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Abstract

Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disorder char-

acterized by premature ageing and early death at a mean age of 14.7 years. At

the molecular level, HGPS is caused by a de novo heterozygous mutation in

LMNA, the gene encoding A-type lamins (mainly lamin A and C) and nuclear

proteins, which have important cellular functions related to structure of the

nuclear envelope. The LMNA mutation leads to the synthesis of a truncated

prelamin A protein (called progerin), which cannot undergo normal proces-

sing to mature lamin A. In normal cells, prelamin A processing involves four

posttranslational processing steps catalysed by four different enzymes. In

HGPS cells, progerin accumulates as a farnesylated and methylated intermedi-

ate in the nuclear envelope where it is toxic and causes nuclear shape

abnormalities and senescence. Numerous efforts have been made to target and

reduce the toxicity of progerin, eliminate its synthesis and enhance its degra-

dation, but as of today, only the use of farnesyltransferase inhibitors is

approved for clinical use in HGPS patients. Here, we review the main current

strategies that are being evaluated for treating HGPS, and we focus on efforts

to target the posttranslational processing of progerin.
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1 | INTRODUCTION

Hutchinson–Gilford progeria syndrome (HGPS) is an
exceedingly rare disease that occurs in one per 20 million
newborns.1,2 HGPS is associated with a median lifespan
of 14.7 years. During the first year of life, children with
HGPS are usually indistinguishable from unaffected
children; disease symptoms then appear gradually, and
their severity usually correlates with the accumulation of
progerin. Common HGPS symptoms are alopecia, malfor-
mation of the skull and face, short stature, growth
retardation, bone defects, metabolic disorders, endocrine
problems and cardiovascular disease, which is the pre-
dominant cause of death.3

HGPS is a non-heritable genetic syndrome caused
by a de novo point mutation at nucleotide 1824
(c.1824C>T) in the coding region of the LMNA gene.4,5

LMNA in normal cells encodes mainly lamin C and
lamin A, the latter of which is synthetized as a precur-
sor called prelamin A. Prelamin A is a so-called CAAX
protein that undergoes three posttranslational modifica-
tions at a carboxyl-terminal cysteine residue: Firstly,
the cysteine residue is farnesylated by farnesyltransfer-
ase (FTase) in the cytosol. Secondly, the last three
amino acids are cleaved off by RAS converting
enzyme 1 (RCE1) or by Zinc metalloproteinase Ste24
homologue (ZMPSTE24). Thirdly, the newly exposed
farnesylcysteine residue is methylated by isoprenylcys-
teine carboxyl methyltransferase (ICMT).6 Prelamin A
is unique among CAAX proteins in that it undergoes a
fourth processing step where the last 15 amino acids,
including the farnesylated and methylated cysteine
residue, are cleaved off by ZMPSTE24. Mature lamin A
is then incorporated into the nuclear lamina filament
meshwork, where it interacts with many proteins
important for nuclear structure integrity, including
Emerin, UBC9, LAP2α, LAP1β, LMNB1 and RBBP7.
Some of them, including LAP2β and Emerin, interfere
with the synthesis and degradation of other proteins7

such as progerin, while others, including lamins B1
and B2, become part of the nuclear envelope8 and
influence interactions with and the function of chroma-
tin and the centrosome.9

The changes in net charge on the carboxyl-terminal
domain of progerin and prelamin A following farnesyla-
tion and carboxyl methylation is an important issue that
has not been carefully evaluated. Whereas farnesylation
changes the molecular mass of prelamin A/progerin by
hundreds of daltons, methylation only adds 14 Da. Thus,
blocking farnesylation is expected to cause more changes
to the structure and hydrophocity of prelamin A/progerin
compared with blocking methylation. Nevertheless, it is

important to note that blocking methylation leaves a neg-
atively charged carboxylate anion on the farnesylcysteine
residue, which clearly has the capacity to disrupt the
interaction of prelamin A/progerin with the nuclear
membrane.

On one hand, farnesylation is believed to target pre-
lamin A to the nuclear membrane where proteolysis
and methylation take place before the protein is firmly
anchored on the inner surface of the nuclear envelope.10

On the other hand, prelamin A in cells from mice that
exclusively express a non-farnesylated prelamin A
mutant is localized at the nuclear rim, like wildtype
lamin A, suggesting that farnesylation is not required
for nuclear membrane targeting.11 Farnesylated prela-
min A and progerin cause misshapen nuclei, and block-
ing farnesylation corrects this phenotype.12 Regarding
methylation, prelamin A in ICMT-deficient cells is
partly mislocalized into the nucleoplasm, suggesting that
methylation is required but not essential for proper
membrane localization of prelamin A. Farnesylation
and methylation are also important for protein–protein
interactions.13

In most patients, the HGPS mutation in LMNA exon
11 results in the conversion of a cytosine residue to
thymine,4,5 which activates a cryptic splice site that
causes aberrant splicing of the pre-mRNA resulting in an
internal deletion in the prelamin A carboxyl terminus
which eliminates the ZMPSTE24 cleavage site (Figure 1).
As a result, prelamin A in HGPS cells cannot be cleaved
by ZMPSTE24, which causes the accumulation of a per-
manently farnesylated and methylated truncated prela-
min A variant called progerin. Progerin accumulation in
the nuclear membrane triggers nuclear shape abnormali-
ties and alters protein–protein interactions, protein stabil-
ity and chromatin binding and transcription. Progerin
thus causes senescence and is responsible for all clinical
HGPS phenotypes.

Since the identification of the HGPS mutation and
the involvement of progerin in disease initiation and pro-
gression almost 20 years ago,4,5 much effort has been
geared toward targeting this protein as a strategy to treat
the disorder (Figure 1). Briefly, the efforts can be catego-
rized into gene therapy approaches that are designed to
correct the LMNA mutation with CRISPR/Cas9 and
adenosine base editor techniques, reduce progerin mRNA
expression with antisense strategies targeting abnormal
splicing, stimulate progerin degradation and inhibit the
enzymes that posttranslationally modify prelamin A and
progerin. Most of the latter efforts have focused on target-
ing FTase, but recent studies have identified ICMT as a
potential enzymatic drug target. These approaches are
briefly described below.
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2 | GENETIC APPROACHES

Progerin is toxic and causes all the disease phenotypes of
HGPS patients, and the strategy of correcting the
mutation and preventing progerin synthesis is highly
attractive. Since mice that lack lamin A but retain lamin
C expression are viable and one copy of this ‘lamin
A-specific’ knockout allele prevents progeria in
Zmpste24-deficient mice,14 reducing progerin expression
by knocking out wildtype prelamin A expression could
also provide therapeutic benefit. This has been confirmed
in two recent studies that implemented an in vivo
CRISPR/Cas9-based strategy where guide (g)RNAs tar-
geting lamin A/progerin downstream of lamin C reduced
the expression of progerin and lamin A without disturb-
ing lamin C expression.15,16 This intervention alleviated
cardiovascular symptoms and increased overall survival
of progerin-expressing mice by 25% (median survival
increased from 127 to 160 days in treated mice).
Although promising, this strategy did not offer a cure
likely due to low gene targeting efficiency. Thus, more
work is required to increase the efficiency of this strategy.

A major limitation of CRISPR/Cas9-based strategies
is that off-target effects may generate unwanted muta-
tions in important protein coding genes. To avoid this
limitation, adenosine base editors (ABE) developed in
David Liu’s laboratory that repair the LMNA c.1824C>T
back to C have been tested.17 The group used a CRISPR-

Cas9 system coupled with ABE and converted a single
adenosine to inosine—a nucleoside that could take the
place of the standard guanosine. Application of this
approach in asymptomatic progerin-expressing mice alle-
viated several HGPS phenotypes and markedly increased
the lifespan. However, it remains to be determined
whether ABE can reverse already established phenotypes.
Another limitation of ABE is that the adeno-associated
virus systems used in this strategy raise questions about
safety including long-term effects in proliferative tissues,
which could potentially drive cancer initiation. Moreover,
as opposed to antisense therapy, the mutation only needs
to be corrected once in each cell, which makes integra-
tion of the editing system redundant and potentially
harmful. An attractive alternative would be to test non-
integrative lentiviral systems.

Whisenant and co-workers recently used chimeric
bacteriophage-lentivirus particles to correct the HGPS
mutation in mice expressing progerin in the skin.18 The
mutation-correction rate was around 4% 3 weeks after
administration, and after 4 weeks, reduced numbers of
progerin-expressing cells were documented, and progerin-
negative clusters of cells were detected in several layers of
the epidermis. The latter result was particularly important
as it demonstrates mutation correction in progenitor cells.
One important advantage of this approach is that the par-
ticles do not integrate into the genome and are likely to
be associated with fewer long-term side effects.

F I GURE 1 Overview of potential

Hutchinson–Gilford progeria syndrome

(HGPS) treatment strategies
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The use of gene therapy for treating HGPS is in its
infancy but has generated tremendous interest. But ethi-
cal issues and problems with efficiency and off-target
effects indicate that the clinical use of ABE and CRISPR-
Cas9 approaches for HGPS therapy is a few years off.

3 | MANIPULATING PROGERIN
LEVELS

Several groups have reported that RNA-based therapies
can be used to reduce the accumulation of progerin by
blocking its production at the mRNA level using anti-
sense and morpholino oligonucleotides.19–21 These oligo-
nucleotides reduce progerin mRNA levels in cultured
cells in vitro and in tissues in vivo, have the capacity to
improve phenotypes in the aorta and heart and extend
survival in several progerin-expressing mouse models.
These strategies are worth pursuing further although sev-
eral questions remain regarding specificity and long-term
in vivo effects. Another problem is that the compounds
need to be administered continuously as opposed to DNA
editing approaches.

Progerin levels can also be reduced by accelerating its
degradation rate. Rapamycin—an inhibitor of mTOR
signalling pathway22—was found to reduce the
characteristic nuclear shape abnormalities and delay
senescence of HGPS cells in vitro.23,24 The effect was
linked to increased progerin clearance. A clinical trial
(NCT02579044) where everolimus, a rapamycin deriva-
tive, was given together with lonafarnib (i.e. the standard
FTI therapy) was initiated to evaluate its efficiency in
treating HGPS and other progeroid laminopathies.25

However, no results have yet been released from this
trial. A potential limitation of this strategy is that rapa-
mycin inhibits proliferation of human and mouse HGPS
cells and worsens the senescence phenotype, at least in
cultured cells.26

4 | TARGETING PROGERIN
POSTTRANSLATIONAL
MODIFICATIONS

The most well-studied strategy to alleviate the HGPS
symptoms is to reduce progerin toxicity by targeting the
enzymatic posttranslational processing steps of prelamin
A/progerin, most importantly the farnesylation step.
FTIs were originally developed to treat oncogenic RAS-
induced cancer. However, most RAS proteins can
undergo geranylgeranylation by geranylgeranyltransfer-
ase type I (GGTase-I) and escape the effects of FTI
therapy. Prelamin A and progerin are not readily

substrates for GGTase-I, and FTIs were tested early on
as a strategy to treat HGPS. FTIs were found to mark-
edly reduce the nuclear shape abnormalities and achieve
significant success in alleviating HGPS symptoms.12 In
other studies, treatment with FTIs reduced clinical signs
of HGPS in progeroid Zmpste24-deficient mice and in
LmnaHG/+ and LMNAG608G knock-in mice.12,27,28 These
promising preclinical studies stimulated clinical
trials using lonafarnib and a triple combination clinical
trial with lonafarnib, pravastatin and zoledronate
(to inhibit both progerin farnesylation and
geranylgeranylation).28–30 FTI administration alone
increased mean survival by 1.6 years and attenuated
some progeria-associated symptoms, including bone
mineral density and heart phenotypes. However, the
combinations produced little, if any, synergy. In short,
clinical trials showed that FTIs can ameliorate key
HGPS phenotypes, but they cannot cure the disease. In
November 2020, lonafarnib (Zokinvy) became the first
drug to be approved by the FDA for treating HGPS.31

Some studies have revealed that FTIs have potent
anti-proliferative effects. FTase has dozens of substrates,
including RAS, lamin B and RHEB, whose activities
depend on farnesylation. Children with HGPS would
benefit from a therapy that can overcome senescence and
that is compatible with sustained cell proliferation and
growth.

The second step in prelamin A/progerin posttransla-
tional processing is the proteolytic removal of the last
three amino acids, catalysed by RCE1 and ZMPSTE24.
We found that knockout of Rce1 rescues key progeria
phenotypes and extends survival of Zmpste24-deficient
mice, suggesting that RCE1 inhibitors might be useful in
progeria induced by ZMPSTE24 inactivating mutations.
However, these disorders are even rarer than HGPS and
include mandibuloacral dysplasia (MAD) and atypical
HGPS.32,33 Importantly, RCE1 inhibition cannot help
HGPS patients34 since ZMPSTE24 can also perform the
carboxyl-terminal cleavage.

The third step in the posttranslational processing of
prelamin A/progerin is mediated by ICMT, which meth-
ylates the newly exposed farnesylcysteine residue after
the RCE1/ZMPSTE24 cleavage. We hypothesized that
lowering ICMT levels might inhibit prelamin A/progerin
methylation and thereby reduce the toxicity of the
disease-causing protein.26 Indeed, knockout or knock-
down of Icmt prevents prelamin A methylation and mis-
localizes the protein away from the nuclear envelope,
which delays senescence and increases proliferation of
human HGPS cells and mouse Zmpste24-knockout cells.
Further studies revealed that knockout of Icmt in vivo
increases body weight and grip strength, completely
restores the bone fracture phenotype and osteoporosis
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and extends the lifespan of Zmpste24-deficient mice.
However, this study raised two important new questions:
Firstly, would Icmt inactivation inhibit disease in mice
expressing progerin rather than prelamin A? And sec-
ondly, would ICMT inhibitors be useful in HGPS
therapy?

Recently, our group demonstrated that a small mole-
cule ICMT inhibitor can potentially be useful in HGPS
therapy.35 In this study, we first documented that Icmt
inactivation improves HGPS phenotypes and extends
survival of progerin-expressing LmnaG609G/G609G mice.
Indeed, the Icmt inactivation (accomplished with a
mouse model that expresses 10%–15% of normal ICMT
activity) rescued several phenotypes of LmnaG609G/G609G

mice, increased their body weight and extended
survival by nearly 30%. Importantly, reducing the
expression of ICMT normalized the vascular phenotype
of LmnaG609G/G609G mice, a particularly important result
as cardiovascular complications are the main cause of
death in children with HGPS. In this study, we also
synthesized compound C75, a potent ICMT inhibitor
(IC50 = 0.5 μM). We found that C75 administration to
HGPS cell lines inhibits ICMT activity and prelamin
A/progerin methylation and markedly delays senescence
and stimulates proliferation. Consistent with these
observations, C75 stimulated cell cycle progression and
reduced expression of senescence markers in HGPS
cells, including senescence-associated (SA)-βgal staining
and expression of p16INK4A and interleukin-6 (IL-6).
Although C75 prevents the ability of prelamin A and
progerin to cause several progeria-associated pheno-
types, it does not influence the nuclear shape pheno-
type, in line with previous experiments with genetic
ICMT inactivation. Thus, it is possible to improve HGPS
phenotypes and allow progerin-expressing cells to prolif-
erate in the presence of the hallmark nuclear shape
abnormalities. A downside with C75 is that although
potent, it is not suitable for in vivo administration; thus,
other compounds will be required for in vivo studies.

Recently, Marcos-Ramiro and co-workers synthesized
another ICMT inhibitor (UCM-13207) and found similar
effects as we found with C75. Importantly, UCM-13207
was also tested in progerin-expressing mice in vivo where
it was found to increase body weight and grip strength
and reduce senescence markers in organs. Moreover, the
drug reduces progerin levels in the aortic wall and
increases the number of vascular smooth muscle cells
and increases survival by 20%.36

In summary, targeting posttranslational processing of
progerin has produced promising results, and currently,
FTIs represent the only approved therapy. However, FTIs
produce limited clinical benefits, and there is a need for
more research on more strategies. Regarding ICMT, we

need to determine whether more efficient ICMT inhibi-
tors with acceptable pharmacological properties can be
produced. We also need to determine whether ICMT inhi-
bition can be combined with other therapies. However, at
least in theory, it would not be advisable to combine FTIs
with ICMT inhibitors because progerin will only be meth-
ylated if it is first farnesylated. Thus, blocking farnesyla-
tion with an FTI will render the ICMT step irrelevant.

The only approved therapy for HGPS, FTIs, have
demonstrated a maximum survival benefit of 1–2 years.
Consequently, all the potential therapeutic approaches
described in this minireview should be pursued in paral-
lel to maximize the chances of obtaining an effective
therapy for current and future children with HGPS, and
ideally, this therapy should both improve quality of life
and extend lifespan.
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