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Abstract: Oxidative stress (OS) is the result of an imbalance between the production of reactive
oxygen species (ROS) and the antioxidant capacity of cells. Due to its high oxygen demand, the
human brain is highly susceptible to OS and, thus, it is not a surprise that OS has emerged as
an essential component of the pathophysiology of several neurodegenerative diseases, including
tauopathies. Tauopathies are a heterogeneous group of age-related neurodegenerative disorders
characterized by the deposition of abnormal tau protein in the affected neurons. With the worldwide
population aging, the prevalence of tauopathies is increasing, but effective therapies have not yet
been developed. Since OS seems to play a key role in tauopathies, it has been proposed that the use
of antioxidants might be beneficial for tau-related neurodegenerative diseases. Although antioxidant
therapies looked promising in preclinical studies performed in cellular and animal models, the
antioxidant clinical trials performed in tauopathy patients have been disappointing. To develop
effective antioxidant therapies, the molecular mechanisms underlying OS in tauopathies should
be completely understood. Here, we review the link between OS and tauopathies, emphasizing
the causes of OS in these diseases and the role of OS in tau pathogenesis. We also summarize the
antioxidant therapies proposed as a potential treatment for tauopathies and discuss why they have
not been completely translated to clinical trials. This review aims to provide an integrated perspective
of the role of OS and antioxidant therapies in tauopathies. In doing so, we hope to enable a more
comprehensive understanding of OS in tauopathies that will positively impact future studies.
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1. Introduction: Oxidative Stress and Tauopathies

Oxidative stress (OS) is defined as the imbalance between pro-oxidants and antiox-
idants. The most common pro-oxidants are reactive oxygen species (ROS), which are
chemically reactive molecules containing oxygen. These molecules result from normal cell
metabolism and include superoxide anion (O−2), hydroperoxyl radical (HO2), hydrogen
peroxide (H2O2), and hydroxyl radical (OH), among others [1]. In mammalian cells, the
major source of ROS is mitochondria, where ROS are produced permanently as a byproduct
of ATP production by the electron transport chain [2]. ROS regulate important biological
processes such as cell proliferation, host defense and gene expression [3,4] and, thus, nor-
mal ROS levels are essential to maintain the correct function of the organism. On the other
hand, elevated levels of ROS are highly toxic as they damage essential macromolecules,
such as DNA, RNA, proteins and lipids [5]. In order to manage ROS, cells synthesize
molecules that display anti-oxidant properties, which include antioxidant enzymes such as
the cytosolic Cu/Zn-superoxide dismutase or superoxide dismutase 1 (Cu/Zn-SOD, SOD1),
the mitochondrial manganese superoxide dismutase or superoxide dismutase 2 (Mn-SOD,
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SOD2), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) [6]
and non-enzymatic antioxidants such as metal binding proteins (MBPs), glutathione (GSH),
uric acid (UA), melatonin (MEL), bilirubin (BIL) and polyamines (PAs) [7].

Elevated OS is considered an essential component of the pathophysiology of several
syndromes including different types of cancer and neurodegenerative diseases such as
tauopathies [8]. Tauopathies are a clinically, pathologically, biochemically, and morphologi-
cally heterogeneous group of age-related neurodegenerative disorders, characterized by the
presence of cytosolic aggregates containing aberrant forms of the microtubule-associated
protein tau [9]. The most common tauopathies are Alzheimer’s disease (AD) and fron-
totemporal lobar degeneration Tau (FTLD-Tau), which encompass a spectrum of several
syndromes such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD),
Pick’s disease (PiD), and frontotemporal dementia with Parkinsonism linked to chromo-
some 17 (FTDP-17). AD is a secondary tauopathy because patients present extraneuronal
deposits of amyloid-beta (Aβ) protein, in addition to the intraneuronal tau inclusions [10].
The rest of the tauopathies are considered primary tauopathies because tau protein is
the only component of the pathological deposits [11]. Previous reviews have extensively
discussed the neuropathology, symptomatology and genetics of tauopathies, and can be
consulted to widen knowledge of these syndromes [9,12,13]. A summary of the main
characteristics of tauopathies is shown in Figure 1.
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Figure 1. Pathologic and genetic characteristics of tauopathies. Tauopathies are complex diseases
regarding pathology, clinical presentation and genetics. Pathologically, tauopathies are classified in
primary and secondary tauopathies. Primary tauopathies fall under the umbrella of frontotemporal
lobar degeneration with tau inclusions (FTLD-Tau) and include Pick’s disease (PiD), progressive
supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia with
Parkinsonism (FTDP-17). Alzheimer’s disease in a secondary tauopathy characterized by the presence
of extracellular inclusions containing Amyloid-β (Aβ) protein. Depending on tau isoform composing
the intracellular inclusions, tauopathies are classified in 3R-tauopathies (PiD), 4R tauopathies (PSP
and CBD) and 3R:4R tauopathies (FTDP-17 and AD). The majority of tauopathy cases are sporadic.
Mutations in MAPT account of around 20% of the FTLD-tau cases. Mutations in amyloid-beta precursor
protein (APP) Presenilin-1 and Presenilin-2 (PSEN-1,2) genes account for around 5% of AD cases.

The human brain is highly susceptible to OS [14]. Neurons require large amounts of
energy and high oxygen supply [15], entailing an elevated rate of ROS production in the
human brain. However, neuronal cells exhibit low levels of antioxidants [16] and, thus,
these cells are very susceptible to ROS accumulation [17,18]. Elevated ROS levels lead to OS,
which promotes the destruction of cellular components and ultimately cell death via apopto-
sis or necrosis (6), suggesting that OS might be responsible of neuronal death in tauopathies.
Indeed, the neurons of tauopathy patients and animal models display elevated OS For ex-
ample, the Pick bodies of PiD patients and the threads and glial inclusions of CBD patients
exhibited increased levels of the oxidative marker heme oxygenase-1 (HO-1) [19]. Further-
more, elevated OS and increased levels of the lipid peroxidation marker 4-hydroxynonenal
(4-HNE) were found in a mouse model of FTLD-tau (P301S transgenic mice) [20] and in
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the frontal cortex of FTLD-tau patients carrying the P301L tau mutation [21]. PSP patients
also displayed elevated levels of several OS markers such as malondialdehyde (MDA) and
thiobarbituric acid reactive substances (TBARS) [22–24] and antioxidants such as SOD1,
SOD2 and GPx [25,26]. Elevated OS is also closely associated with AD [27] and several
publications have extensively reviewed the role of OS in AD [28–32]. Briefly, during the
course of AD several manifestations of OS occur including the dysregulation of antioxidant
enzymes, the oxidation of proteins, lipids and DNA, the formation of toxic substances
such as peroxides, alcohols, aldehydes, free carbonyls, ketones, cholestenone, and the
oxidative modifications in nuclear and mitochondrial DNA. AD is a secondary tauopathy
characterized by the presence of intraneuronal tau aggregates and extracellular deposition
of Aβ plaques. Several studies in patients and transgenic animal models showed that Aβ

and OS are closely related because Aβ induces OS, and OS increases Aβ production [33],
suggesting that OS might not only be related with tau accumulation but also with other
pathologic events that occur in tauopathies.

Nowadays, tauopathies are still incurable and difficult to treat. With the prevalence of
these diseases increasing worldwide, it, is highly necessary to identify treatments to cure
and/or prevent these devastating diseases. To do so, the molecular mechanisms underlying
tauopathies should be fully understood. Since OS is considered a key component of the
pathophysiology of tauopathies, in this review, we delve into the role of OS in tauopathies.
We have compiled current knowledge about the mechanisms underlying OS in tauopathies
and discussed whether OS triggers tau pathology or it is just a mere consequence of aberrant
tau accumulation. Furthermore, we have summarized the antioxidant therapies proposed
for tauopathies, discussing their potential effect in clinical trials, as well as the pros and
cons of their use in tauopathy patients.

2. Molecular Mechanisms Leading to Oxidative Stress in Tauopathies: Implication of
Mitochondria and Antioxidant Enzymes

Mitochondrial dysfunction leading to excessive ROS production has been reported
in tauopathies [34–37]. The majority of these studies have been carried out in AD and
have demonstrated that AD patients display a significant reduction in healthy mitochon-
dria in favor of the increase in damaged mitochondria [38], as well as abnormalities in
mitochondrial structure and mitochondrial fission and fusion [39,40]. The impairment
of mitochondrial function has also been observed in animal models of AD and other
tauopathies. For example, it was reported that mitochondrial function and respiration
was notably compromised in two triple transgenic AD mouse models (the tripleAD and
3xTg-AD) [41,42]. Furthermore, alterations in mitochondrial dynamics, content and trans-
port have been reported in FTLD-tau mice models such as K3 mice (human K369I mutant
tau) [43], rTg4510 mice (repressible human P301L mutant tau) [44] and KI-P301L mice
(P301L tau knock-in) [45]. Interestingly, transgenic mice models expressing human P301L
mutant tau showed alterations in mitophagy, the selective mechanism of mitochondria
degradation [46], which were accompanied by altered mitochondrial bioenergetics [41,47].

Tau overexpression, both wild-type (WT) and mutant, induced the impairment of
mitochondrial function in transgenic mice and cellular models [36,41–45,48,49], suggesting
that mitochondrial dysfunction might be associated with tau accumulation independently
of the presence or absence of mutations. The link between tau protein and mitochondrial
function has been largely reported. Tau interacts with mitochondrial proteins and impairs
mitochondrial bioenergetics and dynamics [50]. Furthermore, tau influences mitochondrial
transport along the neuronal axon [51,52]. Several studies have demonstrated that the
abnormal forms of tau protein accumulated in tauopathies impaired mitochondrial func-
tion. Pathological tau reduced complex I activity, causing a reduction in ATP generation,
mitochondrial membrane potential (∆Ψm) dissipation, promotion of mitochondrial fission
and fragmentation and, finally, mitochondrial dysfunction in AD [53]. Studies performed
in animal and cell models confirmed that pathological tau also induced mitochondrial
dysfunction in primary tauopathies such as FTDL-Tau. For example, P301L mutant tau
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expressed in transgenic mice induced mitochondrial dysfunction, ROS production, lipid
peroxidation, OS and neuronal loss [54–57]. Furthermore, a proteomic analysis in P301L
tau transgenic mice identified the downregulation of proteins involved in mitochondrial
respiration and metabolism (mainly components of mitochondrial complex V), leading
to mitochondrial dysfunction [47]. The effect of P301L mutant tau disrupting mitochon-
drial function was recapitulated in SH-SY5Y cells overexpressing P301L tau [58,59]. Other
tau mutations related with FTLD-tau also induced mitochondrial dysfunction in induced
pluripotent stem cells (iPSC)-derived neurons; however, the mechanism seemed different.
The tau protein carrying the 10 + 16 MAPT mutation induced mitochondrial dysfunction
associated with a hyperpolarization of the mitochondria [36] and TauP301L and TauV337
mutations reduced tau binding to mitochondrial proteins impairing bioenergetics [50].
On the other hand, while the effect of mutant tau in mitochondrial dysfunction is well
recognized, the role of WT tau in mitochondrial function is controversial. Some evidence
has suggested that WT tau overexpression induced mitochondrial dysfunction in cell cul-
tures [60] but others showed that the overexpression of WT tau improved mitochondrial
function [58]. It is important to highlight that different cell types were used in these two pa-
pers, suggesting that the accumulation of WT tau might have different effects depending on
the cell type. Interestingly, tau −/−mice displayed improved mitochondrial function and
reduced oxidative damages [61], suggesting that WT tau levels directly regulate mitochon-
drial function. Since the majority of tau accumulated in tauopathies is WT tau, additional
studies should be carried out to completely understand how exactly WT tau regulates
mitochondrial function. In this regard, it has been speculated that pathological forms of WT
tau, such as truncated tau [62], might impair mitochondria. In primary neuronal cultures,
an overexpressed N-terminal tau fragment (NH2-26–44) localized in the mitochondrial
membrane and impaired ∆Ψm and ATP synthesis [63]. Interestingly, the interaction of this
fragment with the mitochondria was favored by Aβ [64]. Supporting this, another report
showed that the expression of the Asp421 tau fragment, cleaved by caspase-3, induced
mitochondrial failure only in presence of Aβ treatment [65]. This evidence suggests that
this specific pathological tau fragment might induce mitochondrial dysfunction in AD, but
not in primary tauopathies. Although the evidence presented above suggests that abnormal
tau accumulation might be the main inducer of mitochondrial OS in tauopathies, it has been
shown that OS might occur in the early stages of the disease, even before the deposition of
abnormal tau [47,66]. The results from these studies suggested that mitochondria might not
be the major source of ROS in the early progression of the disease; however, the resource
of this early OS stress has not yet been described. Since it is well known that OS induces
tau pathogenesis (See Section 3 of this review), we speculate that there is a positive loop
where the OS generated in the early stages of the disease induces tau pathology and, as
a consequence, pathological tau might promote mitochondrial impairment and more OS,
leading to neuronal death.

In addition to mitochondrial dysfunction, OS in tauopathies might be the consequence
of the age-dependent decrease in antioxidant molecules [67–69]. In this regard, the levels
and activity of some antioxidant enzymes such as SOD1, SOD2 and catalase were found
decreased in human AD brains [70,71]. Interestingly, the activity of the antioxidant GFH-Px
was not altered [70]. Furthermore, studies in animal models have shown that antioxidant
enzymes have an important role in tau pathology. For example, the reduction in SOD1 and
SOD2 led to increased tau pathology in mice [72] and the downregulation of antioxidants
such as SOD2 or Thioredoxin reductase (Trxr) enhanced tau-induced neurodegeneration in
a drosophila model [73].

The evidence exposed above demonstrates that in tauopathies, OS is the result of
mitochondrial and the consequent ROS production or the impairment of the antioxidant
system. Although more research should be conducted to confirm this hypothesis, it is also
plausible that alterations in both mechanisms contribute to the pathogenesis of tauopathies.
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3. Oxidative Stress and Tau Pathogenesis: Cause or Consequence?

As we described above, tauopathies are a heterogeneous group of neurodegenerative
diseases characterized by the deposition of abnormal tau aggregates in the cytosol of brain
cells, mainly in neurons. In each tauopathy, tau self-assembles to form aggregates with a
disease-specific morphology and composition [56,74–77]. There is a correlation between the
tau pathology observed in each tauopathy and the clinical dementia observed in patients
(Figure 1). However, it is not yet well understood if the different composition of tau
aggregates (3R:4R ratio) is directly related with the pathophysiology of each tauopathy.
Understanding the molecular mechanisms underlying the formation of tau aggregates is
essential to unravel the etiology of these diseases and discover effective treatments. It has
been speculated that OS plays an important role in tau pathogenesis. However, the exact
role of OS in tauopathies is controversial. While a large number of studies suggest that
OS is an early factor that triggers the pathophysiological processes leading to tauopathy,
other evidence show that OS is merely a consequence of pathological tau accumulation and
aggregation. Below we summarize the evidence supporting both hypotheses.

3.1. Tau Pathogenesis as a Consequence of Oxidative Stress

Many lines of evidence suggest that OS appears before tau aggregation and, thus, is
an early event in tau pathogenesis [35,66,73,78–81]. Tau pathogenesis is defined as the bio-
chemical and molecular mechanisms leading to tau aggregation. It has been demonstrated
that post-translational modifications (PTMs) in tau protein contribute to its pathogene-
sis [82]. PTMs involve the addition of chemical groups, sugars, or proteins to specific
residues of the targeted protein. The accumulation of ROS has been directly related with
the PTMs of several proteins [83,84], suggesting that both tau PTMs and tau pathogenesis
could be a consequence of elevated OS.

Tau is modified by several PTMs including phosphorylation, acetylation, ubiquitina-
tion, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration (for a
complete review of tau PTMs, see [82]. Among all tau PTMs, phosphorylation is the most
studied. Tau protein can be phosphorylated at multiple sites [82] and it has been demon-
strated that phosphorylation regulates tau normal function and pathogenesis [85]. Interest-
ingly, the effects of phosphorylation on tau normal physiology and pathogenesis seem to
be site-dependent [82]. Aberrant tau phosphorylation at specific sites impaired its binding
to microtubules and promotes tau self-aggregation [86–88]. Several evidence demonstrated
that OS played a critical role in the induction of aberrant tau phosphorylation, which
induced the impairment of its physiological function and pathogenesis [72,78,80,89–91].
Several studies showed that OS regulated the activity of tau protein kinases and phos-
phatases [92–96]. Various studies performed in cell cultures indicated that the activity
of the tau kinase glycogen synthase kinase 3 beta (GSK-3β) was upregulated under OS.
For example, in HEK293 cells overexpressing human tau, treatment with H2O2 increased
GSK-3β activity and tau hyperphosphorylation at Ser396, Ser404, and Thr231 [97]. Similar
results were found in primary cortical neuronal cultures [96,98]. Additionally, the treat-
ment with low concentrations of a GSK-3β inhibitor protected against OS in other cellular
cultures [99]. OS also stimulated the activity of GSK-3β, and increased tau phosphorylation
in C57BL/6 mice [100]. Besides GSK-3β, OS also affected the activity of other kinases
involved in tau phosphorylation, including several tau kinases from the stress-activated
protein kinases family such as c-Jun N-terminal Kinase (JNK) and p38 [92–94]. It was
demonstrated that OS caused the activation of p38, leading to tau hyperphosphorylation
in vivo [101]. Furthermore, in differentiated M17 neuroblastoma cells, prolonged OS in-
duction increased tau phosphorylation at Ser396/Ser404, due to increased activity of JNK
and p38 [90]. Other studies also linked the elevated OS with the dysregulation of tau
phosphatases. In this regard, OS reduced the activity of the protein phosphatase 2 (PP2A)
in differentiated M17 neuroblastoma cells, contributing to increased tau phosphorylation
and pathogenesis [90]. Additionally, in neuronal cultures, ROS inhibited PP2A and PP5
phosphatases, leading to aberrant tau phosphorylation and neuronal apoptosis [102]. Fur-
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thermore, the OS induced by okadaic acid inhibited PP1 and PP2A activity in rat cortical
neurons [103] and HT22 cell cultures [104], leading to increased tau phosphorylation and
aggregation. Interestingly, another report showed that the induction of OS using H2O2
resulted in PP1 activation and tau dephosphorylation at specific sites in rat hippocampal
cells and SH-SY5Y human neuroblastoma cells [105], suggesting that OS might regulate the
phosphorylation/dephosphorylation of tau by the activation/inhibition of phosphatases.
In addition to the PPA family, OS also inhibited other tau phosphatases such as calcineurin.
It was demonstrated that OS upregulated the regulator of calcineurin 1 (RCAN1) gene,
inducing calcineurin activity inhibition and, thus, reducing tau dephosphorylation [98].
Although it has been fully demonstrated that OS regulates tau kinases and phosphatases,
the exact mechanistic pathways by which OS regulates the activity of these enzymes is not
yet understood.

In addition to regulate the activity of tau kinases and phosphatases, OS may also
regulate tau pathogenesis by other mechanisms such as the oxidation of fatty acids and
lipid peroxidation. Several reports demonstrated that OS induced the oxidation of fatty
acids, which seemed to stimulate tau polymerization and consequent hyperphosphory-
lation [89,106]. Conditioned media from astrocytes treated with saturated fatty acids
increased tau phosphorylation at AD-specific sites and antioxidant treatment reduced fatty
acids-mediated tau phosphorylation, suggesting that fatty acid oxidation significantly con-
tributed to tau pathogenesis [89]. Lipid peroxidation is also implicated in tau pathogenesis.
Lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) and acrolein increased
the assembling capacity of phosphorylated 4R-tau [107], promoted conformational changes
and the polymerization tau [108] and promoted tau hyperphosphorylation [109]. Fur-
thermore, another possible link between OS and tau pathogenesis is the peptidyl prolyl
cis-trans isomerase 1 (PPIase1) or Pin1. This enzyme binds to proteins and isomerizes
phospho-Serine/Threonine-Proline motifs and, thus, plays an important role regulating
protein phosphorylation. Pin1 was significantly oxidized and downregulated in the brain
of AD patients [110]. Furthermore, it was demonstrated that Pin1 was implicated in the
dephosphorylation of tau protein [111,112]. Therefore, it is believed that oxidative modifi-
cations of Pin1 reduced its activity and promoted tau hyperphosphorylation in AD [113].
Insulin may also play a role in OS-induced tau phosphorylation. It was demonstrated
that OS decreased insulin secretion and sensitivity [114] and that insulin regulated the
activity of tau kinases/phosphatases [115], suggesting that the decrease in insulin levels
associated with OS might lead to tau hyperphosphorylation. To conclude, OS might also
induce tau pathogenesis through its role promoting mitochondrial dysfunction. In this
regard, mitochondrial SOD2 deficient mice showed increased tau hyperphosphorylation
along with mitochondrial dysfunction and OS [72], indicating a positive loop between OS,
mitochondrial dysfunction and tau pathogenesis.

Tau protein is also susceptible to be directly modified by oxidation. Oxidation is a
PTM that occurs mainly in cysteine and methionine residues [116]. Tau protein presents
a pair of cysteine residues (C291/C322) that can be oxidized [82]. Interestingly, protein
conformation is very sensitive to oxidation-reduction (redox) changes and, thus, tau oxida-
tion could directly induce its aggregation. Indeed, it was demonstrated that the in vitro
oxidation of tau at C-322 (present in R3 repeat) promoted tau aggregation into paired
helical filaments [117]. Furthermore, oxidation also regulates tau degradation and, thus,
accumulation. A recent study demonstrated that the oxidation of tau at C291/C322 was
a prerequisite for completing the internalization of tau through a form of specific protein
degradation called endosomal microautophagy (e-MI) [118]. Although there are a few
studies suggesting that oxidation might be relevant for tau pathogenesis, the exact role of
oxidation on tau function and pathogenesis remains unclear.

The evidence described above provides knowledge about the mechanisms implicated
in OS-mediated tau pathology, focusing on the link between OS and tau phosphorylation
and oxidation. However, tau protein undergoes other PTMs that are essential to regulate
its function and structure [82]. To fully understand how OS induces tau accumulation and
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aggregation in tauopathies, new research focused on understanding how OS modulates
other PTMs should be carried out.

3.2. Pathological Tau as Oxidative Stress Inductor

Some studies performed on tauopathy cellular models suggested that aberrant tau
might induce ROS production and OS. In this regard, a recent report showed that extracel-
lular tau induced ROS production in cortical co-cultures of neurons and astrocytes [119].
Interestingly, only the insoluble tau aggregates were able to elevate ROS levels. Authors
also showed that the extracellular tau aggregates led to the activation of NADPH oxidase
without decreasing the level of the endogenous antioxidant glutathione, describing a mech-
anism by which extracellular tau aggregates might induce OS. Microglia and astrocytes are
important sources of ROS [120] and activated microglia are spatially correlated with tau
pathology [121,122]. Therefore, it has been suggested that tau might play a role inducing
microglial OS. Interestingly, tau aggregates in neuronal-astrocytic co-cultures stimulated
NADPH oxidase 2 (NOX) activity and ROS production leading to neuronal death [119];
however, further studies are required to completely understand the relationship between
tauopathy and microglial OS. It has also been suggested that truncated forms of tau might
induce OS. Truncation is a PTMs observed in the pathological tau accumulated in tauopathy
patients [123–125]. Cultured cortical neurons obtained from a transgenic rat model ex-
pressing truncated human tau presented the depolarization of mitochondria and increased
ROS production [126]. Similarly, fragmented tau protein induced copper reduction and
contributed to OS by the initiation of copper-mediated generation of H2O2 [127]. These
reports suggest that OS could be the consequence, rather than the trigger, of tau pathology.
Interestingly, the overexpression of human WT tau not only induced OS but also increased
the sensitivity of neurons to oxidants, likely associated with the tau-related depletion of per-
oxisomes [54,55]. It is known that OS promotes mitochondrial dysfunction and antioxidants
deficiency [72,128], leading to the generation of a more severe oxidative environment [129].
Hence, it is plausible that the increased OS associated with the presence of pathological tau
could make the neurons more sensitive to oxidative stressors.

Based in the evidence exposed above, it has been postulated that tau pathology
and OS could be two elements of a “vicious circle” in which OS would promote tau
pathology and, at the same time, pathological tau accumulation would stimulate ROS
production and OS (Figure 2) [79]. The complete understanding of the interplay between
oxidative environment and tau pathogenesis may be important to unravel the etiology
and tauopathies and for future directions in the development of novel therapeutic options
based on antioxidative agents.
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Mitochondria is the major ROS resource in neurons. Increased ROS leads to elevated OS, which
induces tau pathogenesis by the regulation of the activity of tau kinases/phosphatases. On the other
hand, the accumulation of pathological forms of tau protein might induce mitochondrial damage
and thus, ROS production. We speculate that there is a positive loop where the OS generated in the
early stages of the disease induces tau pathology and, in consequence, pathological tau promotes
mitochondrial impairment and more OS, leading to neuronal death.

4. Antioxidant Therapies for the Treatment of Tauopathies

Currently, tauopathies are still incurable. Since OS is a common hallmark for these
diseases, antioxidants therapies have been prompted as potential treatments to delay, cure
or prevent these diseases [130,131]. Antioxidant therapies are aimed to counteract the
harmful effects of ROS and therefore prevent or treat OS-related diseases. OS is a lineal
process that starts with an oxidant stressor and, if nothing prevents it, might end with cell
damage (Figure 3). In the human body, antioxidants protect cells and organs by acting in
three lines of defense during OS (Figure 3). Antioxidant enzymes such as SOD, CAT, GPX,
and metal chelating proteins act in the first line of defense suppressing the generation of
free radicals. Free radical-scavengers act as the second line of defense. These compounds
interact with free radicals and neutralize them to prevent cell damage. They include
vitamins, carotenoids, flavonoids, polyphenols and CoQ10 (Ubiquinol), among others.
The third line of defense consists of restoring the impairments caused by free radicals.
Several enzymes are involved in this line of defense and include lipases, proteases, DNA
repair enzymes, and transferases. Antioxidant therapies research has been focused on
targeting the first two lines of OS defense by activating antioxidant enzymes and treating
with free-radical scavengers. Additionally, because mitochondria is the first resource of
ROS in the cells, mitochondria-targeting therapies have also been developed to reduce OS
(Figure 3). Below, we summarize the antioxidant strategies that have been proposed as a
potential treatment for tauopathies.
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Figure 3. Summary of the antioxidants therapies proposed as good candidates to treat tauopathies. OS
is a lineal process that start in the mitochondria by the production of ROS and, if is not prevented, ends
with cellular damage and/or cell death. Antioxidants prevent OS by counteracting the damaging
action of ROS. Antioxidant enzymes act in the first line of defense suppressing the generation
of free radicals. Free radical-scavengers act in the second line of defense interacting with free
radicals and neutralizing them to prevent cell damage. The third line of defense consists of restoring
the impairment affected by free radicals and they work repairing the damage and reconstituting
membranes. Tauopathies antioxidant therapies research has been focused on targeting the first
two lines of OS defense by activating antioxidant enzymes and treating with free-radical scavengers.
Because mitochondria is the first resource of ROS in the cells, mitochondria-targeting therapies have
also been developed to reduce OS.
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4.1. Treatments Targeting Antioxidant Enzymes

The endogenous enzymes that prevent OS are essential for neuronal protection against
oxidative damage and neuronal survival [27,132]. The levels and activity of some antioxi-
dant enzymes are decreased in tauopathy patients [26,70] and, thus, the administration of
treatments able to increase their levels and/or activity would be an ideal therapeutic ap-
proach for these diseases. Due to its instability and easy degradation in the gastrointestinal
tract, the oral administration of enzymes for therapeutic applications is very challenging.
Therefore, it has been proposed that the use of drugs able to indirectly activate the levels
and activity of these enzymes might be a good therapeutic strategy. The expression of
some antioxidant enzymes is regulated by transcription factors such as the nuclear factor-
erythroid 2 (NF-E2) related factor 2 (Nrf2) [133,134]. The pharmacological targeting of
Nrf2 with compounds such as benfotiamine, methylene blue or dimethyl fumarate has
demonstrated good effects, reducing OS and tau pathogenesis in murine models of primary
tauopathies [135–137] and other AD models [138]. The hormone melatonin has also been
reported to stimulate the activity and expression of antioxidant enzymes such as nitric oxide
synthase, glutathione peroxidase and superoxide dismutase [139–141]. Melatonin and its
derivatives are also powerful direct free radical scavengers [142–145] and are implicated
in the inhibition of pro-oxidant enzymes [146,147] and the enhancement of mitochondrial
function [145,146]. In addition to the antioxidant properties, melatonin also has a direct role
regulating GSK-3β activity and tau phosphorylation [148–151]. Due to these properties,
melatonin has been proposed as a potentially useful agent in the prevention and treatment
of tauopathies.

The above preclinical evidence suggests that the activation of antioxidant enzymes
could be a potential antioxidant therapeutic strategy for tauopathies; however, further
clinical trials are still needed to determine the clinical value and efficacy of these treatments.

4.2. Free Radical Scavengers

Free radical scavengers are antioxidants that act in the second line of antioxidant
defense, preventing reactive oxygen species from being formed or removed them before
they can damage vital components of the cell. Although the human body generates
free radical scavengers, the majority of scavengers used in antioxidant therapies were
synthesized by plants and, thus, diets supplemented with vegetables and herbs rich in
these antioxidants could potentially prevent tau-related neurodegenerative diseases. The
most exogenous free radical scavengers proposed to be used in antioxidant therapies are
vitamins, carotenoids and polyphenols.

Vitamin E, C and carotenoids are potent exogenous antioxidants that protect against
lipid peroxidation [152]. Several foods are rich in these antioxidants. Vitamin E is mostly
found in plant-based oils, nuts, seeds, and vegetables (beet greens, collard greens, spinach,
pumpkin, red bell pepper, asparagus, mango, avocado), whereas citrus fruits and crucifer-
ous vegetables are the best sources of vitamin C. Carotenoid-enriched foods include yam,
kale, spinach, watermelon, cantaloupe, bell pepper, tomato, carrot, mango and orange,
among others. Although the three scavengers can be intake by diet, absorption in the
intestine is different because vitamin E and carotenoids are lipid-soluble and vitamin C
is soluble in water. All three antioxidants have demonstrated potentially good effects
preventing tauopathies in preclinical studies; however, the majority of the studies have
been performed using AD models and do not take account other tauopathies. Vitamin E
(α-tocopherol) delayed the development of tau pathology and improved cognitive perfor-
mance in rodent models of AD and other tauopathies [153,154]. Interestingly, vitamin E
only reduced senile plaque deposition in mouse models when it was administered prior to
the appearance of AD pathology [155]. Importantly, vitamin E treatment reduced neuronal
damage and slowed the disease progression in AD patients [156]. Furthermore, it has been
shown that AD patients whose diets included vitamin E tended to survive longer [157],
suggesting that this vitamin may be beneficial to prevent AD. However, other clinical trials
indicated that vitamin E did not have good effects decreasing OS in plasma [158,159] or



Antioxidants 2022, 11, 1421 10 of 23

improving the mini-mental state of AD patients [156]. It is important to highlight that the
majority of preclinical studies and clinical trials explore the effectiveness of vitamin E in
AD, but not in other tauopathies. Additional studies should be carried out to confirm if
vitamin E is beneficial for the treatment of all tau-related diseases. Vitamin C (ascorbic
acid) is a powerful antioxidant and free radical scavenger present in plasma and in the
CNS [160,161]. Vitamin C has demonstrated a protective function against AD and other
tauopathies [162,163]. The majority of studies about the effect of vitamin C in tauopathies
have been related to AD and showed the positive effects of vitamin C reducing Aβ plaque
deposition [164,165]. The effect of vitamin C reducing OS and neurodegeneration [126]
and delaying tau pathogenesis [166] was also demonstrated in FTLD-Tau mouse models,
suggesting that vitamin C could be a potential treatment for both primary tauopathies
and AD. Although preclinical experiments showed vitamin C as a promising treatment for
tauopathies, clinical trials have not shown good results [167,168]. The ability to transport
ingested vitamin C from the intestines into blood is limited by the sodium-dependent
vitamin C transporter (SVCT1) and, thus, high intakes might be not beneficial as it cannot
be absorbed. Carotenoids such as β-carotene and lycopene are lipid-soluble antioxidants
able to quench singlet oxygen rapidly [169]. The effect of carotenoids in tauopathies has
been studied mostly in cellular and rodent models of AD. Both β-carotene and lycopene
reduced the OS observed in these models [81,170–173], suggesting the potential use of these
antioxidants as therapies for the treatment of AD and maybe other tauopathies. However,
the positive effect of carotenoids in tauopathy patients has not yet been demonstrated. To
summarize, although vitamin E, C and carotenoids antioxidant therapies have demon-
strated success in preclinical studies, the effectiveness of these antioxidants in human
preventive studies and clinical trials is still not clear [174]. Furthermore, it has been re-
ported that a high dosage of vitamins and carotene supplements increased mortality and
the risk of other diseases such as cancer or heart attack [175–177]. The lack of effectiveness
in clinical trials, together with the potential toxicity of vitamins and carotenoids, suggest
that these antioxidants should be used carefully.

Polyphenols are a diverse group of natural compounds whose chemical structure has
one or more phenolic rings [178]. They are classified into two main categories, flavonoids
and non-flavonoid compounds. In general, polyphenols are the main source of dietary
antioxidants and usually are effortlessly absorbed in the intestine. Polyphenols are found
in plant foods such as fruits, vegetables, and whole grains [179]. Some polyphenols such as
resveratrol, curcumin, catechins and phenolic acids have demonstrated neuroprotective
effects in tauopathies. The polyphenol that have demonstrated more impact in tauopathies,
especially in AD, is resveratrol (3,5,4′-trihydroxystilbene) [12,180–184]. Resveratrol is a
naturally occurring non-flavonoid polyphenol mostly found in grapes but also in peanuts
and berries of the vaccinium species [185]. Both resveratrol isomers (cis- and trans) occur
naturally, but the trans form seems to have higher neuroprotective activity [186]. In addition
to being a potent antioxidant, resveratrol also has other mechanisms of action, including
the inhibition of cyclooxygenase activity [187], ribonucleotide reductase [188], protein
kinase C [189] and DNA polymerase [190], and also has antiestrogenic properties [191]
and anti-platelet aggregation activity [192]. Furthermore, it activates sirtuin-1 (SIRT1), an
NAD+-dependent protein deacetylase [193], and AMP kinase (AMPK) [194], an important
glucose sensor that inhibits acetyl-CoA carboxylase, thereby increasing oxidation of fatty
acids and decreasing their synthesis. Together, all these downstream targets may impact
processes such as neuronal survival, mitochondrial biogenesis and prevention of protein ag-
gregate formation, all of which contribute to the delay in symptoms and increased viability
observed in tauopathy models after resveratrol treatment. Although resveratrol is a potent
antioxidant, the most studied mechanism behind its neuroprotective role in tauopathies is
the activation of the histone deacetylase SIRT1 [12,195,196]. Much evidence indicates that
tau acetylation is an essential PTM that regulates tau pathogenesis. Tau acetylation at spe-
cific sites impaired tau degradation, leading to tau accumulation [12,196,197]. Furthermore,
it was described that acetylation increased tau propensity to aggregate [75,198]. SIRT1 is one
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of the main deacetylases regulating tau acetylation. In tauopathy patients, tau protein is hy-
peracetylated and SIRT1 is downregulated [12,199]. Due to its role inhibiting tau acetylation,
resveratrol has been proposed as a potential treatment for tauopathies and a good effect of
resveratrol treatment in decreasing tau levels and rescuing the neuronal death character-
istic of tauopathies has been reported in mouse and cellular models [12,200,201]. Several
clinical trials have shown resveratrol to be safe and reasonably well-tolerated [202,203].
Furthermore, results from clinical trials in AD have provided evidence that resveratrol
might be an effective treatment for AD [204,205]. However, further clinical trials in AD
and other tauopathies should be performed to verify resveratrol effectiveness in treating
these diseases. Since resveratrol has so many mechanistic targets, it is unknown if the
effect of resveratrol treatment is related to its role as an antioxidant or as a tau acetylation
inhibitor. Whatever the case may be, due to its multitarget characteristics, resveratrol is
now considered one of the best candidates for the treatment of tauopathies.

Other non-flavonoid polyphenols such as curcumin (found in turmeric) and phenolic
acids (including caffeine) have demonstrated good results in tauopathy models. For
example, as it has been previously reviewed, curcumin (diferuloylmethane) is able to
reduce OS, affect toxic protein aggregation, and protect against apoptosis in models of
tauopathy [206,207]. Curcumin can modulate toxic tau aggregation in vitro [208] and in
cell cultures [209]; however, the binding of curcumin to tau aggregates was not observed in
post-mortem brain tissue sections from tauopathy patients [210]. While curcumin showed
promising results in in vivo models of tauopathies [211–213], there is a challenge for in vivo
use due to its poor absorption, fast metabolism, and rapid elimination. Several analogs
have been designed to overcome the low oral bioavailability of curcumin [214]. Clinical
studies about curcumin’s effects on cognitive deficits are mixed and important information
regarding the effect of curcumin and analogs in bioavailability, safety, and tolerability, is
lacking [215]. Homogenized clinical trials are needed to completely understand curcumin’s
therapeutic potential. Phenolic acids are wildly distributed in natural sources (fruits, coffee,
tea, and grains), have long stability in foods and show a high intestinal intake [216] and
efficient brain absorption [217]. These compounds have shown good effects in models of
AD [218]; however, the effect in primary tauopathies has not been studied. Due to their
diverse neuroprotective effects, which have been extensively reviewed elsewhere [218,219],
phenolic acids are considered potential candidates to treat tauopathies.

Flavonoids polyphenols such as catechins (found in Green tea), and in particular
(−)epigallocatechin gallate (EGCG), have demonstrated antioxidant and anti-inflammatory
effects on microglia and astrocytes [220]. EGCG decreased lipid peroxidation but had no
effect on iron metabolism despite its presumed chelating abilities [221]. EGCG also has
the potential to reduce protein aggregates [222] and it was demonstrated that catechins
inhibited tau filament formation in a FTLD-tau model [223]. The effect of catechins in
tau pathogenesis could be related to the effect of EGCG regulating phosphatidylinositol
3-kinase (PI3K/Akt) and GSK-3β kinases pathways [224]. Increased GSK-3β regulates tau
phosphorylation and increased GSK-3β levels are associated with the formation of neurofib-
rillary tangles and neuronal death [225], thus catechins could regulate tau phosphorylation
and pathogenesis by its role in regulating the GSK-3β pathway. Other flavonoids, such as
luteolin (3′,4′,5,7-tetrahydroxyflavone) have also been tested in AD animal models [226,227]
and have been demonstrated to improve the symptoms of patients with FTLD [228].

Because food is the main resource of free-radical scavenger antioxidants, diet could
be essential in the prevention of tauopathies. Diet can also have other potential benefits
for tauopathy patients; for example, the modification of gut microbiota. The microbiota is
composed mainly of bacteria that colonize all mucosal surfaces of the gastrointestinal tract.
It has been reported that microbiota changes could be a cause of different diseases including
tauopathies such as AD [229–232]. Microbiota may also impact brain OS by elevating
ROS levels or impairing the antioxidant system [233]. Furthermore, the microbiota also
produces neurotoxic substances such as lipopolysaccharides and amyloid proteins, which
can also reach to CNS and promote microglial activation and neuroinflammation, elevated
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ROS levels, and/or making neurons more susceptible to OS [234]. As a consequence
of the link between microbiota, OS and neurodegeneration, the modification of the gut
microbiota composition by diet may be helpful as a new preventive and therapeutic
option for neurodegenerative diseases, specifically tauopathies. More research should be
conducted to probe this hypothesis.

4.3. Treatments Targeting Mitochondria

Mitochondria is the main resource of ROS and mitochondrial dysfunction is a main
characteristic of tauopathy patients [2,34–37]. Therefore, therapeutic strategies targeting
mitochondria have been developed to treat tauopathies. The compounds targeting mito-
chondria are denominated metabolic antioxidants and include α-lipoic acid, coenzyme
Q10 (CoQ10) and derivatives. Those antioxidants easily penetrate the cell to target the
mitochondria and, thus, may provide the greatest protection. α-lipoic acid, also called
thioctic acid, is a coenzyme of mitochondrial pyruvate dehydrogenase and α-ketoglutarate
dehydrogenase. It also recycles other antioxidants such as vitamin C and E and glutathione,
increases the production of acetylcholine or acts as a chelator of redox-active metals to com-
bat the accumulation of lipid peroxidation products [235]. The effect of α-lipoic treatment
has been studied in animal models of tauopathies. For example, α-lipoic acid was able to
improve the abnormal behavior of P301S tau transgenic mice by mitigating OS and tauopa-
thy [236]. Similarly, α-lipoic acid treatment ameliorated OS and rescued behavior deficits in
a drosophila tauopathy model (tauR406W) [237]. Chronic administration of α-lipoic acid also
protected against OS and reduced memory deficits in the Tg2576 AD mice model; however,
it did not affect Aβ levels or plaque deposition [238]. CoQ10 (ubiquinone) is an important
cofactor of the electron transport chain where it accepts electrons from complex I and II
and, thus, preserves mitochondrial membrane potential during OS [239]. Both in vitro
and in vivo studies have demonstrated the potential neuroprotective effect of CoQ10 in
tauopathies. AD and FTLD preclinical studies suggest that CoQ10 could improve memory
skills and cognitive abilities [240,241]. Furthermore, CoQ10 reduced tau phosphorylation
in mouse hippocampal neurons after inducing cognitive deficiency with sevoflurane anes-
thesia [242]. CoQ10 is widely available in multiple formulations and is very well tolerated
with minimal adverse effects [243], making it an attractive potential therapy. With this
data in mind, several clinical studies of CoQ10 have been performed in tauopathy patients,
with equivocal findings. Results from a clinical trial performed in patients suffering of the
primary tauopathy PSP showed that CoQ10 treatment slightly improved the PSP rating
scale [244]. On the other hand, clinical studies in AD did not support CoQ10′s potential to
promote cognitive function or prevent dementia [168]. Interestingly, it was reported that
CoQ10 induced tau aggregation, tau filaments, and Hirano bodies [245]. These contradic-
tory data confirm that more research should be carried out to further ascertain the effects of
CoQ10 in different tauopathies. Mito Q, a CoQ10 derivative produced by the conjugation
of the lipophilic triphenylphosphonium (TPP+) cation to CoQ10 [246], was also explored
as a treatment for tauopathies. MitoQ seems to be a more effective antioxidant than the
regular CoQ10 because it is better absorbed by the mitochondria. As its precursor, MitoQ
exerted protective effects on cells by reducing free radicals, decreasing oxidative damage,
and maintaining mitochondrial functions. MitoQ prevented neurotoxicity in models of
AD [247] and its benefits were also demonstrated in iPSC-derived neurons from FTLD-TAU
patients carrying the 10 + 16 MAPT mutation [36,248]. These reports suggest that MitoQ
may be a candidate drug to treat tauopathy patients. Several ongoing clinical trials are
testing the efficacy of MitoQ for the treatment of neurodegenerative diseases and, thus, we
need to wait to know the potential benefits of MitoQ.

Based on the outcomes from the experiments exposed in this section, it has been
suggested that antioxidants could be used to treat tauopathies. However, it is important to
highlight that the use of antioxidants also have some limitations such as the low bioavail-
ability of some antioxidants (e.g., polyphenols, curcumin, resveratrol, catechins) [249,250]
and the toxicity of some vitamins (A, D or E) when used at high concentrations [251].
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5. Present and Future of Antioxidant Therapies

Although preclinical studies pointed to antioxidant substances as potential therapeutic
agents for the treatment of tauopathies, the translation of these preclinical studies into
clinical therapeutic strategies has not yet led to significant advances [252]. The failure of the
current antioxidant clinical trials for tauopathies could be associated with several reasons.

For example, the inappropriate design of some clinical trials might be affecting their
outcomes. It is plausible that some clinical trials have used an insufficient dose of the chosen
antioxidant or have not taken into account the limited solubility of some antioxidants.
Furthermore, unsuitable timing (e.g., too late in the disease) or inappropriate duration for
the treatment might also affect the efficiency of the treatments. Improvements in the design
of clinical trials will facilitate the validation of the use of antioxidants to treat tauopathies.

Another reason for the failure of antioxidant clinical trials might be the insufficient
knowledge of antioxidants’ blood–brain barrier (BBB) penetration. Although some antioxi-
dants such as vitamin C, α-lipoic acid or resveratrol have been described to cross the BBB,
others demonstrate poor BBB penetrability, or it is still unknown [253,254]. To facilitate the
delivery of antioxidant therapies across the BBB, it is necessary to design BBB-penetrable
antioxidants by inducing chemical modifications, as well as using nanoplatforms and/or
new administration routes.

The low efficiency of antioxidant clinical trials could also be associated with the fact
that tauopathies, as other neurological syndromes, are multifactorial diseases in which
several molecular mechanisms contribute to the disease and, perhaps, oxidative damage
may not be the main cause contributing to the pathophysiology of tauopathies. To solve
this problem, future therapeutic approaches should consider using combinations of different
antioxidants or combine antioxidants with compounds targeting other molecular mechanisms.

The bad translation of preclinical studies to clinical trials could also be associated with
the limitations of the models used in preclinical studies. In this regard, current cellular
and animal tauopathy models do not completely recapitulate the complexity of the human
brain [255,256] and, thus, the results obtained using these models cannot be completely
translated to patients. More accurate tauopathy preclinical models such as the novel brain
organoids [257] should be used to confirm previous preclinical antioxidant research.

The failure of antioxidant clinical trials could also be associated with the fact that the
altered molecular mechanisms leading to OS might vary between different tauopathies.
In this regard, although preclinical studies have been performed using several tauopathy
models, the majority of completed antioxidant clinical trials have been carried out on AD
patients. An updated list of concluded antioxidant clinical trials in tauopathies can be found
on the US National Library of Medicine website (clinicaltrials.gov). New clinical trials
recruiting primary tauopathy patients should be conducted to validate the effectiveness of
antioxidant treatment tauopathies.

Despite the poor results of clinical trials, preclinical studies have proved that antiox-
idants have the potential to be beneficial for disease prevention and healthy aging. The
majority of antioxidants are natural compounds present in food. Following the notion that
“prevention is better than cure”, a balanced antioxidant-enriched diet will help to prevent
or delay the onset of tauopathies.

6. Concluding Remarks

Although more research should be conducted to completely understand the etiology of
tauopathies, OS has emerged as one of the multiple molecular mechanisms involved in the
pathophysiology of tau-related diseases. Currently, it is still unknown if tau accumulation
is a cause or a consequence of OS and it has been speculated that tau pathology and OS
could be two elements of a “vicious circle”, where OS might trigger tau pathology, which,
as a consequence, will later promote more OS (Figure 2).

Current research efforts are focused on the identification and development of effec-
tive therapies to treat tauopathies. Based on preclinical studies, antioxidant therapies
have emerged as good candidates to treat tauopathies; however, antioxidant clinical trials



Antioxidants 2022, 11, 1421 14 of 23

have not shown good results. Unraveling the molecular mechanisms underlying OS in
tauopathies would contribute to the development of more efficient therapies to treat and/or
prevent these devastating neurodegenerative diseases.
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