≥ λ2

(11)

where λ1 and λ2 are threshold parameters which are set adaptively based on neighboring
pixels and are discussed in upcoming section. Fuzzy membership degrees µDegree for
simplified set of rules is calculated as,

µDegree = Max [Rule1, Rule2, Rule3] (12)

4.1.3. Adaptive Threshold

A number of existing methods [7–9,23,26] for impulse noise removal need either ad-
hoc or pre-defined threshold values or settings. There is normally a tradeoff between
simple and complex methods, simple methods are good but they may perform poorly
under certain conditions whereas complex methods are not always a good choice but
they perform better with an extra overhead of computational cost. Furthermore, complex
methods sometime require unlike trainings for optimal arrangement of pixels which results
in unpredictable responses due to unfitting procedures. Let’s consider an example in which
a method is trained on data set containing fairly smooth images having small amount of
impulse noise, then its output will surely be a smooth image irrespective of edges and
fine details. Similarly, it may perform poorly for a smooth image if it is trained on a data
set containing mostly the edges, lines and the fine image details. So the performance
may be irregular for the methods that require trainings as they are normally designed for
large outlier values and they may fail in prediction when the impulse noise causes a slight
variation in the original pixel values.

In response, we have used an adaptive method which neither require training nor the
user defined threshold values for noise estimation as well as noise removal. Consider an
input image I and a sliding window Ω2 =

{
xi−2,j−2, . . . , xi+2,j+2

}
of size 5 × 5 placed at

center xi,j. First of all, we calculate absolute gray-level variances between central pixel and
its neighbors aligning in four directions as,

Ad(i, j) =
1
4

 ∑
p ε Dirk

∣∣p− xi,j
∣∣ (13)

where Dirk, k = 1, 2, 3, 4, denote edge directions in horizontal, vertical and two diagonal
directions as shown in Figure 3. Edge and the corrupted pixels usually contribute large
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Ad(i,j) values which makes the problem more critical. A crisp decision at this stage may
lead to false detection as well as poor de-noising results. To avoid this situation, a fuzzy
based mechanism is required. We have introduced two parameters α(i,j) and β(i,j) that are
used to establish a relationship between edge and a noisy pixel and are calculated as,

α(i, j) =
2

∑
u=−2

2

∑
v=−2

Ad(i + u, j + v)∣∣Dirk
∣∣+ 9

(14)

β(i, j) = Ad(i, j) (15)

where Dirk denotes total number of directional edge pixels. Consider a pixel lying at central
location xi,j of the sliding window, following fuzzy rule is used to decide whether a pixel
under consideration is noisy, edge or noise free pixel.

Fuzzy Rule:

If |α − β| is Large,
Then xi,j is a corrupted pixel.
Else-If α and β both are Large,
Then xi,j is an edge pixel.
Else-If α = β,
Then xi,j is a noise-free.

As discussed earlier, Large is a fuzzy set [21] and can be represented with a fuzzy mem-
bership function as shown in Figure 4. Fuzzy membership degrees which play important
role are extracted from a fuzzy membership function Large as follows,

µD(i, j) = µLarge[
∣∣α(i, j)− β(i, j)

∣∣, λ1, λ2] (16)
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In filtering phase, pixels are classified as corrupted or noise-free based on fuzzy
membership degrees which are mapped from 0 to 1. Consider a simple example where
endpoints of the interval are passed as input to Large, then zero (0) will return a noise-free
pixel and one (1) will return a noisy pixel. For all the remaining options between the
endpoints, the output remains ambiguous. To solve this problem, we have used another
pair of parameters to draw boundary lines between noise free and noisy pixels which can
be defined as follows:

λ1(i, j) = Min
p,q ∈{−2,...,2}

[ Ad(i + p, j + q) ] (17)

λ2(i, j) = λ1 + 0.2 (λ1) (18)

If a pixel’s membership degree lies below λ1 then it’s a noise-free pixel and if its
membership value goes beyond λ2 then it’s a noisy pixel. For all other pixel values that lie
in the interval [λ1,λ2] have some percentage of noise which can be easily calculated.
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4.2. Noise Detection Mechanism

In filtering phase, fuzzy membership degrees and fuzzy rules play a vital role to
classify noise-free, edge and noisy pixels. A pixel having no traces of noise will have
membership degrees that lie in Small region. For example, if a pixel whose membership
degree is equal to Rule1, then it’s an edge or noise-free pixel. For all other possibilities,
there is a chance of noise present in that pixel values. To remove noise at that locations, a
fuzzy based median filter is used which is defined below:

Filtering Rule: If (µD == Rule1)
yi,i = xi,i

Else
yi,j = µD(i, j) . Median(Ω2) + [1− µD(i, j)] . xi,j

(19)

5. Results and Discussions

In this section, a comparison is drawn objectively (numerical results) and subjec-
tively to evaluate the performance of proposed filter with different state of the art noise
removal algorithms. The performance of the proposed filter is analyzed based on a
large data set of images including medical images dataset MedPix obtainable at http:
//www.imageprocessingplace.com (accessed on 1 July 2022). The evaluation is not re-
stricted to 512× 512 only but of different sizes. Image are first degraded with impulse noise
defined in (1) with different noise ratios starting from 10% and above and then proposed
algorithm is tested. MATLAB R2021a is used for implementation of proposed model. All
the experiments are performed on Intel Core i7 processor with 2.11 GHz clock speed and
16 GB of RAM.

5.1. Settings: Processing Windows/Kernels

As discussed in previous section, the proposed algorithm is based on divide and
conquer mechanism which divides as large size processing window into small size sub-
windows for effective noise estimation. Any processing window larger than 3 × 3 can be
used for implementation purposes. We have tested our technique on different processing
windows of sizes 5 × 5, 7 × 7, 9 × 9 and 11 × 11 and have found that larger is the size
of processing window greater is the blurry effects at edges and borders. The processing
window of size 5 × 5 gives best results in terms of PSNR and visual quality. So, in this
paper, we have chosen a processing window of size 5 × 5 as our initial basic window size
as it gives optimum results at different noise densities ranging from low to high. Another
parameter that is equally important is the number of iterations at which the proposed
technique gives best PSNR values. Figure 5 shows ten (10) times filtered results in terms of
PSNR of four images corrupted with noise ratio of 50%. The PSNR value of each image
at first iteration is less than the upcoming iterations because some corrupted pixels are
not detected and not filtered out. It is also clear from Figure 5 that that proposed filter
achieves its optimum PSNR values at 4th iteration and remains unchanged at subsequent
iterations just because most of the corrupted pixels have been detected and filtered out in
previous iterations.

5.2. Performance of the Proposed Noise Detector

In gray-scale images, the performance of noise detector badly affects when noise
brings slight or abrupt changes to image pixel values as slight changes are sometimes
ignored whereas abrupt change is an indication of an edge. So, there is a strong possibility
that noisy and clean pixels are miss or falsely classified by the noise detector. A good noise
detector with less number of miss detection (MD) and false detection (FD) cases can lead
to better restoration results. Table 1 shows a quantitative comparison of different noise
detectors for Lena image corrupted with different noise ratios ranging from 30% to 60%
random valued impulse noise (RVIN). QSAF at 30% RVIN has least number of MD pixels
but large number of FD pixels whereas SRM has very low FD and high MD rate. Similarly,

http://www.imageprocessingplace.com
http://www.imageprocessingplace.com
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our proposed filter at 40% RVIN has a low MD rate but high FD rate whereas ACWM has
very low FD rate and a very high MD rate. Furthermore, it can be seen from the Table 1 that
total number of MD and FD pixels of our proposed filter has least number as compared to
other noise detectors at different noise level.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 17 
 

values at 4th iteration and remains unchanged at subsequent iterations just because most of 

the corrupted pixels have been detected and filtered out in previous iterations. 

 

Figure 5. Shows PSNR results up-to 10 iterations for Lena, Peppers, Baboon and Boat images at 50% 

RVIN. 

5.2. Performance of the Proposed Noise Detector 

In gray-scale images, the performance of noise detector badly affects when noise 

brings slight or abrupt changes to image pixel values as slight changes are sometimes 

ignored whereas abrupt change is an indication of an edge. So, there is a strong possibility 

that noisy and clean pixels are miss or falsely classified by the noise detector. A good noise 

detector with less number of miss detection (MD) and false detection (FD) cases can lead 

to better restoration results. Table 1 shows a quantitative comparison of different noise 

detectors for Lena image corrupted with different noise ratios ranging from 30% to 60% 

random valued impulse noise (RVIN). QSAF at 30% RVIN has least number of MD pixels 

but large number of FD pixels whereas SRM has very low FD and high MD rate. Similarly, 

our proposed filter at 40% RVIN has a low MD rate but high FD rate whereas ACWM has 

very low FD rate and a very high MD rate. Furthermore, it can be seen from the Table 1 

that total number of MD and FD pixels of our proposed filter has least number as 

compared to other noise detectors at different noise level. 

Table 1. Detection results comparison of different methods for Lena image when corrupted with 

30% to 60% RVIN. 

Ratio 

Methods 

 30%   40%   50%   60%  

MD FD Total MD FD Total MD FD Total MD FD Total  

DWM [16] 9081 6550 15631 9499 7771 17,270 9511 11,380 20,891 12,701 12,298 24,999 

NWM [29] 9578 6012 15,590 10,150 6220 16,370 11,126 8303 20,429 15,450 7551 23,001 

ACWM [8] 14,340 2023 16,363 16,048 2164 18,212 23,690 3641 27,331 32,733 7702 40,435 

SDOOD [39] 10,508 9672 20,180 12,273 10,325 22,598 13,745 15,599 27,344 14,952 12,833 27,785 

AFIDM [42] 7112 6334 13,446 8209 7069 15,278 8508 8375 15,483 8978 8894 17,872 

SRM [40] 15,894 1998 17,892 21,076 2571 23,647 24,922 4204 29,126 32,719 6550 39,269 

AEPWM [41] 9940 8028 17,968 10,910 7975 18,885 11,675 9617 21,292 13,571 9769 23,340 

QSAF [38] 5122 5899 11,021 5509 6311 11,820 6919 8025 14,944 9055 9240 18,295 

TSA [35] 9890 5002 14,892 11,039 4215 15,254 13563 5284 18,847 15,070 7522 22,592 

Proposed 5233 4865 10,098 5324 6208 11,532 7513 6828 14,341 9991 7428 17,419 

5.3. Performance of the Proposed De-Noising Filter 

In this section, another quantitative analysis of de-noised images is performed to 

evaluate the performance of our proposed filter with other de-noising filters. Three 

performance measures, peak signal to noise ratio (PSNR), structure similarity index 

Figure 5. Shows PSNR results up-to 10 iterations for Lena, Peppers, Baboon and Boat images at
50% RVIN.

Table 1. Detection results comparison of different methods for Lena image when corrupted with 30%
to 60% RVIN.

Ratio
Methods

30% 40% 50% 60%
MD FD Total MD FD Total MD FD Total MD FD Total

DWM [16] 9081 6550 15631 9499 7771 17,270 9511 11,380 20,891 12,701 12,298 24,999
NWM [29] 9578 6012 15,590 10,150 6220 16,370 11,126 8303 20,429 15,450 7551 23,001
ACWM [8] 14,340 2023 16,363 16,048 2164 18,212 23,690 3641 27,331 32,733 7702 40,435

SDOOD [39] 10,508 9672 20,180 12,273 10,325 22,598 13,745 15,599 27,344 14,952 12,833 27,785
SRM [40] 15,894 1998 17,892 21,076 2571 23,647 24,922 4204 29,126 32,719 6550 39,269

AEPWM [41] 9940 8028 17,968 10,910 7975 18,885 11,675 9617 21,292 13,571 9769 23,340
AFIDM [42] 7112 6334 13,446 8209 7069 15,278 8508 8375 15,483 8978 8894 17,872
QSAF [38] 5122 5899 11,021 5509 6311 11,820 6919 8025 14,944 9055 9240 18,295
TSA [35] 9890 5002 14,892 11,039 4215 15,254 13563 5284 18,847 15,070 7522 22,592
Proposed 5233 4865 10,098 5324 6208 11,532 7513 6828 14,341 9991 7428 17,419

5.3. Performance of the Proposed De-Noising Filter

In this section, another quantitative analysis of de-noised images is performed to
evaluate the performance of our proposed filter with other de-noising filters. Three per-
formance measures, peak signal to noise ratio (PSNR), structure similarity index measure
(SSIM) and edge preservation index (EPI) [33] are used on standard test images as shown in
Figure 6 for basic quantitative comparisons. Figure 7 shows PSNR values for Lena, Bridge
and Boat image against different noise densities of RVIN ranging from 30% to 60%. It is
clear from the bar chart that that proposed de-noising filter gives excellent results in terms
of PSNR against all the competing filters and outperforms them against different noise
levels of RVIN with a good margin. Table 2 shows SSIM values for Lena, Bridge and Boat
images against different noise densities of RVIN ranging from 30% to 60%. It can be noted
from the table that the proposed filter gives best results in terms of SSIM except two ratios
of 60% where two stage algorithm (TSA) [35] and quadrant based spatially adaptive fuzzy
(QSAF) filter [38] gives best results but overall the proposed filter leaves behind all the
competing filters. Table 3 shows running time comparison (in seconds) for Lena image
against different noise densities of RVIN ranging from 30% to 60%. In this quantitative
comparison, the proposed filter once again gives best results in terms of running time cost
as the proposed filter is simple in implementation and require no further trainings and
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threshold computations. QSAF uses extra iterations and fuzzy control which increases its
computational cost. We run our algorithm on a number of iterations but the PSNR value
after 4th iteration becomes constant which can be seen from Figure 5. We set this parameter
manually for all the experiments conducted.

MSE =
1

l ×m ∑l
i=1 ∑m

j=1

[
Oi,j − Ri,j

]2 (20)

PSNR = 10× log10
N2

MSE
(21)

EPI =
∑l

i=1 ∑m−1
j=1

∣∣Ri,j+1 − Ri,j
∣∣

∑l
i=1 ∑m−1

j=1

∣∣Oi,j+1 −Oi,j
∣∣ (22)

where Oi,j and Ri,j represent noise-free original and de-noised images of size l × m at
location (i,j) respectively and N represent maximum possible gray-level value of a 8-bits
per pixel. EPI values ranges from 0 to 1, higher value indicates better edge preservation.
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Figure 7. Shows a comparison in terms of PSNR of different methods for Lena, Bridge and Boat
images corrupted with noise ratios of 30, 40, 50 and 60%.
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Table 2. Comparison of results in terms of SSIM for Lena, Bridge and Boat images corrupted with
30% to 60% RVIN.

Methods DWM NWM ACWM SDOOD AFIDM SRM QSAF AEPWM SBF TSA Proposed

Lena
30% 0.914 0.831 0.936 0.920 0.938 0.918 0.948 0.932 0.913 0.923 0.950
40% 0.886 0.814 0.917 0.887 0.906 0.889 0.930 0.901 0.895 0.904 0.933
50% 0.847 0.762 0.860 0.849 0.869 0.836 0.879 0.866 0.846 0.868 0.881
60% 0.747 0.709 0.794 0.809 0.797 0.787 0.805 0.775 0.728 0.817 0.759

Bridge
30% 0.718 0.709 0.795 0.776 0.709 0.699 0.782 0.786 0.749 0.791 0.806
40% 0.617 0.655 0.734 0.725 0.641 0.628 0.728 0.735 0.655 0.740 0.759
50% 0.556 0.600 0.658 0.688 0.618 0.598 0.630 0.629 0.583 0.663 0.678
60% 0.492 0.524 0.557 0.502 0.498 0.514 0.591 0.581 0.501 0.580 0.586

Boat
30% 0.814 0.756 0.858 0.849 0.793 0.826 0.849 0.855 0.854 0.862 0.879
40% 0.731 0.714 0.827 0.819 0.756 0.764 0.818 0.816 0.822 0.805 0.843
50% 0.672 0.669 0.765 0.715 0.728 0.719 0.759 0.737 0.778 0.761 0.806
60% 0.639 0.609 0.696 0.579 0.649 0.656 0.703 0.665 0.707 0.693 0.755

Table 3. Running time consumption comparison (in seconds) for Lena with 30% to 60% RVIN.

Methods 30% 40% 50% 60%

QSAF [38] 82.03 82.61 83.39 84.19
AFIDM [42] 46.96 47.14 47.56 48.09
ATFDF [24] 24.44 25.29 26.07 27.89
Proposed 13.63 14.03 15.44 16.05

A subjective comparison is performed on a small sample of standard images as
shown in Figure 6 as well as randomly selected medical images of MedPix dataset and the
restoration results are shown in Figures 8–10. In Figure 8, the restored images of NWM [29],
SRM [40] and AEPWM [41] have some traces of noise clearly visible on the restored images
whereas AFIDM [42], QSAF, TSA and the proposed filter de-noised the noisy image well.
It is clear from the visual results that the proposed filter has preserved the edges and
detailed regions of the Lena image very well as compared TSA, QSAF and other competing
filters. The performance of the proposed filter is tested on detailed images, i.e., Baboon
and Barbara, of size 512 × 512 at high noise densities, 50% and 60% RVIN, and the results
are tabulated in Figure 9. It can be seen from the restored results that the proposed filter
has effectively preserved the edges and fine details in both the images. Similarly, when
the proposed technique is further tested on medical images of MedPix dataset as shown in
Figure 10, it is clear from subjective results that the proposed filter outperforms QSAF and
AFIDM filters. Figure 11 shows EPI values of different de-noising methods for Lena image
at 30% noise ratio. It is evident from quantitative as well as subjective comparisons that the
proposed filter gives best results and outperforms many existing filters against different
noise densities ranging from low to high.
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Figure 9. First row shows two noise corrupted images 50% and 60% RVIN of Baboon and Barbara
images respectively. Second row shows the de-noised results after applying the proposed filter.
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Figure 10. Shows image restoration results on medical image dataset. 1st column are the original
images from MedPix database, 2nd column are the noisy images with 40% RVIN, third column shows
de-noised results using AFIDM filter, fourth column shows de-noised results using QSAF and fifth
column shows restoration results of proposed filter.
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Figure 11. Shows edge preservation index (EPI) for Lena de-noised image when corrupted with
30% RVIN.

6. Conclusions

In this paper, a convolved feature vector based adaptive fuzzy filter is proposed which
converts a large size processing window to multiple small size sub-windows for better
noise estimation and removal. A simple mechanism is introduced to select optimal number
of sub-windows that will ultimately reduce the computational cost of the noise detector as
well as remove un-necessary information due to multiple windows. The selected windows
add more information of neighbors for better noise estimation and removal. Furthermore,
fuzzy rules and fuzzy membership functions play a vital to avoid crisp decision in noise
detection and noise removal phases.

The proposed filter is tested on a large datasets including standard as well as medical
data set from MedPix. We have found satisfactory results in term of noise detection as
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well noise removal. Our method uses limited number of iterations, maximum of four, to
achieve the best PSNR value against different types of images which ultimately reduces
the algorithm running as well as hardware utilization cost. Our noise detector has less
number of MD and FD which adds more power to noise detector and in results better noise
estimation and detail preservation in noise removal phase.

In subsequent work, we will discuss and analyze different fuzzy membership functions
and weighted parameters in noise detection as well as noise removal phases.
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