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a b s t r a c t 

Cell detection and tracking applied to in vivo fluorescence microscopy has become an essential tool in 

biomedicine to characterize 4D (3D space plus time) biological processes at the cellular level. Traditional 

approaches to cell motion analysis by microscopy imaging, although based on automatic frameworks, still 

require manual supervision at some points of the system. Hence, when dealing with a large amount of 

data, the analysis becomes incredibly time-consuming and typically yields poor biological information. 

In this paper, we propose a fully-automated system for segmentation, tracking and feature extraction of 

migrating cells within blood vessels in 4D microscopy imaging. Our system consists of a robust 3D con- 

volutional neural network (CNN) for joint blood vessel and cell segmentation, a 3D tracking module with 

collision handling, and a novel method for feature extraction, which takes into account the particular 

geometry in the cell-vessel arrangement. Experiments on a large 4D intravital microscopy dataset show 

that the proposed system achieves a significantly better performance than the state-of-the-art tools for 

cell segmentation and tracking. Furthermore, we have designed an analytical method of cell behaviors 

based on the automatically extracted features, which supports the hypotheses related to leukocyte mi- 

gration posed by expert biologists. This is the first time that such a comprehensive automatic analysis of 

immune cell migration has been performed, where the total population under study reaches hundreds of 

neutrophils and thousands of time instances. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Microscopic imaging modalities are widely used thanks to their 

ersatility and moderate cost ( Dhawan et al., 2010 ). In particu- 

ar, confocal and epifluorescence microscopy imaging is the most 

opular method for studying the dynamic behavior exhibited by 

ive cells. Fluorochromes and fluorescent proteins have enabled 

ifferent cells and cellular components to be identified with a 

igh specificity in the context of nonfluorescing material, and thus, 

ave facilitated the visualization and determination of the relation- 

hips and interactions between them ( Combs and Shroff, 2017 ). 

owever, fluorescence microscopy imaging has significant limita- 

ions: temporal decay of fluorochromes capacity owing to photo- 

leaching, phototoxicity, and poor resolution on account of the size 

f the structures being captured (on the order of micrometers) 
∗ Corresponding author. 
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 Jensen, 2012 ). Consequently, both data acquisition and data analy- 

is can be challenging, and typically low through-put. 

Cell segmentation and tracking in multidimensional microscopy 

maging has arisen as one of the fundamental needs for the 

iomedical community. For example, recent studies have revealed 

he relationships between infarcts and the deformation and motil- 

ty of neutrophils along the blood vessels ( García-Prieto et al., 

017 ), or between sickle cell anaemia and heterogeneous cell ad- 

esion and deformability of red blood cells ( Barabino et al., 2010 ). 

ue to the specifics of fluorescence microscopy imaging data, their 

nalysis poses three major challenges: 1) given the increasingly 

arger volumes of available data, manual or semi-automated seg- 

entation and tracking have become unfeasible in most applica- 

ions ( Orth et al., 2017 ), especially for multidimensional imaging; 

) fluorescence presents high intra- and inter-plane variability, and 

icroscopic imaging exhibits poor resolution, hampering cell seg- 

entation; and 3) cells move freely along the volume following 

rratic paths, which collide and separate in multiple points. Thus, 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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 robust segmentation system has to be able to adapt to different 

ontrast, illumination and resolution conditions, and an effective 

racking module has to be able to handle cell collisions and sepa- 

ations. 

Notwithstanding the microscopic imaging potential, automatic 

nalysis of microscopy images is yet an emerging subject of 

esearch, especially when dealing with 3D volumes. Although 

onvolutional Neural Networks (CNNs) have shown impressive 

erformance in many computer vision tasks over real images, 

uch as classification ( Krizhevsky et al., 2012 ), segmentation 

 Shelhamer et al., 2017 ) and object detection ( Ren et al., 2015 ),

he interpretation of 3D medical images requires significant expert 

nowledge, which is often difficult to embed in a CNN architecture. 

urthermore, the lack of large and annotated datasets and the sub- 

tantial differences between the distinct imaging modalities hinder 

he use of general purpose CNNs. In consequence, current systems 

re typically application-dependent ( Chen et al., 2019a ). 

Despite the research efforts devoted to 3D segmentation and 

racking to overcome these obstacles, biologists have generally ad- 

ressed the problem of cell segmentation and tracking using com- 

ercial software, such as Imaris software (Bitplane, South Wind- 

or, CT, USA) or Fiji ( Schindelin et al., 2012 ). These libraries, al-

hough implement some standard algorithms for image segmen- 

ation and tracking, require manual supervision as they are not ro- 

ust enough to tackle all potential scenarios and data. In addition, 

revious attempts to automatize cell migration analysis (involv- 

ng 3D CNNs and fluorescence microscopy imaging) required man- 

al supervision in 3D segmentation ( Lefevre et al., 2020; Henry 

t al., 2013 ) and 4D cell tracking ( Richards et al., 2018 ). Manual

upervision and filtering is therefore a fundamental step in cur- 

ent solutions to ensure that only cells which are correctly seg- 

ented and tracked are considered in the subsequent analysis 

nd, thus, to avoid potential biases due to the inclusion of non- 

elevant regions, artifacts and noise. A straight consequence is that 

iological studies have been restricted to tens to few hundred of 

ells ( Pijuan et al., 2019 ), as in our previous studies García-Prieto 

t al. (2017) and Sreeramkumar et al. (2014) . Moreover, the state- 

f-the-art approaches concerning 3D segmentation do not tackle 

he task of 4D tracking ( Jaeger et al., 2018; Tokuoka et al., 2020 ). 

Here, we introduce ACME (Automatic Cell Migration Examina- 

ion), an automatic feature extraction method for cell migration 

nalysis within blood vessels in microscopy imaging. To the best 

f our knowledge, this is the first fully-automatic system that im- 

lements the whole processing pipeline for 3D cell segmentation 

nd tracking of 4D microscopic imaging. By combining deep learn- 

ng and machine learning blocks, we have built a pipeline capable 

f segmenting, tracking and extracting features from cells moving 

ithin blood vessels. Furthermore, an explainability model auto- 

atically discovers cell behaviors and profiles them in terms of the 

xtracted features. In our case of study, a blood vessel contains a 

eries of neutrophils, which, in the context of inflammation, mi- 

rate and dynamically adapt their shape to efficiently moving to- 

ards the lesion area. However, ACME it is versatile and could be 

dapted to different scenarios, such as the migration of immune 

ells in tumor samples ( Di Pilato et al., 2021a ). 

As we will demonstrate in the experimental section, our ap- 

roach automatically segments and tracks the cells in the 4D (3D 

pace plus time) volumes, reducing drastically the human effort 

evoted to the annotation (i.e. the time required) and removing 

uman biases in cell selection (e.g. choosing cells that are simpler 

o analyze). Moreover, our system increases the throughput of ana- 

yzed data by more than an order of magnitude: in our dataset, by 

etting a very high system precision that ensures that only accu- 

ate segmentations and tracks are considered, ACME is able to au- 

omatically extract features from thousands of temporal instances 

f hundreds of cells, instead of tens of cells, the limit in our pre-
2 
ious studies based on manual analysis ( García-Prieto et al., 2017; 

reeramkumar et al., 2014 ). In addition, the shape- and motion- 

ased feature extraction (we propose an exhaustive set of features 

nspired by cell dynamics) allows ACME to automatically provide 

ome insights into the observed cell behaviors, enhancing our un- 

erstanding of complex physiological processes at microscopic and 

ingle cell resolution, and leading to observations and conclusions 

hat are in agreement with our experimental-based hypotheses. 

Specifically, the main contributions of this work can be summa- 

ized as follows: 

• The most significant scientific contribution in the paper is that 

ACME incorporates a strongly-regularized 3D CNN which, being 

trained with pixel-wise annotations, is able to segment jointly 

blood vessels and cells. 
• In addition, we have designed a robust multi-target tracking 

system that is able to detect and handle collisions between 

cells, keeping their individual tracks. 
• ACME includes a novel and comprehensive feature extraction 

method that, relying on two coordinate systems adapted to 

the geometry of the vessel (polar and cartesian aligned with 

vessel direction), characterizes the short-term behavior of cells 

through the analysis of their locations, shapes, and motion rel- 

ative to the blood vessel. 
• We introduce a high-precision cell selection module that, while 

keeping enough available cells for subsequent processing, guar- 

antees that the analysis of extracted features is not biased by 

the inclusion of wrongly detected non-cell regions. 
• Finally, we have designed a hierarchical explainability model 

which automatically discovers the most prominent cell behav- 

iors and relates them to meaningful subsets of relevant fea- 

tures, enabling the researchers to gain insight into biological 

processes related to cell motion. 

The remainder of this paper is organized as follows: 

ection 2 reviews the related literature. In Section 3 we first 

rovide a general description of our method of automatic feature 

xtraction for the analysis of cell migration in microscopy imag- 

ng, and then describe in detail of each constituent processing 

lock. Section 4 explains our proposed hierarchical model that 

utomatically discovers prominent cell behaviours and provides 

eaningful insights, thus increasing explainability. Section 5 de- 

cribes and discusses the experimental results that support our 

ethod whereas, finally, Section 6 summarizes our conclusions 

nd outlines future lines of research. 

. Related work 

In this section, we discuss automatic 3D segmentation meth- 

ds found in the literature as well as some works that, similarly to 

CME, combine 3D segmentation and tracking. 

Concerning 3D segmentation methods, we start by reviewing 

ore traditional approaches, which can be broadly divided into 

wo groups that frequently intersect: a) those based on morpho- 

ogical operations and histogram analysis; and b) those relying on 

nergy minimizing algorithms. Regarding the first group, Cheng 

t al. proposed a simple 3D cell segmentation method based on 

n adaptive thresholding followed by a splitting algorithm which 

elied on the size of the segmented regions ( Cheng et al., 2017 ). In

 Padfield et al., 2008 ), the 3D images were concurrently denoised 

nd segmented by combining wavelet coefficients at various levels, 

hus enabling the extraction of cells in images with low contrast- 

o-noise ratios. With respect to the second group, in ( Dufour et al., 

011 ), 3D active meshes were proposed. 3D active meshes are dis- 

rete deformable models which represent a surface as a triangular 

esh and minimize an energy functional based on image inten- 

ity, gradient magnitude and the geodesic length of the contour 
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s a regularization term. Pécot et al. suggested a Conditional Ran- 

om Field (CRF) to model the segmentation of vesicles and time- 

arying background estimation at the cellular scale ( Pécot et al., 

015 ). This process performs an energy minimization using a min 

ut-max flow algorithm. Energy minimization methods were more 

ffective at dealing with to fluorescence imaging challenges, like 

hotobleaching, than the morphology-based ones. 

In addition, other methods combined both techniques into hy- 

rid approaches. In ( Harder et al., 2011 ), a pre-processing using 

orphological operations, adaptive histogram thresholding and an 

ctive contour evolving the initial contours, were combined. Kong 

t al. suggested a segmentation method based on the gradient vec- 

or flow and an energy minimization derived from the original 

dge map, followed by an adaptive histogram thresholding to ac- 

urately segment each cell instance ( Kong et al., 2015 ). In general, 

raditional approaches are useful when contrast is enough to vi- 

ualize cell edges and cells do not collide. However, in more de- 

anding and cluttered scenarios such as the one addressed in this 

aper, their performance decays considerably. 

Additionally, in the last few years, several CNN-based meth- 

ds for 3D segmentation of medical imaging have emerged. V- 

et ( Milletari et al., 2016 ) and, especially, the 3D version of U-

et ( Çiçek et al., 2016 ) were specifically designed and have been 

idely adopted in medical imaging segmentation problems. More 

ecently, other approaches have delved into this topic introducing 

ore complex architectures to improve the results for particular 

asks. For example, in ( Chen et al., 2019b ) they proposed a hybrid

egmentation network combining a lightweight 3D CNN to learn 

ong-range 3D contextual information with a 2D CNN to learn fine- 

rained semantic information, which has proved to be efficient in 

ung cancer segmentation in CT scans. In ( Kamnitsas et al., 2016 ), a

ual-pathway CNN was proposed to segment brain lesions in MRI 

cans. It combines a multi-scale 3D CNN which analyzes the image 

t two different resolutions and a fully connected 3D CRF for post- 

rocessing. However, MRI and CT scans are high resolution imaging 

echniques, as opposed to microscopy imaging. 

Another research trend has tried to address detection and seg- 

entation tasks using the same unified network. In ( Jaeger et al., 

018 ), Retina U-Net was proposed as a hybrid segmentation and 

etection CNN, where coarser levels were used for object detec- 

ion (with classification and regression blocks), and high-resolution 

evels were used for the auxiliary task of segmentation over the 

hole volume. A more recent approach ( Tokuoka et al., 2020 ) in- 

roduced a 3D CNN to extract several quantitative criteria of em- 

ryogenesis in fluorescence imaging, including both segmentation 

nd detection sub-networks. Its reported performance (in terms of 

oU) is above 0.7, which is a good performance level for 3D seg- 

entation in the task of cell instance segmentation during em- 

ryogenesis. 

In addition to these segmentation methods, some systems have 

een proposed that jointly tackle the tasks of 3D segmentation 

nd tracking. Henry et al. proposed a semi-automatic framework 

or the study of neutrophil migration ( Henry et al., 2013 ). The 

ystem carried out an user modifiable Otsu’s thresholding seg- 

entation, tracked the neutrophils with a keyhole model which 

inked neighbouring neutrophils with similar directions in consec- 

tive time instants, and extracted a series of features over the 

racked neutrophils. Additionally, a fully automated system was 

roposed in ( Fazli et al., 2018 ), consisting of a pre-processing mod- 

le for MRI brain scans, cell detection based on histogram-based 

hresholding and tracking with the Hungarian algorithm for point 

atching. These systems were based on simple segmentation al- 

orithms that are not robust enough to tackle difficult scenarios. 

n fact, they were tested with only 9 and 2 4D volumes, respec- 

ively. Finally, a system was proposed in ( Lefevre et al., 2020 ), with

 semi-automated segmentation module based on Trainable Weka 
3 
D software ( Arganda-Carreras et al., 2017 ) (an ImageJ plugin), and 

 tracking method with collision detection and separation relying 

n a watershed algorithm. In this case, manual segmentation and 

he ImageJ interactive environment can become a bottleneck with 

arge-scale datasets. 

In this paper, we propose a fully automated framework to char- 

cterize cell migration in microscopy imaging, called ACME. Al- 

hough others ( Henry et al., 2013 ) already modeled neutrophil mo- 

ion towards a known lesion area in zebrafish, we propose a sig- 

ificantly enhanced characterization, based on both shape- and 

otion-based features computed and referenced with respect to 

he blood vessel surface. To the best of our knowledge, this is 

he first attempt to model the complete cell migration processes 

ithin blood vessels without any constraint, and to perform an au- 

omatic behavioral profiling at the cellular level. For that purpose, 

e have developed a robust pipeline that performs an efficient, un- 

iased and unsupervised analysis of cell migration, which allows 

he biological community to analyze the spatio-temporal behavior 

f cells. 

. ACME: Automatic cell migration examination 

In this section we first give a general description of our fully 

utomated system; then, a detailed explanation of its constituent 

rocessing blocks will be provided in subsequent subsections. 

The full pipeline of ACME, depicted in Fig. 1 , can be broken 

own into four modules: 

1. Our system receives a 4D volume as input, B ∈ R 

4 , with 3 spa-

tial dimensions (x, y, z) and time t. The volume is decomposed 

into T temporal steps, giving place to 3D volumes B t , t ∈ [1 , T ] ,

and each one is fed into the 3D joint segmentation module . This 

module generates three outcomes: 1) a mask V t defining the 

region of the 3D block corresponding to the blood vessel; 2) a 

set of N t binary masks { C t } , containing the regions candidate to 

be cells c n t , n ∈ [0 , N t ] ; and, c) for each candidate region n , its

probability of being a real cell, p n t . Let us note that the num- 

ber of binary mask N t may vary among frames in a sequence, 

as some cells may enter into or leave the region of the blood 

vessel being captured. A detailed description of this block will 

be given in Section 3.1 . 

2. Next, a 4D cell volume, C , is formed concatenating the se- 

quence of segmented 3D regions C t and passed to the three-pass 

3D tracking module . This system analyzes the time sequence of 

segmented regions and generates the trajectories r i , i ∈ [0 , I] ,

where I is the total number of trajectories identified in the 4D 

volume B . In addition, the tracking system further refines and 

updates the input 4D volume C , by handling collisions between 

cells. This tracking system consists of three sub-modules: 1) 3D 

Kalman filter tracking ( Welch and Bishop, 1995 ), 2) collision 

detection, and 3) morphological post-processing, which will be 

described in Section 3.2 . 

3. Given the set of trajectories, R , together with the blood ves- 

sel V and cell segmentations { C } , the feature extraction module 

is in charge of characterizing the cell dynamics within short- 

time windows. Specifically, short-term features F R are formed 

by aggregating two types of features: a) instantaneous features, 

related to the position and shape of the cells in each time in- 

stant; and b) dynamic features, representing both the evolution 

of these instantaneous variables in a short-time window and 

other properties defining the cell trajectory. More details about 

the features extraction module are given in Section 3.3 . 

4. The cell selection module is the last step of the analysis system. 

Relying on the short-term features and the previously com- 

puted probabilities p n t , and applying some filters that enforce 

certain constraints in accordance with the biological character- 
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Fig. 1. Overview of the processing pipeline of ACME. Each 3D block corresponding to a time instant of a 4D volume is fed into the 3D joint segmentation module, which 

produces a blood vessel 3D mask, a set of individual cell 3D masks and their well-segmented probabilities (indicating, for each cell, its probability of being well-segmented). 

Then, considering the 3D cell data over time, the 3D tracking method proposes the trajectory of each potential cell. Next, the feature extraction module analyzes each 

potential cell and its trajectory and to provide a comprehensive set of instantaneous and dynamic features. Finally, the cell selection module, according to the features and 

the well-segmented probabilities, discards those segmented regions not likely to be a cell. 

Fig. 2. Illustrative examples of 3D time instances of 4D volumes of intravital fluo- 

rescence microscopy (z-stacked). Samples are heterogeneous in terms of resolution, 

luminiscence and blurring, especially in cell channels. 
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istics of the cells, this module selects, from the entire collection 

R , the final set of valid trajectories S = s j , j ∈ [0 , J ] , where J is

the total number of valid trajectories. A more detailed explana- 

tion is given in Section 3.4 . 

Finally, we build a feature database including the short-term 

eatures F S associated with every time instant t of the selected 

rajectories S . Once the feature database is created, the different 

ell behaviors can be explained from the features, as described in 

ection 4 . 

.1. 3D Strongly-Regularized segmentation module 

Although there exist networks tailored to perform semantic 

egmentation in medical imaging ( Çiçek et al., 2016; Jaeger et al., 

018 ), in vivo cell microscopic imaging within blood vessels poses 

articular challenges; particularly: 

1. Cell pixel proportion is small with respect to the other two 

classes (vessel and background pixels), leading to a heavy class- 

imbalance problem that should be properly addressed. Let us 

note that we consider the full vessel volume, and not only its 

walls, as fluorochromes affect the full volume. 

2. Intravital fluorescence microscopic imaging methods are un- 

stable: they are heavily affected by subject reaction to con- 

trast agents and movement, photobleaching, poor resolution 

and blurring. Hence, the data extracted are variable in terms 

of luminiscence, noise and contrast, as illustrated in Fig. 2 . 

3. For the specific scenario tackled in this paper, maximizing cell 

detection precision (i.e., minimizing false positives) is essential: 

the system must properly detect the cells with at least 95% pre- 

cision to ensure that the subsequent cell behavior analysis is 
4 
not biased by the presence of badly segmented cells or artifacts 

(although this requirement might be relaxed according to the 

system robustness). 

The 3D strongly-regularized segmentation CNN architecture is 

epicted in Fig. 3 . The regularization process aims to improve the 

ell and blood vessel segmentation by the use of multiple CNN 

ranches devoted to: link blood vessel and cell segmentations, im- 

rove the robustness and maximize cell detection precision. Specif- 

cally, we have built three subsystems on top of a 3D U-Net back- 

one ( Çiçek et al., 2016 ) to address each one of the challenges de-

cribed above; namely: 

1. Addressing class-imbalance : Since the segmentation quality ben- 

efits from addressing the segmentation of both the blood ves- 

sel and the cells using a single 3D CNN, we need to tackle 

the aforementioned class-imbalance problem. In particular, we 

have designed a two-branch segmentation head (see Fig. 3 ). The 

first branch ends with a conventional multi-class cross entropy, 

L CE , considering the original 3-class problem (vessel, cells and 

background pixels); whereas the second branch considers a bi- 

nary cell-vs-rest problem and enforces the CNN to more pay 

attention to the cell segmentation. To that end, we have in- 

troduced a regularization loss in the form of α-balanced focal 

loss ( Lin et al., 2017 ). Working on a binary problem has led to

better results than simply regularizing the multi-class branch. 

The rationale behind is that the joint imbalance between the 

three classes made especially difficult to adjust the correspond- 

ing weights for both vessel and cells. 

To be more precise, let us consider a cell-vs-rest binary seg- 

mentation problem, where the label y = 1 means that a pixel 

belongs to a cell and y = 0 that is either background or vessel, 

and define p ∈ [0 , 1] as the model’s estimated pixel probability 

for the cell class. Hence, the α-balanced focal loss is: 

F L BCE = −α(1 − ˜ p ) γ log ( ̃  p ) (1) 

where γ ≥ 0 is a tunable focusing parameter, α is the cell- 

vessel sample proportion factor, and a ˜ p is the model’s esti- 

mated probability for the ground-truth class y of each pixel 

( ̃  p = p if y = 1 , and ˜ p = 1 − p, otherwise). Apart from this term,

we add a standard Dice Loss ( Milletari et al., 2016 ), as seen in

Eq. 2 , to regularize the segmentation at the 3D volume level, 



M. Molina-Moreno, I. González-Díaz, J. Sicilia et al. Medical Image Analysis 77 (2022) 102358 

Fig. 3. 3D strongly-regularized segmentation network architecture. On top of the 3D U-Net backbone, we have built three modules: a cell regularization scheme to tackle 

the cell-vessel sample imbalance; an auxiliary segmenter that aims to improve the effectiveness of the training procedure on the U-Net analysis-synthesis structure; and a 

well-segmented probability estimation branch which allows us to improve the precision at system level. 
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resulting F L BCE+ Dice , with both terms equally weighted. 

L Dice = 1 − 2 ( C t ∩ G t ) 

C t ∪ G t 
, (2) 

where G t is the ground-truth binary mask corresponding to the 

time instant t, and the operators ∩ and ∪ the intersection and 

union, respectively, of the binary masks. 

2. Addressing strong data variability : It is known that the analysis- 

synthesis structure of 3D U-Net hinders the gradient back- 

propagation in scenarios with few and variable data ( Glorot and 

Bengio, 2010 ). To address this problem, we have added an aux- 

iliary segmenter at the end of the analysis path ( Szegedy et al., 

2015 ), which: 1) works on a low resolution representation of 

the image, thus favoring the robustness and the network ca- 

pacity to identify the cells in the analysis path, instead of max- 

imizing segmentation precision (this is performed in the syn- 

thesis path); and 2) injects additional gradients, thus improving 

the effectiveness of the training process and, consequently, the 

segmentation performance. This auxiliary segmenter focuses on 

the cells (the vessel is easier to segment) and uses the same 

α-balanced focal loss described above, here named L aux . 

3. Maximizing cell-detection precision : In demanding scenarios such 

as the one tackled in this paper, current 3D segmentation CNNs 

are far from achieving the required 95% precision level for cell 

detection. However, such precision value is necessary to avoid 

biases in the subsequent cell behaviour analysis due to the 

presence of badly segmented cells or artifacts. To this purpose, 

instead of considering an instance segmentation problem ( He 

et al., 2017; Jaeger et al., 2018 ), we have estimated the probabil- 

ity of a region being a well-segmented cell, which is used as an 

input to the subsequent cell selection module to considerably 

raise the precision level. Specifically, this probability estimation 

has been built through a separate branch of the CNN, which re- 

lies on 3D segmentation bounding boxes as regions of interest 

(RoIs) to decide whether a cell is well segmented or not. This 

branch is trained through a binary cross-entropy loss function 

named L det (refer to Eq. (3) ) that considers a proposal c n t as 

good ( βn = 1 ) when the 3D IoU between the ground truth g n t 

and this proposal is above 0.7, and as bad ( βn = 0 ) when the 3D

IoU is below 0.5. We also explored the combination of segmen- 
5 
tation and object detection in the same network ( Tokuoka et al., 

2020 ), but this approach failed to converge properly in our sce- 

nario. 

 det = −( βn log ( p n t ) + (1 − βn ) log ( 1 − p n t ) ) . (3) 

The network is trained through a multi-stage pipeline: first the 

D segmentation part (through L CE , F L BCE+ Dice and L aux ) and then 

he well-segmented probability estimation branch (through L det ), 

hich relies on the cell segmentation mask. Finally, it is worth 

escribing our data augmentation, which has consisted in sev- 

ral random transformations including independent brightness and 

amma transforms over each channel, and geometric affine trans- 

ormations and flips. 

.2. A three-pass 3D cell-tracking with collision handling 

Cells migrating within blood vessels often describe erratic tra- 

ectories, vary their shapes, and collide with others. Hence, a ro- 

ust tracking system has to be able to deal with occasional changes 

f direction, keep a record of potential collisions and differentiate 

etween contacting cells. The 3D tracking system proposed in this 

aper addresses these challenging tasks through three passes that 

ombine a 3D Kalman filter with specifically tailored modules for 

ollision detection and handling, and post-processing, which suc- 

essively refine the results. 

The general scheme of the 3D tracking system is depicted in 

ig. 4 and comprises three passes, described next. 

.2.1. Pass 1. First Kalman pass and collision handling 

The first step consists in a 3D Kalman filtering followed by a 

ollision detection and handling algorithm. Specifically, it receives 

he sequence of cell segmentations provided by the previous mod- 

le, C t = t ∈ [1 , T ] , and performs a tracking based on a constant

cceleration Kalman filter, able to follow changes in cell velocity. 

s a result, it generates the associated trajectory for each cell and, 

hen applicable, an indication of a potential collision, which is 

tored in a collision matrix (in which case, it would require fur- 

her processing). 
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Fig. 4. Flowchart of the 3D tracking module. After the first 3D Kalman filtering process, collisions are detected and handled by reference-constrained splitting them. Next, 

we re-track the cells and apply a morphological post-processing on the remaining cells, depending on their relative volume with respect to the rest of instances in the 

trajectory. Finally, once the segmentations are modified, we perform a new tracking process that produces the final trajectories. 
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The Kalman Filter: A constant acceleration Kalman filter is used 

o model the temporal state x t using a linear state-transition model , 

.e.: 

 t = Ax t−1 + w t , (4) 

hich describes how the system evolves from the state at time t −
 , x t−1 , to the state at time t , x t , with A being the transition matrix

nd w t representing noise drawn from a zero-mean multivariate 

ormal distribution. In our particular case, the state variable x t is 

efined as follows: 

 t = [ r t v t z t ] 
T . (5) 

here r t , v t and a t are 3-dimensional vectors describing cell po- 

ition, velocity and acceleration at the time instant t , respectively. 

oreover, A takes the following form: 

 = 

⎡ 

⎣ 

I 3 �tI 3 
�t 

2 

I 3 

0 3 I 3 �tI 3 
0 3 0 3 I 3 

⎤ 

⎦ , (6) 

here �t is the time step between consecutive frames ( �t = 1 for 

implicity), and I 3 and 0 3 are the 3 × 3 identity and zero matrices, 

espectively. 

Additionally, given the state x t , the tracking system generates 

n observation that corresponds with the location of cell r t accord- 

ng to a linear observation model : 

 t = Ox t + g t (7) 

hich is defined through an observation matrix O and an observa- 

ion noise g t , which is assumed to be a zero-mean Gaussian noise. 
6 
n our particular case, the observation matrix is: 

 = 

[
I 3 0 3 0 3 

]
, (8) 

Following a multi-object tracking approach, at a given time in- 

tant t , there are two variables that need to be aligned: a) the 

 t active trajectories x m 

t , m ∈ [0 , M t ] (spanning over previous in-

tants); and b) the segmented cells at t , c n t , n ∈ [0 , N t ] . Note that,

n general M t � = N t , which means that new trajectories may need

o be created or some of them deleted. 

Tracker-Cell Assignment: The assignment process is carried out 

n two steps. First, we perform hard assignments: when the cen- 

roid of a segmented cell c n t falls within a predicted active trajec- 

ory x m 

t , the cell is assigned to it ( n → m ) and not further consid-

red in the assignment process. Second, we perform soft assign- 

ents. In this case we require both temporal and size and shape 

onsistency, i.e., if the distance between the cell and the predicted 

rajectory is small and the cell properties also fit those of previous 

nstants in the same trajectory, we perform a soft assignment. 

Collision detection: Sometimes two cells collide or separate from 

ach other after colliding, which causes that M t � = N t . In order to

roperly handle these situations, a collision detection strategy is 

eeded. After the assignment process is finished for a time instant 

, if a segmented cell c ̃ n 
t remains unassigned, we check if it comes 

rom a previous collision (i.e., there was certain overlapping be- 

ween that cell c ̃ n 
t and one of the cells tracked in the previous time 

nstant c n 
t−1 

). If so, we register the corresponding event in the col- 

ision matrix, otherwise, we consider that a new cell has entered 

nto the scene, and we simply add a new track accordingly. And 

onversely, if an active trajectory x ̃ m 

t remains unassigned at time 

, we identify its assigned cell in the previous instant c ̃ n / ̃  n → ˜ m ,
t 
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Fig. 5. 3D tracking. Illustrative example of how the splitting process works when 

collisions are detected. In red, time instants exhibiting detected collisions. From 

top to bottom, original segmentations of collided cells are processed by a water- 

shed algorithm, whose results are refined to avoid over-segmentation by a temporal 

consistency-constrained region merging algorithm. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 6. 3D tracking. Illustrative example of how the morphological post-processing 

works when outliers are detected. In red, time instant exhibiting a detected outlier. 

From top to bottom, original segmentations and post-processed ones, adapted to 

the typical volume of the cells constituting the trajectory. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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nd check if it shows a certain overlapping with any of the current 

ells c n t . Again, if so, we register the corresponding event. 

Splitting cell segmentations: Once collisions have been detected, 

 splitting algorithm is required. Current tracking systems, as the 

ne in PhagoSight ( Henry et al., 2013 ), use a watershed algorithm 

o split the detected collisions, but they do not take advantage of 

he temporal consistency of the cell segmentation. In our case, col- 

isions often occur only for a few time instants. Thus, we propose 

o leverage temporal consistency by considering two consecutive 

ime instants, as illustrated in Fig. 5 . The proposed splitting module 

s also based on a watershed segmentation algorithm, but we add a 

egion merging process to deal with over-segmentation (watershed 

s prone to over-segmentation when addressing difficult images). In 

articular, the proposed region merging process is guided or con- 

trained by the individual cell segmentations of previous reference 

lanes. 

The following rules are applied to detect when the splitting 

rocess is necessary: 1) if the same cell is marked with a colli- 

ion followed by a separation, we process all the temporal steps 

etween the marks; 2) if a cell separation is not preceded by a 

ollision mark, we process every temporal step back to the begin- 

ing of the volume; and 3) if a collision mark is not followed by a

eparation one for the same cell, we process every temporal step 

orward to the end of the volume. 

Hence, the output of this first pass is a set of refined segmenta- 

ions C t = t ∈ [1 , T ] where collisions have been identified and their

egmented regions split into the constituent cells. 

.2.2. Pass 2. Second Kalman pass and morphological post-processing 

The second step starts with the use of the same 3D Kalman 

lter over the refined segmentations which are now free from col- 

isions. Then, a morphological post-processing aims to remove any 

hort-term temporal data instability (resulting in spurious segmen- 

ations) by taking into account the rest of cell instances in the tra- 

ectory. In this manner, the morphological post-processing corrects 

he segmentation of those cells detected as outliers in a particular 

rajectory. Figure 6 illustrates this process. 

.2.3. Pass 3. Third Kalman pass and final trajectories 

The last step of the process entails applying the same 3D 

alman filtering process to the final segmentations, attained after 
7 
anding collisions and removing short-term temporal outliers. As 

 result of this third step, we obtain the final trajectories. 

The resulting 3D tracking method is remarkably consistent be- 

ause it relies on temporal stability to refine the segmentations 

collision detection and handling, and short-time temporal outlier 

emoval processes). Moreover, it is robust due to the Kalman filter- 

ng, which does not make strong assumptions regarding cell size, 

hape or trajectory direction. 

.3. Feature extraction 

Few studies so far, as the by Henry et al. (2013) , have previ-

usly tried to characterize neutrophils from automatic measure- 

ents. However, their method performs a directional analysis on 

he basis of a manually-defined lesion area and it is based on few 

utomatic measurements (neutrophil velocity, direction and angle 

owards the lesion area). In this paper we propose to perform an 

nrestricted analysis that relies on the specific geometry defined 

y the blood vessel, and extracts many features accordingly. It is 

nrestricted because we do not require any manual input and, fur- 

hermore, we leverage the geometry of the blood vessel to conve- 

iently align the feature extraction process. 

We model the migration process within the blood vessel in 

wo different coordinate systems: a) Polar coordinates: as the 3D 

lood vessel segmentation produces a temporal sequence of quasi- 

lliptical cross-sections, each cell position can be referred to this 

ross-section in polar coordinates (angular and radial position), i.e., 

he cell is located within the elliptical cross-section in terms that 

aturally fit the shape of the vessel; and b) Vessel-aligned Carte- 

ian Coordinates: in this case, we first set the Cartesian coordinate 

ystem so that the x-coordinate is aligned with the bloodstream 

irection, and y-coordinate corresponds to the major axes of the 

lliptical cross-sections. Then, the cell migration orientation is en- 

oded in differential terms with respect to the bloodstream direc- 

ion �θ
n 

(see Fig. 7 ). This is particularly appropriate for cell mi- 

ration, because, apart from shape changes, most of the biological 

echanisms result in either radial motility or erratic trajectories. 

To our knowledge, this is the most exhaustive set of auto- 

atic features computed from microscopy images so far. We aim 

o model short-term behaviors of the cells based on instantaneous 

nd dynamic features. Instantaneous features are extracted inde- 

endently for each time instant, while dynamic features are com- 

uted over the whole trajectory. Some of the instantaneous fea- 

ures are related to the physical attributes of cells, such as size and 

hape. Others describe the relative position of the cells with re- 

pect to the blood vessel, such as their polar position or their min- 

mum distance to the vessel. Additionally, we consider the well- 
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Table 1 

Proposed set of features for cell migration description. 

Type Attribute # Feature name 

Instantaneous Size/shape 1 Volume 

2 Superficial area 

3–5 Height, maximum width and height/width rate 

6–8 Sphericity, prolate and oblate ellipticity 

9–11 Principal axes length 

12–13 Extent and solidity 

14 Equivalent diameter 

Cell/blood vessel position 15–17 Cell X/Y/Z axis orientation respect to the bloodstream 

18–19 Cell polar position (radius/angle) 

20 Distance from cell center to blood vessel surface 

21 Minimum distance from cell to blood vessel surface 

Reliability 22 Well-segmented cell probability ( pth) 

Dynamic Motility 24 Trajectory length 

25 Traveled distance 

26–27 Maximum and mean velocity 

28–29 Meander ratio and tortuosity 

30 Angle between the trajectory and bloodstream 

Size/shape 31–44 Mean of size/shape instantaneous features (1–14) 

44–57 Standard deviation of size/shape instantaneous features (1–14) 

Cell/blood vessel position 58–62 Mean of cell position instantaneous features (15–19) 

63–67 Standard deviation of cell position instantaneous features (15–19) 

68–69 Mean of cell/blood vessel position instantaneous features (20–21) 

70 Minimum distance from the trajectory to blood vessel surface 

Reliability 71–74 Mean, maximum, minimum and range of well-segmented cell probability (22) 

Fig. 7. Representation of cell migration. For each cell, we extract its position in 

polar coordinates (radius r and angle φ) with respect to the quasi-elliptical cross 

section of the blood vessel and, additionally, describe its trajectory orientation in 

differential terms with respect to that of the bloodstream: �θ
n = [�θn 

x , �θn 
y , �θn 

z ] . 
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egmented probability estimation p n t (see Section 3.1 ) to include 

ertain information regarding the reliability of the description in 

he feature set. 

The computation of dynamical features requires considering a 

inimum-length trajectory segment to be considered meaningful 

nd stable. In our experiments we have selected �t = 21 time in- 

tants as the minimum-length of a short-term trajectory, following 

ur experimental protocol ( Sreeramkumar et al., 2014 ). In partic- 

lar, we use a Hann window centered on the time instant to be 

nalyzed, and a temporal spanning of �t instants. Although it is 

ossible that a cell changes its behavior over this short-term time 

nterval (for example, it might start migrating at any instant), we 

ssume that these changes do not happen within a segment. In- 

tead, we consider that other segments of the same cell may show 

ifferent behaviors. 

Table 1 summarizes the complete set of features proposed in 

his paper for short-term cell characterization. In summary, we 

ropose a set of 74 features, which can be either instantaneous or 
8 
ynamic, mainly based on essential attributes of the cells related 

o their size, shape, motility and relative position with respect to 

he blood vessel. 

.4. Cell selection module 

Although the proposed 3D strongly-regularized segmentation 

odule is quite robust, some of the cell segmentations may not 

e precise enough, with a negative impact on the subsequent cell 

ehavior analysis. In particular, some segmentations could not be 

uitable to extract features from, and thus, they could provide 

oisy features for the subsequent analyses. Hence, ACME also in- 

ludes a cell detection module, to detect those cells and remove 

hem before they influence the explainability. 

To properly analyze this potential source of error, we have cal- 

ulated the correlation between the instantaneous features de- 

ived from ground-truth segmentation masks and those derived 

rom our 3D CNN segmentations, for several levels of segmentation 

uality (measured in terms of IoU, Intersection over Union , between 

roposed segments and ground truth annotations). Figure 8 repre- 

ents these correlations for all the proposed instantaneous features 

#1 to #21 in Table 1 ) and for several levels of segmentation qual-

ty. As can be inferred from the results, only when IoU is 0.5 or 

igher, the features extracted from the CNN-segmented cells show 

 sufficient correlation with those coming from ground-truth seg- 

entations. A direct consequence from this study is that our sys- 

em requires an additional module in charge of automatically iden- 

ifying which of the tracked cells correspond with well-segmented 

nes (and therefore will produce an IoU over 0.5), in the absence 

f ground truth annotations. 

This cell selection module relies on the complete set of in- 

tantaneous and dynamic features, including that of the well- 

egmented cell probability, and some expert knowledge from bi- 

logists to make its selections. Specifically, it can be broken down 

nto the following sequential stages (see Fig. 9 ): 

1. Trajectory-length filtering : in order to guarantee certain stability 

of the dynamic analysis, we have removed those cells that do 

not remain at least �t = 21 time instants, in accordance with 

( Sreeramkumar et al., 2014 ). 
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Fig. 8. Correlation between instantaneous features derived from ground-truth segmentation masks and those derived from 3D CNN segmentations, as a function of IoU. As 

can be observed, for most of the features, correlation is strong (higher than 0.5) when T H iou ≥ 0 . 5 . It should be also noticed, however, that those features related to the cell 

orientation with respect to that of the bloodstream (15–17) exhibit a higher sensitivity to T H iou . 

Fig. 9. Flowchart of the cell selection module. After the feature extraction, we apply trajectory-length, low-confidence position and volume filters to remove the regions not 

susceptible to be cells. Finally, we apply a classifier to select the well-segmented cells with high precision. 

9 
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2. Low-confidence position filtering : some cells, especially when 

they are at the ends of the volume, cannot be located with ac- 

curacy due to incomplete blood vessel cross-sections, thus, re- 

sulting in low-confidence position estimations. These cells are 

also removed from further studies. 

3. Volume filtering : even after collision detection and handling 

modules, there are still a few agglomerations or badly seg- 

mented cells left. Therefore, those segmented regions whose 

size remains notably different from the typical cell size, sz, con- 

sidered by biologists ( < 0 . 5 sz and > 1 . 75 sz) are also removed

from further analysis. 

4. Well-segmented cell classifier : finally, features of the surviving 

cells are fed into a Random Subspace classifier ( Ho, 1998 ) that 

is trained to select those cells with enough segmentation qual- 

ity, i.e., IoU higher than 0.5. The classifier has been trained by 

labeling a subset of the data and the decision threshold has 

been selected to ensure that the precision of cell-detection is 

above 95% (i.e., at least 95% of the cells in the feature database 

are properly segmented, with a IoU greater than 0.5). 

. Hierarchical explainability 

The automatic feature extraction process proposed in this paper 

ims to become a powerful tool for biologists to characterize cell 

igration and, therefore, to gain insight into those biological pro- 

esses where migration plays a relevant role ( García-Prieto et al., 

017; Barabino et al., 2010 ). In this section, we describe a sys- 

em that demonstrates the usefulness of ACME. In particular, we 

ssume that the 4D microscopy data come from different popula- 

ions or groups which are known (each one representing a group of 

nterest, e.g., a control group, a mutation, a therapy, etc.), and the 

ell behaviors can be described as latent distributions over these 

roups, i.e., each group contains several cell behaviors, each one 

n a different proportion. The assumption of having latent behav- 

ors over observable populations is applicable to multiple biological 

cenarios without loss of generality ( Ballesteros et al., 2020; Di Pi- 

ato et al., 2021b ). Hence, for each cell under analysis, we know the 

roup it belongs to, but ignore its behavior. Moreover, the same 

ell may exhibit different behaviors over time, which makes our 

nalysis to focus on short-time periods where the cell behavior is 

table (see the definition of �t in Section 3.3 ). 

Once we have extracted the features representing each tempo- 

al segment of a cell, we aim to group them and discover consis- 

ent behaviors among cells, and to explain the resulting behaviors 

ased on their most discriminative features. To this purpose, we 

ave designed a hierarchical explainability module, which operates 

s follows (see left part of the Figure 10 ): first, it groups the cells

nto consistent behaviors using a clustering algorithm over the fea- 

ure vectors introduced in Section 3.3 ; second, it organizes these 

ehaviors in a hierarchy (from easily distinguishable behaviors –or 

roups of behaviors– to barely distinguishable ones); and finally, it 

xplains the resulting behaviors in terms of their most discrimina- 

ive features. In the following paragraphs we describe these proce- 

ures in more detail: 

1. Non-supervised behavior discovery . The behavior discovery mod- 

ule is in charge of selecting the optimal number of behav- 

iors K opt present in the data and clustering them into K opt 

clusters. The number of clusters K is the main parameter of 

our clustering algorithm, K-Means ( Lloyd, 1982 ), and has been 

chosen as follows: we run the algorithm for different val- 

ues of K ∈ [2 , K max ] , i.e, for different number of potential clus-

ters/behaviors, and a histogram of the number of cells exhibit- 

ing each behavior is computed for each group. Then, the opti- 

mal number of behaviors is the one which minimizes the his- 

togram intersection between the two most similar groups as 
10 
follows: 

K opt = arg min 

K∈ [2 ,K max ] 

⎡ 

⎣ max 
i, j∈ G 
i � = j 

HI 
(
h 

K 
g i 
, h 

K 
g j 

)
⎤ 

⎦ (9) 

where G represents the set of groups and h 

K 
g i 

is a K-dimensional 

vector with the normalized histogram of behaviors for the 

group i : 

h 

K 
g i 

= 

[
h 

1 
g i 

h 

2 
g i 

. . . h 

K 
g i 

]
(10) 

with h k 
i 

being the proportion of cells with behavior k in the 

group g i . 

By minimizing this histogram intersection, we separate behav- 

ior distributions in the considered groups. For example, if the 

goal is to distinguish between a healthy and a pathological 

group, the selected K opt must be chosen to maximally separate 

these groups in terms of their distribution of behaviors. After 

K opt has been selected according to this criterion, a simple but 

high-dimensional effective K-Means algorithm ( Lloyd, 1982 ) is 

used to cluster the normalized features into K opt behaviors. 

2. Hierarchical explainability . We have designed a hierarchical ap- 

proach to achieve explainable behaviors mainly due to the fact 

that the degree of dissimilarity is often variable between dif- 

ferent behaviors. Our aim is to hierarchically arrange the be- 

havior space, starting with the two most different subsets of 

behaviors (i.e., those subsets of behaviors which lay more sep- 

arated in the feature space) and, then, performing subsequent 

divisions according to subtler differences between behaviors. To 

do so, a modified Binary Partition Tree ( Breiman et al., 1984 ) 

has been chosen to hierarchically arrange the behavior space. 

At each branch of the tree, a binary partition is chosen as fol- 

lows: 

a) Considering only the subspace of behaviors contained in its 

parent branch, we build all the combinations of potential bi- 

nary partitions of that set. Each candidate partition entails 

two subsets of behaviors s 1 and s 2 whose division is evalu- 

ated. 

b) For both subsets s i , i = 1 , 2 , and assuming independence

among features, we model the distribution of each feature 

f as Gaussian Variables p s i ( f ) = N ( f | μ f,s i 
, σ f,s i 

) . 

c) We compute the overlapping between subsets as the 

median over the features of the overlapping coefficient 

( Inman and Bradley, 1989 ) between the distributions of sub- 

sets s 1 and s 2 : 

OV L (s 1 , s 2 ) = median 

f 
ov c(p s 1 ( f ) , p s 2 ( f )) (11)

where ov c stands for overlapping coefficient between Gaus- 

sian distributions. 

d) Among the candidate partitions, we choose that one s ∗1 , s 
∗
2 

that minimizes OVL: 

s ∗1 , s 
∗
2 = arg min 

s 1 ,s 2 

OV L (s 1 , s 2 ) (12) 

e) Finally, the algorithm determines if this best subset of 

behaviors is better than each behavior considered sepa- 

rately, in terms of Davies-Bouldin criterion ( Davies and 

Bouldin, 1979 ). If so, the hierarchy is updated with this par- 

tition and the algorithm continues evaluating new parti- 

tions. Otherwise, the algorithm ends with a branch in which 

the original subset is finally partitioned into individual be- 

haviors. Hence, it may happen that the last step of the hier- 

archy is not a pure binary but a multiple partition into the 

remaining behaviors. 

Once the hierarchy H has been obtained, we use a L1- 

regularized Logistic Regressor to select the most important fea- 

tures at each decision level. It is known that L1-regularization 
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Fig. 10. Block diagram of the hierarchical explainability module. The goal of this module is to partition the data into a small number of behaviors, which are illustrated 

in different colors on the right part of the figure. This module operates sequentially (see left part of the figure): 1) it groups the cells according to their behaviors; 2) it 

arranges the behavior space in a hierarchy; and 3) it explains the resulting behaviors by identifying the most relevant features. 
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(Lasso) is useful for feature selection as it tends to set weights 

of irrelevant features to zero. In particular, we have chosen the 

weight of the Lagrangian regularization parameter as the min- 

imum one that obtains a relative faithfulness in the training 

data over the 98% with respect to a non-regularized classifier 

(i.e., the classifier accuracy at the corresponding level is at least 

98% of the overall accuracy when no regularization is used, 

and therefore the classifier optimally fits the training data). In 

consequence, for each decision node, we have only a few fea- 

tures weighted by non-zero coefficients. Furthermore, to avoid 

any kind of redundancy (which might detract from their inter- 

pretability), we apply an additional Feed-Forward Feature Se- 

lection (FFFS) stage. 

At the end of this process, we can characterize each behav- 

ior with a small number of features together with an indicator 

of their importance, which is derived from the corresponding 

weight of the L1 classifier. 

. Experimental results 

.1. Dataset description and experimental setup 

To assess ACME, we have built an intravital microscopy (IVM) 

maging database containing neutrophils migrating within venules 

n cremaster muscles of mice, containing 147 4D captures com- 

osed of 2334 3D volumes. Data were acquired from 23 mice, a 

imilar number to the one in the previous studies ( Sreeramkumar 

t al., 2014; García-Prieto et al., 2017 ), with an IVM system built by

i (Intelligent Imaging Innovations, Denver, CO, USA) on an Axio 

xaminer Z.1 workstation (Zeiss, Oberkochen, Germany) mounted 

n a 3-Dimensional Motorized Stage (Sutter Instrument, Novato, 

A, USA). This set up allows precise computer-controlled lateral 

ovement between XY positions and a Z focusing drive for con- 
11 
ocal acquisition. 4D captures were acquired at 0 . 667 × 0 . 667 mi- 

rometers X/Y-intervals with a spatial resolution of 256 × 256 pix- 

ls, and variable Z-intervals ranging from 1 to 2 μm. The temporal 

ampling period was also variable, ranging between 4 and 20 s. 

ence, prior to any study, all the extracted features were normal- 

zed in terms of both Z and temporal sampling period. 

The 4D captures come from four populations or groups, namely: 

• Group 1, wild-type/control : mice without a treatment. Biologi- 

cal hypotheses suggest that neutrophils belonging to this group 

are larger, change their shapes and migrate over blood vessel 

surface. 
• Group 2, anti-Plt : mice with platelet depletion. Our existing 

data suggested that neutrophils belonging to this group are 

smaller, spherical and, hence, they do not migrate. 
• Group 3, FGR-KO : mice transplanted with bone marrow of a 

knockout mutant for FGR protein. The neutrophils in this group 

are expected to behave intermediate in relation to those of the 

groups 1 and 2. 
• Group 4, FGR-INH : mice treated with an inhibitor of the FGR 

protein. Neutrophils in this group should behave in a similar 

way to those of group 3. 

The dataset has been split into training, validation and test sets. 

oreover, 120 3D volumes belonging to groups 1, 2 and 3 have 

een annotated pixel-wise (blood vessel and 794 neutrophil in- 

tances) to train the 3D segmentation CNN and the selection mod- 

le. Each one of the annotations has been prepared by one ex- 

ert, but the level of variability among experts is reduced due to 

he annotation procedure, based on thresholding with a discrete 

umber of valid thresholds and manual refinement. Specifically, 

he Fleiss’ kappa coefficient κ (which measures the inter-annotator 

greement) ( Fleiss, 1971 ) is above 0.78 for five different annotators. 

aking into account that Fleiss’ kappa ranges between κ = −1 (to- 
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Table 2 

Comparative of blood vessel segmentation results with state- 

of-the-art methods. 

Method IoU (%) 

U-Net 3D ( Çiçek et al., 2016 ) 81.35 

Deeplab V3-3D ( Chen et al., 2017; Choi, 2020 ) 80.86 

ACME-vessel-only (cell-aware) 88 . 85 

ACME 88 . 09 
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l

(

al disagreement between the ratings) and κ = 1 (total agreement 

etween the ratings), we conclude that these levels of variability 

etween annotations are not relevant. 

In addition, in the annotated set, there are 149 temporal in- 

tances with collisions or separations out of a total number of 794 

emporal instances of cells, and with very varied dynamics. There- 

ore, we consider the size of the dataset enough to address the 

hallenge of collision management. 

Groups have been divided into 4 folds to perform cross- 

alidation, and both the segmentation CNN and the selection mod- 

le (the trainable modules) have been trained for each fold in an 

ndividual way. For feature extraction, the remaining data from 

roups 1, 2 and 3 have been tested on their corresponding test 

old, while data from group 4 have been tested using a system 

rained on the complete set of annotated data. 

The code has been developed using Python (for 3D CNN seg- 

entation and data visualization) and Matlab (Mathworks TM , USA) 

or the rest of modules. 

The experiments in this section are organized as follows: first, 

e present the results of the proposed system in terms of seg- 

entation and tracking performance, which are compared with 

hose of several state-of-the-art systems. For every one of them, 

e perform specific ablation studies, showing how the proposed 

ontributions gradually increase the performance of the methods. 

part from that, we present an incremental ablation study to an- 

lyze how the precision and recall in detection vary along the 

ipeline. Second, we examine the explainability results and their 

onsonance with biological hypotheses. Finally, we perform an er- 

or analysis and discussion, and a study of the influence of the op- 

ration point of the system. 

.2. Comparison with the state-of-the-art 

The goal of this section is to experimentally assess the pro- 

osed system in comparison with other relevant approaches of the 

tate-of-the-art. We have organized the results into two subsec- 

ions: first, the performance of 3D strongly-regularized segmen- 

ation CNN is assessed; then, the performance of 3D tracking is 

valuated. Additionally, complementary results in terms of preci- 

ion and recall are given throughout the complete pipeline. 

.2.1. 3D strongly-regularized segmentation module 

The first set of experiments is devoted to assess the 3D 

trongly-regularized segmentation network in comparison with 

ther state-of-the-art methods for medical image segmentation. 

emantic segmentation results are shown in terms of IoU in 

ables 2 and 3 for the blood vessel and the cells, respectively. 

able 3 also shows the results in terms of precision and recall for 

he cell detection task. 

Table 2 shows the results for blood vessel segmentation. For 

omparison with the state-of-the art we have selected U-Net 

D ( Çiçek et al., 2016 ) and Deeplab V3-3D ( Chen et al., 2017 ),

 Choi, 2020 ), state-of-the-art approaches for conventional seman- 

ic segmentation. As it can be observed, ACME provides a 10% im- 

rovement in terms of IoU, allowing us to conclude that cell posi- 

ions relative to the vessel are very important for the segmentation 
12 
rocess. Furthermore, when comparing the two versions of our 

ystem, there no significant difference between ACME-vessel-only 

egmentation and ACME using the joint approach (blood vessel 

nd cell segmentation). Nevertheless, it should be noticed that for 

ur vessel-only segmentation system to work properly, we needed 

o regularize with the cell labels (the cells within the blood ves- 

el were annotated). Therefore, although the joint segmentation 

as not revealed to be essential for the vessel segmentation (as 

t will be for the cell segmentation), the vessel-only segmentation 

equired cell-related information to be successful. 

Table 3 shows the results for cell segmentation and detection. 

lthough we have designed our 3D CNN as a semantic segmenta- 

ion system (e.g. it does not discriminate between joint instances 

f cells), mainly because our robust 3D tracking method can handle 

ollisions, some state-of-the-art approaches are formulated as in- 

tance segmentation networks. For comparison purposes, we have 

elected some specific approaches for cell detection: Retina U-Net 

 Jaeger et al., 2018 ), QCA-Net ( Tokuoka et al., 2020 ) (a very recent

nstance segmentation approach) and the original version of U-Net 

as a semantic segmentation approach). Apart from these state-of- 

he-art approaches, we have included three versions of our 3D sys- 

em to reveal the aggregated impact of each of our contributions 

n top of the U-Net 3D backbone, namely: the focal loss (ACME- 

ocal), the auxiliary segmenter (ACME-Focal & Aux), and the well- 

egmented cell probability estimation (ACME). 

ACME performs much better than both Retina U-Net (even 

ith anchors adapted to our particular problem) and QCA-Net. It 

s worth mentioning that QCA-Net is very effective in terms of 

recision due to its detection network, but it produces slightly 

orse segmentations in demanding scenarios as the one posed 

n this paper (low recall in our task). Regarding the three ver- 

ions of our system, the focal loss (ACME-Focal) makes the net- 

ork to pay attention to the cells, substantially improving recall 

ith respect state-of-the-art approaches; the proposed auxiliary 

egmenter (ACME-Focal & Aux) improves precision in cell detec- 

ion in a 10% while maintaining the recall; and finally, the estima- 

ion of the probability of well-segmented cell, which completes the 

ystem, only produces a slight improvement in precision and recall. 

n any case, the purpose of this last subsystem is to serve the sub- 

equent cell selection module, and so its impact will be significant 

o improve the precision even more. 

Finally, we provide some illustrative examples of both blood 

essel and cell segmentation in Figs. 11 and 12 , respectively. Re- 

ults for blood vessel segmentation show that U-Net 3D poorly 

eneralizes and when the blood vessel contrast is low cannot seg- 

ent the venule. However, ACME as well as ACME-vessel-only 

ell-aware, which is not included in the figure, produce consis- 

ent and precise results. Regarding the cell segmentation results, 

ig. 12 shows that ACME-Focal is less precise in cell segmentation 

ue to three reasons: 1) ACME benefits from blood vessel segmen- 

ation to discard cells out of the blood vessel; 2) ACME produces 

ore compact segmentations and less spurious detections; and 3) 

CME is more robust when contrast luminance is not stable along 

he blood vessel. 

.2.2. Three-pass 3D cell-tracking with collision handling 

In order to assess the proposed 3D tracking system with col- 

ision handling, we compare its results with those of PhagoSight 

 Henry et al., 2013 ) in terms of: 

• Recall: number of cells correctly associated with their ground- 

truth trajectory with respect to the total number of ground- 

truth cells. 
• Precision: number of cells correctly associated with their 

ground-truth trajectory with respect to the total number of de- 

tected cells. 
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Table 3 

Comparative of cell segmentation and detection results with state-of-the-art methods. 
∗Retina U-Net was adapted to our task: anchor sizes and feature map depths where the 

anchors are extracted were modified. 

Method IoU (%) Precision (%) Recall (%) 

QCA-Net w/o NDN ( Tokuoka et al., 2020 ) 45.85 28.65 25.31 

QCA-Net ( Tokuoka et al., 2020 ) 45.53 60.82 22.29 

Retina U-Net ∗ ( Jaeger et al., 2018 ) 51.55 46.46 56.56 

ACME-Focal 62.09 56.32 75.19 

ACME-Focal & Aux 62.82 65.81 74.81 

ACME 64 . 44 67 . 13 78 . 46 

Fig. 11. Illustrative examples for blood vessel segmentation (z-stacked). First col- 

umn: original volume; second column: ground-truth venule segmentation; third 

column: U-Net 3D and fourth column: ACME. 

Fig. 12. Illustrative examples for cell segmentation (z-stacked). First row: original 

volume; second row: ground-truth cell segmentation; third row: ACME-Focal and 

fourth row: ACME. 
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13 
• IDE: track identification instantaneous errors, percentage of cell 

trajectory errors for each detected track. 
• CMR: collision management success ratio, i.e., percentage of cell 

collisions correctly splitted. 

Results are shown in Table 4 . As observed, IDE is notably lower 

or our tracking system, which indicates that the tracks obtained 

y ACME are more stable than in the compared approaches. Fur- 

hermore, CMR increases, thus, more collisions have been correctly 

eparated. Finally, when comparing precision and recall of the seg- 

entation system before and after the 3D tracking system and col- 

ision management, there are no significant differences. The de- 

ay in precision and recall of Phagosight and ACME is due to 

ver-segmentation of some individual cells (much less frequent in 

CME). Finally, Fig. 13 shows several examples of collision handling 

hich illustrate the better performance of ACME with respect to 

hagoSight ( Henry et al., 2013 ). 

.3. Support to biological hypotheses 

ACME obtains substantially better results for both 3D segmenta- 

ion and tracking than the considered state-of-the-art methods, as 

emonstrated in the previous section. However, to perform a ro- 

ust behavioral analysis precision should be kept very high. Neu- 

rophil selection module, as described in Section 3.4 , removes in- 

alid cells for subsequent analyses. Improved results in terms pre- 

ision and recall after the filtering processes and Random Subspace 

lassifier are shown in Table 5 . 

Neutrophil selection module allows the system to reach the 

5%-precision operation point, which, as previously mentioned, al- 

ows us to perform a robust short-term behavior analysis of the 

ifferent populations, not biased by wrongly detected non-cell re- 

ions or artifacts. As shown in Table 5 , this high performance level 

n terms of precision is achieved in exchange for losing recall, 

hich is less relevant from the point of view of our analysis as 

ong as we can ensure the availability of enough cells to perform 

hat analysis (see data below). It is worth noticing that the most 

ignificant drop in recall comes from removing those cells whose 

rajectory is not long enough, a decision based on biological rec- 

mmendations to guarantee a correct dynamical analysis. Finally, 

he last significant improvement in terms of precision comes from 

he Random Subspace classifier, which also causes a decline in re- 

all. 

As a result of the application of the selection module, ACME 

as extracted features from 6800 time instances belonging to more 

han 400 neutrophils with very high precision. Data distribution 

s shown in Table 6 . At this point, the hierarchical explainability 

ethod (described in Section 4 ) has been applied to these data 

n order to analyze its agreement with our experimental-based 

ypotheses. Let us briefly recall that this module comprises two 

tages: 1) behavior detection: discovery of the optimal number of 

ell behaviors to represent the data; and 2) hierarchical explain- 

bility: creation of a behavior partition tree on which the explain- 
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Table 4 

Cell tracking results with respect to PhagoSight ( Henry et al., 2013 ). 

Method Precision (%) Recall (%) IDE (%) CMR (%) 

Segmentation data 67.13 78.46 - 0 

PhagoSight ( Henry et al., 2013 ) 61.36 70.25 3.36 12.15 

ACME 66 . 45 75 . 67 1 . 58 31 . 40 

Fig. 13. Illustrative examples of collision detection in tracking (temporal sequences). First row: original volume; second row: PhagoSight ( Henry et al., 2013 ) results; and 

third row: ACME results. As can be seen, ACME is able to split temporarily touching cells by relying on reference segmentations and does not swap trajectories between cells. 

Table 5 

Cell detection performance of the proposed system in terms 

of precision and recall. The impact of every component of the 

neutrophil selection module is evaluated taking as reference 

the baseline results achieved by the previous modules (segmen- 

tation and tracking). 

Component Precision (%) Recall (%) 

Segmentation data 67.13 78.46 

Tracking data 66.45 75.67 

Trajectory-length filtering 85.12 38.92 

Valid-position filtering 85.56 38.79 

Volume filtering 85.56 38.79 

Random Subspace classifier 95.28 30.48 

Table 6 

Dataset description. 

Group # Captures # Neutrophils # Time instances 

1 48 169 2685 

2 32 138 2008 

3 16 40 615 

4 27 95 1492 

Total 54 442 6800 
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bility will be based on, and selection of the most relevant features 

xplaining each decision level of the tree. 

The behavior detection module found five behaviors in these 

ata. The criterion chosen to determine the optimal number of be- 

aviors, K opt , was to maximize the difference between the behavior 

istributions of groups 1 (control) and 2 (anti-Plt), which are, a pri- 

ri , the two most opposed populations. Figure 14 (left) displays a 

-SNE ( van der Maaten and Hinton, 2008 ) graph that arranges the 

esulting behaviors in a 2D space (t-SNE allows the representation 

f high-dimensional data, 74-D in our case, in a low-dimensional 

pace). Figure 14 (right) shows a stacked histogram illustrating the 

ehavior distribution within each group. These stacked histograms 

eveal that every behavior is present in all groups, but in different 

roportions. For example, the first group contains the largest pro- 

ortion of neutrophils exhibiting the second behavior, while the 

rst behavior is dominant for the second group. 

Once we have discovered the behaviors, we have automatically 

reated a hierarchical behavior tree by partitioning the data at each 

evel into the two most distinguishable behaviors (or groups of be- 
14 
aviors). Figure 15 goes a step ahead and shows the resulting hi- 

rarchical tree and the associated explainability. In particular, for 

ach node, the most relevant features explaining the underlying 

artition are superimposed on the tree to illustrate the concept of 

ierarchical explainability. As we delve into the hierarchy, features 

re less informative and describe lower level differences between 

ehaviors. It should be also mentioned that the features are listed 

n order according to their relevance. 

Beyond the representation of Fig. 15 , different hierarchy levels 

an be easily described in textual form on the basis of the selected 

eatures as follows: 

• Level 1: non-migratory/migratory . This partition distinguish 

migratory behaviors (2, 3, 4 and 5) from the non-migratory 

one (behavior 1). In particular, neutrophils exhibiting this non- 

migratory behavior are more spherical and change less their 

shape; thus, they travel less distance than the neutrophils of 

migratory behaviors. 
• Level 2: pathogenic/non-pathogenic . At this partition level fo- 

cused on migratory behaviors, behavior 2 (pathogenic migra- 

tion) is separated from behaviors 3, 4 and 5 (non-pathogenic 

migration). Neutrophils showing pathogenic migration flatten, 

move over the blood vessel surface and are bigger than the rest 

of migratory ones. 
• Levels 3 and 4: non-pathogenic migratory behaviors . These 

levels allows us to differentiate behaviors 3, 4 and 5 (all of 

them non-pathogenic migrations) in terms of size, shape and 

segmentation system scores (well-segmented probabilities). 

In addition to this textual behavior description, we can rely on 

he most prominent features at each hierarchical level to graphi- 

ally display how discriminative each feature becomes at that level. 

igures 16 , 17 , 18 and 19 show the most important features to dis-

inguish behaviors at different levels. As can be observed, promi- 

ent feature values are highly correlated with behavior distribu- 

ion, specially at higher levels in the hierarchy. In addition to this, 

eatures ranked first at each hierarchy level are more descriptive 

f the behavior (correlation between feature representations and 

ierarchy level distributions is higher). 

The previous results allow us to conclude the hierarchical ex- 

lainability method provides insights in full agreement with our 

iological model. The first group (control) contains the larger pro- 

ortion of pathogenic migratory neutrophils (larger, moving over 
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Fig. 14. Spatial arrangement of behaviors in a 2D t-SNE plot (left) and stacked histograms showing behavior proportion within each group (right). 

Fig. 15. Hierarchical explainability diagram. Behaviors (or groups of behaviors) are displayed as blobs. For each node, the features selected to explain the partition are shown 

in order of importance. It should be noted that hierarchical explainability is accumulative, in the sense that, for example, behavior 4 is migratory (level 1), non-pathogenic 

(level 2) and has the distinctive features explained at level 3. 

Fig. 16. Hierarchical explainability model: t-SNE diagram showing prominent fea- 

tures for discriminating between migratory and non-migratory behaviors. 

Fig. 17. Hierarchical explainability model: t-SNE diagram showing prominent fea- 

tures for discriminating between pathogenic and non-pathogenic behaviors. 

15 
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Fig. 18. Hierarchical explainability model: t-SNE diagram showing prominent fea- 

tures for discriminating between behavior 4 from behaviors 3 and 5 (all non- 

pathogenic). 

Fig. 19. Hierarchical explainability model: t-SNE diagram showing prominent fea- 

tures for discriminating between behaviors 3 and 5 (both non-pathogenic). 
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Fig. 20. Illustrative examples of the most serious errors related to the blood ves- 

sel segmentation (z-stacked). First row: original volume; second row: ground-truth 

venule segmentation; third column: ACME result. 

Fig. 21. Illustrative examples of the most serious errors related to the cell segmen- 

tation (z-stacked). First row: original volume; second row: ground-truth cell seg- 

mentation; third column: ACME result (errors highlighted in red boxes). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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he blood vessel surface and contributing to inflammatory injury), 

hile their abundance becomes notably smaller in groups 3 and 

, revealing the effectiveness of these two therapies. Additionally, 

roup 2 (platelet depletion) contains mainly non-migratory cells: 

hen neutrophils cannot recruit platelets the mechanisms of mi- 

ration are affected ( Sreeramkumar et al., 2014 ). Non-pathogenic 

igrations are less frequent in groups 3 and 4 in comparison 

ith the control group, thus, therapies avoid the emergence of the 

athogenic migration in favor of the non-pathogenic ones. 

.4. Error analysis and discussion 

In order to provide more insight into the capabilities of the 

roposed system, we have analyzed its errors on a module basis. 

oreover, we have examined the sensitivity of the behavior anal- 

sis system to the operating point of the cell selection module, in 

erms of both the stability of the resulting behaviors and the vari- 

tion of behavior proportions within each group. 

Figure 20 shows some illustrative examples of the most serious 

rrors of the blood vessel segmentation branch of the 3D strongly- 
16 
egularized segmentation CNN. As can be observed, these errors 

re due to either significant photobleaching affecting the complete 

olume (or parts of it), or the presence of secondary blood ves- 

els. However, as can be inferred from the examples, even in these 

ases, the system is robust and usually provides an acceptable re- 

ult for blood vessel segmentation. Furthermore, the valid position 

ltering in the cell detection module can remove the cells if they 

re beyond the limits of a inaccurate segmented blood vessel. 

Figure 21 shows some illustrative examples of the most serious 

rrors of the cell segmentation branch, for example, cells exhibiting 

oor contrast can result in misdetections. Apart from that, when 

he blood vessel is not precisely segmented some cells can be 

egmented outside the venule. Nevertheless, although this is un- 

oubtedly a tough problem, the system is robust enough and pro- 

uce compact and meaningful segmentations. Moreover, the sys- 

em is able to segment some multiple-neutrophil agglomerations 

nd even some difficult cells (not annotated in the ground-truth), 

nd the cell selection module selects the best segmented cells, re- 

oving some of these errors. 

Regarding the 3D tracking system, Fig. 22 illustrates two typical 

ources of errors where the proposed system fails to split colliding 
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Fig. 22. Two illustrative examples of errors of the proposed tracking system relate to collision management. First row: original volume; second row: ACME results. 

Fig. 23. Sensitivity of the explainability to the precision operation point: quantitative analysis. 
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ells: 1) the cells collide in a way that the watershed method can- 

ot detect two centers, resulting in only one object; and 2) the 3D 

trongly-regularized CNN segmentation is not stable across time 

nstances of the cells, so the proposed region merging process can- 

ot be properly constrained by the individual cell segmentations 

f previous reference planes, and the splitting method struggles to 

plit the touching cells. In any case, these errors do not affect the 

nal results in a meaningful way. 

.5. Sensitivity of explainability to the precision operation point 

Finally, we examine the influence of the operation point of the 

eutrophil selection module on the explainability. In particular, we 

elected 95% of precision as the system operation point, but this 

equirement could be relaxed if explainability is not too sensitive 

o it (this precision threshold could be relaxed to include new sam- 

les in the analysis). To study the sensitivity of the system we sug- 

est measuring the variation of two quantities as a function of the 

recision threshold; namely: the stability of the resulting behaviors 

nd the variation of the behavior proportions within each group. 

• Stability of the resulting behaviors . Let d̄ i be the intra-cluster dis- 

persion for the i th cluster, and let d i j be the inter-cluster dis- 

tance between the clusters i th and j th. We define the within- 

to-between (WTB) cluster distance ratio, D i j as follows: 

D i j = 

d̄ i + d̄ j 

d i j 

(13) 
17 
Let us define a weighted mean distance ratio between clusters 

as follows: 

D̄ = 

K opt ∑ 

i =1 

K opt ∑ 

j=1 

D i j · h 

j 

∑ 

j h 

j 
(14) 

where h 

j is the number of cells for the behavior j. 

This weighted mean distance ratio that aims to provide some 

insight into the separability of the detected behaviors and the 

stability of the behavior topology in the high-dimensional orig- 

inal space, and we have studied how this measure varies as a 

function of the precision threshold. 
• Variation of the behavior proportion within a group . In order to 

study how the behavior proportion varies as a function of the 

precision threshold, we propose to compute the histogram in- 

tersection within each group between the original case (95% of 

precision) and the rest of cases (when the precision threshold 

is lowered). 

Figure 23 shows the sensitivity of the system to the preci- 

ion operation point in terms of the previously described mea- 

urements. It should be noted that every decay in precision carry 

n more instability in behaviors and changes the behavior propor- 

ion within the groups, hence the suitability of a 95% precision 

alue. However, above 90% precision, variations in both measure- 

ents are manageable. > From a qualitative point view, as can be 

bserved in Fig. 24 , the clusters in the t-SNE begin to merge as 

e lower the precision threshold, specially under 90% precision. 

herefore, we can conclude that an operation point higher than 
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Fig. 24. Sensitivity of the explainability to the precision operation point: qualitative analysis. t-SNE diagrams for several precision operation points. From left to right: 95%, 

92.5%, 90%, 87.5% and 85%. It should be noted that for 90% of precision the t-SNE topology begins to change and for 85% the 4th behavior disappears. 
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0–92.5% precision produces a consistent explainability while the 

umber of neutrophils analyzed notably increases. 

. Conclusion 

In this paper, we have introduced ACME, an Automatic feature 

xtraction method for Cell Migration Examination in microscopy 

maging that is composed of four modules: 1) a 3D CNN that 

erforms a strongly-regularized segmentation of the blood vessel 

nd the cells; 2) a three-pass 3D cell tracking system with colli- 

ion handling; 3) a novel and exhaustive feature extraction module 

hich characterizes the short-term dynamics of the cells using co- 

rdinate systems tailored to the geometry of the blood vessel; and 

) a cell selection module that guarantees the quality of further 

nalysis based on the extracted features. 

The main goal of the system is to fill the gap between imaging- 

ased research and usability in cell migration analysis within blood 

essels. Traditionally, 3D cell segmentation has been performed us- 

ng software such as Imaris or Fiji, where manual supervision is 

equired; thus, the feature extraction process is onerous, and in- 

onsistencies among different annotators are unavoidable. ACME 

ims to overcome these limitations and provides a single and ro- 

ust pipeline to segment, track and extract features for this spe- 

ific task. A direct consequence is a significantly larger amount of 

vailable data for the subsequent analysis (up to an order of mag- 

itude larger), in comparison to previous approaches that required 

uman manual participation. ACME is also versatile enough to be 

pplied to different scenarios of 4D cell imaging which follow the 

escribed data acquisition protocol, or can be re-trained to obtain 

he optimal results with other tasks. Furthermore, ACME allows to 

asily design new features and modify the segmentation architec- 

ure to adapt to other scenarios. 

We have independently assessed the four modules of the pro- 

osed system in a challenging in vivo scenario. Our experimen- 

al results prove that a joint approach to the segmentation of the 

lood vessel and the cells leverage the context to notably improve 

he segmentation performance in comparison with other state-of- 

he-art methods. In particular, our 3D strongly-regularized cell seg- 

entation approach, improved by the use of a focal loss, an aux- 

liary segmenter and a well-segmented cell probability estimation, 

utperforms more complex instance segmentation CNNs. Further- 

ore, the proposed 3D three-pass tracking systems outperforms 

he tracking system available in PhagoSight. In addition, the pro- 

osed neutrophil selection module allows our system to raise the 

recision up to 95%, which is necessary for the posterior biological 

nalyses to be meaningful. 

Moreover, we have tested the proposed feature extraction sys- 

em on the characterization of cell migration, to gain insight into 

hose biological processes where migration plays a relevant role. 

o the best of our knowledge, this is the first time that such a 

omprehensive automatic analysis of in vivo neutrophil migration 

as been performed. The total population have reached hundreds 

f neutrophils with thousands of time instances. We have shown 

hat we can produce an interpretable description of the short-term 

ell behaviors, for cells belonging to four biological populations. To 

his end, we have proposed a hierarchical explainability method 

hat reveals the more prominent features for characterizing each 
18 
ehavior or group of behaviors, general enough to be applied to 

ifferent scenarios. In particular, although neutrophil migration de- 

cription is difficult (behaviors are similar to each other), the con- 

lusions reached by our method, based on an unbiased analysis 

ver a large neutrophil population, support the biological hypothe- 

es under study, namely that inflammation can be described by the 

ndividual behavior of its cellular constituents. 

The main lines of further research comprise the considera- 

ion of the temporal dimension in the segmentation task, either 

hrough 4D supervision of 3D segmentation CNN, or through a 

ull 4D architecture. In this way, cell detection will benefit from 

emporal continuity (cell instances overlap between two adjacent 

ime steps) and even cell collision can be detected. With respect 

o the hierarchical explainability method, the features extracted 

an be refined experimentally, and more complex hierarchical ap- 

roaches can be explored. Finally, Latent Dirichlet Allocation mod- 

ls ( Blei et al., 2003 ), successfully applied to other biomedical 

elds, e.g. providing interpretable biological information for gene 

xpression in single-cell RNA sequencing ( Wu et al., 2021 ), could 

e employed for behavioral cell profiling in our task. 
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