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Abstract
The diatomic linear chain with nearest-neighbor spring constants C1 and C2 has topologically
different bulk states for C1 ≷ C2. A finite chain of N unit cells and fixed ends (the first and last
spring is C1) exhibits two topological end states within the gap for C1 > C2. We investigate the
effect of an impedance mismatch by varying the first and last ‘boundary’ spring constant termed
CF from its ideal value C1. CF = 0 represents an open end and does never lead to topological states.
CF →∞ means that also the next site to the boundary is fixed, leading to topological states only
for C1 < C2 since now the first movable spring is C2. Within a range of CF around C1 topological
end states are preserved for C1 > C2. For C2 > C1, topological end states occur when CF exceeds a
certain value.

1. Introduction

In this paper we like to analyze the simplest mechanical model for a non-trivial linear molecule with
alternating short/strong and long/weak bonds, such as e.g. trans-polyacetylene, being attached to a surface.
While the electronic topological properties of such molecules have been treated with Su–Schrieffer–Heeger
[1] type models in detail [2, 3], the impact of the topological nature on mechanical properties, in particular
the robustness of the topological gap states with respect to the mechanical coupling to the environment has
not been considered.

Since the topological gap state has maximum amplitude at the end(s) of the chain, it could be
responsible for the detachment (i.e. ripping off) of a molecule bonded to another (heavy) entity such as a
surface or a nanoparticle. We investigate in this paper, for what range of bonding strengths the
well-localized gap state of the topological chain exists.

Topological mechanical systems can be generally mapped to quantum mechanical Hamiltonians and can
this way be classified [4, 5]. Specific linear (1D) mechanical systems have been treated with regard to their
topological properties, however, they were more complicated, containing pivots [5, 6] or a double chain
with cross-connects [7].

Here, we assume the simplest mechanical model with topological properties, namely the diatomic linear
chain model (DLCM) [8–10] of dimers with sites A and B having the same mass M. The inter-dimer (A–B)
spring constant shall be C1 and the intra-dimer (B–A) spring constant C2 (figure 1(a)). We denote
ξ = C2/C1. For ξ = 1 there is no gap. For ξ �= 1, the diatomic linear chain has two topologically different
bulk states for ξ < 1 and ξ > 1 [11]. For a finite chain with N dimers, topological end states can form
within the gap. We fix the leftmost A-site and the rightmost B-site, leaving 2N − 2 oscillators. In this case
topological end states develop for ξ < 1 [11]. We note that the first (leftmost) and last (rightmost) spring
are of type C1. Obviously, if now the second site (B-type) and the second-to-last site (A-type) are
additionally fixed, reducing the number of oscillators to 2N − 4, the chain has topological end states for
ξ > 1 since C2-springs are now the first oscillating spring type.

Here, we are interested in the impedance matching of the chain to the fixed ends and its impact on the
topological end states. The spring constant of the first and last spring shall now be varied (between 0 and
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Figure 1. (a) DLCM with A–B dimers in an infinite chain; A-sites (B-sites) are shown in red (blue); the connecting springs have
force constants C1 (green) and C2 (orange), respectively. (b) DLCM with finite number of dimers with both end sites fixed (shown
in black). The first and last spring (coupling to the fixed ends) have the spring constant CF.

∞) and is denoted by CF (figure 1(b)). CF = C1 is the ‘natural’ or ‘ideal’ matching spring constant. CF = 0
represents an open end and CF →∞ leads to the fixation of the second and second-to-last site as discussed
above. Our question here is what deviations of CF from C1 (for ξ < 1) still support topological end states.

2. Bulk states

The bulk dispersion within the 1D Brillouin zone X–Γ–X with k ∈ [−π, . . . , 0, . . . ,+π] is given by [10]
(upper sign for the upper branch)

ω±(k) =
ωmax√

2

√
1 ±

√
1 − [γ sin(k/2)]2, (1)

with γ =
√

C1 C2/C̄, C̄ = (C1 + C2)/2 and the maximum phonon frequency given by ωmax = ω+(Γ),

ωmax =

√
2

C1 + C2

M
= 2

√
C̄

M
. (2)

In the following, the frequencies for a given system will be depicted as scaled by ωmax such that the
maximum frequency of the upper band is 1.

3. Finite ‘long’ chain with fixed ends

Now we consider a finite chain with N ≫ 1 dimers (2N oscillators). The two ends are fixed as shown in
figure 1(b), thus 2N − 2 oscillators can move. On the left end the A-site, on the right end the B-site shall be
fixed. The vector u contains displacements for the A- and B-sites of the dimer n, uA

n and uB
n ,

u = (uA
1 , uB

1 , uA
2 , uB

2 , . . . , uA
N , uB

N)T (3)

= (ũ1, ũ2, ũ3, ũ4, . . . , ũ2N−1, ũ2N)T (4)

The displacements ũi represent another way of counting the oscillators with an index i = 1, . . . , 2N.
With the ends fixed, uA

1 = ũ1 = 0 and uB
N = ũ2N = 0, the equations of motion can be written as

C u = M ω2 u with the upper left corner of the matrix C being,

C

C1
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

0 1 + ξ −ξ 0 . . .

0 −ξ 1 + ξ −1 . . .

0 0 −1 1 + ξ . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

(5)

For the left end gap mode, uA
n = 0 for all n in the ideal case of an infinitely long chain for which the

right end gap mode does not overlap. The frequency of the double degenerate gap mode is then given from
the second row of (5) as

ωg =

√
C1 + C2

M
=

ωmax√
2
. (6)

This value is also equal to ω−(X) = ω+(X) for the gapless case C1 = C2. For the right end gap mode,
uB

n = 0 for many n = N, N − 1, . . .and (6) holds. The orthonormal mode patterns of the two eigenstates
shall be ug,1 and ug,2.

We note that due to the frequency degeneracy, other combinations such as (ug,1 + ug,2)/
√

2 and
(ug,1 − ug,2)/

√
2 are also eigenstates. In order to avoid such ambiguity in our calculations and for obtaining

2
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solutions that are localized at the ends (and not symmetric and antisymmetric ‘hybridized’ modes), a
minute mass difference (MA − MB)/(MA + MB) = 5 × 10−4 has been used in the calculations. In this case
of different masses of A- and B-sites [12], the two gaps states are no longer degenerate and the
eigenfrequency at the left (right) end is given by ωB

g (ωA
g ),

ωA
g =

√
C1 + C2

MA
, (7)

ωB
g =

√
C1 + C2

MB
. (8)

The gap modes decay exponentially from the ends; from the third row of (5) we obtain
C2 uB

1 + C1 uB
2 = 0, and generally,

uB
n+1 = −ξ uB

n . (9)

for many n = 1, 2, . . . The solution is
uB

n = (−ξ)n−1 uB
1 . (10)

In the case of a gap state, ξ < 1, and the amplitude decays in a geometrical series with alternating sign.

4. Finite chain with different fixtures

The first and last spring shall now be different and have the spring constant CF. The matrix C then is given
by (11).

C

C1
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .
0 ζ + ξ −ξ 0 . . .

0 −ξ 1 + ξ −1 . . .

0 0 −1 1 + ξ . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

(11)

The variation of CF changes the impedance matching to the fixed ends. For the ‘impedance matched’
condition CF = C1 (ζ = CF/C1 = 1), the two gap states are given by (6).

In figure 2 we show the eigenspectra for a N = 25 chain as a function of ζ for ξ = 1/2. Most of the states
are essentially independent of CF while two degenerate states (red solid line in figure 2) move from the top
of the lower band to the bottom of the upper band. We note that eventually for CF/C1 larger than about 2,
two degenerate states develop with frequency larger than ωmax (dashed red line in figure 2) where eventually
only the outer sites oscillate, going asymptotically to

ωtop =

√
CF + C2

M
(12)

(black thick line in figure 2). This formula can be obtained from the solution of the 2 × 2 problem in (11)
for the two left- or rightmost oscillators. The amplitude ratio of the end oscillator and the next one is
|uB

2/uB
1 | ≈ C2/CF = ξ/ζ � 1. Formula (12) also gives the correct value (6) for ζ = 1 as visualized in

figure 2.
A special case is ζ = 2. It entertains a solution with ũn+1 = −ũn (n = 2, 3, . . . , 2N − 1) and the

frequency ωmax =
√

(2 + ξ) C1/M as can be seen from the first rows of (11). Thus the chain acts as if no
fixed borders are present, ergo also no end state is present. The value ζ = 2 therefore separates the regime of
end states in the gap ζ < 2 from the regime of the top state ζ > 2 with ω > ωmax.

For the case ξ > 1, no gap states exist for fixed ends and ζ = 1. However, CF →∞ means that the
second inner site becomes fixed which is a B-site on the left and an A-site on the right end. Then the roles of
inter- and intra-dimer springs are exchanged and a gap state exists for ξ > 1. As depicted in figure 3, a gap
state starts to develop for ζ > 2.

Now we investigate the impact of the coupling to the ends CF on the gap state (for ξ < 1) in more detail.
The nature of the ‘ideal’ gap state (for ζ = 1) is that only one type of sites oscillates (B-sites on the left end
if the A-site is fixed). Parameters to quantify this are the average position of the mode, counting the
oscillators ν = 1, . . . , 2N (cmp. (4))
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Figure 2. Eigenfrequency spectra of a DLCM with 25 dimers and fixed ends as a function of ζ = CF/C1 for ξ = C2/C1 = 1/2.
The frequency is scaled to the maximum value from equation (2) for all parameters. The gap states are highlighted in solid red,
the highest states in dashed red. The black thick line follows ωtop of equation (12).

Figure 3. Eigenfrequency spectra of a DLCM with 27 dimers and fixed ends as a function of ζ = CF/C1 for ξ = 1/2 (red, same
as in figure 2) and ξ = 2 (blue). The frequency is scaled to the maximum value from equation (2) for all parameters. Only the
gap states solid lines and the highest states dashed lines are shown. The horizontal dashed line represents the gap mode energy
according to equation (6).

〈ν〉 =
2N∑
i=1

ũ2
i i, (13)

the standard deviation as width of the mode,

σ2 =
2N∑
i=1

ũ2
i (i − 〈ν〉)2, (14)

and the difference of amplitudes of the A- and B-sites, also termed momentum,

P =

∣∣∣∣∣
N∑

i=1

(uA
i

2 − uB
i

2
)

∣∣∣∣∣ (15)

which is 1 for the gap state at ζ = 1 and 0 (or very small for finite chains) for bulk states. For these
calculations of course the displacements are normalized with

2N∑
i=1

ũ2
i = 1. (16)

The average position of the gap modes is shown as a function of ζ = CF/C1 in figure 4 for the two cases
ξ = 1/2 and ξ = 2. When the gap mode is actually a topological state at the ends, the position is close to
oscillators 2 or 2N − 1, otherwise, when the gap mode is close the top of the bottom band or the bottom of
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Figure 4. (a) Average position 〈ν〉 according to (13) of the two (degenerate) gap modes of a DLCM with 27 dimers and fixed
ends as a function of CF/C1 for ξ = 1/2 (red) and ξ = 2 (blue). (b) Zoom into the left end of the chain. The dot indicates the
analytical result according to (17), the dashed line the result from (17) for fixed ends at oscillator positions 2 and 2N − 1. The
dashed red lines indicate an estimate of the CF-range for gap states according to (19).

the top band (cmp. figure 3), the average position is in the middle of the chain. There is a rather steep
transition between the two regimes. For ζ = 1, the average position can be calculated analytically (for
N � 1) as (0 < ξ = C2/C1 < 1),

〈ν〉 = 2

1 − ξ2
. (17)

Let us look at the vicinity of ζ = 1 (for three different values of ξ, ξ < 1) in more detail as depicted in
figure 5. For ζ = 1, the momentum is exactly 1, for values around 1 it remains close to but smaller than 1.
Then there is a rather sharp transition to values close to zero indicating completely delocalized bulk modes
involving both sites. Also the width of the mode follows such scheme. From the solution (10), the width can
be calculated in the case CF/C1 = 1 and large N as

σ =
2 ξ

1 − ξ2
= ξ 〈ν〉. (18)

These values are indicated in figure 5 as dots and agree with the numerical calculation. Certainly, for (18) to
be correct, it is required that the chain is sufficiently long, 2N � σ.

End states are generally possible for 0 < ζ < 2 (for ξ < 1). An estimation of the range of CF for which a
strongly localized gap state exists can be obtained from the condition that the approximation ωtop lies
within the bandgap, ωtop(CF) = ω±(X) (cf figure 2). This condition leads to C1 − |C1 − C2|� CF

� C1 + |C1 − C2|, i.e. C2 � CF � 2C1 − C2 for C1 > C2, or

ξ < ζ < 2 − ξ, (19)

as shown as vertical dashed lines in figures 4 (b) and 5.
For ‘short’ chains, the end modes from the two ends can overlap and results start to deviate from the

calculations with N ≫ 1. As example the mode width is shown in figure 6 for chains of lengths 24, 25 and
26. In the given plot, no change occurs for N > 26.
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Figure 5. Mode width σ (solid lines) according to (14) and momentum P (dashed lines) according to (15) for a DLCM with 27

dimers and fixed ends as a function of ζ for three different values of ξ = 0.3, 1/2 and 0.7 as labeled. The dots indicate analytical
results according to (18).

Figure 6. Mode width σ (solid lines) according to (14) for a DLCM with N dimers as labeled and fixed ends as a function of ζ for
ξ = 1/2. The dot indicates the analytical result according to (18).

5. Summary

A diatomic linear chain with different inter- and intra-dimer spring constants and fixed ends exhibits
topological edge states when the outmost spring has the larger spring constant. The end state tolerates a
deviation of the last spring from its ideal stiffness as long as it is smaller than twice that value. The resulting
topological state deviates from its ideal frequency value (higher or lower), moves inward the chain and
broadens. Analytical results have been given for the ideal chain and selected cases.
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