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Abstract
We demonstrate a remarkable property of metallic Fermi liquids: the transverse conductivity
assumes a universal value in the quasi-static (ω → 0) limit for wavevectors q in the regime
l−1
mfp � q � pF, where lmfp is the mean free path and pF is the Fermi momentum. This value is

(e2/h)RFS/q in two dimensions (2D), where RFS measures the local radius of curvature of the
Fermi surface (FS) in momentum space. Even more surprisingly, we find that U(1) spin liquids
with a spinon FS have the same universal transverse conductivity. This means such spin liquids
behave effectively as metals in this regime, even though they appear insulating in standard
transport experiments. Moreover, we show that transverse current fluctuations result in a universal
low-frequency magnetic noise that can be directly probed by a spin qubit, such as a
nitrogen-vacancy (NV) center in diamond, placed at a distance z above of the 2D metal or spin
liquid. Specifically the magnetic noise is given by CωPFS/z, where PFS is the perimeter of the FS in
momentum space and C is a combination of fundamental constants of nature. Therefore these
observables are controlled purely by the geometry of the FS and are independent of kinematic
details of the quasi-particles, such as their effective mass and interactions. This behavior can be
used as a new technique to measure the size of the FS of metals and as a smoking gun probe to
pinpoint the presence of the elusive spinon FS in two-dimensional systems. We estimate that this
universal regime is within reach of current NV center spectroscopic techniques for several spinon
FS candidate materials.

1. Introduction

There are relatively few measurable properties of systems with a Fermi surface (FS) that remain unchanged
by details of interactions and dispersion. One notable example is the invariance of the period of the
quantum oscillations [1], which serves as tool to measure of the cross sectional area of the FS. In this work
we will demonstrate that a different quantity enjoys a similar degree of universality. This quantity is the
quasi-static transverse or shear conductivity, denoted by σ⊥,0(q) that measures the net current in response
to a nearly static but spatially oscillating transverse or shear force (or equivalently a transverse electric field
when the Fermi liquid is charged) with wavevector q, as depicted in figure 1(a). As we will see in the
‘quantum’ regime (also referred to as ‘ballistic’) where the wavevector of the applied force satisfies
pF � q � l−1

mfp, where pF denotes the Fermi momentum and lmfp the mean free path, and in the
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Figure 1. (a) Transverse currents (blue arrows) and electric fields (red arrows) with wavevector q. (b) Schematic of a spin qubit
located at a distance z above a 2D sample detecting the magnetic noise 〈Bt B0〉 induced by current fluctuations 〈jr,t jr,0〉 in the
sample. (c) Depiction of the particle–hole excitations with small wavevector q that are tangential to the FS (solid blue line) and
dominate the dissipative transverse conductivity. For a given q these excitations are located near certain points, {p∗

i }, where the
Fermi velocity is orthogonal to q, and their contribution to the universal transverse conductivity depends only on the local radius
of curvature RF|p∗i , which we show explicitly in purple for one of these points p∗

1. The inset shows the region of the particle–hole
continuum (cf figure 2(b)) containing these (q,ω → 0) excitations.

low-frequency quasi-static regime (ω → 0), the transverse conductivity takes the following universal form in
two dimensions:

σ⊥,0(q) = (2S + 1)
e2

2hq

∑
i

Ri. (1)

Here e is the electron’s charge, h Planck’s constant, (2S + 1) is the spin degeneracy factor, and Ri is the
absolute value of the local radius of curvature of the FS at points i on the FS at which the Fermi velocity is
orthogonal to the direction of the wavevector q, as depicted in figure 1(c). Therefore, this limit is universal
in the sense that it is independent of the quasi-particle mass and interactions, and only controlled by the
local geometric shape of the FS.

Remarkably, we have found that the exact same limit of equation (1) is also approached by the
transverse electric conductivity of a strongly correlated state, namely, the U(1) spin liquid with a spinon FS
(for reviews see [2–4]), which has been a ‘holy grail’ of condensed matter research since the pioneering
ideas of Anderson [5]. This state features a form of spin-charge separation above one-dimension, in which
the electron fractionalizes into a spinful fermion (the spinon) and a spinless boson (the chargon or holon).
The chargon is gapped and the spinon remains in a gapless FS state, but both particles remain strongly
coupled via an emergent photon field. This state displays electromagnetic responses that are a sort of blend
of insulating and metallic behavior. On the one hand, while it has a vanishing electrical conductivity at
q = 0 in the DC zero temperature limit just like insulators, it also displays power-law subgap optical
conductivity [6], and even more strikingly, it can feature quantum oscillations under magnetic fields [7–9]
and cyclotron resonance [10], in analogy to metals. Our findings therefore highlight that the electric

2



New J. Phys. 23 (2021) 113009 J Y Khoo et al

transverse conductivity of the spinon FS not only behaves similar to a metal but, indeed, approaches the
same universal limit at low frequencies given in equation (1), although, as we will see, the crossover to such
a regime occurs typically at much lower frequencies than in a metal.

While the universality of this limit of the transverse conductivity in ordinary Fermi liquids has been
known since the early days of Landau Fermi liquid (LFL) theory [11], to our knowledge, its precise form for
anisotropic FSs has not been derived previously in two-dimensions, although a related dependence of the
quasi-static conductivity at finite wavevector on the FS curvature has also been discussed in the context of
the anomalous skin effect in 3D metals [12, 13]. More importantly, to this date there is no report of the
experimental observation of this remarkable universal regime of the transverse conductivity even in
ordinary two-dimensional Fermi liquids or metals. This is largely because it is experimentally challenging to
probe the linear response regime, where equation (1) holds, by controllably applying external transverse
electric fields (shear forces) with a finite wavevector that is not too small (q � l−1

mfp) and at very low
frequencies. There is however, an alternative way to probe linear response functions that does not require
actively applying external perturbations on the system, but instead to monitor its fluctuations since the
fluctuation–dissipation theorem dictates that these are governed by the dissipative part of the same linear
response susceptibilities. This is the key idea behind the technique of magnetic noise spectroscopy of
nitrogen-vacancy (NV) center spin qubits [14], which is emerging as a powerful tool to study current and
spin correlations of diverse condensed matter systems [15–20].

As we will demonstrate, the above regime of the transverse conductivity gives rise to a universal regime
of the magnetic field noise when it is probed at a distance z above the 2D sample, as depicted in figure 1(b),
within the range p−1

F � z � lmfp, and at low temperatures and low frequencies. In this regime, the
magnetic field autocorrelation function at a single point, takes the following universal form for both
ordinary metals and spinon FS states (SFSSs):

χ′′
BzBz

(z,ω → 0) 
 e2μ2
0

16πh

ω

z

(2S + 1)

2π
PFS +O(ω3). (2)

Here PFS is the perimeter of the FS in momentum space, and μ0 the permeability of free space. This noise,
which arises from orbital current fluctuations, dominates over the noise originating from the spin
fluctuations in both the SFSS and metals. While this regime can be achieved for spinons only at much lower
frequencies than for metals, we estimate that the required frequencies are of the order of MHz in organic
spin liquid candidates and of order of GHz in transition metal dichalcogenide spin liquid candidates,
placing them within experimental reach of current NV noise spectroscopic techniques [14]. Therefore, the
correlation function described in equation (2) is not only of conceptual interest due to its dependence on
the pure geometry of the FS, but it is also of great significance as an experimental probe to characterize
correlated states with an FS, as we will argue throughout out work.

Our paper is organized as follows. In section 2, we show that for a metal in the LFL regime, the
dissipative part of its conductivity tensor has only a single non-vanishing component in the quasi-static
limit in the quantum regime, σ⊥,0(q) (equation (1)). The effects of collisions on the transverse conductivity
are discussed in the isotropic system with a circular FS, where we establish the criteria on the frequency and
wavevector to observe the universal value σ⊥,0(q). We begin section 3 by introducing our treatment of the
low-energy excitations of the SFSS, in which we replace its effective Lagrangian by the bosonized and
linearized theory of the quantum Fermi liquid to obtain a bosonic bilinear theory in the Fermi radius
operator and the internal gauge fields. We show that for an isotropic system, the conductivity obtained
within this framework obeys the Ioffe–Larkin rule, and crucially, has the same quasi-static limit σ⊥,0(q) in
the quantum regime. Analogous to the metallic case, we establish the criteria on the frequency and
wavevector to observe the universal value. The physical intuition behind how an insulating SFSS exhibits the
same quasi-static transverse conductivity as a metal is discussed in the last subsection. In section 4, we
discuss how the low-frequency transverse conductivity can be probed by magnetic noise spectroscopy of NV
center spin qubits. In the quantum regime, we show that the universal transverse conductivity gives rise to a
corresponding universal quantum low-frequency noise (equation (2)). We then proceed to discuss the
effects of collisions on the noise and identify the relevant regimes for the frequency and the distance
between sample and probe to detect the universal noise in both metals and SFSSs experimentally. We
conclude with a summary of our results and discuss their implications on the detection of U(1) SFSSs in
section 5. The derivations for the various results in each section are detailed in the appendices.
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2. Transverse conductivity of electron Fermi surfaces

2.1. Universal transverse conductivity in the quantum regime
At low temperatures, metals enter the quantum LFL regime. Its low-energy dynamics is described by the
kinetic equation linearized to first order in the departure from the groundstate distribution δnp(r, t) and the
amplitudes of the electromagnetic fields [11]

∂tδnp + vp · ∂rδn̄p + E · vpδ(εp − εF) = I[δnp], (3)

δn̄p = δnp +
∑

p′
fpp′δ(εp − εF)δnp′ . (4)

Here εp and vp = ∂εp/∂p are the energy and velocity of a quasiparticle with momentum p, fpp′ the Landau
interaction function, εF the Fermi energy, I the collision integral, and E the net electric field that includes
both the external field and the self-consistently induced field by the electronic liquid itself. Here and
throughout most of this paper, we use the convention e = � = 1 for the electric charge and Planck’s
constant. Notice that, at linear order in δnp and the amplitudes of the electromagnetic fields, the magnetic
field B does not enter into the kinetic equation. In this paper, we will focus on two-dimensional (2D)
systems. We expect that certain qualitative aspects such as the universality of the results carry over to the
three-dimensional (3D) case.

The charge current density is given by [11]

J =
1

A
∑

p

vpδn̄p, (5)

where A denotes the system area. In the presence of a quasi-static (ω → 0), spatially modulated electric field
with a finite wavevector q, the solution of δn̄p to the transport equation equation (3) in the absence of
collisions (I = 0 in equation (3)) but in the presence of Landau parameters, is given by [11]

δn̄p = −i
E(q) · vpδ(εp − εF)

q · vp − iη
, (6)

where iη → i0+. From the above it can be shown [11] that there is a finite, spatially oscillating quasi-static
current that is purely transverse, i.e., J is perpendicular to q, and therefore, the dissipative conductivity
tensor in this limit has a single non-vanishing transverse component,

Reσαβ=‖,⊥(q,ω → 0) =

(
0 0
0 σ⊥,0(q)

)
, (7)

where ‖(⊥) denote the components longitudinal (transverse) to the direction q̂ = q/q (see appendix D for
details). In writing this equation we have implicitly assumed time-reversal symmetry, which forces the Hall
conductivity [21–23] to vanish. The quasi-static transverse conductivity in equation (7) is given by
(momentarily restoring the electric charge and Planck’s constant)

σ⊥,0(q) = (2S + 1)
e2

2hq

∑
i

RF|p∗i (̂q), (8)

where (2S + 1) is the spin degeneracy factor, {p∗
i } is the set of points on the FS at which the Fermi velocity

is orthogonal to q̂ (or equivalently where q̂ is tangential to the FS), and RF|p∗i (̂q) the absolute value of the
local radius of curvature of the FS at p∗

i (see figure 1(c) for illustration). Interestingly, if one could measure
in principle the full dependence of the above quasi-static transverse conductivity on the in-plane
orientation of the wave-vector q, one would be able to recover the shape of the FS, provided that the FS is a
smooth and strictly convex curve and that the FS has a k ↔ −k symmetry, as detailed in appendix E.

We refer to the conductivity in equation (8) as the ‘universal transverse conductivity’, because it
describes a physical response that only depends on fundamental constants of nature, the wavevector
magnitude q = |q|, and the pure geometry of the FS whereas information about interactions or even the
electron mass disappears. More specifically, within the current Landau-kinetic equation description, this
universality translates into an independence of the quasi-static transverse conductivity on the Landau
parameters and on the detailed wave-vector dependence of the quasi-particle dispersion as encoded in the
quasi-particle mass. Since the conductivities predicted within linearized Landau kinetic equation are
identical to those obtained with the bosonization approach to FS [24–26], and since the latter is believed to
capture exactly the low-energy and long-wavelength properties of interacting LFLs (see e.g. references
[27–30] for a detailed review), equations (7) and (8) are expected to describe the exact behavior of the
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conductivity of an interacting Fermi liquid in the precise ordering of limits ω � vFq � EF [31] in the
‘quantum’ regime. However, we would like to note that we have demonstrated this universality within an
effective low-energy field theory description of LFL theory. We believe however that the result should
remain true in more microscopic treatments, and hope that future studies address this.

We would also like to emphasize that the off-diagonal components of the conductivity in equation (7)
vanish generically only after imposing symmetries, for example when the wavevector q lies on a symmetric
mirror plane [26, 31]. However in the long-wavelength quasi-static limit ω � vFq � EF, equations (7) and
(8) are expected hold regardless of spatial symmetries, namely, for any given q along any direction the
current is orthogonal to q in the quasi-static limit. This is intimately related to the fact that longitudinal
electric fields (those with vanishing curl) can be represented by a scalar electric potential, φ, and any
dissipative electric current response to these fields at finite q (real part of the conductivity), should vanish in
the quasi-static limit, because a static potential leads to a new time independent Hamiltonian with a well
defined equilibrium state in which dissipative currents cannot exist [32]. Because of this reasoning, we also
expect equations (7) and (8) to hold even in systems with broken time reversal symmetry as a statement on
the symmetrized real part of the conductivity tensor that controls dissipative currents.

2.2. Effects of collisions on the transverse conductivity
The previous discussion has ignored the collision terms in the kinetic equation. In the present section we
will include these collisions, and demonstrate that the above behavior is recovered in the quasi-static limit
(ω → 0) of what we refer to as ‘quantum regime’, which is also often referred to as ‘ballistic’ [17]. This is
the regime in which the wave-vector of the external perturbation exceeds the inverse electron–electron and
electron–impurity collision mean free paths.

For simplicity, here we will consider a 2D system with time reversal and all the space symmetries of
trivial vacuum, which leads to a circular FS. In this special case, the transverse conductivity from
equation (8) reduces to

σ⊥,0(q) = (2S + 1)
e2

h

pF,0

q
, (9)

where pF,0 denotes the Fermi radius. To include the effects of collisions, we proceed to solve the transport
equation (3). We will restrict to analyzing spin symmetric fluctuations of the liquid, which can be done
equivalently by considering a spinless model of fermions and restoring the spin degeneracy factor (2S + 1)
at the end. The Landau interaction function simplifies, f(θ, θ′) = f (θ − θ′), where θ is an angle that
parametrizes points along the FS. By denoting the local deviation of the Fermi radius from its equilibrium
value as pF(r, θ), so that the local Fermi radius is pF,0 + pF(r, θ), the distribution deviation is given by
δnp = δ(p − pF,0)pF(r, θ), which allows equation (3) to simplify into the following form:

∂tpF(r, θ) + vp · ∂r

[
pF(r, θ) +

∫
dθ′

2π
f (θ − θ′)pF(r, θ′)

]
= −E · vp + I[pF]. (10)

The collision integral can be modeled as [33–35]

I[pF] = −Γ1(pF − P0[pF]) − Γ2(pF − P0[pF] − P1[pF] − P−1[pF]), (11)

Pm[pF] = eimθ

∫
dθ′

2π
pF(r, θ′)e−imθ′ , (12)

which captures momentum-relaxing processes such as electron–impurity collisions, as well as
momentum-preserving processes originating from electron–electron collisions, respectively characterized
by collision rates Γ1 and Γ2. Here Pm[pF] projects the Fermi radius onto the m-th harmonic eimθ.

Following the approach in reference [31], we obtain exact analytic expressions of the response functions
by solving equation (10) with finite Landau parameters {F0, F1} (see appendix A). When the driving field is
spatially modulated along an arbitrary direction q̂, due to the mirror symmetries of the system, σ can be
decoupled into a longitudinal (σ‖) and transverse (σ⊥) component, corresponding respectively to the
response to the net field component parallel E‖(q) = q̂ · E(q)q̂ and orthogonal E⊥(q) = E(q) − q̂ · E(q) to
the direction of modulation q̂,

J‖(q,ω) = σ‖(q,ω)E‖(q,ω), (13)

J⊥(q,ω) = σ⊥(q,ω)E⊥(q,ω). (14)

From the solutions to equation (10), we obtain the longitudinal and transverse conductivities

σ‖(q,ω) =
n

m

2i
2in
m ρ∗(q,ω) + F1ω− − ω+ − 2iΓ2

, (15)
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Table 1. Transport regimes of the LFL when qC > qD in which case
q∗ = qC and q∗∗ =

√
qCqD. Here, m∗ = pF,0/vF denotes the quasiparticle

mass while m = m∗/(1 + F1) denotes the transport mass, and
gS = 2S + 1 denotes the spin degeneracy factor. When qD > qC, the
hydrodynamic regime is absent and q∗ = qD sets the momentum scale
between the diffusive (q � q∗) and quantum (q � q∗) regimes.

Diffusive
q � q∗∗

Hydrodynamic
q∗∗ � q � q∗

Quantum
q∗ � q

σ⊥(q, 0+) ne2

m
�

Γ1
gS

e2

h
2m∗Γ2

q2 gS
e2

h

pF,0
q

σ⊥(q,ω) =
n

m

2i

F1ω− − ω+ − 2iΓ2
, (16)

ρ∗(q,ω) = −i
1

n2κ

q2

ω
, κ =

1

nEF

1

1 + F0
, (17)

ω± = ω − i(Γ1 + Γ2) ±
√

[ω − i(Γ1 + Γ2)]2 − (vFq)2, (18)

ω+ω− = (vFq)2, (19)

where n = p2
F,0/4π denotes the carrier density, m = m∗/(1 + F1) the transport mass, κ the compressibility

and EF = p2
F,0/2m∗ the Fermi energy. The difference between transverse and longitudinal conductivities can

be more conveniently expressed in terms of resistivities ρi = σ−1
i ,

ρ‖(q,ω) = ρ⊥(q,ω) + ρ∗(q,ω), (20)

In the limit of vFq � ω both conductivities approach the familiar Drude conductivity,

σD(ω) = σ‖(0,ω) = σ⊥(0,ω) =
ne2

m (iω + Γ1)
. (21)

The distinction between the transverse and longitudinal conductivities become evident at finite q, as
illustrated in figures 2(a) and (c). Most notably, while the real part of the longitudinal conductivity vanishes
in the quasi-static limit, the real part of the transverse conductivity approaches a finite value given by

σ⊥(q, 0+) = (2S + 1)
e2

h

pF,0

Q(q)
, (22)

Q(q) = qD +
√

q2 + q2
C − qC, (23)

qD =
2

1 + F1

Γ1

vF
, qC =

1

vF
(Γ1 + Γ2), (24)

where we have restored the spin degeneracy factor, electric charge, and Planck’s constant. This remarkable
difference remains even in the presence of sufficiently strong interactions, where the shear sound mode
emerges out of the particle–hole continuum ωshear > vFq and carries along with it a substantial weight of
the transverse current fluctuations [26, 31, 36–39] as illustrated in figure 2.

As shown in figure 2(d) and summarized in table 1, the presence of collisions gives rise to two additional
transport regimes—the hydrodynamic and diffusive regimes—when qC > qD. These are separated by
momentum scales q∗∗ =

√
qCqD and q∗ = qC respectively. Interestingly, the existence of a well defined

window of hydrodynamic behavior for the transverse conductivity can be achieved above some temperature
T in clean samples with mean free path lmfp, when Γ2 ∼ (EF/2π)(kBT/EF)2 � Γ1 ∼ �vF/lmfp (up to
logarithmic corrections) [40], but apparently also in dirty samples Γ2 � Γ1, with large F1 � 1. When
qC < qD, the hydrodynamic regime is absent and q∗ = qD sets the momentum scale separating the diffusive
and quantum regimes [31]. In the absence of Landau interaction parameters, these results are in qualitative
agreement with those obtained in reference [17], where the quantum regime is referred to as the ballistic
regime. In summary, probing the universal transverse conductivity in the quantum regime requires a
momentum q � q∗, where the quantum momentum scale q∗ is defined as

q∗ = max(qC, qD). (25)

where qC and qD were defined in equation (23).

6



New J. Phys. 23 (2021) 113009 J Y Khoo et al

Figure 2. (a) Conductivity Re σ⊥(q,ω) in the quantum regime at q = 0.1pF,0 [vertical line cut in (b)] for the non-interacting
case (black) and in the presence of interactions F1 = 3 (green). For nonzero interactions the shear sound resonance at ωshear

emerges from the particle–hole continuum. Regardless of interactions, Re σ⊥(q,ω) approaches the universal transverse
conductivity σ⊥,0(q) in the ω → 0 limit. (b) Dispersion of collective modes and particle–hole excitations in an LFL. (c) Solid
black and red lines show Re σ‖(q,ω) corresponding to those shown in (a) but with a finite collision rate Γ1 = 5 × 10−3vFpF,0 and
Γ2 = 0. For reference, the Drude conductivity (black dashed) is shown at the same scale. (d) The different transport regimes in
LFLs in the presence of collisions for the case of qC > qD. The quasi-static transverse conductivity scales differently with q in each
of the regimes, separated by the momentum scales q∗ and q∗∗ .

As a consistency check, we remark that using the conductivity in the absence of collisions σ0
‖,⊥(q,ω) as a

starting point, the effect of collisions on the conductivity can be taken into account by a simple rule
discovered in reference [36] (see appendix B),

[σ‖(q,ω)]−1 = [σ0
‖(q,ω − iΓ12)]−1 − Γ2

m

n
− iΓ12

ω(ω − iΓ12)
lim
ω′→0

ω′

σ0
‖(q,ω′)

(26)

7
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[σ⊥(q,ω)]−1 = [σ0
⊥(q,ω − iΓ12)]−1 − Γ2

m

n
(27)

with the short-hand notation Γ12 = Γ1 + Γ2. It is straightforward to show that our solutions in
equations (15)–(19) indeed satisfy these relations.

3. Conductivity of U(1) spinon Fermi surface states

Given the geometric and universal nature of the transverse conductivity in metals established in the
previous section, it is natural to ask if this behavior extends to other phases of matter that exhibit FSs. In
this section, we show that gapless quantum spin liquids with a spinon FS also exhibit the same universal
transverse conductivity.

3.1. Spinon Fermi surface low-energy theory
We begin by discussing the low-energy effective description of the SFSS, in which electrons fractionalize
into a spinless boson (the chargon) and spinful fermion (the spinon). For the underlying microscopic lattice
model, the electron creation operator, ψ†

rσ , at lattice site r and spin σ, can be written as

ψ†
rσ = f †rσb†r , (28)

where f †rσ and b†r are respectively the spinon and chargon creation operators. The electron operator is the
only physical operator out of which every microscopic Hamiltonian is constructed and also the elementary
object whose action allows to construct physical states. For example, only electrons hop between lattice sites,
and not isolated spinons or chargons. As a consequence the lattice partons are always forced to hop
together. Therefore, the spinon, chargon, and electron occupations are identical in every physical state

ρr =
∑
σ

ψ†
rσψrσ = ρs,r =

∑
σ

f †rσfrσ = ρc,r = b†r br. (29)

Similarly, the lattice particle current density operators satisfy

jr = js,r = jc,r. (30)

The traditional scenario in which the SFSS can be realized requires the electrons to be at half-filling of
the lattice (one electron per site), allowing the chargons to form a trivial Mott insulator, and the spinons to
form a Fermi sea with a volume equal to half of the Brillouin zone, although other variants such as the
composite exciton Fermi sea, which have different filling constraints due to the coexistence of spinon-like
particle and hole pockets, are possible as well [8, 9]. Hence, the ground state can be taken to be a product
state of chargons in a trivial Mott insulator and the spinons in the Fermi sea projected to satisfy the
constraints from equation (29). An effective field theory capturing this can be formally written as

L = LFS
spinon(p − a) + LMott

chargon(p + a − A) + · · · . (31)

Here a is an internal gauge field and A is the physical electromagnetic field. In this notation LFS
spinon(p − a)

would be a Lagrangian of free spinons in an FS state if we momentarily imagine the internal gauge field a to
be a non-dynamical probe field (an external parameter) and similarly LMott

chargon(p + a − A) would be the one
of bosonic Mott insulator if we imagine the field (A − a) to be a probe non-dynamical gauge field. At this
level in which the role of the gauge field a is simply to enforce the constraints of equation (29) and
equation (30), the ‘. . .’ in equation (31) denotes a list of other terms that only involve spinon and chargon
interactions, but not pure gauge field terms such as the Maxwell action for a. Such Maxwell terms arise
upon integrating out the chargon degrees of freedom, which is legitimate within the low-energy description
since they form a gapped Mott insulating state. Before doing so, we would like to emphasize some
important conceptual points, which will prove useful when interpreting our results later on. Notice that the
Lagrangian in equation (31) implies that the self-consistent electromotive forces that spinon, chargon and
electron experience are

Fs = e + v × b, (32)

Fc = (E − e) + v × (B − b), (33)

Fe = E + v × B, (34)

where

e = −∂rφ− ∂ta, b = ∂r × a, (35)

8
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E = −∂rΦ− ∂tA, B = ∂r × A. (36)

Here we are implicitly replacing the underlying compact lattice gauge fields by non-compact ones appealing
to the idea that this is legitimate at sufficiently low energies in the SFSS where the compactness has been
argued to be irrelevant even in two spatial dimensions [41]. Even though the SFSS is nominally an
insulating state to DC transport, the net electromotive force that the spinons can experience in response to
external electromagnetic fields can ultimately drive a variety of remarkable electromagnetic responses of this
state, such as the power law sub-gap optical conductivity [6], quantum oscillations [7–9], and sub-gap
cyclotron resonance [10]. Notice that the velocity, v, of the electron, chargon, and spinon are identical as it
follows from the constraint in equation (30). Thus even though they all move at the same speed they
actually experience different electromotive forces. This is at the heart of the very useful Ioffe–Larkin rule
[42, 43], which can be obtained by imagining that each of their currents are driven by their respective
effective net electromotive forces as follows [44]:

js = je = σse, (37)

jc = je = σc(E − e), (38)

which leads to the following physical electron conductivity (Ioffe–Larkin rule):

σ−1 = σ−1
s + σ−1

c . (39)

The above formula is valid even when the conductivities are viewed as frequency and wavevector dependent
tensors.

For purposes of understanding low-energy properties, we can consider the Lagrangian that results from
that in equation (31) after integrating out the chargons, which to the leading order in the effective gauge
field experienced by the chargons, A − a, is a Maxwell action because they are assumed to form a trivial
time-reversal-invariant Mott insulator. The effective Lagrangian density can be formally written as

L = LFS
spinon(p − a) +

ε

2
(e − E)2 − 1

2μ
(b − B)2 + · · · . (40)

Here ‘. . .’ would include higher order, gauge-invariant terms of the field A − a and other spinon
interactions, and ε and μ are effective dielectric and magnetic susceptibilities of the chargons, which we will
explicitly relate to the Mott scale, or more precisely the optical pseudo-gap of the SFSS later on. Even after
all these simplifications, the effective field theory written above remains strongly coupled [45], featuring
corrections to the spinon single-particle propagator that are in fact singular to leading order. It has been
long known that such singularities disappear to leading order in the gauge neutral spinon particle–hole
propagators, whose forms resemble those of the particle–hole propagators in LFLs [46]. When the range of
the gauge-field propagator is extended, which is for example physically justified in the related problem of
composite Fermi seas in half-filled Landau levels with Coulomb interactions, a controlled double expansion
approach has been devised to show that, indeed, such leading RPA LFL-like results are exact in the limit of a
large number of Fermion flavors and for small deviations of the range of the gauge propagator from the
Coulomb point [47]. We will employ a treatment that is ultimately able to reproduce these RPA results at
small (ω, q), while also allowing for spinon interaction effects in the form of Landau parameters to be
included, similar in spirit to the quantum Boltzmann approach employed in the pioneering work of
reference [48]. In particular, we are interested in computing the spinon conductivity which involves only the
spinon particle–hole propagator, and not the more singular spinon single-particle propagator.

Our approach is to replace the Lagrangian of the SFSS by the bosonized and linearized theory of the
quantum Fermi liquid [27–29], which is a second quantized version of ordinary LFL theory [25, 26]. The
resulting theory is a bosonic bilinear theory in the Fermi radius operator and the gauge fields, which can
therefore be solved exactly. Moreover because the theory is bosonic bilinear, the quantum and classical
equation of motions of its operators are identical [26] and therefore response functions, such as the
conductivities, can be obtained, without loss of generality, by simply solving the classical kinetic equation
describing the distribution function of spinons experiencing the e and b fields together with the Maxwell
equations describing the dynamics of these fields. Therefore our effective Lagrangian can then be written as

L =

∫
d2rL (41)

L =
ε

2
(e − E)2 − 1

2μ
(b − B)2 − ρsφ+ js · a + LFS

s , (42)

9
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where LFS
s is a short-hand notation for the linearized and bosonized spinon FS Lagrangian. It is

straightforward to verify that the physical electron density and currents in the above Lagrangian are
identical to the spinon density and currents, namely, that

(ρ, j) =

(
δL

δΦ
,
δL

δA

)
= (ρs, js) =

(
δL

δφ
,
δL

δa

)
, (43)

which is the low-energy version of the microscopic identities in the underlying model stated in
equations (30) and (31). Therefore, from here on, we will drop the ‘s’ when referring to spinon densities
and currents. The equations of motion of the internal gauge fields that follow from the above Lagrangian
are

ρ = ε∂r · (e − E), (44)

j =
1

μ
∂r × (b − B) − ε∂t(e − E). (45)

The spinon densities and currents are then related to the deviation of the spinon distribution function δnp

as follows:

ρ =
1

A
∑

p

δnp, (46)

j =
1

A
∑

p

vpδn̄p. (47)

The above equations need to be complemented by a kinetic equation for the spinon’s FS describing the
response of low-energy, interacting spinon particle–hole excitations to the electromotive forces they
experience in equation (32). This equation is identical to equation (3) that we wrote in the case of electrons
in ordinary metals, except that the physical electric field E is replaced by the internal electric field e
experienced by the spinons,

∂tδnp + vp · ∂rδn̄p + e · vpδ(εp − εF) = I[δnp]. (48)

Just as for electrons, notice that at the linearized level the effective magnetic field, b, does not enter into the
spinon kinetic equation. This provides a complete set of coupled equations that will be used to compute the
spinon electrical conductivity in the next section. Also, it is important to bear in mind that the collision
terms, I[δnp], in the case of spinons can be very different from those of electrons due to gauge field
fluctuations. Impurities lead to a momentum-relaxing collisions with a simple Drude-like form
Γ1 ∼ vF/lmfp, with lmfp the spinon mean free path, but gauge field fluctuations lead to momentum
relaxation rates that have been argued to scale as Γ1 ∼ ω4/3 in 2D [49], although the scaling with
temperature and frequency can be non-trivially affected by umklapp processes [50]. We would like to
emphasize that one of the key differences between the description of spinon dynamics and that of the
electrons, is that while in the case of the electrons the transverse part of the electric field E is viewed as a
non-dynamical probe external field, the emergent field e that the spinons experience is an emergent electric
field obeying the self-consistent Maxwell dynamics of equations (44) and (45).

3.2. Conductivities of the spinon Fermi surface state
We will now consider the response of the spinon FS to a space–time oscillating field E(q,ω). For simplicity,
we consider an isotropic system with a circular FS, for which the mirror symmetries guarantee a
decomposition into transverse and longitudinal responses,

j‖(q,ω) = σ‖(q,ω)E‖(q,ω), (49)

j⊥(q,ω) = σ⊥(q,ω)E⊥(q,ω). (50)

Using the Faraday’s laws ∂r × E = −∂tB and ∂r × e = −∂tb, we arrive at the following set of coupled
equations of motion for the combined spinon-gauge field system,

j‖(q,ω) = iεω(E‖(q,ω) − e‖(q,ω)), (51)

j⊥(q,ω) = iεω

(
1 − q2

εμω2

)
(E⊥(q,ω) − e⊥(q,ω)), (52)

j‖(q,ω) = σs‖(q,ω)e‖(q,ω), (53)
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j⊥(q,ω) = σs⊥(q,ω)e⊥(q,ω). (54)

Solving these equations (see appendix A), we arrive at the longitudinal and transverse conductivities of the
SFSS,

σ−1
‖ (q,ω) = σ−1

c‖ (ω) + σ−1
s‖ (q,ω), (55)

σ−1
⊥ (q,ω) = σ−1

c⊥ (q,ω) + σ−1
s⊥ (q,ω), (56)

σs‖(q,ω) =
n

m

2i
2in
m ρ∗(q,ω) + F1ω− − ω+ − 2iΓ2

, (57)

σs⊥(q,ω) =
n

m

2i

F1ω− − ω+ − 2iΓ2
, (58)

σc‖(ω) = i
n

m

ω

ω2
p

, ωp =

√
n

mε
, (59)

σc⊥(q,ω) = i
n

m

ω

ω2
p

(
1 − c2q2

ω2

)
, c =

1
√
εμ

, (60)

where we introduce the plasma-like frequency ωp and the velocity of the emergent photon c. Notice that the
spinon longitudinal and transverse conductivities σs‖ and σs⊥ above are identical to those of the electron
conductivities equations (15)–(20). As we will see, the plasma frequency controls the Mott scale, or more
specifically, it measures the optical pseudo-gap of the SFSS.

For the case where only F0 and F1 are non-zero, one can solve the full spectrum of collective and
particle–hole excitations of the SFSS exactly from the coupled equations (44)–(48). What we find is that the
spectrum separates into a particle–hole continuum and two isolated collective modes, as shown in
figure 3(b). One of these collective modes is purely longitudinal while the other is purely transverse, the
dispersions of which can be directly obtained from the poles of longitudinal and transverse conductivities
respectively (see appendix C for full expression). To leading order in q, their dispersions are

ωL 
 ωp +
1

2ωp

(
3 + 2F0

4

)
v2

Fq2 +O(q4), (61)

ωT 
 ωp +
1

2ωp

(
1

4
+

c2

v2
F

)
v2

Fq2 +O(q4). (62)

At long wavelengths the longitudinal mode has all its weight on the charge density and longitudinal charge
currents, and it is the analogue of a plasma oscillation of a charged fluid. On the other hand, at long
wavelengths the transverse mode is a coherent mixture of the emergent photon and the transverse electric
currents, and its gapping is analogous to the plasma gap of photons in metals [11]. These modes are gapped
here even in 2D because the emergent photon propagates strictly within the sample, unlike the physical
photon.

In addition, there is a continuum of spinon particle–hole excitations that remains gapless, as shown in
figure 3(a). However, the physical properties of the SFSS can in general be very distinct from that of metals.
This can be clearly seen, for example, in the conductivity in response to spatially uniform electric fields,
obtained in the limit q → 0, which governs optical and transport properties, and is given by

σ(ω) = σ‖(0,ω) = σ⊥(0,ω) = i
nω

mω2
p − mω(ω − iΓ1)

. (63)

As shown in figure 3(a), this conductivity features a peak at ω = ωp. This peak can be viewed as the optical
pseudo-gap or Mott optical lobe of these correlated states. We caution that our approach is aimed at
capturing only long-wavelength and low-energy properties of the SFSS, and, therefore this peak should be
taken as a caricature of these high-frequency optical phenomena. Notably, at low frequencies the
conductivity lacks the distinctive Drude peak and displays a power law, first obtained in [6], given by

Reσ(ω) 
 n

m

Γ1ω
2

ω4
p

+O(ω4). (64)

The aforementioned vanishing of the DC conductivity and optical pseudo-gap are often emphasized by
referring to the SFSS as an ‘insulator’. This state, however, can under some probes resemble a metal [7–10].
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Figure 3. (a) Transverse conductivity Re σ⊥(q,ω) of the SFSS in the quantum limit at q = 0.3pF,0 [along the vertical line cut in
(b)], with F1 = 0 (blue solid curve) and for F1 = 0.5 (blue dashed curve). The corresponding conductivities in metals are shown
in black. Conductivities in both systems converge to σ⊥,0(q) in the ω → 0 limit. The SFSS conductivity becomes rapidly
suppressed for frequency above Δωs. (b) Dispersion of various collective modes and particle–hole excitations in the SFSS
(Fl = 0). (c) Optical conductivity Reσ‖(q → 0,ω) for a metal and an SFSS in the presence of weak collisions
Γ1 = Γ2 = 0.1vFpF,0. The Drude peak in metals is shifted to the plasma frequency ωp > EF for the SFSS. (d) Plots of Reσ⊥(q,ω)
for metals (red) and SFSS (blue) away from the quasi-static ω → 0 limit (black). A smaller frequency 0.1Δωs(q∗) is required in
SFSSs compared to 0.1Δω(q∗) in metals to probe the quasi-static limit in the quantum regime q > q∗ .

Remarkably, in the long-wavelength quasi-static limit (ω � vFq � EF), it follows from equations (55)–(60)
that the transverse conductivity of this state is identical to that of a metal, and given by

σ⊥(q, 0+) = (2S + 1)
e2

h

pF,0

Q(q)
(65)
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Table 2. Order-of-magnitude estimate of the frequency width scale of transverse conductivity (see figure 3(a)) for
various U(1) spinon FS candidate systems at q = 0.1pF,0 estimated from equation (70).

Spinon FS candidate εF (meV) ωp (meV) Δωs/2π (c = 0.5vF) Δωs/2π (c = 2vF)

EtMe3Sb[Pd(dmit)2]2 59 80 [10] 7.8 GHz 120 GHz
κ-(ET)2Cu2(CN)3 98 87 [10] 30 GHz 480 GHz
1T-TaS2 1753 200 [10] 33 THz 520 THz
Monolayer WTe2 29 60 [54] 1.6 GHz 26 GHz

with Q(q) defined in equation (23). Likewise, the dissipative longitudinal conductivity vanishes,
σ‖(q,ω → 0) → 0, as expected for a quasi-static longitudinal perturbation. Importantly, the above implies
that the transverse quasi-static conductivity in the quantum regime q � q∗ (see equation (25)) is also a
universal number controlled only by the geometry of the spinon FS, and it is given by (cf equation (9))

σ⊥,0(q) = (2S + 1)
e2

h

pF,0

q
, (66)

and more generally for FSs of arbitrary shapes (cf equation (8)) by

σ⊥,0(q) = (2S + 1)
e2

2hq

∑
i

RF|p∗i (̂q). (67)

Although the transverse conductivities of metals and SFSSs approach the same value in the quasi-static
limit, their behavior is markedly different at finite frequencies, as shown in figures 3(c) and (d). In the case
of metals, the transverse conductivity vanishes for frequencies exceeding the particle–hole continuum
threshold, ω � vFq. In the case of SFSSs, however, the transverse conductivity vanishes rapidly over a much
narrower frequency window as illustrated in figure 3(a), which can be characterized by its half-peak
frequency

Δωs(q) =
vFc2q2

2ω2
p

Q(q), (68)

where Q(q) is defined in equation (23) (see appendix F for details). Therefore to reach the quasi-static
regime, the transverse conductivity of the SFSS should be measured at ω < Δωs(q). In particular, to probe
the universal transverse conductivity in the quantum regime, the transverse conductivity needs to be
measured for wavevectors above q > qC (see equation (25)) and for frequencies below scales Δω and Δωs

respectively for metals and SFSSs, given by

Δω(q) = vFq, (69)

Δωs(q) =
vFc2

2ω2
p

q3. (70)

The shaded region of the particle–hole continuum in figure 3(b) is where the universal quantum behavior
appears. These frequencies are estimated for some spinon FS candidate 2D materials in table 2 for
q = 0.1pF,0. More details on the organic material candidates d-mit and κ-ET can be found in reference [3].
The suggestion that 1T-TaS2 might harbor a U(1) spin liquid is more recent [51, 52], and more specifically,
the case for a SFSS has been argued based on heat transport measurements [53]. The possibility that a state
like the spinon FS might be realized in monolayer WTe2 has been highlighted by the recent remarkable
observation of clear quantum oscillations of resistivity in a strongly insulating regime [54].

Notice that the additional frequency-dependent scattering rate of the spinons Γω ∼ ω4/3 induced by
gauge field fluctuations [49] does not affect the quasi-static limit of the transverse conductivity in
equation (65), and also it will not change the width of the transverse conductivity frequency dependence
from equation (68), provided that Δωs � EF, which is a criterion easily satisfied as seen in table 2. The
precise scaling of the low-frequency scattering rate in the spinon FS is still a subject of debate (see e.g. [50]),
but provided this rate is much smaller than EF, we expect the quasi-static limit of the transverse
conductivity to be given by equation (65), and will feature a window of wavevectors Γω < vFq � EF over
which it will be governed by the universal quantum limit of equations (66) and (67).

3.3. Physical picture for the transverse metallic conductivity of spinons
We would like to give an intuitive explanation for the apparent contradiction that at low frequencies the
longitudinal transport properties of the SFSS are characteristic of an insulator, whereas its transverse
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Figure 4. Illustration of the difference between the chargon current (a), which corresponds to the non-dissipative magnetization
current, to the spinon current (b) that is solely responsible for the dissipative DC transverse conductivity. (c) Analogous to
resistors connected in series, the least conductive of the two will dominate the response.

conductivity is identical to a metallic Fermi liquid. From equations (37) and (38) or equivalently
equations (51)–(54) it follows that the electric fields experienced by the spinons can be written as

eα=‖,⊥ =
σc,α

σc,α + σs,α
Eα, (71)

where the frequency and wavevector dependences are implicit. Now, the key to the dramatic difference of
responses lies in the different behavior of the chargon’s longitudinal and transverse conductivity, which are
simply those of an ordinary dielectric diamagnetic insulator with permittivities (ε, μ). Insulators can
support non-zero transverse currents, because these have zero divergence and encode the spatial variation of
the magnetization without leading to charge density fluctuations, while long-wavelength currents are
suppressed at low frequencies because of the incompressibility of insulators. In fact, while the longitudinal
conductivity of the chargon insulator vanishes analytically at low frequencies,

σc,‖(q,ω) = iεω, (72)

the transverse conductivity diverges as

σc,⊥(q,ω → 0) = −i
q2

μω
. (73)

The above forms follow simply from the classic relations between polarization, electric fields and
longitudinal currents on one hand, P = εE‖, j‖ = ∂tP, and magnetization, magnetic fields, and transverse
currents on the other, B = μM, j⊥ = ∂r× M, combined with Faraday’s law ∂r× E = −∂tB. These results
are therefore expected to be exact at low frequencies and long wavelengths in a trivial ordinary insulating
ground state. It follows that the effective longitudinal electric field, e‖, that the spinons experience in the
regime vFq � ω � Γ1 � ωp is

e‖ ≈ i
ωΓ1

ω2
p

(
1 − i

ωΓ1

ω2
p

)
E‖, (74)

where we used the Drude form for the spinon conductivity. Therefore, we see that at low frequencies an
external longitudinal electric field will induce a vanishingly small longitudinal effective electric field on the
spinons, and this is the reason for the absence of their electrical Drude weight. In other words, one cannot
apply an effectively DC longitudinal electric field e‖ on the spinons, because we do not have external
sources outside the sample for this field and because its effective coupling to the physical external field E‖
vanishes at small frequencies. This can also be intuitively pictured from the Ioffe–Larkin rule, by noting
that the most insulating resistor dominates (see figure 4), which in this case is the chargon, leading to an
essentially insulating response.

Remarkably, on the other hand, in the transverse quasi-static limit [q � pF, ω � min(vFq, cq)], the
transverse electric field experienced by the spinons approaches the full externally applied transverse electric

14



New J. Phys. 23 (2021) 113009 J Y Khoo et al

field,

e⊥ ≈
(

1 − i
μω

q2

2π(2S + 1)pF

Q(q)

)
E⊥. (75)

This behavior can be understood again by appealing to the Ioffe–Larkin rule and noting that in this case the
diverging transverse conductivity of the chargons in equation (73), leads to the spinons dominating the
transverse resistivity in this case. Notably, equation (39) combined with Faraday’s laws for both the
emergent and the physical electromagnetic fields imply that within linear response theory, the effective
magnetic field experienced by the spinons, b, approaches the external physical magnetic field, B, in this
limit, b ≈ B. This property is in line with the curious mean-field finding in reference [9] that the effective
field experienced by spinons with a parabolic dispersion equals the external magnetic field in 2D at zero
temperature. More broadly, this is intimately related to the distinction between applying static magnetic
fields and electric fields to spinons, where the former are known to induce an average emergent magnetic
field that the spinons experience in resemblance to metals, while remaining largely unresponsive to DC
electric fields.

4. Spin qubit noise spectroscopy of metals and spinon Fermi surface states

NV center spin qubits are emerging as powerful and versatile detectors of magnetic properties of condensed
matter systems [14]. In particular, the NV center allows to measure the two-time autocorrelation function
of the magnetic field, at a point located at a distance z > 0 above the sample, χBμBν (z, t) = 〈Bμ(r + zẑ, t)
Bν(r + zẑ, 0)〉, where translational invariance in the 2D sample coordinate r is assumed
[14, 55]. This magnetic field fluctuations, are related to the dissipative part of the causal retarded
correlation function of magnetic fields [14, 17, 18, 56]

Nμν(z,ω) = −2π

�
coth

(
β�ω

2

)
ImχBμBν (z,ω). (76)

The magnetic field has contributions from the orbital magnetic moments caused by electric currents in the
sample and the spin magnetic moments. We will first discuss the contributions arising from electric
currents and demonstrate later on that the spin fluctuation contributions are subdominant at low
frequencies.

4.1. Universal quantum low-frequency noise
The contribution from currents can be obtained by using the Biot–Savart law. As detailed in appendix G
(see also reference [17]), we have found that the low-frequency noise is controlled by the transverse
quasi-static conductivity alone, and it is given by

χ′′
Bz Bz

(z,ω → 0) 
 μ2
0ω

4

∫
d2q

4π2
e−2qzσ⊥,0(q) +O(ω3), (77)

χ′′
BiBj

(z,ω → 0) 
 μ2
0ω

4

∫
d2q

4π2
e−2qzσ⊥,0(q)q̂ · êiq̂ · êj +O(ω3), (78)

where μ0 is the permeability of free space, and i, j = x, y denote the directions in the plane of the 2D sample
with corresponding basis vectors êi,j. Here and in the following, we write F′ and F′′ to denote the real and
imaginary parts of the complex function F = F′ + iF′′. The remaining components of the noise
χ′′

BiBz
(z,ω → 0) vanish in the presence of a symmetry that enforces the quasiparticle dispersion to satisfy

εp = ε−p, such as time reversal or space inversion (see discussion in appendix G). An interesting property
that can serve as a consistency check of the low-frequency regime in which only transverse currents
control the noise, is that the trace of the in-plane noise tensor equals the out-of-plane noise in this regime,

χ′′
BxBx

(z,ω) + χ′′
ByBy

(z,ω) = χ′′
BzBz

(z,ω) +O(ω3). (79)

When the NV center is located at distances so as to probe the quantum regime (also referred to as ballistic
in reference [17]), the above formula together with equation (8) leads to a remarkable geometric expression
for the low-frequency noise

χ′′
BzBz

(z,ω → 0) 
 e2μ2
0

16πh

ω

z

(2S + 1)

2π
PFS +O(ω3). (80)

See appendix G for derivation. Here PFS is the perimeter of the FS in momentum space, which in the
special case of a circular FS equals 2πpF,0. Therefore, in the quantum regime, the low-frequency noise only
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depends on the perimeter of the FS, and not on dynamical properties such as the quasiparticle mass or
interactions, and following the discussion in section 3.2, we see that it is identical for the SFSS and metallic
Fermi liquids.

Both the frequency and distance dependence of equation (80) are fingerprints of the regime of universal
quantum low-frequency noise, which can serve as consistency checks in experiments. In particular, the
linear in ω-dependence of the noise is a hall-mark of systems with finite density of gapless states that
contribute to magnetic noise either via current or spin fluctuations. Therefore, in addition to SFSSs and
metals, it would also be present in idealized magnets with perfect SU(2) spin rotational symmetry leading
to a quadratic magnon dispersion, and in Z2 spin liquids with an FS, as is shown in reference [18] for the
noise from spin contributions for some of these systems. The dependence on distance appears to be even
more special, as it distinguishes between SFSSs with U(1) gauge fields, where χ′′

BzBz
∝ 1/z, and gapless Z2

SFSSs. In the latter case, orbital current fluctuations are suppressed due to a gapped gauge field.
Consequently, the spin fluctuations, χ′′

spin,BiBj
(z,ω) ∝ 1/z3 (see below), dominate the noise and the distance

dependence could serve as a smoking gun to detect the elusive U(1) SFSS in correlated materials. We discuss
the detailed distance dependence in the next subsection.

4.2. Collisions and spin contributions to low-frequency noise
For simplicity, we focus here on the case of isotropic systems with circular FS. In this case, as we detail in
appendix I, the only non-trivial components of the magnetic noise can be written as

χ′′
BiBi

(z,ω) =
μ2

0ω

16π

∫
dqqe−2qz

(
σ′
‖(q,ω) + σ′

⊥(q,ω)
)

, (81)

χ′′
BzBz

(z,ω) =
μ2

0ω

8π

∫
dqqe−2qzσ′

⊥(q,ω), (82)

where i ∈ x, y in the above. The q e−2qz factor in the integrand acts like a filtering function that is peaked
around q ∼ z−1 that allows the noise from current fluctuations to be probed at different wavevectors q. This
wavevector selection is analogous to the noise from spin fluctuations, which is facilitated instead by a
q3 e−2qz factor in the integrand [18] (see also appendix H). For purposes of probing the finite but
low-frequency regime, in which the noise approximates its quasi-static quantum response
χ′′

BzBz
(z,ω) 
 χ′′

BzBz
(z,ω → 0),

χ′′
BzBz

(z,ω → 0) 
 (2S + 1)
e2μ2

0

16πh

ωpF,0

z
, (83)

we focus in the following discussion on the out-of-plane noise χ′′
BzBz

(z,ω). At low frequencies ω � vF/z, in
which case σ′

‖(q,ω) � σ′
⊥(q,ω) and therefore χ′′

BiBi
(z,ω) 
 χ′′

BzBz
(z,ω)/2.

To reach the quantum regime of noise given in equations (80) and (83) in both metals and SFSSs,
experiments must measure the noise at distances that are much larger than the typical Fermi wavelength
p−1

F,0 , but much smaller than the classical collision length z∗ ∼ q−1
∗ , with q∗ defined in equation (25), namely,

p−1
F,0 � z � z∗ = min

(
(1 + F1)vF

2Γ1
,

vF

(Γ1 + Γ2)

)
. (84)

At low temperatures, where the momentum preserving collision rate Γ2 vanishes, and the momentum
relaxing collisions rates are dominated by elastic impurities Γ1 ∼ vFl−1

mfp (assuming F1 is not large), the
above criterion can be simply expressed as

p−1
F,0 � z � z∗ ∼ lmfp. (85)

In general, the noise at longer distances will deviate from the behavior of equations (80) and (83) as shown
in figure 5 and summarized in table 3. The behavior of the noise in the classical hydrodynamic or diffusive
regimes was discussed in reference [17] and we review it and extend it to SFSSs in appendix I. While the
aforementioned requirement on the distance is the same for metals and SFSSs, the requirement in terms of
the frequency are more stringent for the SFSS than for the metal. This is a consequence of the behavior of
the transverse conductivity illustrated in figure 3(a), and discussed in the text surrounding
equations (68)–(70). More specifically, provided the noise is measured at a distance satisfying
equation (84), in order to reach the quantum regime in metals the frequency must be in the regime

ω � vF

z
for metals. (86)
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Figure 5. Plots showing the deviation of the magnetic noise due to current fluctuations from the quasi-static noise (black) for
metals at frequency ω = 0.1Δω(q∗) (red) and SFSSs at frequency ω = 0.1Δωs(q∗) (blue) corresponding to those shown in
figure 3.

Table 3. Frequency and distance dependence of low-frequency
magnetic noise from current fluctuations in various transport
regimes which is the same in both metals and SFSSs. For the
hydrodynamic regime, the function f(z) ∼ Ei(−z/z∗) − Ei
(−z/z∗∗), where Ei(x) denotes the exponential integral
function (see appendix I).

Diffusive
z � z∗∗

Hydrodynamic
z∗∗ � z � z∗

Quantum
z∗ � z

χ′′
BzBz

(z) ω
z2 ωf(z) ω

z

However, in the case of SFSSs within a distance satisfying equation (84), the noise must be measured at
frequencies

ω � Δωs(q = z−1) =
vFc2

2ω2
p

1

z3
for SFSSs. (87)

Typical values of Δωs are shown in table 2 for several spinon FS candidates. The behavior of the noise at
different finite frequencies for metals and SFSSs as a function of distance is shown in figure 5. We can see in
this figure that satisfying the frequency requirement of equations (86) and (87), which guarantees that the
noise is probing the quasi-static behavior of the transverse conductivity, is actually easier in the quantum
regime than in the classical regimes for both metals and SFSSs. This is because the classical regimes are
accessed at larger distances from the sample and both frequency scales vF/z (for metals) and Δωs (for
SFSSs) decrease as the distance from the sample increases (the probed wavevector decreases).

In addition to current fluctuations, spin fluctuations also contribute to the noise and may therefore
affect its frequency and distance dependence. However, it can be shown that (see appendix H) the
low-frequency limit of the magnetic noise originating from spin fluctuations is given by

χ′′
spin,BiBj

(z,ω) 
 −δij
e2μ2

0

8π2

(
gsm∗

4m0

)2
ω

pF,0z3
, (88)

where m0 is the electron rest mass in vacuum. In the low-frequency limit from equations (86) and (87)
where the noise is dictated by the quasistatic behavior of the transverse conductivity, the ratio of the noise
originating from spin fluctuations to the noise from current fluctuations from equation (83) is given by∣∣∣∣χ′′

spin,BzBz
(z,ω → 0)

χ′′
BzBz

(z,ω → 0)

∣∣∣∣ 

(

gsm∗

4m0

)2 2

p2
F,0z2

. (89)

Therefore we see that the spin noise is suppressed by a factor (pF,0z)−2 relative to the current noise, in the
quantum regime and therefore it is highly subdominant once the criterion equation (84) is satisfied. More
details of the behavior of the spin noise in the quantum limit are presented in appendix H.
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Before closing this section we would like to contrast our work with and make a few comments on a
recent and very interesting, closely related study of magnetic noise of spin liquid states in reference [18]. We
begin by noting that reference [18] focused only on the contributions to magnetic noise originating from
spin fluctuations such as those we describe in appendix H, but did not consider the possibility of orbital
current fluctuations. The latter can be justified in strongly insulating spin liquid states such as those with Z2

gauge fields and electrically neutral spinons, but it is not necessarily justified in U(1) spin liquids, especially
when they feature a gapless FS as we have demonstrated in our study. At the distances relevant for probing
the universal noise, p−1

F,0 � z � lmfp, the low-frequency noise [ω � Δωs with Δωs given in equation (87)]
is dominated by the universal result ∝ω/z in equation (83). For frequencies above Δωs the noise decreases
with frequency due to the suppression of orbital currents and the much weaker noise contribution from
spin fluctuations ∝ω/z3 dominates only at a parametrically larger frequency scale, namely, in the regime

pFzΔωs(q = 1/z) � ω � vF

z
. (90)

The noise in this regime is suppressed by a factor ∼(pFz)−2 with respect to the zero-frequency noise.
Another discrepancy between our results and those of reference [18] concerns the comparison of Z2 and

U(1) spin liquids with an FS. In the presence of time reversal symmetry and neglecting spin–orbit coupling,
the spin anti-symmetric fluctuations of the SFSS decouple from the spin-symmetric fluctuations and also
from the U(1) gauge fields, and hence they behave as in ordinary metals, irrespective of the gauge structure.
In particular this means, the low-frequency spin noise, given by equations (76) and (88), obeys the same
scaling coth(βω/2)ω/z3 with frequency, temperature and distance for U(1) or Z2 gauge fields (assuming
temperature remains low enough compared to the Fermi energy that collisions can be ignored). This is in
contrast to tables I and II of reference [18], which predict different distance and temperature dependences
of the noise from spin fluctuations in Z2 and U(1) spin liquids with an FS in certain limiting cases. The
origin of these discrepancies appear to be mistakes in reference [18] in the calculation of the spin
correlation functions in the case of the Z2 spin liquid, which we highlight explicitly in appendix H.

Moreover, the equivalence of the scaling with distance and frequency of the spin fluctuations in Z2 and
U(1) spin liquids with an FS remains true at elevated frequencies, which implies that the range of validity of
our results for the noise arising from spin fluctuations in appendix H is identical to the one expected for an
ordinary LFL, namely, ω � vF/z. In contrast, equation (B28) of reference [18] predicts a different range of
validity. The origin of this issue is that reference [18] computed the spin correlator from a single bubble
diagram with dressed Green’s functions containing an imaginary self-energy scaling as ∼ω2/3, but without
any vertex corrections. As has been shown before [46–48], if one tries to go beyond the RPA-like treatment
with bare bubble diagrams, the vertex corrections are crucial, because they cancel divergences from the
self-energy in gauge invariant particle–hole correlation functions in the U(1) SFSS restoring the behavior of
LFL theory at small ω and q.

We conclude that SFSSs with U(1) or Z2 gauge fields can be distinguished in noise spectroscopy because
the former has a dominant orbital current contribution with a different distance dependence at low
frequencies. In contrast, the contribution from spin fluctuations to the noise does not depend on the gauge
field and is the same in both cases to the behavior of spin fluctuations in ordinary metals.

5. Summary and discussion

In this paper, we have derived several remarkable results that may each have profound consequences for the
study of material properties:

First, we have extended previous work to show that the quasi-static transverse electrical conductivity of
two-dimensional metals in the quantum (or ballistic) limit pF � q � l−1

mfp takes a universal form, given in
equation (1), which is only controlled by the FS geometry and is independent of kinematic details or
interactions. This is a direct consequence of the quantum degeneracy of electrons in the FS and markedly
different from the classical Drude-type transport at zero wavevector.

Second, we have demonstrated that the universal transverse conductivity manifests itself as a universal
low-frequency magnetic noise above the 2D sample, given by equation (2), which can be directly measured
by spin qubit noise spectroscopy. In experiments, the dependence of the noise on the qubit–sample distance
can be used to identify the quantum regime, in which the noise is fully determined by the FS perimeter.

Third, we have found that the quasi-static transverse electrical conductivity and the corresponding
magnetic noise of two-dimensional U(1) spin liquids with a spinon FS are identical to those of a metal. In a
sense, we have shown that in a certain limit the SFSS behaves in the same way as an ordinary metal. This is
in striking contrast to the insulating behavior of SFSSs in standard transport experiments at zero
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wavevector. We have also pointed out how noise spectroscopy can be used to distinguish between SFSSs
with Z2 and U(1) gauge fields.

At first glance, one might feel uneasy about the metallic behavior of a U(1) SFSS, especially because it is
a common jargon in the community to refer to the spinon as a ‘neutral fermion’. How can then a ‘neutral
fermion’ respond to a long-wavelength transverse quasi-static electric field in the same way as an ordinary
electron? This viewpoint is based on traditional parton descriptions of the SFSS, where the spinon is viewed
as carrying zero electric charge and the chargon carrying the full charge of the electron. However, this
charge assignment is essentially a book-keeping convention that is motivated by viewing this state as an
‘electrical insulator’. Only the net charge assignment to the combined spinon and chargon bound state is
physical, and if calculations are done in a consistent and gauge-invariant fashion, it is equally legitimate to
assign the electrical charge to the spinon while viewing the chargon as electrically neutral.

Nevertheless, the above concern about the metallic response of an SFSS might seem particularly
worrysome, if one takes the standpoint that such a state can in principle emerge out of a pure-spin
Heisenberg-like model, in which there are no microscopic electrons in the Hilbert space, as has sometimes
been emphasized by referring to the U(1) SFSS as a spin Bose metal [57, 58]. Our results can be reconciled
with this point of view by noticing that, according to equation (68), the metallic behavior of the transverse
conductivity only occurs in a frequency window Δωs that decreases as ∼1/ω2

p, where ωp is the effective
plasma scale of the problem. This plasma scale is essentially the Mott scale, or more precisely the scale
controlling the pseudo-gap for optical absorption at q = 0. To put it another way, if we take the Fermi
energy to be controlled by the Heisenberg-like exchange scale of the problem vFpF,0 ∼ J (since this scale
often controls the spinon energy bandwidth in lattice models [3]), take the effective speed of light to be
comparable to the Fermi velocity c ∼ vF, and take the optical gap to be controlled by a Hubbard-like scale
ωp ∼ U (see e.g. reference [59]), the edge of the particle–hole continuum of the spinon excitations would
be at frequencies

ω

J
∼ q

pF,0
, (91)

while the metallic behavior of the transverse conductivity would emerge at a much lower frequency scale
Δωs of the order

Δωs

J
∼

(
J

U

)2( q

pF,0

)3

. (92)

Therefore this window of low-frequency transverse metallicity is expected to disappear if one takes U →∞
while keeping the Heisenberg scale J constant. Our result implies that even though the SFSS can emerge and
be understood in the limit of U →∞ where the electron might disappear from the relevant Hilbert space, a
large but finite U scale remains in a sense a relevant perturbation that alters the low-frequency and
long-wavelength responses of this phase of matter in a non-perturbative fashion. It also emphasizes the
complex and non-trivial behavior of physical observables near the corner of small ω and q of the spinon
particle–hole continuum whose behavior changes even more dramatically than in an ordinary metal,
especially the transverse conductivity that resembles that of an insulator when first taking q → 0 and then
ω → 0, while behaving like a metal in the reverse order of limits.

We would like to close by making a strong case for viability of the observation of the universal
low-frequency noise as a powerful experimental ‘smoking gun’ for the presence of the U(1) SFSS in
correlated materials. The key to be able to confirm this regime in materials lies in observing the predicted
scaling with frequency ω and distance z from the sample ∝ω/z, which emerges at low temperatures
(T � EF) and in the clean long wavelength regime (p−1

F,0 � z � l−1
mfp). The observation of linear in ω scaling

of the noise signals that the system has a finite density of states contributing, such as it is the case for the
spin noise of a different SFSS with Z2 gauge field. Therefore, while this linear ω scaling of the noise would
be a non-trivial indicator the presence of a finite density of states in the system of interest, it alone is not
sufficient to distinguish the SFSS from other states. The 1/z dependence is however much more special, as
this is directly an indication of the 1/q scaling of the transverse conductivity. To our knowledge the only
other states of matter in 2D that can produce the same 1/z scaling are metallic states with an FS in the clean
long-wavelength regime (p−1

F,0 � z � lmfp). The additional fact that the prefactor of the noise in this regime
is controlled only by the perimeter of the FS in momentum space and universal constants of nature (see
equation (2)), makes this a highly robust indication of the presence of the SFSS. A possible metallic FS state
can be easily ruled out by ordinary DC transport measurements, since the DC conductivity of the spinon is
expected to vanish in the ideal zero temperature limit in analogy to an insulator.

Finally, we would like to contrast the metallic universal transverse conductivity and the universal
magnetic field noise, with other remarkable and non-trivial behaviors that can be used to advocate for the
presence of the SFSS, namely, the presence of quantum oscillations [7–9] and cyclotron resonance [10].
One aspect that makes our proposal conceptually advantageous over the above is that the transverse
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conductivity and the magnetic field noise are determined by the linear response correlation functions of the
SFSS, which do not require active modification of the state of interest. This is especially true for the noise,
which is ideally a non-invasive probe that simply monitors the fluctuations of the equilibrium state [14]. On
the other hand, observing quantum oscillations and cyclotron resonance requires exerting an external
magnetic field, which induces non-perturbative modifications to the FS state and, strictly speaking,
demands a description beyond the linear-response regime. In the clean limit, such non-perturbative
modifications occur ideally at arbitrarily low magnetic fields and are therefore finger-prints of the FS, but in
practice they require the application of sizable magnetic fields to overcome disorder and temperature
fluctuations, making it more delicate to differentiate from competing scenarios such as the quantum
oscillations expected in inverted band insulators with small gaps [60–62]. Also, it is worth emphasizing that
even though the oscillations and cyclotron resonance of SFSS resemble those of metals, the detailed features
can be different and depend on hard to estimate microscopic constants such as the ratio of effective
magnetic field to applied physical magnetic field that the spinons experience [63]. The robustness of the
expected universal magnetic noise against microscopic details summarized in equation (2) is therefore a
highly appealing feature of this probe. The above prompts us to advocate that the observation of the regime
of universal low-frequency noise from equation (2), would constitute a ‘smoking gun’ evidence to finally
pin-point the presence of the long-sought-after U(1) SFSS in correlated materials.
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Appendix A. Derivation of the conductivities of isotropic metals and spinon Fermi
surface states

In this appendix, we outline the derivation of the longitudinal and transverse conductivities of isotropic
SFSSs, equations (55)–(60) in the main text, following the discussion in sections 3.1 and 3.2. The
corresponding conductivities for metals, equations (15) and (16) in the main text, are obtained in a similar
fashion and will not be shown here explicitly. The linearized kinetic equation with collisions reads,

∂tpθ + vFp̂θ · ∂r

(
pθ +

∫
dθ′Fθ,θ′pθ′

)
= e · p̂θ − Γ1(pθ − P0[pθ]) − Γ2(pθ − P0[pθ] − P1[pθ] − P−1[pθ]),

(A1)
where Pl[pθ] = eilθ

∫
dθ
2π e−ilθpθ, while the linearized coupled spinon-gauge field equations of motion read,

ε∂r · (e − E) =

∫
d2k

(2π)2
δ(pF,0 − k)pθ , (A2)

∂r × (b − B) − εμ∂t(e − E) = μ
pF,0

m
p̂θ

∫
d2k

(2π)2
δ(pF,0 − k)pθ , (A3)

where ε and μ are the gauge dielectric constant and magnetic permeability respectively and m is the
transport mass. Using ansatz of the form pθ = p(q, θ,ω)ei(ωt−q·r), E = E(q,ω)ei(ωt−q·r) and
e = e(q,ω)ei(ωt−q·r) (similarly for B and b), for Fl>1 = 0, we have the following coupled equations
(henceforth suppressing the ω label):

(
iω − ivFq cos θ + Γ1 + Γ2

)
p(q, θ) = e(q) · p̂θ +

(
iF0vFq cos θ + Γ1 + Γ2

)
P0(q)

+
(
iF1vFq cos θ + Γ2

)
p1(q, θ), (A4)

−iεq · (e(q) − E(q)) =
pF,0

2π
P0(q), (A5)

−iq × (b(q) − B(q)) − iεμω(e(q) − E(q)) = μ
(pF,0)2

2πm

(
P+

1 (q)q̂ + P−
1 (q)q̂⊥

)
, (A6)
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where henceforth θ is taken relative to q, p̂θ = cos θq̂ + sin θq̂⊥ and

p(q, θ) =
∞∑

l=−∞
Pl(q)eilθ = P0(q) +

∞∑
l=1

pl(q, θ), (A7)

pl(q, θ) = 2
(
P+

l (q) cos (lθ) + P−
l (q) sin (lθ)

)
, (A8)

P+
l (q) =

∫
dθ

2π
cos(lθ)p(q, θ), P−

l (q) =

∫
dθ

2π
sin(lθ)p(q, θ). (A9)

Rewriting the LKE,

p(q, θ) =
−iẽ(q) · p̂θ +

(
F0 cos θ − iΓ̃1 − iΓ̃2

)
P0(q) +

(
F1 cos θ − iΓ̃2

)
p1(q, θ)(

s − cos θ − iΓ̃1 − iΓ̃2

) , (A10)

s =
ω

vFq
, Γ̃i =

Γi

vFq
, ẽ(q) =

e(q)

vFq
. (A11)

Anticipating the decoupling between the even and odd solutions, we express the gauge and EM fields in
terms of their transverse and longitudinal components relative to q̂, f = f‖|q̂ + f⊥q̂⊥ + fz ẑ ( f = e, b, E, B
and ẑ = q̂ × q̂⊥) and project equation (A10) to the 0th and 1st components,

P0(q) = −iqẽ‖(q)Ω1(q) + q
(

F0Ω1(q) − i
(
Γ̃1 + Γ̃2

)
Ω0(q)

)
P0(q) + 2q

(
F1Ω2(q) − iΓ̃2Ω1(q)

)
P+

1 (q),

(A12)

P+
1 (q) = −iqẽ‖(q)Ω2(q) + q

(
F0Ω2(q) − i

(
Γ̃1 + Γ̃2

)
Ω1(q)

)
P0(q) + 2q

(
F1Ω3(q) − iΓ̃2Ω2(q)

)
P+

1 (q),

(A13)

P−
1 (q) = q

(
Ω0(q) − Ω2(q)

)(
−iẽ⊥(q) − 2iΓ̃2P−

1 (q)
)
+ 2q

(
Ω1(q) − Ω3(q)

)
F1P−

1 (q), (A14)

Ωl(q) =
1

q

∫
dθ

2π

(cos θ)l(
s − cos θ − iΓ̃1 − iΓ̃2

) = vF

∫
dθ

2π

(cos θ)l(
ω − vFq cos θ − iΓ1 − iΓ2

) , (A15)

with the linearized coupled spinon-gauge field equations of motion,

pF,0

2π
P0(q) = −iεq(e‖(q) − E‖(q)), (A16)

(pF,0)2

2πm
P+

1 (q) = −iεω(e‖(q) − E‖(q)), (A17)

(pF,0)2

2πm
P−

1 (q) = iμ−1q(bz(q) − Bz(q)) − iεω(e⊥(q) − E⊥(q)) (A18)

= −iε

(
ω2 − c2q2

ω

)
(e⊥(q) − E⊥(q)), (A19)

where in the last line we used the respective Faraday’s laws ∂r × E = −∂tB and ∂r × e = −∂tb and defined
the velocity of the gauge boson in the medium c = 1/

√
εμ.

For the case Γ̃1,2 > 0, we extend s into the complex plane (z) and evaluate these integrals by a change of
variables z = eiθ,

Ωl(q) =
1

q

i

2π

1

2l−1

∮
C

dz
(z2 + 1)l

zl(z − z+)(z − z−)
, (A20)

= −1

q

1

2l−1

(
Res(0)(1 − δl,0) + Res(zξ)

)
, (A21)

= −1

q

1

2l−1

(
(1 − δl,0)

(l − 1)!

dl−1

dzl−1

(
(z2 + 1)l

(z − z−)(z − z+)

)∣∣∣∣
z=0

+
(zξ + z−ξ)l

zξ − z−ξ

)
, (A22)

where in the above C denotes the unit circle and

z± = ζ ±
√
ζ2 − 1, z+z− = 1, (A23)
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ζ = s − i(Γ̃1 + Γ̃2), (A24)

ξ = − sgn(s). (A25)

For |z+| �= |z−| �= 1, corresponding to solutions outside the particle–hole continuum, we have explicitly

Ω0(q) = −2

q

zξ
z2
ξ − 1

=
sgn(s)

q

1√
ζ2 − 1

, (A26)

Ω1(q) = −1

q

(
1 +

z2
ξ + 1

z2
ξ − 1

)
=

sgn(s)

q

zξ√
ζ2 − 1

= zξΩ0(q), (A27)

Ω2(q) = − 1

2q

(
2ζ +

(2ζ)2

zξ − z−1
ξ

)
=

sgn(s)

q

ζzξ√
ζ2 − 1

= ζΩ1(q), (A28)

Ω3(q) = − 1

4q

(
2 + (2ζ)2 +

(2ζ)3

zξ − z−1
ξ

)
=

1

q

(
−1

2
+ sgn(s)

ζ2zξ√
ζ2 − 1

)
= − 1

2q
+ ζΩ2(q), (A29)

Ω4(q) = − 1

8q

(
2(2ζ) + (2ζ)3 +

(2ζ)4

zξ − z−1
ξ

)
=

ζ

q

(
−1

2
+ sgn(s)

ζ2zξ√
ζ2 − 1

)
= ζΩ3(q), (A30)

Ω0(q) − Ω2(q) =
1

q
zξ , Ω1(q) − Ω3(q) =

1

2q
z2
ξ . (A31)

As a consistency check, let us rewrite equation (A13),

P+
1 (q) = −iqẽ‖(q)Ω1(q)ζ + q

(
F0Ω1(q)ζ − i

(
Γ̃1 + Γ̃2

)
Ω0(q)zξ

)
P0(q)

+ 2q

(
F1

(
− 1

2q
+ ζΩ2(q)

)
− iΓ̃2Ω1(q)ζ

)
P+

1 (q)

= ζP0(q) − iq
(
Γ̃1 + Γ̃2

)
Ω0(q)(zξ − ζ)P0(q) − F1P+

1 (q)

P+
1 (q) =

s

1 + F1
P0(q), (A32)

which is consistent with the relation obtained from equations (A16) and (A17) with the quasi-particle mass
m∗ = pF,0

vF
= (1 + F1)m as is expected since the relaxation terms introduced do not violate charge

conservation.
This allows us to solve for P0(q) in terms of e‖(q),

P0(q) =
−iqΩ1(q)

1 − q
(

F0Ω1(q) − i
(
Γ̃1 + Γ̃2

)
Ω0(q)

)
− 2 sq

1+F1

(
F1Ω2(q) − iΓ̃2Ω1(q)

) ẽ‖(q) = −iΠe
‖(q)e‖(q)

(A33)

Πe
‖(q) =

1

vFq

qΩ1(q)

1 − qΩ0(q)
(

F0zξ − i
(
Γ̃1 + Γ̃2

))
− 2 s

1+F1
qΩ1(q)

(
F1ζ − iΓ̃2

) (A34)

=
1

vFq

1

sgn(s)z−ξ

√
ζ2 − 1 −

(
F0 − i

(
Γ̃1 + Γ̃2

)
z−ξ

)
− 2 s

1+F1

(
F1ζ − iΓ̃2

) (A35)

and using equation (A16), we have

iεqE‖(q) =
pF,0

2π
P0(q)

(
1 − εq

2π

pF,0

1

Πe
‖(q)

)
, (A36)

pF,0

2π
P0(q) = iεq

(
1 − εq

2π

pF,0

1

Πe
‖(q)

)−1

E‖(q) (A37)

and from equation (A17), we obtain the longitudinal conductivity σ‖(q),

j‖(q) =
(pF,0)2

2πm
P+

1 (q) =
pF,0

m

pF,0

2π

s

1 + F1
P0(q) = σ‖(q)E‖(q), (A38)
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σ‖(q) = iεω

(
1 − εq

2π

pF,0

1

Πe
‖(q)

)−1

. (A39)

The longitudinal resistivity can be written as a linear sum of the bosonic (chargon) ρc‖ and fermionic
(spinon) ρs‖(q) contributions,

ρ‖(q) = σ−1
‖ (q) = ρc‖ + ρs‖(q), (A40)

ρc‖ =
1

iεω
, ρs‖(q) = − q

iω

2π

pF,0

1

Πe
‖(q)

. (A41)

Similarly, we can solve for the transverse component equation (A14),

P−
1 (q) =

−iq
(
Ω0(q) − Ω2(q)

)
1 + 2iq

(
Ω0(q) − Ω2(q)

)
Γ̃2 − 2q

(
Ω1(q) − Ω3(q)

)
F1

ẽ⊥(q) = −iΠe
⊥(q)e⊥(q), (A42)

Πe
⊥(q) =

1

vFq

q
(
Ω0(q) − Ω2(q)

)
1 + 2iq

(
Ω0(q) − Ω2(q)

)
Γ̃2 − 2q

(
Ω1(q) − Ω3(q)

)
F1

(A43)

=
1

vFq

zξ
1 + 2izξΓ̃2 − F1z2

ξ

. (A44)

The transverse conductivity σ⊥(q) is obtained from equation (A19),

j⊥(q) =
(pF,0)2

2πm
P−

1 (q) = σ⊥(q)E⊥(q), (A45)

σ⊥(q) = iε

(
ω2 − c2q2

ω

)(
1 − ε

(
ω2 − c2q2

ω

)
m

pF,0

2π

pF,0

1

Πe
⊥(q)

)−1

. (A46)

The transverse resistivity can be written as a linear sum of the bosonic ρc⊥(q) and fermionic contributions
ρs⊥(q),

ρ⊥(q) = σ−1
⊥ (q) = ρc⊥(q) + ρs⊥(q), (A47)

ρc⊥(q) =
1

iεω

(
ω2

ω2 − c2q2

)
, ρs⊥(q) = − m

ipF,0

2π

pF,0

1

Πe
⊥(q)

, (A48)

implying a series-stacking of these resistances, i.e. the Ioffe–Larkin rule.

Appendix B. Alternative derivation of the effect of collions on the conductivity

A useful consistency check can be done by comparing our calculation in the presence of collisions to a
method proposed in reference [36] by Conti and Vignale. In reference [36] the authors demonstrate that the
current–current response functions of a Fermi liquid χ‖,⊥(q,ω) in the presence of collisions can be
obtained from the same response functions χ0

‖,⊥(q,ω) in the absence of collisions by a simple set of rules
[see equations (5.10)–(5.13) of reference [36], note the different convention with an opposite sign of ω]:

• For momentum relaxing collisions with rate Γ1:

1

χ‖(q,ω)
=

ω − iΓ1

ω

1

χ0
‖(q,ω − iΓ1)

− iΓ1

ω2(ω − iΓ1)
lim
ω′→0

ω′2

χ0
‖(q,ω′)

(B1)

1

χ⊥(q,ω)
=

ω − iΓ1

ω

1

χ0
⊥(q,ω − iΓ1)

. (B2)

• For momentum conserving collisions with rate Γ2:

1

χ‖(q,ω)
=

ω − iΓ2

ω

1

χ0
‖(q,ω − iΓ2)

+
iΓ2

ω

m

n
− iΓ2

ω2(ω − iΓ2)

(
lim
ω′→0

ω′2

χ0
‖(q,ω′)

)
(B3)

1

χ⊥(q,ω)
=

ω − iΓ2

ω

1

χ0
⊥(q,ω − iΓ2)

+
iΓ2

ω

m

n
. (B4)
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If both types of collisions are present, we can simply concatenate the two relations. After some simple
manipulations, we obtain the following expressions for the conductivity σ(ω) = −iχ(q,ω)/ω (note that χ
already contains the diamagnetic contribution in reference [36]):

1

σ‖(q,ω)
=

1

σ0
‖(q,ω − iΓ12)

− Γ2
m

n
− iΓ12

ω(ω − iΓ12)
lim
ω′→0

ω′

σ0
‖(q,ω′)

(B5)

1

σ⊥(q,ω)
=

1

σ0
⊥(q,ω − iΓ12)

− Γ2
m

n
(B6)

with the short-hand notation Γ12 = Γ1 + Γ2. In our case, we have from equation (15) of the main text

lim
ω′→0

ω′

σ0
‖(q,ω′)

= lim
ω′→0

ω′ρ∗(q.ω) =
−iq2

n2κ
. (B7)

Using equations (B5)–(B7), it is straightforward to verify that our results in equations (15)–(19) of the
main text, can be obtained from the same results in the absence of collisions by the substitutions above.

Appendix C. Dispersion of collective modes in metals and spinon Fermi surface states

In this appendix, we show explicitly the dispersion relations of the collective modes of the SFSS for the case
Fl�1 = 0. These can be obtained by solving for the poles of the longitudinal and transverse conductivities of
the SFSS, or equivalently, the zeroes of their respective resistivities, equations (A40) and (A47).

ωL =
(1 + F0)q2 + 2ω2

p√
(1 + 2F0)q2 + 4ω2

p

, (C1)

and the transverse collective mode dispersion,

ωT = ωp

(
2 − v2

Fq2

2ω2
p

)−1/2

√√√√√1 +
c2q2

ω2
p

(
1 − v2

Fq2

2ω2
p

)
+

√√√√1 + 2
c2q2

ω2
p

(
1 − v2

Fq2

2ω2
p

+
c2q2

2ω2
p

)
. (C2)

To leading order in q, we find

ωL 
 ωp +
1

2ωp

(
3 + 2F0

4

)
v2

Fq2 +O(q4), (C3)

ωT 
 ωp +
1

2ωp

(
1

4
+

c2

v2
F

)
v2

Fq2 +O(q4), (C4)

i.e. equations (61) and (62) in the main text.

Appendix D. Derivation of the quasi-static transverse conductivity

In this appendix, we derive the result of the universal transverse conductivity and the magnetic noise
spectrum for anisotropic FSs given in equation (8) of the main text. The charge current of a Fermi liquid in
the presence of a quasi-static (ω → 0) electrical field is given by substituting equation (6) into equation (5)
of the main text [see equation (3.121) from reference [11], in units of � = 1]

Jq = −i
e2

A
∑

p

δ(εp − εF)(E · vp)vp

{
P

(
1

q · vp

)
+ iπδ(q · vp)

}
, (D1)

where A, vp =
∂εp

∂p , εp and εF are respectively the system area, quasiparticle velocity, energy dispersion and
the Fermi energy. For an anisotropic FS, the Fermi momentum pF(θ) as well as the Fermi velocity vF(θ)
varies with angle in momentum space. Nonetheless, independent of the symmetries of the FS, it follows that
the real part of the conductivity is nonzero only when q and vp are orthogonal. Hence the only non-trivial
component of the real conductivity tensor is the transverse–transverse component Reσ⊥⊥(q,ω → 0)
= σ⊥,0(q), i.e. equation (7) of the main text. Without loss of generality, let us consider the case with q = qx̂
is along the positive x-direction so that E = E⊥ŷ and Jq = J⊥,qŷ. We find,
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σ⊥,0(q) = π
e2

A
∑

p

δ(εp − εF)(ŷ · vp)2δ(q · vp)

= πe2

∫
d2p

(2π)2

∑
i

(vy
p)2 δ

2(p − p∗
i )

qJp
, Jp = det

(
∂pxεp ∂pyεp

∂pxv
x
p ∂pyv

x
p

)
,

=
e2

4πq

∑
i

∫
d2p(vy

p)2 δ2(p − p∗
i )∣∣ � vx

pm−1
yx (p) − v

y
pm−1

xx (p)
∣∣ , v

j
p = ∂pjεp, m−1

ij (p) = ∂pi∂pjεp, (D2)

=
e2

4πq

∑
i

|mxx(p∗
i )vy

p∗i
| = e2

4πq

∑
i

∣∣∣∣∣∂pyεp∗i
∂2

px
εp∗i

∣∣∣∣∣ , (D3)

where {p∗
i } denote the set of points on the FS at which the Fermi velocity is orthogonal to q or equivalently,

where the tangents are parallel to q. For general q, the above can be written, restoring � = h/2π and spin
degeneracy gS = 2S + 1, as

σ⊥,0(q) = (2S + 1)
e2

2hq

∑
i

∣∣∣RF|p∗i (̂q)

∣∣∣ , (D4)

where RF|p∗i (̂q) denotes the radius of curvature (or equivalently the inverse curvature) of the FS at p∗
i . For a

circular FS, the quasiparticle mass is constant so that RF = pF,0 = m∗vF, and for any given q̂ there are two
points giving rise to a factor of two so that

σ⊥,0(q) = (2S + 1)
e2

h

pF,0

q
, isotropic FS. (D5)

We derive also the imaginary transverse–transverse conductivity Im σ⊥⊥(q,ω → 0), a result we will use
in a subsequent section. We find,

Imσ⊥⊥(q,ω → 0) = − e2

A
∑

p

δ(εp − εF)(ŷ · vp)2P

(
1

q · vp

)

= − e2

4π2q

∫
dθ

∫
p dp

δ
(
p − rF(θ)

)
|vp|

(vy
p)2

vx
p

, rF(θ) = pF,0 + pF(θ)

= − e2

4π2q

∫
dθrF(θ)

(
v

y
F(θ)

)2

|vF(θ)|vx
F(θ)

, vF(θ) =
(
vx

F(θ), vy
F(θ)

)
= |vF(θ)| (cos θF(θ), sin θF(θ))

= − e2

4π2q

∫
dθI(θ), (D6)

I(θ) ==
rF(θ)√

r2
F(θ) + ṙ2

F(θ)

(ṙF(θ) cos θ − rF(θ) sin θ)2

ṙF(θ) sin θ + rF(θ) cos θ
, ṙF(θ) =

d

dθ
rF(θ), (D7)

where rF(θ) denotes the Fermi radius, vF(θ) the Fermi velocity, and the last line was obtained from the
gradient of the normal to rF(θ),

tan θF(θ) =
rF(θ) sin θ − ṙF(θ) cos θ

ṙF(θ) sin θ + rF(θ) cos θ
. (D8)

For a system with spatial inversion symmetry, only the diagonal components of σαβ are non-trivial,
σ‖‖ = σ‖ and σ⊥⊥ = σ⊥. In particular, rF(θ) = rF(θ + π), so that the integrand I(θ + π) = −I(θ) and
Imσ⊥(q,ω → 0) = 0. In this case, the quasi-static transverse–transverse conductivity is purely real [11],

σ⊥(q,ω → 0) = σ⊥,0(q), time reversal or space inversion symmetry. (D9)

Appendix E. Reconstruction of the Fermi surface shape from the universal transverse
conductivity

The transverse conductivity σ⊥(q,ω → 0) is determined by the radii of curvature of the FS at points where
the vector q is tangential. Is therefore an interesting question to ask whether the shape of the FS can be
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Figure 6. The point P = (px, py) on a curve (red solid line) can be parametrized in terms of the distance s(φ) from the origin O
to the point S on the tangent line in P closest to the origin and it is derivative s′(φ) as a function of polar angle, which is equal to
the distance between P and S.

reconstructed from a measurement of σ(q,ω). There are a few conditions that make this clearly impossible.
As the conductivity only depends on the absolute value of the curvature, this is impossible if the curvature
changes sign. Moreover, σ(q,ω) does not distinguish between different points with the same tangent vector.
However it is possible to determine the local radius of curvature uniquely for a single smooth strictly
convex sheet in the presence of inversion symmetry, such that for any given wavevector q, two tangent
points always come in pairs ±p with equal curvatures by symmetry.

From the knowledge of the radius of curvature as a function of the polar angle θ of the vector q one can
then reconstruct the curve of the FS. To see this, we follow Resnikoff and use the following parametrization
of a smooth closed convex curve in two dimensions. Consider a point p = (px, py). We call the point on the
tangent line that is closest to the origin s. The polar angle φ of this vector can be used to parametrize the
curve as (see figure 6)

px(φ) = s(φ) cos φ− s′(φ) sin φ (E1)

py(φ) = s(φ) sin φ+ s′(φ) cos φ, (E2)

where s(φ) = |s(φ)| is called the support of the curve and s′(φ) is its derivative with respect to φ.
The local radius of curvature is given by

ρ(φ) =
[p′x(φ)2 + p′y(φ)2]3/2

p′x(φ)p′′y (φ) − p′y(φ)p′′x (φ)
. (E3)

This expression becomes particularly simple for our parametrization in terms of the support function

ρ(φ) = |s(φ) + s′′(φ)|. (E4)

We assume the radius of curvature to be always finite and nonzero, so we can safely ignore the absolute
value above as s + s′′ never changes sign. Notice that the angle θ of the tangent vector q is simply
θ = φ± π/2. Hence from a measurement of the radius of curvature as a function of θ (assuming the
curvature is the same for θ and θ + π by symmetry) one can determine the support function from the
solution of the differential equation

ρ(φ) = s(φ) + s′′(φ). (E5)

Notice that the solution of this equation is unique up to transformations of the type s(φ) → s(φ) + s0 sin
(φ+ φ0), where s0 and φ0 are arbitrary constants. But such a transformation simply translates the entire
curve in the plane according to p → p + s0(cosφ0, sinφ0), so the shape obtained in this way is
unique.

Appendix F. Effect of finite frequency on momentum-dependence of transverse
conductivity in the different transport regimes

In this appendix, we analyze the effects of finite frequency and collision on the transverse conductivity
leading to the discussion in section 2.2 of the main text. The transverse conductivity of the SFSS can be
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expressed in terms of the momentum scales qC and qD as

σ⊥(q, qω, qp) =
ne2

m

2i/vF

F1q− − q+ − 2i(qC − (1 + F1)qD/2) + 2qω
(

q2
p

q2
ω−(c/vF)2q2

) = gS
e2

h

pF,0

Q(q, qω , qp)
, (F1)

q± = qω − iqC ±
√

(qω − iqC)2 − q2, q+q− = q2, (F2)

qD =
2

1 + F1

Γ1

vF
, qC =

1

vF
(Γ1 + Γ2), m∗ = m(1 + F1), (F3)

where we recast frequencies ω and ωp in terms of their associated momenta qω = ω/vF and qp = ωp/vF,
and gS = 2S + 1 denotes the spin degeneracy factor. In the following, it is implicit that qp is always much
larger than every other momentum scale. The transverse conductivity for metals is therefore
σ⊥(q, qω) ∼ σ⊥(q, qω , qp = 0). We consider the case qC � qD for which the hydrodynamic regime exists. Let
us first study the effect of small frequency qω � qC on the momentum dependence in the quantum regime
q � qC, for which case we expand Q(q, qω , qp) to leading order in qω :

Q(q, qω , qp) 
 Q(q) − q2
ωq2

2(q2 + q2
C)3/2

+ iqωξ(q, qp) +O(q3
ω), (F4)

Q(q) = qD +
√

q2 + q2
C − qC, (F5)

ξ(q, qp) =

(
a1 +

qC√
q2 + q2

C

+
2q2

p

(1 + F1)(c/vF)2q2

)
, a1 =

1 − F1

F1 + 1
, (F6)

where we restrict to F1 > 0 so that |a1| � 1. The real part of the transverse conductivity takes a simple form
in this limit,

Reσ⊥(q, qω, qp) 
 gS
e2

h

pF,0Q(q)

Q2(q) + q2
ω

[
ξ2(q, qp) − Q(q)q2

(q2+q2
C)3/2

] +O(q3
ω). (F7)

In the quantum regime, Q(q) ∼ q � qC � qD, the above expressions further simplify such that the
frequency scale at which Reσ⊥ deviates from its q−1 dependence in the quasi-static limit is given by
qω ∼ q/

√
|ξ2 − Qq2/(q2 + q2

C)3/2|. For metals and spinon FSs respectively, we have (for simplicity we
consider F1 � 1),

Δω(q) ∼ vFq√∣∣∣ξ2(q, 0) − Q(q)q2

(q2+q2
C)3/2

∣∣∣ ∼ vF

(
F1 + 1

3 − F1

q3

qC

)1/2

, (F8)

Δωs(q) ∼ vFq

|ξ(q, qp)| ∼ (1 + F1)
vFc2

2ω2
p

q3, (F9)

i.e. equations (69) and (70) of the main text when F1 = 0. At much larger frequencies ω � Δω(s)(q), the
q-dependence of the transverse conductivities for the SFSS is given by

Reσ⊥(q, qω, qp) 
 gS
e2

h

pF,0q

q2
ωξ

2(q, qp)

 gS

e2

h
(1 + F1)2

(
c

vF

)4 pF,0q5

q2
ωq4

p

, (F10)

while for the metallic case, the expansion in small qω is no longer valid and a large qω expansion is required
instead, from which one finds,

Reσ⊥(q, qω) 
 gS
e2

h

(1 + F1)2pF,0

4q2
ω

(
qD +

qCq2

2q2
ω

)
+O(q−5

ω ). (F11)

For completeness, we perform the same analysis for the diffusive and hydrodynamic transport regimes,
which can be studied concurrently by expanding Q(q, qω , qp) to leading order in q−1

C :

Q(q, qω, qp) 
 Q(q) + iqωξ(q, qω , qp) +O(q−2
C ), (F12)

ξ(q, qω, qp) =

(
2

1 + F1
−

2q2
p

(1 + F1)(q2
ω − (c/vF)2q2)

)
, (F13)

Reσ⊥(q, qω, qp) 
 gS
e2

h

pF,0Q(q)

Q2(q) + q2
ωξ

2(q, qω , qp)
. (F14)

27



New J. Phys. 23 (2021) 113009 J Y Khoo et al

Table 4. The q-dependence of the real part of the transverse conductivity in metals, Re σ⊥(q,ω � Δω(q)), for
the various transport regimes (qC � qD) at frequencies larger than the respective cutoff frequency scales Δω(q)
required for quasi-static approximation for the case of F1 � 1.

Diffusive
q � q∗∗

Hydrodynamic
q∗∗ � q � q∗

Quantum
q∗ � q

Δω(q) (1+F1)vFqD
2

1+F1
4qC

vFq2
√

F1+1
3−F1

1
qC
vFq3/2

Re σ⊥(q,ω � Δω(q)) gS
e2

h
(1+F1 )2

4

v2
FpF,0qD
ω2 gS

e2

h
(1+F1)2

8

v2
FpF,0

qCω2 q2 gS
e2

h

(1+F1)2v2
FpF,0

4ω2

(
qD +

qCv2
F

2ω2 q2
)

Table 5. The q-dependence of the real part of the transverse conductivity in spinon FSs, Re σ⊥(q,ω � Δωs(q)), for the
various transport regimes (qC � qD) at frequencies larger than the respective cutoff frequency scales Δωs(q) required
for quasi-static approximation for the case of F1 � 1. At small frequencies ω � vFqC of interest, its behavior is always
different from the quasi-static limit when q � q0.

Diffusive
q � q∗∗

Hydrodynamic
q∗∗ � q � q∗

Quantum
q∗ � q

Δωs(q � q0) (1+F1)vFqD
2

c2

ω2
p

q2 (1+F1)vF
4qC

c2

ω2
p

q4 (1+F1 )vF
2

c2

ω2
p

q3

Re σ⊥(q � q0,ω � Δωs(q)) gS
e2

h
(1+F1 )2

4

v2
FpF,0qD
ω2

c4

ω4
p

q4 gS
e2

h
(1+F1 )2

8

v2
FpF,0

qCω2
c4

ω4
p

q6 gS
e2

h
(1+F1)2

4

v2
FpF,0
ω2

c4

ω4
p

q5

Re σ⊥(q � q0,ω) gS
e2

h
(1+F1)2

4

v2
FpF,0 qDω2

ω4
p

gS
e2

h
(1+F1 )2

8

v2
FpF,0
qC

ω2

ω4
p

q2 gS
e2

h
1+F1
ω4

p

(
p2

F,0v
2
Fω

10

4

) 1
3

Figure 7. The effect of finite frequency on Re σ⊥(q,ω) of metals (red dashed curve) and SFSS (blue and red solid curves) in the
different transport regimes with F1 = 0. Both systems have the same conductivity in the strict quasi-static ω → 0 limit (black). At
finite frequencies, the respective conductivities approach this quasi-static limit only at momenta much larger than a
frequency-dependent momentum cut-off scale, which is much larger in SFSSs (q̃s) than in metals (q̃). Plots are shown for
frequencies ω1 = 0.01Δω(q∗) in red, and ω2 = 0.01Δωs(q∗) in blue, where ω2 � ωHQs � ω1 � ωHQ.

Similarly, the q-dependence of Reσ⊥ in each regime deviates from its quasi-static limit (see table 1 of the
main text) at frequencies larger than the scale set by Q(q) ∼ qω|ξ(q, qω , qp)|, where Q(q) 
 qD in the
diffusive regime and Q(q) 
 q2/2qC in the hydrodynamic regime. These results are summarized in tables 4
and 5 for metals and spinon FSs respectively for the case of F1 � 1, the q-dependence of which are
illustrated in figure 7.

Conversely, a given frequency determines a momentum scale, q̃(ω) and q̃s(ω) for the metal and spinon
FS respectively, such that the corresponding transverse conductivity can be approximated by its quasi-static
limit when q � q̃(s)(ω). This momentum scale is obtained by inverting the appropriate cutoff frequency
scale Δω(s)(q) that is consistent with the transport regime the momentum scale lies in, and is therefore
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Table 6. Expressions for the momentum scales q̃(ω) and q̃s(ω), in metals and
SFSSs respectively, such that Re σ⊥(q � q̃s(ω),ω) 
 σ⊥(q, 0+) = gS(e2/h)
pF,0/Q(q) and Reσf

⊥(q � q̃(ω),ω) 
 σf
⊥(q, 0+) = gS(e2/h)pF,0/Q(q).

Diffusive
ω < ωDH(s)

Hydrodynamic
ωDH(s) < ω < ωHQ(s)

Quantum
ωHQ(s) < ω

q̃(ω) 
 0
(

4qC
1+F1

ω
vF

)1/2 (
(3−F1)qC

F1+1
ω2

v2
F

)1/3

q̃s(ω)

(
2

(1+F1 )qD

ω2
p

c2
ω
vF

)1/2 (
4qC

1+F1

ω2
p

c2
ω
vF

)1/4 (
2

(1+F1 )

ω2
p

c2
ω
vF

)1/3

determined by two threshold frequencies ωDH(s) and ωHQ(s),

ωDH =
1 + F1

2
vFqD, ωHQ =

√
F1 + 1

3 − F1
vFqC, (F15)

ωDHs =
1 + F1

2

c2

ω2
p

vFqCq2
D, ωHQs =

1 + F1

2

c2

ω2
p

vFq3
C. (F16)

The momentum scales for metals and SFSSs are summarized in table 6.
Particular care has to be taken for SFSSs. The presence of the emergent photon with dispersion ω = cq

gives rise to a divergent Q(q, qω , qp) on resonance, and consequently, a vanishing transverse conductivity.
Unlike in the quantum regime, the momentum at which resonance occurs for a given frequency, q0 = ω/c,
becomes relevant in the hydrodynamic and diffusive regimes even when ω � vFqC. In particular, when
q � q0, frequencies larger than the Fermi energy are required to satisfy Q(q) > qω|ξ(q, qω , qp)|,

ω >
2ω2

p

(1 + F1)vFQ(q)
> EF. (F17)

Consequently, at low frequencies of interest, the transverse conductivity of the SFSS never approaches its
quasi-static behavior when q � q0.

For completeness, let us consider the case qD � qC, in which the hydrodynamic regime is absent. In this
case, as pointed out in the main text, q∗ = qD sets the momentum scale that separates the diffusive from
quantum transport regimes. For F1 � 0, qD takes a maximum value 2qC when F1 = 0 and Γ2 = 0. By
proceeding with an analogous analysis, one finds the same results as in the case of qC � qD from tables 4–6,
but with the following threshold frequencies that determine the appropriate form of the momentum scale
q̃(s)(ω),

ωDQ = vFqD, (F18)

ωDQs =
1 + F1

2

c2

ω2
p

vFq3
D, (F19)

the metallic frequency and momentum scales required in the quantum regime,

Δω(q � qD) ∼ vF

(
2

5 − F1

q3

qD

)1/2

, (F20)

q̃(ω > ωDQ) ∼
(

5 − F1

2
qD

ω2

v2
F

)1/3

, (F21)

and the asymptotic q-dependence of the real part of the transverse conductivity in metals,

Reσ⊥(q,ω � Δω(q)) 
 gS
e2

h

(1 + F1)2pF,0

4q2
ω

qD. (F22)

Finally, we analyze the case of spinons with frequency-dependent momentum relaxation rate induced by

gauge field fluctuations, Γω ∼ E−1/3
F ξ4/3 with ξ = max(ω, T), which directly alters the transverse

conductivity when q � Γω/vF [49]. A consistent treatment within our framework is to add this term to the

impurity scattering rate Γ1 → Γ1(ω) = Γ1 + E−1/3
F ω4/3, where we consider the more interesting

low-temperature limit. We further consider for simplicity the case with Γ2 = 0, so that the transverse
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Figure 8. Plots of Re σ⊥(q,ω) of the SFSS for various frequencies, showing that the effect of including (solid plots) or omitting
(dashed plots) the frequency-dependent momentum relaxation starts becoming noticeable only at frequencies for which
Γω 
 Γ1 (blue) and significant at larger frequencies for which Γω � Γ1 (red). Frequencies plotted here are ω1 = 0.01ωDQs,
Γω2 = Γ1 and Γω3 = 35Γ1, with ω1 � ωDQs � ω2 � ω3.

conductivity is expressed in terms of q1(ω) = Γ1(ω)/vF, with qD = 2q1(ω)/(1 + F1) and qC = q1(ω). The
analysis proceeds largely as per the case with qD � qC before and is identical at frequencies Γ1 � Γω as well
as momenta q � qω , q1. We therefore focus on the frequency range, Γω � Γ1, or equivalently, the
ultra-clean limit Γ1 → 0. Expanding in large qω , one finds

Q(q, qω, qp) 
 2qω
1 + F1

(
αω − i

q2
p

q2
ω − (c/vF)2q2

)
, αω =

(
2qω
pF,0

)1/3

< 1, (F23)

and thus the transverse conductivity,

Reσ⊥(ω � vFq) 
 gS
e2

h

(pF,0

2

)2/3 1 + F1

q4
p

×

⎧⎪⎨
⎪⎩

q10/3
ω , q � q0

c4

v4
F

q−2/3
ω q4, q0 � q � qω

, (F24)

where the second regime is significant only when c � vF. These scaling regimes are shown in figure 8,
showing that the effect of Γω only becomes significant at large frequencies for which Γω � Γ1, and only for
the range of q for which Re σ⊥(ω � vFq). Therefore, even in ultra-clean samples in which the diffusive
regime vanishes, effect of Γω is negligible when probing the universal quasi-static transverse conductivity at
frequencies and momenta satisfying ω � Δωs(q) � vFq.

We close this appendix by showing that the various classical (i.e. non-quantum) regimes admits a
hydrodynamical interpretation by rederiving the above asymptotic transverse conductivities starting from
the Navier–Stokes equation with an additional per unit area external force, f , and friction ffr = −nmγv,

η∂2
rv = nm(∂t + v · ∂r)v + ∂rp − f − f fr. (F25)

For metals, f = neE, so that linearizing the above equation in v, one finds that the transverse current
j⊥ = nev⊥ has an associated transverse conductivity

σ⊥ =
ne2

m
(
iω + γ + η

nm q2
) = gS

e2

h

pF,0

Q′(q, qω)
, (F26)

Q′(q, qω) = q′D +
q2

2q′C
+ iqωξ0, (F27)

q′D =
2

1 + F1

γ

vF
, q′C =

npF,0

4η
, ξ0 =

2

1 + F1
, (F28)
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i.e. equation (F12) with redefined parameters q′C and q′D. For the SFSS, we consider the force per unit area
f = nee, and consider the relation between the physical current, spinon and chargon currents, respectively
equations (30), (37) and (38) in the main text, the SFSS conductivity can be obtained straightforwardly by
applying the Ioffe–Larkin rule equation (39) using the expression for the chargon conductivity,
equation (60) in the main text, which follows from Maxwell’s equations. Doing so recovers equation (F12)
in its entirety with redefined parameters q′C and q′D,

Q′(q, qω, qp) = q′D +
q2

2q′C
+ iqωξ(q, qω, qp). (F29)

The q- and ω-dependences in the various cases immediately follow from the previous analysis.

Appendix G. Derivation of low-frequency magnetic noise from conductivity

In this appendix, we derive the two-time time magnetic field correlations associated to the current
correlations of the system in the quantum regime Γ1,2 = 0 leading to the discussion in section 4.1 of the
main text, and in particular, the expression for the low-frequency noise equation (2). We begin by
decomposing the density and current fluctuations into longitudinal (‖) and transverse (⊥) Fourier modes.
Treating each mode as an independent source, we solve Maxwell’s equations to obtain the associated
electromagnetic field distributions E‖,⊥(x, z, t) = E‖,⊥

q (ω, z)ei(ωt−q·x) and B‖,⊥(x, z, t) = B‖,⊥
q (ω, z)ei(ωt−q·x),

where x is a 2D-vector denoting the coordinate parallel to the plane of the system while z denotes the
out-of-plane coordinate. For a longitudinal mode,

ρ(x, z, t) = ρqδ(z)ei(ωt−q·x), (G1)

j‖(x, z, t) = j‖,qδ(z)ei(ωt−q·x)q̂ j‖,q = vρq, (G2)

where v = ω/q is the velocity of the traveling wave moving along the modulation direction q̂. In contrast, a
transverse mode has no density fluctuations,

ρ(x, z, t) = 0, (G3)

j⊥(x, z, t) = j⊥,qδ(z)ei(ωt−q·x)q̂⊥, q̂ × q̂⊥ = ẑ, (G4)

where we have assumed a charge neutral background. The corresponding magnetic fields generated by these
source modes are

B‖
q(ω, z) =

μ0

2
sgn(z)e−

q
γ |z|j‖,q × ẑ, (G5)

B⊥
q (ω, z) =

μ0

2
e−

q
γ |z|j⊥,q ×

(
sgn(z)ẑ + iγq̂

)
, (G6)

where γ = 1/
√

1 − ω2/c2q2 is the Lorentz factor and c the speed of light.
In the non-relativistic limit, γ → 1 and the frequency dependence of B‖,⊥

q drop out. Consequently, these
expressions can be directly quantized, so that the time-evolution of the corresponding magnetic field
operators to is completely encoded by that of the current operators [26],

B̂‖
q(z, t) =

μ0

2
sgn(z)e−q|z|̂j‖,q(t) × ẑ, (G7)

B̂⊥
q (z, t) =

μ0

2
e−q|z|̂j⊥,q(t) ×

(
sgn(z)ẑ + iq̂

)
. (G8)

In practice, it is more useful to express the components of the magnetic field operator in a reference frame
in which q̂ is defined by its angle θq from the x-axis.

B̂q(z, t) = B̂‖
q(z, t) + B̂⊥

q (z, t) = B̂q,x(z, t)x̂ + B̂q,y(z, t)ŷ + B̂q,z(z, t)ẑ, (G9)

B̂q,x(z, t) =
μ0

2
e−q|z| sgn(z)

(̂
j⊥,q(t) cos θq + ĵ‖,q(t) sin θq

)
, (G10)

B̂q,y(z, t) =
μ0

2
e−q|z| sgn(z)

(̂
j⊥,q(t) sin θq − ĵ‖,q(t) cos θq

)
, (G11)

B̂q,z(z, t) = −i
μ0

2
e−q|z|̂j⊥,q(t), (G12)
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Without loss of generality, let us consider the magnetic response at a point x = y = 0 and some finite
distance z > 0 above the system,

χBμBν (z, t) = −iΘ(t)
〈[

B̂μ(z, t), B̂ν(z, 0)
]〉

, (G13)

B̂μ(z, t) =
∑

q

B̂q,μ(z, t), (G14)

where μ, ν = x, y, z and Θ(t) denotes the Heaviside function. Using the operator relations equations (G7)
and (G8), the magnetic noise can be written explicitly in terms of current correlators, or equivalently
conductivities,

χjα jβ (q, t) = −iΘ(t)
〈[̂

jα,q(t), ĵβ,−q

]〉
, (G15)

χjα jβ (q,ω) = −iωσαβ(q,ω), (G16)

where α,β = ‖,⊥. It follows from equation (7) of the main text that in the quasi-static limit, that the
diagonal components of the magnetic noise tensor are

χ′′
BxBx

(z,ω → 0) =
μ2

0ω

4

∫
d2q

4π2
e−2qzσ′

⊥,0(q)cos2(θq), (G17)

χ′′
ByBy

(z,ω → 0) =
μ2

0ω

4

∫
d2q

4π2
e−2qzσ′

⊥,0(q)sin2(θq), (G18)

χ′′
BzBz

(z,ω → 0) =
μ2

0ω

4

∫
d2q

4π2
e−2qzσ′

⊥,0(q), (G19)

while the off-diagonal components are

χ′′
BxBy

(z,ω → 0) = χ′′
ByBx

(z,ω) =
μ2

0ω

4

∫
d2q

4π2
e−2qzσ′

⊥,0(q) cos(θq) sin(θq), (G20)

χ′′
BxBz

(z,ω → 0) = −χ′′
BzBx

(z,ω) = sgn(z)
μ2

0ω

4

∫
d2q

4π2
e−2qz Imσ⊥⊥(q,ω → 0) cos(θq), (G21)

χ′′
ByBz

(z,ω → 0) = −χ′′
BzBy

(z,ω) = sgn(z)
μ2

0ω

4

∫
d2q

4π2
e−2qz Imσ⊥⊥(q,ω → 0) sin(θq), (G22)

where F′ and F′′ denotes respectively the real and imaginary parts of a complex function F = F′ + iF′′.
In the presence of a symmetry that enforces the quasiparticle dispersion to satisfy εp = ε−p such as time

reversal or space inversion, the diagonal components of the magnetic noise tensor are

χ′′
BxBx

(z,ω) =
μ2

0ω

4

∫
d2q

4π2
e−2qz

(
Reσ⊥(q,ω)cos2(θq) + Reσ‖(q,ω)sin2(θq)

)
, (G23)

χ′′
ByBy

(z,ω) =
μ2

0ω

4

∫
d2q

4π2
e−2qz

(
Reσ⊥(q,ω)sin2(θq) + Reσ‖(q,ω)cos2(θq)

)
, (G24)

χ′′
Bz Bz

(z,ω) =
μ2

0ω

4

∫
d2q

4π2
e−2qz Reσ⊥(q,ω). (G25)

while the off-diagonal components of the magnetic noise tensor are

χ′′
BxBy

(z,ω) = χ′′
ByBx

(z,ω) =
μ2

0ω

4

∫
d2q

4π2
e−2qz

(
Reσ⊥(q,ω) − Reσ‖(q,ω)

)
cos(θq) sin(θq), (G26)

χ′′
BxBz

(z,ω) = −χ′′
BzBx

(z,ω) = sgn(z)
μ2

0ω

4

∫
d2q

4π2
e−2qz Imσ⊥(q,ω) cos(θq), (G27)

χ′′
ByBz

(z,ω) = −χ′′
BzBy

(z,ω) = sgn(z)
μ2

0ω

4

∫
d2q

4π2
e−2qz Imσ⊥(q,ω) sin(θq). (G28)

In the quasi-static limit, the off-diagonal components χ′′
BxBz

and χ′′
ByBz

vanish since Imσ⊥(q,ω → 0) = 0
(equation (D9)), such that the only non-trivial components can be summarized by equations (77) and (78)
in the main text,

χ′′
Bz Bz

(z,ω → 0) 
 μ2
0ω

4

∫
d2q

4π2
e−2qzσ⊥,0(q) +O(ω3), (G29)
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Figure 9. Left: schematic showing the set of points {p∗
i (θq)} on the same anisotropic FS as that shown in figure 1(c) of the main

text, with Fermi velocities (green arrows) orthogonal to q along a different direction. Right: construction of the support angles
ϕm and functions rm(ϕm) for two of the six points in the left panel. The origin (red dot) for the concave region m = 1 (red) is a
point outside of the FS while the origin (blue dot) for convex region m = 2 (blue) is a point inside the FS. All angles are defined
relative to the x-axis (bold black line).

χ′′
BiBj

(z,ω → 0) 
 μ2
0ω

4

∫
d2q

4π2
e−2qzσ⊥,0(q)q̂ · êiq̂ · êj +O(ω3), (G30)

with corrections O(ω3). The leading term in the noise spectrum therefore captures geometric properties of
the FS, a result that is common to both metals and spinon FS stats.

In the quantum transport regime, the out-of-plane component χ′′
BzBz

(z,ω → 0) in particular can be
evaluated even for an anisotropic FS as we show in the following. Substituting equation (8) in the main text
to equation (G19), we have

χ′′
Bz Bz

(z,ω → 0) 
 (2S + 1)
e2μ2

0

32πh

ω

z

∫ 2π

0

dθq

2π

∑
i

RF|p∗i (θq) +O(ω3). (G31)

Notice that the set of points
{

p∗
i (θq)

}
=

{
p∗

i (θq + π)
}

; the integration with respect to θq corresponds to
integrating |RF| around the FS twice. For a convex FS, one can perform this integration by first choosing an
arbitrary interior point as the origin and then constructing a support function r(ϕ) characterized by the
distance r and angle ϕ of the shortest line drawn from the origin to the tangent curve for every point along
the curve. The points

{
p∗

i (θq)
}

are characterized by the angles ϕ = θq ± π/2, such that dϕ = dθq and

∫ π

0
dθq

∑
i

RF|p∗i (θq) =

∫ 2π

0
dϕ

(
r(ϕ) + ∂2

ϕr(ϕ)
)
= PFS, convex FS. (G32)

which is a known mathematical result [64, 65], where PFS denotes the perimeter of the (convex) FS.
In fact, this result holds for a generic FS with concave regions. To see this, we split the |RF| integration

into concave and convex regions of the FS. For each convex region, we choose an interior point as the origin
as before. For each concave region, we choose an exterior point as the origin relative to which the region is
convex. Support functions for each region rm can be defined with respect to their support angles ϕm about
their respective origins. The crucial point in this construction is that the angles characterizing the points
within each region m is once again related to θq via ϕm = θq ± π/2 such that dθq = dϕm. The integration
over each region gives its arc length �m, the sum of which corresponds to the perimeter of the FS,

∫ π

0
dθq

∑
i

∣∣∣RF|p∗i (θq)

∣∣∣ = ∑
m

∫ φm,f

φm,0

dϕm

(
r(ϕm) + ∂2

ϕm
rm(ϕm)

)
=

∑
m

�m = PFS. (G33)

The construction procedure is illustrated in figure 9.
Consequently,

χ′′
BzBz

(z,ω → 0) 
 e2μ2
0

16πh

ω

z

(2S + 1)

2π
PFS +O(ω3). (G34)

For a circular FS, PFS = 2πpF,0 so that

χ′′
Bz Bz

(z,ω → 0) 
 (2S + 1)
e2μ2

0

16πh

ωpF,0

z
+O(ω3), isotropic FS. (G35)

33



New J. Phys. 23 (2021) 113009 J Y Khoo et al

Appendix H. Derivation of low-frequency noise contribution from spin correlations

In this appendix we derive the contribution of the spin fluctuations to the magnetic noise spectrum arising
from spin- 1

2 fermions and show that it is subdominant compared to contribution from current fluctuations,
equations (88) and (89) of the main text. The vector potential at points x due to a given magnetization
M(xs) is

A(x) =
μ0

4π

∫
d3xs

M(xs) × (x − xs)

|x − xs|3
=

μ0

4π

(∫
d3xs

∇s × M(xs)

|x − xs|
−

∫
d3xs∇s ×

M(xs)

|x − xs|

)
, (H1)

where the second term can be written as a surface integral which vanishes for physical distributions M(xs).
This vector potential gives rise to a magnetic field,

B(x) = ∇× A(x) = −μ0

4π

∫
d3xs(x − xs) ×

∇s × M(xs)

|x − xs|3
. (H2)

Consider the magnetization of a 2D system

M(xs) = Mkδ(zs)e−ik·rs , xs = (rs, zs), rs = (xs, ys), (H3)

where k = (kx, ky) is a momentum in the plane parallel to the system. It can be shown that this gives rise to
a magnetic field

B(x) = k
μ0

2
e−ik·r e−k|z|

(
i sgn(z)Mz

kk̂ + Mk − k̂Mk · k̂
)
. (H4)

The intrinsic spin magnetic dipole moment of an electron is given by μs = −gsμBS/�. The magnetization
operator in momentum space is

M̂k = −1

2
gsμB

∑
p

ĉ†p+kσ̂ĉp, (H5)

where σ̂ = (σ̂x, σ̂y, σ̂z) denote the Pauli matrices. At x = y = 0, the generic magnetic field operator is given
by

B̂(z) = −1

4
μ0gsμB

∑
k,p

b̂p,k(z), b̂p,k(z) = k e−k|z|ĉ†p+k

(
i sgn(z)σ̂zk̂ + σ̂ − k̂σ̂ · k̂

)
ĉp. (H6)

Note that only the first term changes sign under k →−k. At time t > 0,

B̂(z, t) = eiHt B̂(z)e−iHt . (H7)

For simplicity, let us consider a paramagnetically ordered system with an isotropic FS described by the free
fermion Hamiltonian H =

∑
k,sc

†
k,sck,s so that the spin and momentum sectors are decoupled. The

time-dependent magnetic noise at the origin x = y = 0 at zero temperature is then

χspin,BiBj (z, t) = − i

�
Θ(t)

〈[
B̂i(z, t), B̂j(z)

]〉
0
, (H8)

where the expectation value is taken over the ground state. In frequency space, one finds

χspin,BiBj (z,ω) =
1

16
μ2

0g2
s μ

2
Bαij

∫ ∞

0

dk

2π
k3 e−2k|z|χ0σ(k,ω), (H9)

αij = αji = Tr

[∫ 2π

0

dθ

2π

(
−i sgn(z)σ̂zk̂ + σ̂ − k̂σ̂ · k̂

)
i

(
i sgn(z)σ̂zk̂ + σ̂ − k̂σ̂ · k̂

)
j

]
= 2δij,

(H10)

χ0σ(k,ω) =
m∗

2π

pF,0

k

[
Ψ2

(
ω + iδ

kvF
− k

2pF,0

)
−Ψ2

(
ω + iδ

kvF
+

k

2pF,0

)]
,

Ψ2(ζ) = ζ − sgn(Re ζ)
√
ζ2 − 1, (H11)

where the trace in αij is performed over spin degrees of freedom, fk = Θ(pF,0 − k) is the zero temperature
Fermi distribution, χ0σ(k,ω) is the 2D one-spin Lindhard function, and m∗ the quasiparticle mass. The
imaginary part is
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χ′′
spin,BiBj

(z,ω) = −δij
1

16
μ2

0g2
s μ

2
B

m∗

4π2
p4

F,0

· 2

∫ ∞

0
dk̃k̃2 e−2̃kpF,0|z|

[
Θ(1 − s2

−)
√

1 − s2
− −Θ(1 − s2

+)
√

1 − s2
+

]
, (H12)

s± = s ± k

2pF,0
≡ ω̃

k̃
± k̃

2
, ω̃ =

ω

2EF
=

ω

vFpF,0
, k̃ =

k

pF,0
. (H13)

Solving for the constraints provided by the Heaviside function, the integral becomes

χ′′
spin,BiBj

(z,ω) = −δij
1

16
μ2

0g2
s μ

2
B

m∗

4π2
p4

F,0 · 2
∑
s=±

(−s)

∫ k̃s,>

k̃s,<

dk̃k̃ e−2̃kpF,0 |z|
√(

k̃2 − k̃2
s,<

)(
k̃2

s,> − k̃2
)

, (H14)

k̃+,< = 1 −
√

1 − 2ω̃ = ω̃ +O(ω̃2), k̃+,> = 1 +
√

1 − 2ω̃ = 2 − ω̃ +O(ω̃2), (H15)

k̃−,< = −1 +
√

1 + 2ω̃ = ω̃ +O(ω̃2), k̃−,> = 1 +
√

1 + 2ω̃ = 2 + ω̃ +O(ω̃2). (H16)

For z > 0 and in the large distance limit, 2k̃±,>pF,0z 
 4pF,0z � 1, i.e. z � 1/4pF,0, the above can be
approximated by

χ′′
spin,BiBj

(z,ω) 
 δij
1

16
μ2

0g2
s μ

2
B

m∗

4π2
p4

F,0 · 2
∑
s=±

sk̃s,>

∫ ∞

k̃s,<

dk̃k̃ e−2̃kpF,0z
√

k̃2 − k̃2
s,< (H17)


 δij
1

16
μ2

0g2
s μ

2
B

m∗

4π2
p4

F,0 · 2
∑
s=±

2s(1 − sω̃)

[
k̃3

s,<

α
K2 (α)

]
, α = 2

ωz

vF
. (H18)

where K2 denotes the K-Bessel function of the second kind. Expanding K2 in the α � 1 limit, or
equivalently, the low-frequency limit ω � vF/2z,

χ′′
spin,BiBj

(z,ω) 
 −δij
e2μ2

0

16π2

(gs

2

)2
(

m∗

2m0

)2

· ωpF,0

z

2

p2
F,0z2

, (H19)

where m0 is the electron rest mass. Comparing this to the current contribution (equation (G35) with
S = 1/2), we find ∣∣∣∣χ′′

spin,BzBz
(z,ω → 0)

χ′′
BzBz

(z,ω → 0)

∣∣∣∣ 
 ( gs

2

)2
(

m∗

2m0

)2

· 2

p2
F,0z2

, (H20)

i.e. a 1/p2
F,0z2 suppression of the spin fluctuation contribution relative to the current fluctuation

contribution and can therefore be neglected at large distances z � 1/pF,0.

H.1. Comments on reference [18]
Our results for the spin fluctuations above are identical for the Z2 and U(1) spin liquids with a spinon FS.
This disagrees with some results obtained in reference [18]. Specifically, table 1 of that reference claims the
noise in the two types of spin liquids has a different dependence on temperature in the clean case when
T � ω. In contrast, we obtain a linear in T behavior from equation (76) in both cases. In addition, table II
of reference [18] predicts a different dependence on height z (called d therein) for the two spin liquids in
clean systems in the limit T � ω. We obtain a z−3 dependence of the noise from spin fluctuations in both
cases. In the following we point out specific mistakes in reference [18], that led to the erroneous
conclusions.

The error in the derivation of the z-dependence originates from the incorrect approximation of the
following integral in equation (B7) in the appendix of reference [18],

∫ (2μ+ω)/vFq

(2μ−ω)/vFq
du

√
u2 − 1 �
 ω

vFq

(
μ

vFq

)2

. (H21)

Writing u = u0 + x, u0 = 2μ/vFq 
 pF/q � 1 and s = ω/vFq � u0, we find instead

∫ (2μ+ω)/vq

(2μ−ω)/vFq
du

√
u2 − 1 
 2u0s − s

u0

 4μω

(vFq)2
+

ω

2μ
, (H22)
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so that the noise (equation (B8) in the appendix of reference [18]) in the ω → 0 limit should read

χ′′
spin ∝

∫ ∞

ω/vF

dqq3 e−2qz q2√
v2

Fq2 − ω2

ωμ

(vFq)2
∝ ω

∫ ∞

0
dqq2 e−2qz ≈ ω

z3
, (H23)

identical to the result they obtained for the U(1) quantum spin liquid with spinon FS and our result above.
The error in the T dependence originates from an incorrect approximation of the integral in equation

(B9) in the appendix of reference [18],

∫ ∞

1
du

√
u2 − 1

cosh2[(vFqu − 2μ)/2T]
�=

(
μ

vFq

)2

. (H24)

Because the cosh2 is exponentially large in its argument, the main contribution to this integral originates
from values u in an interval of width ∼T/vFq around u 
 2μ/vFq. For μ � T, vFq this restricts the integral
to values u � 1 and we can approximate

∫ ∞

1
du

√
u2 − 1

cosh2[(vFqu − 2μ)/2T]


∫ ∞

1
du

u

cosh2[(vFqu − 2μ)/2T]
(H25)

∼ μT

(vFq)2
, (H26)

where we have used the indefinite integral∫
du

u

cosh2(bu − a)
= − log[cosh(a − bu)] + bu tanh(a − bu)

b2
(H27)

and expanded to leading order in vFq/μ and T/μ. This means that there should be an extra factor of T/μ in
the noise in equation (29) and equation (B10) of reference [18] and the noise for the Z2 FS should also be
linear in T in table 1 in agreement with our results.

Appendix I. Effects of collision on low-frequency noise

In this appendix, we analyze in detail the low-frequency noise obtained in the presence of collisions leading
to the discussion in section 4.2 of the main text. For simplicity, we consider isotropic systems with circular
FSs. In this case, the non-trivial components of the magnetic noise from current fluctuations following
equations (G23)–(G25) are

χ′′
BiBi

(z,ω) =
μ2

0ω

16π

∫
dqq e−2qz

(
Reσ‖(q,ω) + Reσ⊥(q,ω)

)
, (I1)

χ′′
BzBz

(z,ω) =
μ2

0ω

8π

∫
dqq e−2qz Reσ⊥(q,ω). (I2)

Of particular interest is the out-of-plane component, which can be approximated by approximating the
respective transverse conductivities as

Reσ⊥(q,ω) 
 Θ
(
q − q̃(s)(ω)

)
σ⊥(q, 0+) +Θ

(
q̃(s)(ω) − q

)
Reσ⊥(q,ω). (I3)

As per the discussion in reference [18], the distance z sets a cutoff scale qz = 1/2z at which the system’s
response is probed. For cases when the various momentum scales {qz, q∗, q∗∗, q̃(s)(ω)} (also q0 for the SFSS)
are well separated, the noise can be approximated by integrating the corresponding expression for the
transverse conductivity, found in tables 4–6 and table 1 in the main text, over the region of q in which qz

lies. This approximation gives rise to a ωl+1z−(n+2) dependence of the noise when the corresponding
transverse conductivity scales as Reσ⊥(q,ω) ∝ ωlqn for n > −2. For the special case of n = −2, i.e. the
quasi-static transverse conductivity in the hydrodynamic transport regime. In this case, instead of the naive
z0-dependence, the z-dependence is well approximated by

f (z) = Ei(−2q∗z) − Ei(−2q∗∗z), (I4)

where Ei(x) denotes the exponential integral function. Consequently, the z-dependence of the noise is given
by the distance scale at which it is probed at with respect to the associated distance scales set by the above
momentum scales, zi = 1/2qi. This accounts for the different z-dependences in the various regimes shown
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Figure 10. Plots of the rescaled magnetic noise χ̄Bz ∝ χ′′
BzBz

z/ωpF,0, as a function of the out-of-plane distance z from the 2D
sample, as well as frequency ω, for (a) an isotropic metal and (b) an isotropic SFSS with ωp = 2vFpF,0, for which there is an
additional peak. (c) Magnetic noise due to current fluctuations obtained from transverse conductivities at the same frequencies
ω1 and ω2 shown in figure 7 for SFSS (solid plots) and metals (dashed plot).

Table 7. Frequency (ω) and distance (z) dependence of magnetic
noise from current fluctuations in various transport regimes in
metals, where f(z) is given in equation (I4).

Metals
Diffusive
z � z∗∗

Hydrodynamic
z∗∗ � z � z∗

Quantum
z∗ � z

χ′′
BzBz

(z � z̃(ω)) ω
z2 ωf(z) ω

z

χ′′
BzBz

(z � z̃(ω)) 1
ωz2

1
ωz4

1
ω3z4

in figure 10 and tables 7 and 8 below. As an illustration, we consider the case of the SFSS with
q0 � q∗∗ � q̃(s)(ω) � q∗, for which case the noise at distances z̃s(ω) � z � z∗∗ can be approximated as

χ′′
BzBz

(z,ω) 
 μ2
0ω

8π

∫ q̃(s)(ω)
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dqq e−2qz Reσ⊥(q,ω)
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8π
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0
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64πh
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qCω
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ω4
p

Γ(9)

(2z)8
, (I5)

where Γ denotes the gamma function.
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Table 8. Analogue of table 7 for SFSSs.

SFSSs
Diffusive
z � z∗∗

Hydrodynamic
z∗∗ � z � z∗

Quantum
z∗ � z

χ′′
BzBz

(z � z̃s(ω)) ω
z2 ωf(z) ω

z

χ′′
BzBz (z0 � z � z̃s(ω)) 1

ωz6
1

ωz8
1

ωz7

χ′′
BzBz

(z � z0) ω3

z2
ω3

z4
ω13/3

z2

Therefore, in order to access the system’s response in the quasi-static quantum regime, the noise should
be probe at distances z � z∗, where z∗ ∼ lmfp the system mean free path in the T → 0 limit.
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