

UWS Academic Portal

Context-aware offloading for IoT application using fog-cloud computing

Bajaj, Karan; Jain, Shaily; Singh, Raman

Published in:
International Journal of Electrical and Electronics Research

DOI:
10.37391/ijeer.110110

Published: 20/02/2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Bajaj, K., Jain, S., & Singh, R. (2023). Context-aware offloading for IoT application using fog-cloud computing.
International Journal of Electrical and Electronics Research, 11(1), 69-83. https://doi.org/10.37391/ijeer.110110

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 04 May 2023

https://doi.org/10.37391/ijeer.110110
https://uws.pure.elsevier.com/en/publications/7ad53b54-e74c-46dc-bb5a-26ad726b9db6
https://doi.org/10.37391/ijeer.110110

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

69 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

░ ABSTRACT- It is difficult to run delay-sensitive applications and the cloud simultaneously due to performance metrics

such as latency, energy consumption, bandwidth, and response time exceeding threshold levels. This is the case even though

advanced networks and technologies are being used. The middleware layer of the Internet of Things (IoT) architecture appears to

be a promising solution that could be used to deal with these issues while still meeting the need for high task offloading criterion.

The research that is being proposed recommends implementing Fog Computing (FC) as smart gateway in middleware so that it can

provide services the edge of the networks. Applications that are sensitive to delays would then be able to be provided in an efficient

manner as a result of this. A smart gateway is proposed as solution for taking the offloading decision based on the context of data,

which offers a hybrid approach in order to make decisions regarding offloading that are efficient and effective. A solution that uses

machine-learning reasoning techniques to make offloading decisions, in multiple fog-based cloud environments. Feature selection,

and classification are used as a learning method and are also ensembled as hybrid logistic regression-based learning to provide the

best offloading solution. It works by learning the contextual information of data and identify the cases to make the decision of

offloading. The proposed model offers a solution that is both energy and time efficient, with an overall accuracy of approximately

80 percent. With the proposed intelligent offloading approach, it is expected that Internet of Things applications will be able to meet

the requirement for low response time and other performance characteristics.

Keywords: Internet of Things; Cloud Computing; Fog Computing; Offloading; Context-Aware; Logistic Regression.

░ 1. INTRODUCTION
A scenario in which components share information through

sensing devices, actuators, and processing units that

communicate with one another in order to fulfil a meaningful

purpose or complete work that requires a significant amount of

intelligence with the minimum amount of human involvement

is known as the Internet of Things (IoT) [1]. The goal of the

Internet of Things (IoT) is to automate everything and connect

all technologies. It is also meant to make all physical objects

smart, so they can connect to each other and talk to each other,

as well as make smart decisions on their own.

The processing of enormous amounts of data at the edge or in

the cloud causes latency, and high energy consumption and also

devalues other performance parameters that are unacceptable in

some essential applications such as health situations,

transportation management, and so on. It's clear that

applications that do a lot of processing use more energy, drain

batteries faster, and make solutions more expensive [2], but it's

also true that some applications need more energy to do the

processing.

Figure 1: Key issues faced for processing data at cloud servers

Key Processing
Issues

Latency

Energy
Consumptio

n

Security

Bandwidth
Response

with Delay

Immediate
Response

Requireme
nt

Fragile
Data

Context-Aware Offloading for IoT Application using Fog-

Cloud Computing

Karan Bajaj1*, Shaily Jain2 and Raman Singh3

1Assistant Professor, Department of Computer Science & Engineering, Chitkara University School of Engineering and Technology,

Chitkara University, Himachal Pradesh, India; karan.bajaj@chitkarauniversity.edu.in
2Professor, Department of Computer Science & Engineering, Chitkara University School of Engineering and Technology, Chitkara

University, Himachal Pradesh, India; shaily.jain@chitkarauniversity.edu.in
3Lecturer, School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Lanarkshire, Scotland,

raman.singh@uws.ac.uk

*Correspondence: Karan Bajaj; karan.bajaj@chitkarauniversity.edu.in

ARTICLE INFORMATION

Author(s): Karan Bajaj, Shaily Jain and Raman Singh;

Received: 29/11/2022; Accepted: 31/01/2023; Published: 20/02/2023;
e-ISSN: 2347-470X;

Paper Id: IJEER-2911-11;

Citation: 10.37391/IJEER.110110

Webpage-link:

https://ijeer.forexjournal.co.in/archive/volume-11/ijeer-110110.html

Publisher’s Note: FOREX Publication stays neutral with regard to

Jurisdictional claims in Published maps and institutional affiliations.

https://www.ijeer.forexjournal.co.in/
mailto:karan.bajaj@chitkarauniversity.edu.in
mailto:shaily.jain@chitkarauniversity.edu.in
mailto:karan.bajaj@chitkarauniversity.edu.in
https://doi.org/10.37391/IJEER.110110
https://ijeer.forexjournal.co.in/archive/volume-11/ijeer-110110.html

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

70 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

Figure 1 highlights the key issues encountered when processing

data solely through cloud data centers, mainly related with

latency, delay and energy consumption, whereas when

processing data solely through edge/fog computing

architectures, including the challenges mentioned in figure 1,

scarcity among resources and processing capacity constraints

become a concern. Current research is focused towards latency,

energy consumption and immediate response requirement

challenges faced by the applications and providing the solution

in the form of offloading strategy. Computation offloading is a

strategy designed to reduce device energy consumption and

processing time. One of the most difficult aspects of offloading

is determining whether offloading is helpful. One of the primary

issues is learning from the context of data or recognizing the

context or scenario for computational and data offloading. The

design and development of a context-aware offloading

approach for computationally expensive Internet of Things

applications is required in order to make effective optimal

offloading decisions.

The intelligent offloading methodology with the proposed

context-aware framework is supposed to achieve the

requirement to meet the low response time, energy efficiency,

and other performance parameters for IoT applications in

different domains like healthcare, smart city, agriculture, etc.

Because of the massive volume of data being generated, there

is a lot of traffic of produced data that leads to the challenge of

congestion among the network and results in high latency. The

increase in time required for the round-trip causes delays in big

data transmission volumes and high hop counts between IoT

devices and cloud servers, which makes application data for

providing services meaningless and unsuitable for end-users to

understand.

1.1 Smart gateway as offloading solution
For a large number of applications that require a high amount

of computations, there is a need for a third party to perform the

processing and executions on behalf of the client devices and

provide results after processing [3]. This methodology is being

referred to as offloading, where an external entity performs the

tasks, and can be referred to as outsourcing of operations.

Computation offloading in the middleware layer, which is

responsible for processing and storage, plays a significant role

in supporting the delay-sensitive and context-aware services in

IoT applications.

Despite usage of 5G networks and technologies, delay-sensitive

applications and the cloud are unable to run simultaneously due

to performance metrics such as latency, energy consumption,

bandwidth, and response time exceeding threshold levels [4].

As a solution to counter the issues, the middleware layer of the

IoT architecture appears to be a promising approach for dealing

with these challenges while still meeting the requirement of

high task offloading criteria.

Current research proposes a smart gateway deployment in

middleware as it provides services to the network's edge,

allowing delay-sensitive applications to be efficiently served.

FC in itself suffers from a disadvantage, as Fog nodes, on the

other hand, have a limited resource that aren't able to do all

tasks, particularly those that require a lot of computing.

Furthermore, fog is not considered as an alternative or substitute

to the cloud but rather considered as an add-on, combining both

the technologies to take advantage of their joint benefits. The

proposed framework presents a smart gateway deployment that

work as solution taking advantage of cloud and fog computing

technologies together by making offloading decision based on

the contextual information of the received data.

Figure 2: IoT architecture with middleware layer role for the

proposed offloading method

Figure 2 shows the general five layers of basic IoT architecture.

The bottom layer, perception & sensing, integrates devices and

objects with sensors for data collection. It connects the real and

digital worlds also termed as the physical layer. Real-time data

is collected for processing. Transport layer moves data between

devices and objects. Huge sensors generate a massive amount

of data, requiring IoT systems to be flexible and high-

performance to support different protocols among devices. IoT

systems offer fast transactional services, context-aware

applications, etc. Processing Layer which act as a

middleware, analyses and processes transport layer data. This

layer analyses and processes work with many technologies like

edge, femto, fog, and cloud computing. Storage layers provide

temporary data storage, duplication, and distribution. The

application layer provides users with IoT application services.

Figure 2 shows the importance of middleware with its role as a

decision and analytics unit, that can be played while performing

the offloading.

░ 2. LITERATURE SURVEY
Edge computing stresses local computing and employing

various surrounding devices/architectures as edge servers to

provide timely and intelligent services. To fully realise edge

computing in IoT applications, many challenges must be

addressed, including how to efficiently distribute and manage

data storage and computing, how to make edge computing

collaborate with cloud computing for more scalable services,

and how to secure and preserve system privacy. Offloading

frameworks and models vary by offloading strategy (edges, fog,

cloud) and working parameters (energy, duration, battery use).

Many offloading frameworks and models have been studied to

analyse the key issues and possibilities with the current

approaches.

Some of the initial works are done by the MAUI offloads code

to make cellphones last longer [5]. Here, authors show how

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

71 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

system splits programs, profiles them, and formulates and

solves programme partitioning to enhance energy advantages.

This framework simplifies cloud migration of smartphone apps.

Thinkair [6] uses cloud smartphone virtualization, dynamic

resource allocation, and parallel execution for code offloading.

Lin et al. [7] use a decision engine-based context-aware

decision algorithm (CADA) to decide whether to offload a

procedure to the cloud.

Another model Evidence-Aware Mobile Computational

Offloading (EMCO) [8] is a unique computational offloading

tools and framework. Dedicated computing infrastructure

offloads computationally heavy operations to surrogates in a

cloud-based model.

Context-Sensitive Model for Offloading System (CoSMOS) [9]

methodology uses context-aware self-adaptive offloading for

mobile cloud computing (MCC) systems. Decision-taking

estimates is used to improve application execution time and

energy consumption.

Junior et al. [10] present a machine learning-based Context-

Sensitive Offloading System (CSOS) using J48, JRIP, IBK, and

Naive Bayes reasoning. The authors implemented J48 and JRIP

because they provide accurate offloading decisions. The most

accurate offloading decision-making solution is chosen among

multiple categorization methods. It processes context data into

high-level context representation. Healthcare applications are

latency-sensitive and demand quick processing, hence the Fog

Computing (FC)-based analytical paradigm [11] is suggested.

IoT data transmission requires lower communication,

processing, and network latency than cloud-server architecture

can provide. Data processing and analysis using edge structures

reduces latency. Analytical model and hybrid fuzzy-based

reinforcement learning technique using Neural Networks (NN)

approaches in FC environment.

Many models and frameworks aim to save time and energy.

Offloading frameworks include two broad categories [12].

Client-server and VM cloning frameworks. A full image

transfer of the application, including the operating system, is

made on the cloud server in VM clone. The client and cloned

VM state are merged to resume execution after the task. Client-

Server frameworks offload logic by pre-installing the

application component on the server device. Local state is

shared server-wide before task execution and synchronised with

the client afterward [13]. Offloading frameworks differ mostly

in their implementation methods.

Based on literature survey, it can determine that the Client-

server model is a superior option to the VM model for the

purpose of offloading data. This is because the Client-server

model reduces the amount of bandwidth that is consumed and

is closer to the real-world contexts that are required for data

offloading. Additionally, the vast majority of frameworks are

mobile-based; hence, mobile and gaming applications are most

frequently chosen for the purpose of implementation when

dealing with cloud-based offloading scenarios.

Based on the reviews of the relevant literature, it has been

determined that very little work has been done on edge

structures and edge-based cloud scenarios, and the working

models and frameworks that are based on them do not

concentrate on the smart requirements or context-based

offloading approach.

░ 3. DESIGN OF SMART GATEWAY

ARCHITECTURE
Figure 3 demonstrate the smart gateway role for the offloading

process, where smart gateway in middleware takes the

offloading decision based on the received data from the

applications. Under the current section, the proposed smart

gateway receives the applications-based data from the sensory

devices representing IoT applications and take the offloading

decision accordingly.

The framework on middleware is composed of three major

components: The Training, Decision Engine, and the

Offloading. These components communicate with one another

to perform context-sensitive offloading.

Materials and Methods should be described with sufficient

details to allow others to replicate and build on published

results. Please note that publication of your manuscript

implicates that you must make all materials, data, computer

code, and protocols associated with the publication available to

readers. Please disclose at the submission stage any restrictions

on the availability of materials or information. New methods

and protocols should be described in detail while well-

established methods can be briefly described and appropriately

cited.

Figure 3: Proposed offloading framework architecture

In figure 3-line A demonstrate the traditional call structure data

directly offloaded to the cloud, line B indicates that data first

send to the smart gateway and gateway offloading the data to

the fog structure or cloud for further processing represented by

line C and D.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

72 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

The smart gateway deployed will be having the learning

inference engine, the feature of context identification, and rule

generation by processing the data to make a further decision on

the received data, either to process it themselves or to the cloud.

Smart gateway will first analyze the incoming data and perform

a selection of offloading parameters, for this training and testing

of the data are done using different Machine Learning (ML)

algorithms after classification of parameters, contextual

information regarding the offloading of the data is generated

using hybrid regression-based reinforcement learning inference

system.

░ 4. MATERIALS AND METHODS
The allocation and selection of data packets in an IoT–FC

environment is accomplished through the use of a system that

incorporates reinforcement learning as logistic regression with

k-NN and decision tree evolution algorithms.

4.1 Data Set Description
Data set that is UCI Heart Disease Data, ECG sensor data

collected from healthcare facilities were received through the

online web-based UCI machine learning repository, it is a

research centre dedicated to the study of intelligent systems and

machine learning. In the simulated data set ECG sensor data is

used for the analysis, which has 16 attributes and 920 instances,

that makes up the data in the simulation. The dataset includes

data from a patient who was suffering from heart disease as a

result of a combination of conditions including high blood

pressure, high blood sugar level, and high cholesterol. The data

was collected in a continuous stream. ECG strips/records from

a total of 920 participants were acquired from two leads in this

study. Table 5 presents the attributes description of the dataset

with 14 attributes as one attribute is “City” the other one is “ID”

which simply means the city of collecting the dataset and the

other is a serial number [14].

Data sets from the four different cities:

Cleveland: 303

Hungarian: 294

Switzerland: 123

Long Beach VA: 200

are used with total 920 values.

░ Table 1: Attributes values and information of the dataset

Attribute Information

Sr.

No.
Name Description

1 age Age of patients in years

2 sex
Patient categorization based on gender

: Male, 0: Female)

3 cp

Chest Pain Type -- Value 1: typical

angina

-- Value 2: atypical angina

-- Value 3: non-anginal pain

-- Value 4: asymptomatic

4 trestbps Resting Blood Pressure (mm Hg)

5 chol SerumCholestrol (mg/dl)

6 fbs
Fasting Blood Sugar > 120 mg/dl (1 :

true, 0 : false)

7 restecg

Resting ECG -- Value 0: normal

-- Value 1: having ST-T wave

abnormality (T wave inversions and/or

ST elevation or depression of > 0.05

mV)

-- Value 2: showing probable or definite

left ventricular hypertrophy by Estes'

criteria

8 thalach Maximum Heart Rate

9 exang
Exercise induced angina (1: true,

0:false)

10 oldpeak
ST depression induced by exercise

relative to rest

11 slope

Slope of the peak exercise ST segment

-- Value 1: upsloping

-- Value 2: flat

-- Value 3: downsloping

12 ca
Number of major vessels (0-3) colored

by flourosopy

13 thal
Thal: (3 = normal, 6 = fixed defect, 7 =

reversable defect)

14

(num) (the

predicted

attribute)

Diagnosis of heart disease

(angiographic disease status)

-- Value 0: < 50% diameter narrowing

-- Value 1: > 50% diameter narrowing

4.2 Evaluation Setup
The experimental simulation was carried out with the help of

Anaconda Python, which is a data science platform designed for

data scientists, and business decision-makers. It is a collection

of programming languages such as Python, R, and other

languages. The proposed model is trained using the set of

logistic regression algorithms, K-Nearest Neighbor (KNN),

Naive Bayes, Decision Tree, Support Vector Machine (SVM),

Multilayer Perceptron (MLP), and K-Nearest Neighbor (KNN)

algorithms. The proposed model uses hybrid regression

algorithms with deep learning where the logistic regression

algorithm is one of the machine learning algorithms used to

train the model.

4.3 Pre-processing of Datasets
Feature selection are included in the preparation of data. The

process of automatically maintaining of a group of

characteristics to a modest level so that these features can be

modelled is referred to as feature selection.

4.4 Feature Selection
An algorithm is proposed for the smart gateway to take the

offloading decision, the proposed algorithm leads to the design

and development stages of a predictive model that is based on

machine learning. Algorithm 1 shows the step-wise description

of the different stages of the smart gateway before classification

to prepare data to take the offloading decision.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

73 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

Algorithm 1

#Algorithm start here:

#Feature Selection

1: Correlation (Pearson correlation adds two objects' deviations

from their means and divides by their squared differences)

2: Feature selection (Based on correlation dropping attributes

“id, dataset, thalch”)

#Converting features to categorical values

1: slope Values (flat=0, upsloping=1, downsloping=2) && thal

Values(reversable defect=0, normal=1, fixed defect=2)

2: Binary data attributes conversion

fbs,sex,exang (TRUE=1,FALSE=0)

#Handling Missing Value by Mean ()

1:Replace_Missing_Value_Mean (Heart Disease)

2: return Heart_Disease['slope','ca','thal', 'exang',

'fbs'].replace('0', mean())

#Splitting training and test dataset

1: Train_Test_Data_Split(train data 75% and test data 25%)

#Algorithm end here.

Feature selection refers to the process of selecting the input

variables based on the correlation attribute evaluation.

4.4.1. Correlation Attribute Evaluation

Using the correlation method, which is being presented here, it

is possible to incorporate a reasonable number of necessary

characteristics without affecting the accuracy of the model by

employing an approach known as the correlation coefficient

method. Weka is used for applying feature selection methods

over the datasets.

Equation 1 shows the co-relation equation where X and Y show

the corresponding attributes, calculating the mean at every step.

Correlation measures the linear relationship between X and Y.

Pearson correlation ranges from 1 (perfect negative correlation)

to +1 (perfect positive correlation), with zero indicating no

correlation between X and Y. A zero correlation does not

indicate there is no linear relationship.

𝑍 =
∑(𝑋𝑖−�̄�) ∑(𝑌𝑖−𝑌

__
)

√∑(𝑋𝑖−�̄�)2 ∑(𝑌𝑖−𝑌
__

)2

 (1)

Weka 3.8.6 is used to implement correlation, which is attribute

selection method and deployed over the data set 16 attributes as

shown in figure 4. Results for the Heart Disease Data with

correlation attribute evaluation are shown in figure 4.

Figure 4: Correlation attribute selector using WEKA

According to the findings of the correlation attribute evaluation

from figure 4, attributes 1, 4, and 10 have the lowest correlation

factor with the other attributes. The first attribute describes the

id, which is just a serial number and is therefore less important

in identifying the valuable information in the detection of heart

problem. The fourth attribute describes the dataset that indicates

the city, which is once again a very less important attribute

related to the detection of patient health data. The tenth attribute

which is "thalch" describes the detection method related to

maximum heart rate of the patient, this value is additional

because attribute 15th that is “thal” categories the patients in

into different stages of categorization related to the ECG which

makes it less important attribute. As a result of the correlation

matrix study and the results that were obtained, these three

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

74 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

attributes are removed from the test dataset as well as the train

dataset. The optimized test and train datasets are now used over

various classification processes to identify the best models and

embed regression-based learning process to further optimize

them.

4.4.2 Pre-classification Analysis Process

It is possible to do classification on both structured and

unstructured data. Classification is the process of grouping

together a certain set of data into distinct classes. The work

carried out in [15,16,17] show the success of classification over

the medical data.

In this step factors of offloading are defined to apply regression-

based learning to offload the data.

4.4.2.1 Heart Disease Dataset Analysis

For the analysis and classification purpose, the complete

implementation process is carried over the python 3.9 in the

anaconda simulator, first, the reading and analysis of the train

data set is carried out, for identifying the appropriate

classification scheme.

The data set is categorised under the four categories or classes

having values

df['num'].value_counts() # Python Code

Class Attribute Count Specification

0 411 #Normal Patient Class data

1 265 #Low Risk Patient Class data

2 109 #Low to Medium Risk Patient Class

data

3 107 #Medium to High Risk Patient Class

data

4 28 #High Risk Patient Class data

Based on different classes of patient health data, it can be said

that this data support multi-class classification, and also

offloading scenarios can be decided based on the criticality of

the patients as:

#0 Normal Patient Categorization-wise data can be offloaded to

the cloud.

#1 Critical Patient Categorization-wise data must be offloaded

to the fog only with a small

 computing capacity.

#2 Critical Patient Categorization-wise data must be offloaded

to the fog only with medium

computing capacity.

#3 Critical Patient Categorization-wise data must be offloaded

to the fog only with a large

computing capacity.

#4 Critical Patient Categorization-wise data must be offloaded

to the fog only with a large computing capacity.

4.4.3 Handling Missing or Null Values

After analyzing and categorization of data for offloading

purposes, null or missing value analysis is being done as this is

the issue under the classification and affect the accuracy of

overall model. If there are no data on a particular variable for

any of the cases, then it is referred to that variable as being latent

or unobserved. On the other side, there is unit non-response

when data are absent on all variables for some of the cases [18].

df.isna().sum() # python code to check null values shown in

table 2.

Attribute-wise results in the training and test set are given in

table 2, which shows that a large amount of data is not present

in the dataset. As its clear from the result analysis of missing

values that the data set contains missing values in both train and

test sets, therefore handling missing values is required. Mean

and median are two of the basic strategies to handle this issue,

especially in the case of a dataset having a small size [19], Even

with a big data set, the mean criterion calculation is relatively

quick. Because of these qualities, the mean criterion is an

effective method of selection, particularly in situations in which

a large number of values are available and only random values

are absent [20]. However, when dealing with unsupervised data,

utilizing the mean approach for tuning is an incredibly

challenging task; hence, the mean method is appropriate for use

in the present experiment scenario when it comes to filling in

missing values. Based on the study mean approach is selected

as part of the proposed algorithm during the pre-processing

stage, table 2 presents the case of results before and after

applying the mean approach to both data sets.

░Table 2: Missing value analysis after applying mean method over both train and test data

Train Data Before Applying

Mean Method

Train Data After Applying

Mean Method

Test Data Before Applying

Mean Method

Test Data After Applying

Mean Method

age 0 age 0 age 0 age 0

sex 0 sex 0 sex 0 sex 0

cp 0 cp 0 cp 0 cp 0

trestbps 0 trestbps 0 trestbps 59 trestbps 0

chol 0 chol 0 chol 3 chol 0

fbs 0 fbs 0 fbs 9 fbs 0

restecg 0 restecg 0 restecg 2 restecg 2

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

75 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

exang 0 exang 0 exang 55 exang 0

oldpeak 0 oldpeak 0 oldpeak 62 oldpeak 0

slope 1 slope 1 slope 38 slope 38

ca 5 ca 0 ca 66 ca 0

thal 3 thal 3 thal 483 thal 483

num 0 num 0 num 0 num 0

As table 2 shows that still large amount of data remains missing

after applying the mean method, this data belongs to the textual

information. Conversion of textual information to numeric is

done for attributes “slope” and “thal” during identifying the

attributes table 3 shows the information and assigned constant

numerical values, under the experimentation setup this becomes

the pre-step before applying the mean method to the train and

test data set.

░ Table 3: Text attributes values and their replaced

numerical values

Slope

Values

Assigned

Constant Value

thal

Values

Assigned

Constant

Value

flat 0
reversable

defect
0

upsloping 1 Normal 1

downsloping 2
fixed

defect
2

After applying the mean method, there is still a requirement of

changing some binary data attributes, which are present in the

form of TRUE and FALSE like ‘sex’, ‘fasting blood sugar’, and

“exang” table 4 presents the attributes and the assigned values,

in proposed algorithm this step is in parallel with table 3 as text

values are changed into constant values there.

░ Table 4: Binary data attributes conversion

fbs

Value

Assigned

Constant

Value

sex

Value

Assigned

Constant

Value

exang

Value

Assigned

Constant

Value

TRUE 1 TRUE 1 TRUE 1

FALSE 0 FALSE 0 FALSE 0

4.5 Classification Analysis Process
An algorithm is proposed for the classification and category-

wise offloading decision purpose, Algorithm 2 gives the

detailed step-wise description:

#Algorithm 2(Classification and Categorization)

#Algorithm starts here:

#Splitting dataset into Training and Testing

1: Traing_Split, Testing_Split = split (heart_disease_attributes,

heart_disease_label)

2: return Traing_Split, Testing_Split

Building Different Classifiers

3: Model-1: Logistic_Regession_Model(Traing_Split,

Traing_label, Testing_Split)

4: Model-2: k-NN_Model(Traing_Split, Traing_label,

Testing_Split)

5: Model-3: (Decesion_Tree)CART_Model(Traing_Split,

Traing_label, Testing_Split)

Building Ensemble Model LR-k-NN-CART-SEMod

6: metaClassifier_Stacking = 'Decision_Tree'

7: Ensemble_Model(Traing_Split, Traing_label, Testing_Split)

8: metaClassifier_Stacking = co-ncatenate(Model-1, Model-2,

Model-3)

#Pre-Caching (Parallel with stacking caching model wise rules

generated)

9:(Least_Recently_Used)LRU_Caching(Model-1 Rules-

>Model-2 Rules->Model-3 Rules)

#Output received in multiclass mode due to five different

categories of data

10:Ensemble_Model_Predictions =

metaClassifier_Stacking.predict(Testing_Split)

Category wise decision of offloading

Multi class output (five classes data {0,1,2,3,4})

Offloading Process

11: Patient #0 Category Normal Cloud data

12: Patient #1 Category only data with low computing capacity

should be offloaded to the fog.

13: Patient # 2 Category critical patient with average chance of

heart disease data must be offloaded to the fog with medium

computing power.

14: Patient # 3 Category critical patient with moderate to high

chance of heart disease data must be offloaded to the fog with

large computing power.

15: Patient # 4 Category critical patient with high risk of heart

disease data must be offloaded to the fog with large computing

power.

#Algorithm end here

The offloading process shown in algorithm 2 clearly shows that

to improve the overall performance is improved by using the

concept of the pre-caching process, which affects the

computational capability by optimizing the rules generation and

further by reducing the dimension during offloading accuracy

can be increased.

First, for the purpose of this research, several different

classification algorithms were evaluated with one another while

considering the primary evaluation metrics. The python version

of 3.9 with an anaconda development environment is used, and

all the experimental setup is carried out in jupyter notebook that

supports all the python libraries. For the analysis purpose, the

data set has been split into train and test sets with the percentage

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

76 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

of 75% as the training and 25% as the testing set, results have

been tested and evaluated using a cross-validation procedure

that is 10 times more extensive. The different classification

algorithms tested are Logistic Regression, MLP Classifier,

Decision Tree Classifier (CART), Support Vector Machine

(SVM), KNeighborsClassifier (k-NN), and Random Forest, all

of these implementations are based on python, below category-

wise training and test data is split is shown:

Distribution of target variable in the training set:

0 329

1 212

2 87

3 86

4 22

Distribution of target variable in test set:

0 82

1 53

2 22

3 21

4 6

A multiclass analysis of the classification algorithms is done, as

data indicate five different scenarios in classes related to patient

health data, a confusion matrix is created the quantity of each

indicator is computed with the help of this matrix, and then the

results are compared. A confusion matrix is a useful tool for

examining how well a classifier is able to detect many classes

that are distinct from one another.

Formulas are used to determine several evaluation metrics, like

the true positive rate (recall or sensitivity), the false positive rate

(FPR), the false-negative rate (FNR), and the precision and

accuracy of evaluation categories shown in equations (2 -to- 5),

and confusion matrix is generated for different categories of the

predicted values.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑛
+ 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛 (2)

Accuracy involves identifying instances accurately using

various learning methods. Equation 8 shows, 𝑡𝑝= true positive

values, 𝑡𝑛= true negative values, 𝑓𝑝= false positive values, 𝑓𝑛=

false negative values.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
 (3)

Precession is accurately detected occurrences over total

instances. Precision implies fewer false-positives.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

The recall is the percentage of class occurrences successfully

anticipated.

𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (5)

It's the average of accuracy and recall, thus it includes false

positives and negatives, and is known as F-measure.

A multi-dimensional confusion matrix is built that is used to

describe the performance of the multiple classifiers that are

created over the experiments here from the dataset.

Figure 5: Presenting the matrix representation of different classifiers implementation

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

77 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

Figure 5 shows the resultant matrix of different classifiers with

five different classes, table 5 shows that classifiers can identify

the patient's health in different classes, and out of the accuracy

achieved from these classifiers’ models, a maximum of 60%

accuracy is achieved.

░ Table 5: Accuracy percentage of different classifiers

Model Accuracy Precision Recall F1 Score

Random

Forest
60.32% 0.38 0.37 0.37

MLP 51% 0.34 0.33 0.33

k-NN 58.69% 0.55 0.37 0.39

CART 50.54% 0.34 0.33 0.33

SVM 57.06% 0.24 0.31 0.26

LOGISTIC

Regression
59.78% 0.36 0.36 0.35

Stacking is a set of techniques that requires training a second-

level "metalearner" to determine the optimal combination of the

base learners. It is also known as Super Learning or Stacked

Regression. The purpose of stacking is to bring together

formidable and varied groups of learning algorithms to work on

the same problem as shown in algorithm 3.

#Algorithm 3 (Stacking Algorithm)

Step 1: Assemble the group.

I. List L-base algorithms (with a specific set of model

parameters).

II. Specify a meta-learning algorithm.

Step 2: Train the group.

I. Train L-base algorithms on the training set.

II. Perform a split of test and train set on each learner and

collect the L algorithms' cross-validated predicted

values.

III. N cross-validated projected values from each of the “L”

methods can generate a new “N x L” matrix. This matrix

and response vector are called "level-one" data.

(N=training set rows).

IV. Train meta-learning on level-1 data. The "ensemble

model" combines L-based learning models and the meta-

learning model to generate test set predictions.

Step 3: Predict new data.

I. To create ensemble predictions, start with basic learners.

II. Feed those predictions into meta learner to generate an

ensemble forecast.

From the study of table 5 and the matrix generated in figure 5,

three models are selected for stacking and building the proposed

hybrid regression-based learning process to further optimize

them, Logistic regression is selected because of its average

accuracy under the classification of 60% as well as its average

performance over all classes, the approximate time taken for

execution 0.6336061954498291seconds, with the memory

utilization of 2.1649879196623365 MB, and 0.000244 joules

energy consumption, its selected with k-NN classifier as from

figure 6 we can see that this model works good for normal

patients as well as class 3 and class 4 patients, in case of k-NN

0.6023867130279541seconds is time consumption, with the

2.1305145227729505 MB memory utilization having 0.000214

joules energy consumption and last CART as it has maximum

performance for the detection of class 2 and class 3 patients,

whereas the approximate time consumption by the model is

0.5623865127563477 seconds, 2.3044440407899387 MB

memory utilization with 0.000916 Joules energy consumption.

The category-wise improvement in performance is an important

criterion of the experiment as it is necessary to take the

offloading decision. These results are obtained by running the

same model 20 times and taking the average for computation

time, memory consumption and energy utilization.

Resultant Confusion Matrix:

 0 1 2 3 4

 Class 0: [[77 3 2 0 0]

 Class 1: [8 42 1 2 0]

 Class 2: [2 8 11 1 0]

 Class 3: [2 6 2 10 1]

 Class 4: [0 1 1 2 2]]

Detailed Classification Report:

 Precision Recall f1-score Support

 0 0.93 0.94 0.95 82

 1 0.79 0.79 0.84 53

 2 0.50 0.50 0.46 22

 3 0.47 0.47 0.32 21

 4 0.33 0.33 0.20 6

 Accuracy 0.77 184

Accuracy: 0.771739130435

Table 6 shows the comparison of the proposed algorithm with

the other learning classifiers with overall average precision

recall and F1 score achieved.

░ Table 6: Accuracy percentage comparison with different

classifiers

Model Accuracy Precision Recall F1 Score

Proposed

Regression

learning with

k-NN and

Decision Tree

Algorithm

77.17% 0.741212 0.814959 0.728214

Random Forest 60.32% 0.38 0.37 0.37

MLP 51% 0.34 0.33 0.33

k-NN 58.69% 0.55 0.37 0.39

CART 50.54% 0.34 0.33 0.33

SVM 57.06% 0.24 0.31 0.26

LOGISTIC

Regression
59.78% 0.36 0.36 0.35

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

78 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

The proposed regression-based hybrid algorithm improves the

accuracy to 77% by correctly classifying the data in different

categories for taking the offloading decision with 0.93 precision

to send the data to the cloud directly for normal patients having

class 0, 0.79 to small size machine where category class is 1

depicting fewer chances of heart health issue, whereas category

class 2 patients that have moderate chances of disease will be

offloaded to the medium size EC2 machine with the precision

of 0.50, whereas category class 3 and 4 data where the risk of

patients health is medium to high and high is decided to

offloaded to the large size EC2 machine, as it indicates the

critical data and also category class 3 and 4 data have precision

less than 0.50, and it can be seen referring confusion matrix and

detailed classification report of the proposed algorithm, that

category 4 data is misclassified into category 3. The decision of

a common offloading machine boosts the precision value and

thus accuracy by achieving a combined performance for class 3

and 4 patients.

The different performance parameters of the proposed model is

given below:

 Approximate average computation time consumption

1.43442702293396 seconds

 Approximate average memory utilization

2.9475242632165926 MB

 Approximate average energy consumption 0.002587 joules

The results are obtained by running every experiment 20 times

on the same machine and taking the average of them. From the

results it can be clearly seen that due to hybrid taking three

learning schemes together there is increase in computation time,

memory utilization and energy consumption.

Resultant Confusion Matrix with respect to offloading decision:

 0 1 2 3

Class 0: [77 3 2 0] # Offloaded to the cloud

Class 1: [8 42 1 2] # Offloaded to the small size EC2 machine

Class 2: [2 8 11 1] # Offloaded to the medium size EC2

machine

Class 3: [2 7 3 15] # Offloaded to the large size EC2 machine

Combining results of category class 4 from both row and

column-wise, also class 1 and class 2 wrongly categorized data

in class 3 will be offloaded to large size machine which will be

considered as correctly categorized only as large size machine

is having larger computation power and further boosting the

performance in terms of accuracy and finally considered

achieved matrix will be following

Resultant Confusion Matrix with respect to offloading decision

on reduced dimension size:

 0 1 2 3

Class 0: [77 3 2 0] # Offloaded to the cloud

Class 1: [8 42 1 0] # Offloaded to the small size EC2

machine

Class 2: [2 8 11 0] # Offloaded to the medium size EC2

machine

Class 3: [2 7 3 18] # Offloaded to the large size EC2

machine

accuracy 0.80 184

Accuracy: 0.8043478261

The offloading process decision model added with the proposed

algorithm raised the accuracy to 80% by reducing the one

dimension from the multi-dimension resultant matrix.

4.6 Pre-Caching Process
Next, to look at the improvements in response time and energy

that were made possible in the proposed gateway design,

caching concept is applied with staking to further reduce the

amount of energy consumed and the reaction time. The

evaluation is carried out by using the pre-caching concept to

store the results of the classifier during the stacking and used in

the next classifier, then offloading them, and then assessing the

reaction time and energy consumption associated with each of

these processes.

A Least Recently Used (LRU) caching strategy is used as part

of the implementation, caching, when implemented properly,

speeds up work and minimizes computational load by using less

number of resources.

Steps to implement LRU:

1. Set the LRU cache capacity to a positive number.

2. toString(int key) Otherwise, return -1 if the key does not

exist.

3. put(key, value): If the key exists, update the value of the key.

Add the key-value pair to the cache if you don't need it.

4. The least recently used key should be removed if the number

of keys exceeds the storage capacity.

The different performance parameters of the proposed model

after implementation the caching are given below

Approximate average computation time consumption

0.7740482482452393 seconds

Approximate average memory utilization

3.8396332733711076 MB

Approximate average energy consumption 0.002153joules

The results are obtained again by running every experiment 20

times on the same machine and taking the average of them.

From the results it can be clearly seen that due to hybrid taking

three learning schemes together there is increase in computation

time, memory utilization and energy consumption. The results

shows with pre-caching computation time and energy

consumption has been reduced when compared to the results

without caching process, whereas memory utilization is

increased around 1 MB.

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

79 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

Figure 6: Time Consumption of the proposed algorithm

Figure 6 shows the computation time taken by the proposed

algorithm with pre-caching when compared to other selected

classifiers, figure clearly shows the average consumption time

is approximately 0.774 seconds which is much more than the

other compared learning schemes but individually no algorithm

is able to correctly classify the data with more than 60%

accuracy whereas proposed algorithm produces the results with

around 80% of accuracy.

Figure 7: Energy Consumption of the proposed algorithm

Figure 7 shows the energy consumption by the proposed

algorithm with pre-caching when compared to other selected

classifiers, figure clearly shows the average energy

consumption is while computation is 0.002153 joules much

more than other implemented classifier algorithms but again in

terms of accuracy the proposed algorithm is more precise to

correctly classify the patient’s data. The data from the

healthcare IoT devices are separated into normal, average, and

high-risk patients. Based on this classification, a choice on

offloading is then made, as detailed in algorithm 3, which serves

as a strategy for the allocation and selection of data packets in

fog nodes.

░ 5. RESULT ANALYSIS AND

DISCUSSION
In this section a detailed analysis of different parameters of

frameworks is done in the offloading scenario, depth

calculations are performed to do the analysis.

Two different offloading methodologies are deployed using

python language and compared with the proposed model

implemented, accuracy, time, memory usage and energy

consumption comparisons are made for the time start and end

time calculations are done, for calculating the memory

utilization “psutil” a cross platform library of python for

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Logistic

Regression

k-NN CART Proposed

Algorithm

without

Caching

Proposed

Algorithm

with Caching

C
o

m
p

u
ta

ti
o

n
 T

im
e

(S
ec

o
n

d
s)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Logistic

Regression

k-NN CART Proposed

Algorithm

without

Caching

Proposed

Algorithm

with Caching

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

s)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

80 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

retrieving the memory utilization are used. Energy calculations

are done with the help of “pyJoules.energy_meter” a python

library to measure energy consumption of python code. An

approximate average calculation is done by running the same

experiment 20 times and taking 20 different readings and then

calculating the average.

5.1 FCFS Approach
A First Come First Serve (FCFS) approach is first adopted to

send the data to the multiple machines (Cloud, SM, ML and XL)

of different sizes. “Dask” a free open source python library is

used to achieve the parallel computing, to allocate the tasks to

the respective machines,

In terms of accuracy obtained data is presents

False 735

True 185

Name: Category

It means out of 920 value only 185 data were correctly classified

and was directed to the right machine for the computation.

Which is equivalent to only 20.10% data accurately classified

which is to less and can’t adopted for the critical data of

patients.

5.2 Batch Processing
A batch processing approach is first adopted to send the data to

the multiple machines (Cloud, SM, ML and XL) of different

sizes. A batch of 50 entries are made using loop to send the data

to each machine including cloud. Again “Dask” a free open

source python library is used to achieve the parallel computing,

to allocate the tasks to the respective machines.

In terms of accuracy obtained data is presents

False 719

True 201

Name: Category

It means out of 920 value only 201 data were correctly classified

and was directed to the right machine for the computation.

Which is equivalent to only 21.84% data accurately classified

which is to less and can’t adopted for the critical data of

patients.

The proposed algorithm is compared with the other scheduling

algorithms, that are FCFS and Batch Processing.

Figure 8(a): Accuracy of proposed algorithm in terms of percentage

Figure 8 (b): Average computing time in seconds of the proposed algorithm

20.1 21.84

80.43

0

10

20

30

40

50

60

70

80

90

FCFS Batch Processing Proposed Algorithm

A
cc

u
ra

cy
 (

P
er

ce
n

ta
g

e
%

)

0.014 0.001

0.774

0

0.2

0.4

0.6

0.8

1

FCFS Batch Processing Proposed Algorithm

C
o

m
p

u
ta

ti
o

n
 T

im
e

(S
ec

o
n

d
s)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

81 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

Figure 9(a): Memory utilization in Mega Bytes (MB) of the proposed algorithm

Figure 9(b): Average energy consumption of the proposed algorithm

Figure 8 and 9 clearly shows that the FCFS and Batch

processing is more efficient in terms of time, memory and

energy then the proposed algorithm, but there is mostly

incorrectly classified data which leads to accuracy less than

25% which is not acceptable in case of critical data such as

medical and health like presented scenario, whereas proposed

algorithm and scheme leads to accuracy around 80% to process

the data. For FCFS and Batch processing scenario of 4 classes

for offloading is considered that makes the offloading as

multiclass. The time, energy and memory calculations are the

computation calculation that system takes (smart gateway) for

taking the offloading decision for the appropriate machine or

the cloud.

Figure 10: Accuracy comparison of proposed model

0.5598 0.5731

3.8396

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FCFS Batch Processing Proposed Algorithm

M
em

o
ry

 U
ti

li
za

ti
o

n
 (

M
B

)

0.000242 0.000149

0.002153

0

0.0005

0.001

0.0015

0.002

0.0025

FCFS Batch Processing Proposed Algorithm

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s)

0

20

40

60

80

100

CSOS Fog-Cloud Using

LR [21]

EFDOT [22] Proposed Model

A
cc

u
ra

cy
 (

P
er

ce
n

ta
g

e
%

)

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

82 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

Most of the models and implemented frameworks haven’t

considered accuracy as the prime parameter in case of

offloading as all the data will be getting processed at some stage

or time, although the some of the main architectures that has

considered accuracy are compared in fig 10. Although the

proposed model is presenting the accuracy as less then CSOS

and Fog-Cloud but representing the accuracy achieved over

multiclass classification whereas other models simply work on

binary classification where accuracy is more and in the

scenarios like healthcare sectors patient data is critical and

multiclass classification is more preferred and important.

░ 6. CONCLUSION
Due to performance indicators such as latency, energy

consumption, and response time exceeding threshold levels, it

is difficult to run delay-sensitive applications and the cloud at

the same time. This is true even when advanced networks and

technologies are deployed. The Internet of Things (IoT)

architecture's middleware layer appears to be a promising

solution that might be used to address these challenges while

still meeting the need for high task offloading criterion. A

Context-Aware Offloading model is designed and developed as

a proposed solution that makes offloading decisions in multiple

fog-based cloud environments by using machine-learning

reasoning techniques using hybrid logistic regression learning.

Two algorithms are implemented for feature selection and

classification techniques used to evaluate the model, time and

energy consumption of the model is calculated with memory

utilization. Although when compared with FCFS and Batch

processing, proposed model consumes more memory, energy

and time but due to contextual reading its accuracy in decision

taking for offloading is more. When compared with other peer

models, model that has been proposed provides a solution that

saves both time and energy while maintaining an accuracy level

that is approximately 80 percent. It is anticipated that Internet

of Things applications would be able to meet the criteria for a

low response time as well as other performance characteristics

if the intelligent offloading approach that is context-based

offloading that has been described is implemented. In future a

framework will be proposed implementing the model and

evaluated over different parameters like total computation time

including the round-trip time and total energy consumption for

the framework including the communication requirements.

░ Conflicts of Interest

Declare conflicts of interest or state “The authors declare no

conflict of interest.” “The funders had no role in the design of

the study; in the collection, analyses, or interpretation of data;

in the writing of the manuscript, or in the decision to publish the

results”

░ REFERENCES
[1] Sethi, P. and Sarangi, S.R., 2017. Internet of things: architectures,

protocols, and applications. Journal of Electrical and Computer
Engineering, 2017. vol. 20, pp. 1–25. doi:10.1155/2017/9324035

[2] Li, Y., Björck, F., &Xue, H. Iot architecture enabling dynamic security

policies. In Proceedings of the 4th International Conference on

Information and Network Security, 2016 (pp. 50-54). ACM.

https://doi.org/10.1145/3026724.3026736

[3] Li Y, Björck F, Xue H. IoT Architecture Enabling Dynamic Security

Policies. In: Proceedings of the 4th International Conference on

Information and Network Security [Internet]. New York, NY, USA:
Association for Computing Machinery; 2016. pp. 50–4. (ICINS ’16).

https://doi.org/10.1145/3026724.3026736

[4] Bukhari, M. M., Ghazal, T. M., Abbas, S., Khan, M. A., Farooq, U.,

Wahbah, H., Ahmad, M., & Adnan, K. M. An Intelligent Proposed Model

for Task Offloading in Fog-Cloud Collaboration Using Logistics
Regression. Computational Intelligence and Neuroscience, 2022,

3606068. https://doi.org/10.1155/2022/3606068

[5] Poonam and Suman Sangwan (2022), Task Scheduling on Cloudlet in

Mobile Cloud Computing with Load Balancing. IJEER 10(4), 994-998.
DOI: 10.37391/IJEER.100440.

[6] Kosta, S., Aucinas, A., Pan Hui, Mortier, R., & Xinwen Zhang. ThinkAir:

Dynamic resource allocation and parallel execution in the cloud for

mobile code offloading. 2012 Proceedings IEEE INFOCOM, pp. 945–

953. https://doi.org/10.1109/INFCOM.2012.6195845

[7] Ting-Yi Lin, Ting-An Lin, Cheng-Hsin Hsu, & Chung-Ta King. Context-

aware decision engine for mobile cloud offloading. 2013 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW),

pp. 111–116. https://doi.org/10.1109/WCNCW.2013.6533324

[8] Nakahara, F. A., & Beder, D. M. A context-aware and self-adaptive

offloading decision support model for mobile cloud computing system. In
Journal of Ambient Intelligence and Humanized Computing. 2018, (Vol.

9, Issue 5, pp. 1561–1572). https://doi.org/10.1007/s12652-018-0790-7

[9] Kim, H.W., Park, J.H. and Jeong, Y.S., Adaptive job allocation scheduler

based on usage pattern for computing offloading of IoT. Future

Generation Computer Systems, 2019, Vol. 98, pp.18-24.

[10] Junior, W., Oliveira, E., Santos, A. and Dias, K., A context-sensitive

offloading system using machine-learning classification algorithms for

mobile cloud environment. Future Generation Computer Systems, 2019,

90, pp.503-520.

[11] Shukla, S., Hassan, M. F., Khan, M. K., Jung, L. T., & Awang, A. An

analytical model to minimize the latency in healthcare internet-of-things
in fog computing environment. PloS One, 2019, 14(11), e0224934.

https://doi.org/10.1371/journal.pone.0224934

[12] Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource

allocation heuristics for efficient management of data centers for Cloud

computing. Future Generations Computer Systems: FGCS, 28(5), 2012,
pp. 755–768. https://doi.org/10.1016/j.future.2011.04.017

[13] Benedetto, J.I., González, L.A., Sanabria, P., Neyem, A. and Navón, J.,

Towards a practical framework for code offloading in the Internet of

Things. Future Generation Computer Systems, 2019, 92, pp.424-437.

[14] Andras Janosi WS, Matthias Pfisterer, Robert Detrano. UCI Machine

Learning Repository 2018 (assessed on 03 Jan 2022).
https://archive.ics.uci.edu/ml/datasets/heart+Disease

[15] Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang,

M., & Liljeberg, P. Exploiting smart e-Health gateways at the edge of

healthcare Internet-of-Things: A fog computing approach. Future

Generations Computer Systems: FGCS, 78, 2018, pp. 641–658.
https://doi.org/10.1016/j.future.2017.02.014

[16] Gállego, J. R., Hernández-Solana, A., Canales, M., Lafuente, J.,

Valdovinos, A., & Fernández-Navajas, J. Performance analysis of

multiplexed medical data transmission for mobile emergency care over
the UMTS channel. IEEE Transactions on Information Technology in

Biomedicine: A Publication of the IEEE Engineering in Medicine and

Biology Society, 2005, 9(1), pp. 13–22.
https://doi.org/10.1109/titb.2004.838362

[17] Alarsan, F. I., & Younes, M. Analysis and classification of heart diseases

using heartbeat features and machine learning algorithms. Journal of Big

Data, 2019, 6(1), pp. 1–15. https://doi.org/10.1186/s40537-019-0244-x

https://www.ijeer.forexjournal.co.in/

 International Journal of
 Electrical and Electronics Research (IJEER)

Open Access | Rapid and quality publishing Research Article | Volume 11, Issue 1 | Pages 69-83 | e-ISSN: 2347-470X

83 Website: www.ijeer.forexjournal.co.in Context-Aware Offloading for IoT Application using Fog

[18] Wang, W., & Carreira-Perpinan. The role of dimensionality reduction in

classification. In Proceedings of the AAAI Conference on Artificial

Intelligence 2014, (Vol. 28, No. 1).

[19] Fira, M., Costin, H.-N., & Goraș, L. On the Classification of ECG and
EEG Signals with Various Degrees of Dimensionality Reduction.

Biosensors,2021, 11(5). https://doi.org/10.3390/bios11050161

[20] Chaudhuri, A., Kakde, D., Sadek, C., Gonzalez, L., & Kong, S. The mean

and median criteria for kernel bandwidth selection for support vector data

description. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW) 2017, (pp. 842-849). IEEE.

[21] Bukhari, M. M., Ghazal, T. M., Abbas, S., Khan, M. A., Farooq, U.,

Wahbah, H., Ahmad, M., & Adnan, K. M. An Intelligent Proposed Model

for Task Offloading in Fog-Cloud Collaboration Using Logistics

Regression. Computational Intelligence and Neuroscience, 2022,
3606068. https://doi.org/10.1155/2022/3606068

[22] Ali, Z., Abbas, Z. H., Abbas, G., Numani, A., & Bilal, M. Smart

computational offloading for mobile edge computing in next-generation

Internet of Things networks. Computer Networks, 2021, 198, 108356.
https://doi.org/10.1016/j.comnet.2021.108356

© 2023 by the Karan Bajaj, Shaily Jain and

Raman Singh. Submitted for possible open

access publication under the terms and

conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

https://www.ijeer.forexjournal.co.in/

