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Simple Summary: Soft tissue sarcomas (STS) still lack effective clinical stratification and prognostic
models. The aim of this study is to establish a reliable prognostic gene signature in STS. Using
189 STS samples from the TCGA database, a four-gene signature (including DHRS3, JRK, TARDBP
and TTC3) and nomograms that can be used to predict the overall survival and relapse free survival
of STS patients was developed. The predictive ability for metastasis free survival was externally
verified in the GEO cohort. We demonstrated that the novel gene signature provides an attractive
platform for risk stratification and prognosis prediction of STS patients, which is of great importance
for individualized clinical treatment and long-term management of patients with this rare and
severe disease.

Abstract: Soft tissue sarcomas (STS), a group of rare malignant tumours with high tissue heterogene-
ity, still lack effective clinical stratification and prognostic models. Therefore, we conducted this
study to establish a reliable prognostic gene signature. Using 189 STS patients’ data from The Cancer
Genome Atlas database, a four-gene signature including DHRS3, JRK, TARDBP and TTC3 was
established. A risk score based on this gene signature was able to divide STS patients into a low-risk
and a high-risk group. The latter had significantly worse overall survival (OS) and relapse free
survival (RFS), and Cox regression analyses showed that the risk score is an independent prognostic
factor. Nomograms containing the four-gene signature have also been established and have been
verified through calibration curves. In addition, the predictive ability of this four-gene signature
for STS metastasis free survival was verified in an independent cohort (309 STS patients from the
Gene Expression Omnibus database). Finally, Gene Set Enrichment Analysis indicated that the
four-gene signature may be related to some pathways associated with tumorigenesis, growth, and
metastasis. In conclusion, our study establishes a novel four-gene signature and clinically feasible
nomograms to predict the OS and RFS. This can help personalized treatment decisions, long-term
patient management, and possible future development of targeted therapy.

Keywords: soft tissue sarcomas; gene signature; prognosis; nomogram

1. Introduction

Soft tissue sarcomas (STS) are a group of rare malignant tumours mainly derived from
the embryonic mesoderm, with high tissue heterogeneity in each subtype, that represent
2% of all adult, and 7% of all childhood cancers [1,2]. At present, more than 100 tumour
subtypes of STS have been identified, the most common of which are liposarcoma, includ-
ing dedifferentiated liposarcoma (DDLPS), leiomyosarcoma (LMS) and undifferentiated
polymorphic sarcoma (UPS) [3,4]. The prognosis of STS patients remains poor. The five-
year overall survival rate for advanced STS is less than 20% [5]. Surgical resection with
radiotherapy is the most effective treatment strategy for early localized STS, and chemother-
apy is usually indicated for patients with metastatic tumours [6–8]. Previous studies have
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shown that risk stratification and targeted therapy can significantly improve the treatment
effect for most tumours, and STS is no exception [9,10]. Accurately stratifying the risk of
STS patients is helpful for long-term personalized management of patients and selection of
appropriate treatment strategies [7,10]. The previous view was that histological grading
was the most important prognostic stratification indicator for STS [11]. However, consid-
ering the huge heterogeneity, extremely low incidence and complex biological behaviour
of STS, grade is not always a reliable parameter; more efficient and robust prognostic
prediction models are required. Molecular biomarkers play a key role in prognosis and
treatment decisions for a variety of tumours; for example, PD-1 and PD-L1 are not only
prognostic markers for a variety of tumours, but also key indicators for immune checkpoint
therapy [12]. In STS, molecular signatures, including hypoxia-related gene signatures,
have also been shown to play a role in risk classification [13]. The identification of new
molecular signatures and their combination with existing predictors is expected to improve
the identification of “high-risk” patients [14].

With the development of gene sequencing technology, many analyses in public
databases have shown that gene markers at the messenger RNA (mRNA) level have
great potential in the risk stratification and prognosis prediction of various tumours. For
example, Zuo et al. established a six-gene signature to predict both disease-free and overall
survival in patients with non-small cell lung cancer and Xiao et al. developed a three-gene
signature as a prognostic biomarker for low-grade glioma [15,16]. Due to the extremely low
incidence of STS, it is hard for a single institution to collect enough patient tumour tissue
and clinical information to establish a prognostic gene signature. At this time, in-depth
mining of publicly available gene sequencing data is often an effective way to establish a
robust prognostic gene signature.

For this study, data from The Cancer Genome Atlas (TCGA) database was used to
create a gene signature of STS to predict survival and outcome. In addition, data from
the Gene Expression Omnibus (GEO) was used as an independent cohort to perform an
external validation. We demonstrated that the novel gene signature provides an attractive
platform for risk stratification and prognosis prediction of STS patients, which is of great
importance for individualized clinical treatment and long-term management of patients
with this rare and deadly disease.

2. Materials and Methods
2.1. Patient Data

The RNA-seq (IlluminaHiSeq 2000) data of 265 STS patients was obtained from TCGA
through the University of California, Santa Cruz, Xena Functional Genomics Explorer
(https://xenabrowser.net/datapages/ (accessed on 5 January 2021)). The RNA-seq data
are level 3 data from the TCGA data coordination centre, and the RNA-Seq by Expectation
Maximization normalized count converted by log2(x + 1) shows the transcription estimate
at the gene level. The latest clinical pathology and survival data were obtained from a
publication of the TCGA Network [17]. Due to the difficulty in extracting sufficient RNA,
well-differentiated liposarcoma was not included in this study [17]. After filtering the data,
only samples that had complete follow-up and clinical information, including age at first
diagnosis, gender, pathological tumour size, whether radiotherapy and chemotherapy
were performed, FNCLCC grade, vital status, OS time, relapse status, RFS time and
histological type were included. The patients had no history of systemic chemotherapy
or radiotherapy before tumour resection. The gene expression profile and MFS data of
309 STS samples from the GSE21050 dataset were obtained through the GEO database
(https://www.ncbi.nlm.nih.gov/geo/ (accessed on 26 January 2021)) to further verify
the prognostic ability of the gene signature [18], in which the gene expression data was
converted by log2(x + 1) for normalization. The difference of DHRS3, JRK, TARDBP and
TTC3 expression between STS tissues and normal tissues was analyzed in the Oncomine
database (https://www.oncomine.org/resource/main.html (accessed on 21 April 2021)).

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.oncomine.org/resource/main.html


Cancers 2021, 13, 5837 3 of 18

2.2. Establishment of Prognostic Gene Signature

For this study patients were divided into a training set (n = 95) and a testing set
(n = 94) by random assignment. In the training set, a robust likelihood-based survival
analysis was performed using the package “rbsurv” in the R software (Version 4.0.3, R
Foundation for Statistical Computing, Vienna, Austria) to identify genes related to OS [19].
After 10 iterations, 22 prognostic-related genes were obtained. Then, the R packages
“glmnet” and “survival” were used to perform LASSO model analysis and multivariate
Cox regression analysis and determined a survival-related prognostic model under the
threshold of p < 0.05. In addition, the “survminer” and “survival” R packages were used to
find the best cut-off value to classify samples into high and low risk groups. The Kaplan–
Meier curve was used to estimate the difference in OS and RFS between the two groups
and used the R package “timeROC” to plot the receiver operating characteristic (ROC)
curve over time to assess the predictive value of this prognostic gene signature. Finally,
the predictive value of prognostic gene signatures was verified in the testing set and the
whole set.

2.3. Establishment of Predictive Nomograms

In order to establish easy-to-use and clinically adaptable prognostic prediction models,
we used multivariate Cox regression analysis to identify independent risk factors related
to the prognosis of STS and combined these independent prognostic factors using the
R package “rms” to construct predictive nomograms. Then, calibration curves were
plotted to evaluate the deviation between the estimated OS/RFS probability and the actual
OS/RFS probability, and the C-index was used to evaluate the prognostic accuracy of
the nomograms.

2.4. Gene Set Enrichment Analysis

To explore the potential molecular mechanism of the prognostic gene signature, GSEA
software (Version 4.1.0) was used to perform gene set enrichment analysis by using MSigDB
C2 CP: Canonical pathways gene set collection [20]. The significance threshold was set to
p < 0.05, false discovery rate (FDR) < 0.25.

2.5. Statistical Analysis

Univariate and multivariate Cox regression were performed to evaluate the impact
of various potential risk factors on OS and RFS. A Kaplan–Meier curve was used for data
stratification analysis and a log-rank test was used to evaluate its statistical significance.
The R packages “cowplot” and “pheatmap” were used to generate risk distribution plots.
All statistical calculations were performed using R software, p < 0.05 was considered
statistically significant.

3. Results
3.1. Establishment of Four-Gene Prognostic Signature

A flow chart of this study is presented in Figure 1. Data on 256 sarcomas are pub-
lished in TCGA, of which 206 sarcomas are well characterized fully revised. Of these,
tumour size is missing for eight patients and chemotherapy and radiation information is
missing for nine additional patients. In total, 189 patients were included for final analysis
(Supplementary Table S1). The patients had an average age of 60 years at diagnosis and
95% of them suffered from a high-grade STS (Table 1). The patients had no history of
systemic chemotherapy or radiotherapy before tumour resection; this means that the gene
expression cannot have been falsified in this way [21]. First, a robust likelihood-based
survival analysis was performed on 95 samples in the training set and obtained 22 genes
that are significantly related to overall survival (OS). Subsequently, LASSO Cox regression
analysis was performed, further narrowing down the number of these survival-related
genes to nine genes (Figure 2). To further narrow the scope of mRNA, a multivariate
Cox proportional hazard regression analysis was performed. In the end, four genes were
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identified and used them for the construction of prognostic gene signature. The four genes
identified in this context were dehydrogenase/reductase 3 (DHRS3), Jrk helix-turn-helix
protein (JRK), TAR DNA binding protein (TARDBP) and tetratricopeptide repeat domain
3 (TTC3). Then, the relationship between the expression levels of these four genes and
OS was explored, and it was found that patients with high expression of JRK, TARDBP
and TTC3 had shorter OS, while patients with high expression of DHRS3 had better OS
(Supplementary Figure S1). In addition, gene expression analysis based on the Oncomine
database showed that JRK, TARDBP and TTC3 expression in STS tissues were higher than
normal tissues, while DHRS3 was the opposite (Supplementary Figure S2). This implies
the role of these four genes in the occurrence and development of STS. According to the
multivariate Cox regression model, the correlation coefficients of the four genes (expression
level) were estimated and the four-gene signature (4GS)-risk score of each patient was also
calculated.

4GS-risk score = −0.3059 × [DHRS3] + 0.8152 × [JRK] + 3.4023 × [TARDBP] + 1.0905 × [TTC3]. (1)

Table 1. Clinical characteristics of STS patients in the TCGA cohort.

Characteristics All (n = 189) Training Set (n = 95) Testing Set (n = 94)

Age group (Median)
≤60 years 96 (50.79%) 48 (50.53%) 48 (51.06%)
>60 years 93 (49.21%) 47 (49.47%) 46 (48.94%)
Gender

Male 87 (46.03%) 45 (47.37%) 42 (44.68%)
Female 102 (53.97%) 50 (52.63%) 52 (55.32%)

Pathologic tumour size
≤10.5 cm 95 (50.26%) 52 (54.74%) 43 (45.74%)
>10.5 cm 94 (49.74%) 43 (45.26%) 51 (54.26%)

Radiotherapy
Yes 54 (28.57%) 34 (35.79%) 20 (21.28%)
No 135 (71.43%) 61 (64.21%) 74 (78.72%)

Pharmaceutical therapy
Yes 45 (23.81%) 26 (27.37%) 19 (20.21%)
No 144 (76.19%) 69 (72.63%) 75 (79.79%)

FNCLCC grade
1 10 (5.29%) 5 (5.26%) 5 (5.32%)
2 105 (55.56%) 49 (51.58%) 56 (59.57%)
3 74 (39.15%) 41 (43.16%) 33 (35.11%)

Vital status
Alive 117 (61.90%) 62 (65.26%) 55 (58.51%)
Dead 72 (38.10%) 33 (34.74%) 39 (41.49%)

Relapse status
Relapse 114 (60.32%) 61 (64.21%) 53 (56.38%)

Non-Relapse 75 (39.68%) 34 (35.79%) 41 (43.62%)
Histological type

DDLPS 49 (25.93%) 23 (24.21%) 26 (27.66%)
LMS 68 (35.98%) 34 (35.79%) 34 (36.17%)
UPS 41 (21.69%) 24 (25.26%) 17 (18.09%)
MFS 17 (8.99%) 6 (6.32%) 11 (11.70%)
SS 10 (5.29%) 5 (5.26%) 5 (5.32%)

MPNST 4 (2.12%) 3 (3.16%) 1 (1.06%)
Tumour site

Retroperitoneum 81 (42.8%) 39 (41.1%) 42 (44.7%)
Upper/Lower Extremity 57 (30.2%) 30 (31.6%) 27 (28.7%)

Superficial Trunk 9 (4.8%) 4 (4.2%) 5 (5.3%)
Chest 10 (5.3%) 4 (4.2%) 6 (6.4%)
Uterus 19 (10.1%) 11 (11.6%) 8 (8.5%)
Other 13 (6.8%) 7 (7.3%) 6 (6.4%)

DDLPS: dedifferentiated liposarcoma; LMS: leiomyosarcoma; UPS: undifferentiated pleomorphic sarcoma; MFS: myxofibrosarcoma; SS:
synovial sarcoma; MPNST: malignant peripheral nerve sheath tumour.



Cancers 2021, 13, 5837 5 of 18

Cancers 2021, 13, x    4  of  19 
 

 

are significantly  related  to overall survival  (OS). Subsequently, LASSO Cox  regression 

analysis was performed,  further narrowing down  the number of  these survival‐related 

genes to nine genes (Figure 2). To further narrow the scope of mRNA, a multivariate Cox 

proportional hazard regression analysis was performed. In the end, four genes were iden‐

tified and used them for the construction of prognostic gene signature. The  four genes 

identified in this context were dehydrogenase/reductase 3 (DHRS3), Jrk helix‐turn‐helix 

protein (JRK), TAR DNA binding protein (TARDBP) and tetratricopeptide repeat domain 

3 (TTC3). Then, the relationship between the expression levels of these four genes and OS 

was explored, and it was found that patients with high expression of JRK, TARDBP and 

TTC3 had shorter OS, while patients with high expression of DHRS3 had better OS (Sup‐

plementary Figure S1). In addition, gene expression analysis based on the Oncomine da‐

tabase showed that JRK, TARDBP and TTC3 expression in STS tissues were higher than 

normal tissues, while DHRS3 was the opposite (Supplementary Figure S2). This implies 

the role of these four genes in the occurrence and development of STS. According to the 

multivariate Cox regression model, the correlation coefficients of the four genes (expres‐

sion  level) were estimated and the four‐gene signature  (4GS)‐risk score of each patient 

was also calculated.   

4GS‐risk score = −0.3059 × [DHRS3] + 0.8152 × [JRK] + 3.4023 × [TARDBP] + 

1.0905 × [TTC3].   
(1)

 

Figure 1. Workflow of the analyses. 

   

Figure 1. Workflow of the analyses.

Cancers 2021, 13, x    6  of  19 
 

 

 

Figure 2. Identification of 22 survival‐related genes by LASSO regression. (a) LASSO coefficient profiles of 22 prognostic 

genes. (b) Ten‐time cross‐validation for tuning parameter selection in the LASSO model. 

3.2. The Predictive Value of Four‐Gene Signature on the OS of STS Patients 

The R package “survminer” and “survival” were used to find the best cut‐off value 

for the risk score to divide patients into 4GS‐high‐risk and 4GS‐low‐risk groups, and we 

performed the same operations on the testing set and the whole set. In the training set, the 

Kaplan–Meier  curve  showed  that  the OS of  the 4GS‐high‐risk group was  significantly 

shorter than that of the low‐risk group (p < 0.0001) (Figure 3a). In addition, the ROC curve 

showed that the area under the curves (AUC) for 1‐, 3‐ and 5‐year OS were 0.942, 0.916, 

and 0.856, respectively (Figure 3b). In Figure 3c, we analysed the risk score distribution, 

survival status distribution and four‐genes expression distribution of patients in the train‐

ing set. The heatmap showed that the expression of DHRS3 was lower in the high‐risk 

group, while the expression of JRK, TARDBP and TTC3 were obviously higher. We ob‐

tained similar results in the testing set and the whole set. In the testing set and the whole 

set, the high‐risk groups had both shorter OS (p = 0.021 & p < 0.0001) (Figure 3d,g). The 

AUCs of 1‐, 3‐, and 5‐year OS were 0.657, 0.660, 0.675 in the testing set, and 0.753, 0.762, 

0.761 in the whole set (Figure 3e,h). The risk score distribution, survival status distribution 

and four genes expression distribution of patients are shown in Figure 3f,i, respectively. 

For the whole set, a data stratification analysis was also conducted. These patients were 

stratified according  to different clinical parameters, such as gender, age  (≤60 years/>60 

years),  Fédération Nationale des Centres de Lutte Contre  le Cancer  (FNCLCC)  grade 

(grade  1&2/grade  3),  radiotherapy,  pharmaceutical  therapy,  histological  type 

(DDLPS/LMS/UPS/other subtypes), tumour size (≤10 cm/>10 cm) and site of tumour. The 

results  of  stratified  analysis  showed  that  in  patients  of  different  age  groups,  gender, 

FNCLCC grade groups, and tumour size groups, the 4GS‐high‐risk groups all had lower 

OS (all p < 0.05) (Figure 4a–f, Supplementary Figure S3a,b). For patients who had under‐

gone radiotherapy, the 4GS‐high‐risk group also had significantly shorter OS (p = 0.00038) 

(Figure 4g). Among patients who had undergone pharmaceutical therapy, there was no 

statistical difference between 4GS‐high‐risk patients and low‐risk patients due to the small 

sample size of the low‐risk group (Figure 3h). For patients with DDLPS, LMS and UPS, 

4GS‐high‐risk patients also all had shorter OS than low‐risk patients (all p < 0.05) (Figure 

4i–k). In other subtypes, there was no statistical difference due to the small sample size of 

4GS‐low‐risk patients (Figure 4l). Additionally, for patients with a tumour in retroperito‐

neum, upper/lower extremity and other site, 4GS‐high‐risk patients had shorter OS (all p 

Figure 2. Identification of 22 survival-related genes by LASSO regression. (a) LASSO coefficient profiles of 22 prognostic
genes. (b) Ten-time cross-validation for tuning parameter selection in the LASSO model.



Cancers 2021, 13, 5837 6 of 18

3.2. The Predictive Value of Four-Gene Signature on the OS of STS Patients

The R package “survminer” and “survival” were used to find the best cut-off value
for the risk score to divide patients into 4GS-high-risk and 4GS-low-risk groups, and we
performed the same operations on the testing set and the whole set. In the training set,
the Kaplan–Meier curve showed that the OS of the 4GS-high-risk group was significantly
shorter than that of the low-risk group (p < 0.0001) (Figure 3a). In addition, the ROC curve
showed that the area under the curves (AUC) for 1-, 3- and 5-year OS were 0.942, 0.916, and
0.856, respectively (Figure 3b). In Figure 3c, we analysed the risk score distribution, survival
status distribution and four-genes expression distribution of patients in the training set.
The heatmap showed that the expression of DHRS3 was lower in the high-risk group, while
the expression of JRK, TARDBP and TTC3 were obviously higher. We obtained similar
results in the testing set and the whole set. In the testing set and the whole set, the high-risk
groups had both shorter OS (p = 0.021 & p < 0.0001) (Figure 3d,g). The AUCs of 1-, 3-, and
5-year OS were 0.657, 0.660, 0.675 in the testing set, and 0.753, 0.762, 0.761 in the whole
set (Figure 3e,h). The risk score distribution, survival status distribution and four genes
expression distribution of patients are shown in Figure 3f,i, respectively. For the whole set,
a data stratification analysis was also conducted. These patients were stratified according
to different clinical parameters, such as gender, age (≤60 years/>60 years), Fédération
Nationale des Centres de Lutte Contre le Cancer (FNCLCC) grade (grade 1&2/grade
3), radiotherapy, pharmaceutical therapy, histological type (DDLPS/LMS/UPS/other
subtypes), tumour size (≤10 cm/>10 cm) and site of tumour. The results of stratified
analysis showed that in patients of different age groups, gender, FNCLCC grade groups,
and tumour size groups, the 4GS-high-risk groups all had lower OS (all p < 0.05) (Figure
4a–f and Supplementary Figure S3a,b). For patients who had undergone radiotherapy, the
4GS-high-risk group also had significantly shorter OS (p = 0.00038) (Figure 4g). Among
patients who had undergone pharmaceutical therapy, there was no statistical difference
between 4GS-high-risk patients and low-risk patients due to the small sample size of the
low-risk group (Figure 3h). For patients with DDLPS, LMS and UPS, 4GS-high-risk patients
also all had shorter OS than low-risk patients (all p < 0.05) (Figure 4i–k). In other subtypes,
there was no statistical difference due to the small sample size of 4GS-low-risk patients
(Figure 4l). Additionally, for patients with a tumour in retroperitoneum, upper/lower
extremity and other site, 4GS-high-risk patients had shorter OS (all p < 0.05) (Supplementary
Figure S3c,d,f). Patients with a tumour in superficial trunk, 4GS-high-risk patients also had
shorter OS but no statistical difference due to the sample size limitation (Supplementary
Figure S3e). Overall, our results indicated that the four-gene signature performed well in
OS prediction.
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low-risk group. Red in the heatmap represents high expression and blue represents low expression.
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3.3. The Predictive Value of Four-Gene Signature on the Relapse Free Survival (RFS) and
Metastasis Free Survival (MFS) of STS Patients

In order to explore the potential capabilities of the four-gene signature in RFS pre-
diction, 4GS-high-risk and low-risk patients were compared in the whole TCGA set. The
Kaplan–Meier curve showed that 4GS-high-risk patients had significantly shorter RFS,
suggesting that these patients had a higher recurrence rate (p = 0.00072) (Figure 5a). Sub-
sequently, the ROC curve showed that the AUCs of 1-, 3- and 5-year RFS were 0.647,
0.584 and 0.595, respectively (Figure 5b). Based on different clinicopathological charac-
teristics, data stratification was also carried out for further analyses. The results showed
that 4GS-high-risk patients had significantly shorter RFS in the male and female group,
>60 years group, FNCLCC grade 3 group, >10 cm tumour size group, and upper/lower
extremity group (all p < 0.05) (Supplementary Figures S4a,b,d,f and S5a,d). Although there
was no statistical significance in the ≤60 years group, FNCLCC grade 1/2 group, ≤10 cm
tumour size group, retroperitoneum, superficial trunk and other site groups, the four-gene
signature still showed a tendency to indicate different prognoses (Supplementary Figures
S4c,e and S5b,c,e,f). For patients who had undergone radiotherapy, the 4GS-high-risk
group had significantly shorter RFS (p = 0.0055) (Supplementary Figure S4g). Similar to
predicting OS, due to the small sample size of 4GS-low-risk patients, there was only a trend
that high-risk group had lower RFS in the chemotherapy group and other subtype groups
without statistical significance (Supplementary Figure S4h,l). In addition, there was only a
tendency for DDLPS patients, which suggested that expanding the sample size may better
confirm the predictive value for RFS (Supplementary Figure S4i). For LMS and UPS pa-
tients, the high-risk groups also had significantly shorter RFS (all p < 0.05) (Supplementary
Figure S4j,k). Collectively, our results showed that the four-gene signature had a good
effect even in predicting RFS. To further verify the effectiveness of the prognostic model,
as an independent dataset containing complete OS and RFS data could not be found, the
GSE21050 dataset from the GEO database was used to validate the prediction efficacy of
the four-gene signature in MFS [14]. The Kaplan–Meier curve showed that 4GS-high-risk
patients have significantly worse MFS than 4GS-low-risk patients (p = 0.00081) (Supplemen-
tary Figure S6), while the ROC curve showed that the 1-, 3-, and 5-year MFS AUCs were
0.593, 0.615, and 0.621, respectively (Supplementary Figure S6). This result implies that
in an independent dataset, the four-gene signatures also have good prognostic prediction
capabilities.
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3.4. Univariate and Multivariate Analyses of the Four-Gene Signature Prognostic Role

In order to verify the independent prognostic effect of the four-gene signature, Cox
univariate and multivariate analyses were performed. Age, gender, pathological tumour
size, radiotherapy, pharmaceutical therapy, FNCLCC grade, site of tumour, histological
subtype and the risk score calculated based on the four-gene signature were used as the
covariates for the analysis. Finally, univariate, and multivariate analyses indicated that age,
pathological tumour size and 4GS-risk score were independent prognostic factors for OS
in STS patients (Table 2). In addition, pathological tumour size, pharmaceutical therapy,
FNCLCC grade, and 4GS-risk score were independent prognostic factors for RFS in STS
patients (Table 3).

Table 2. Univariate and multivariate analysis of the prognostic value of the four-gene signature in terms of OS in STS.

Characteristics
Univariate Analysis Multivariate Analysis

HR 95%CI p-Value HR 95%CI p-Value

Age (Continuous) 1.020 1.003~1.039 0.025 1.025 1.007~1.043 0.005
Gender (Male vs. Female) 1.015 0.637~1.619 0.949

Pathological tumour size (cm) 1.043 1.016~1.070 0.002 1.065 1.037~1.094 <0.001
Radiotherapy (Yes vs. No) 0.758 0.444~1.293 0.309

Pharmaceutical therapy
(Yes vs. No) 1.291 0.769~2.167 0.335

FNCLCC grade (3 vs. 1/2) 1.583 0.995~2.519 0.053
Tumour site

Upper/Lower extremity (Reference)
Retroperitoneum 1.100 0.630~1.917 0.738
Superficial trunk 1.023 0.302~3.462 0.971

Chest 1.418 0.532~3.782 0.485
Uterus 1.436 0.652~3.161 0.369
Other 0.507 0.118~2.171 0.360

Histological subtype
DDLPS (Reference)

LMS 0.669 0.379~1.183 0.167
UPS 0.768 0.387~1.527 0.452
MFS 0.829 0.354~1.945 0.668

Other 0.649 0.224~1.886 0.428
4GS-Risk score
(High vs. Low) 3.813 2.084~6.975 <0.001 5.141 2.756~9.589 <0.001

3.5. Establishment of Nomograms for Predicting OS and RFS in STS Patients

In order to further improve the prediction accuracy of the four-gene signature, other
independent prognostic factors were combined in multivariate analyses to establish clini-
cally adaptable prognostic nomograms for OS and RFS. As shown in Figures 6a and 7a,
the higher the total score based on the sum of the assigned numbers of each factor in the
nomograms, the worse the 1-, 3- and 5-year OS rates and RFS rates. Subsequently, the
nomograms were evaluated through the C-statistic discriminant indexes and the calibration
plots. The C-index values used to evaluate the OS model and RFS model were 0.744 and
0.660, respectively. The higher C-index values indicated the robustness of the nomograms.
The calibration curves showed that the predicted values and the actual values had a very
satisfactory agreement in the probability of 1-, 3-, 5-year OS and RFS (Figures 6b and 7b).
This fully illustrated the potential value of predicting nomograms in clinical guidance.
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Table 3. Univariate and multivariate analysis of the prognostic value of the four-gene signature in terms of RFS in STS.

Characteristics
Univariate Analysis Multivariate Analysis

HR 95%CI p-Value HR 95%CI p-Value

Age (Continuous) 1.002 0.989~1.015 0.754
Gender (Male vs. Female) 1.176 0.813~1.699 0.390

Pathological tumour size (cm) 1.032 1.010~1.054 0.004 1.052 1.028~1.076 <0.001
Radiotherapy (Yes vs. No) 1.033 0.685~1.558 0.875

Pharmaceutical therapy
(Yes vs. No) 1.723 1.146~2.591 0.009 1.528 1.001~2.332 0.049

FNCLCC grade (3 vs. 1/2) 1.465 1.009~2.126 0.045 1.592 1.089~2.328 0.016
Tumour site

Upper/Lower extremity (Reference)
Retroperitoneum 0.896 0.585~1.375 0.618
Superficial trunk 0.473 0.145~1.545 0.215

Chest 0.761 0.321~1.809 0.537
Uterus 1.260 0.667~2.380 0.369
Other 0.653 0.256~1.666 0.476

Histological subtype
DDLPS (Reference)

LMS 0.869 0.553~1.367 0.545
UPS 0.829 0.479~1.435 0.504
MFS 0.847 0.417~1.723 0.648

Other 0.595 0.249~1.421 0.243
4GS-Risk score (High vs. Low) 1.978 1.322~2.959 <0.001 2.173 1.405~3.362 <0.001Cancers 2021, 13, x    12  of  19 
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Figure 6. Nomogram predicting OS for STS patients. (a) The nomogram for predicting probabilities of patients with 1-, 3-,
and 5-year OS. (b) The calibration plot for internal validation of the nomogram. The Y-axis represents actual survival, and
the X-axis represents nomogram-predicted survival. The dashed diagonal line represents the ideal nomogram.
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3.6. Identification of Four-Gene Signature Related Biological Pathways and Processes

To identify potential biological processes and signal transduction pathways, GSEA
based on the risk scores calculated by the four-gene signature was performed. The specific
results were shown in Supplementary Table S2. In high-risk patients, enrichment of cancer-
related biological processes was found, including mitosis, cell cycle, DNA double-strand
damage repair and homologous repair. In addition, they showed an activation of key
pathways in tumorigenesis, development, and metastasis, such as BARD pathway, E2F
pathway, Fanconi pathway, TP53 pathway and PLK1 pathway (Figure 8). This suggested
that the four-gene signature may indeed be involved in the progression of sarcoma.
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4. Discussion

Precisely predicting of the disease progression is one of the main challenges of STS.
Considering the heterogeneity of STS, there is an urgent need to identify new prognostic
biomarkers and establish more practical prognostic models. Recently, gene prognostic
signatures based on aberrant mRNA have received widespread attention and have shown
great potential in non-small cell lung cancer, pancreatic ductal adenocarcinoma, hepatocel-
lular carcinoma and other malignant tumours [15,16,22,23]. With this study, a prognostic
gene signature for STS could be identified using a systematic analysis of RNA-seq data in
the TCGA database and externally validated on an independent cohort.

We determined a four-gene prognostic signature including DHRS3, JRK, TARDBP and
TTC3 by consecutively examining robust likelihood-based survival analysis, LASSO Cox
regression analysis and multivariate Cox proportional hazard regression analysis and de-
termined its prognostic value by Kaplan–Meier curves, ROC curves and data stratification
analyses. This four-gene signature has excellent prognostic performance in several major
pathological subtypes including DDLPS, LMS and UPS. Among them, because LMS can
be further divided into soft tissue leiomyosarcoma (STLMS) and uterine leiomyosarcoma
(ULMS), OS/RFS analysis was performed on these two subtypes, respectively. In STLMS,
the OS/RFS of 4GS-high-risk patients was also worse than that of 4GS-low-risk patients
(Supplementary Figure S7a), while in ULMS, due to the sample size limitation of low-risk
patients, there is no statistical difference (Supplementary Figure S7b). In addition, Shen
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et al. recently reported a 19-gene prognostic signature for STS [24]. Compared with this
gene signature, the ROC curve showed that our four-gene signature had better performance
in both short-term and long-term predictions (Supplementary Figure S8).

In our four-gene signature, TARDBP was found to have the largest positive coefficient
value, which indicated that TARDBP may play an important role in STS. TARDBP is known
to be an RNA-binding protein related to neurodegenerative diseases such as frontal tempo-
ral lobe degeneration and amyotrophic lateral sclerosis and may play an important role in
cell metabolism including glucose metabolism and lipid metabolism [25–29]. Recent studies
have shown that TARDBP plays an important role in many tumours, including leukaemia,
Ewing sarcoma and hepatocellular carcinoma (HCC) [30–33]. It regulated glycolysis of
cancer cells through transcriptional inhibition, resulting in a poor prognosis of HCC [33].
However, the role and mechanism of TARDBP in STS have not been reported yet, so
future studies are urgently needed. In addition to TARDBP, JRK and TTC3 also had higher
positive coefficient values. JRK is a homolog of the Earthbound 1 [34]. It has been found to
have abnormally elevated expression in colorectal, breast and ovarian cancer, and is related
to the increased expression of β-catenin target genes and increased cell proliferation [35].
It is considered a potential new oncogene and cancer treatment target [35]. However, the
role of JRK in STS remains unclear. TTC3, a ubiquitin E3 ligase, was found to promote
the degradation of ubiquitination and phosphorylation of Akt, which is related to the
clinical symptoms of Down syndrome [36]. A recent study found that TTC3 may contribute
to the epithelial-mesenchymal transition and myofibroblast differentiation induced by
transforming growth factor-β [37]. Dey-Guha et al. found that TTC3-mediated proteasome-
dependent degradation was involved in the β1 integrin/FAK/mTORC2/AKT1-related
signalling pathway, thereby mediating the chemo-resistance of breast cancer cells [38]. The
chemotherapy response rate in TCGA is not documented, therefore we could only suspect
and not prove a similar association between TTC3 and a worse chemotherapy response rate
in STS. DHRS3 is the only gene with a negative coefficient value in the four gene signatures.
As a highly conservative member of the short chain alcohol dehydrogenase/reductase
superfamily, it is involved in the metabolism of retinol. Retinol-like compounds mainly
affect intracellular processes by regulating gene expression, including cell proliferation and
differentiation [39]. Although DHRS3 was found to be upregulated in papillary thyroid
cancer and neuroblasts, DHRS3 was negatively correlated with the metastasis of papillary
thyroid carcinoma and was associated with better prognosis of neuroblastoma [40,41]. This
is consistent with the negative coefficient of DHRS3 in our study, but to understand the
specific role of DHRS3 in STS further research is necessary. Notably, these four genes
were identified based on real patient cohorts, and thus may be more feasible for clinical
application and should be validated prospectively, which is important for further clinical
translation and evaluation.

In this study, through univariate and multivariate analysis, it was determined that
the risk score calculated based on the four-gene signature was an independent prognostic
factor for OS and RFS in STS patients. In addition, age and pathological tumour size have
also been determined to be independent prognostic factors for OS in STS patients, while
pathological tumour size, pharmaceutical therapy, and FNCLCC grade were independent
prognostic factors for RFS. Notably, pharmaceutical therapy was a poor prognostic factor in
patients with STS in terms of RFS (Table 3). In fact, there has been a lot of evidence proving
that chemotherapy may be a sharp double-edged sword. The underlying mechanism may
be the resistant selection and disseminating cancer stem cells induced by chemotherapy
at the site of the primary tumour, chemotherapy-induced recruitment of immune cells
conducive to the dissemination of primary tumour cells, and mobilization/regulation of
circulating tumour cell heterogeneity [42–45]. In terms of STS, in a recent study, researchers
found that adjuvant chemotherapy was a poor prognostic factor for disease-free survival
in chest wall STS patients (HR: 2.797; 95% CI: 1.057–3.409; p = 0.04), which was consistent
with our results [46]. Meta-analyses also cannot prove the advantage of cytotoxic treatment
in STS. In 3157 patients with localized STS, no advantage of resection and chemotherapy
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over surgery alone was demonstrated [43]. In advanced STS, Zer et al. showed at least
a weakly significant advantage of combined doxorubicin-based over doxorubicin alone
chemotherapy in 5044 patients [47]. In contrast, Tanaka et al. demonstrated only an
increase in side effects but no significant overall survival benefit in 6156 patients [44]. The
use of chemotherapy in patients with STS should always be decided on a case-by-case
basis, and scientific selection of chemotherapeutic drugs and appropriate dose selection
are particularly important. This decision could be supported by the four-gene signature.

Nomograms are widely used to predict the prognosis of cancer [48]. Previous studies
have shown some nomograms about STS [49]. For a single patient, multiple nomograms
can be used to calculate the prognosis [49]. However, there is currently no nomogram
combined with gene signature available in STS. After combining the 4GS-risk score with
other independent prognostic factors, clinically applicable nomograms were established
for both OS and RFS. The calibration plots confirmed that predictive nomograms had
good accuracy and stability in predicting OS and RFS. In addition, GSEA revealed some
obviously enriched intracellular processes and signal pathways. Many studies have shown
that cell cycle, DNA double-strand damage repair, E2F pathway, TP53 pathway and
PLK1 pathway, etc. play important roles in tumour progression [50–53]. These GSEA-
enriched important tumour-related signal pathways supported the hypothesis that the
four-gene signature does have OS and RFS predictive capabilities and confirmed the
reliability and rationality of the gene signature. Mechanistically, the four-gene signature
may influence tumour progression through oncogenic-related pathways such as the E2F,
TP53 and PLK1 pathways, thereby affecting the prognosis of STS patients. In addition, it
also provided potential methods for the development of possible targeted therapies in the
future.

As far as we know, the prognostic model and nomograms related to this four-gene sig-
nature have not been reported yet. This is a useful tool for risk stratification and prognosis
prediction of STS patients and has potential significance for individualized treatment and
long-term patient management. For example, it may make sense to increase the frequency
of re-examination and adjust the chemotherapy regimen for patients who are predicted to
have a high probability of recurrence. Based on previous studies [10], patients identified as
high risk in this model require more intensive and longer-lasting chemotherapy, while less
chemotherapy is more beneficial for patients with low risk. In addition, the 4GS-risk score is
based on the mRNA expression of only four genes rather than DNA methylation or alterna-
tive splicing events, which can be achieved using simple quantitative reverse transcription
PCR or immunohistochemistry to obtain approximate risk results, avoiding unnecessary
genome-wide sequencing. Judging from the coefficients of the four genes, DHRS3 has a
negative coefficient, and JRK, TARDBP and TTC3 have positive coefficients. Therefore, the
lower the expression of DHRS3, the higher the expression of JRK, TARDBP, and TTC3, the
greater the risk. It is more cost-effective, routine, and easy to apply in practice. However,
our research still has certain limitations. First of all, due to the problem of sample size, some
stratified analyses have shown trends and cannot reflect statistical differences. We only
used the MFS data from the independent GEO cohort to validate the prognostic predictive
ability. These would require a larger external sample size for further verification. More
data sets will be available to enhance our results in the future. Secondly, the independent
prognostic ability, biological function, and potential mechanism of these four genes in STS
need to be further clarified by functional experiments. In addition, STS contains more than
100 subtypes, and only a few most common subtypes such as DDLPS, LMS and UPS were
included in this study, while other subtypes including well-differentiated liposarcoma
was not included, therefore we could not verify the predictive role of this gene signature
for other tumour subtypes. Accordingly, we believe that this gene signature is currently
most applicable to DDLPS, UPS and LMS. Finally, a large number of prospective cohorts
are needed to verify the risk classification and prognosis prediction ability of the gene
signature. Despite these shortcomings, our results still confirmed the important value of
the four-gene signature in the OS and RFS prediction of STS.
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5. Conclusions

This study used clinical big data to establish a novel and easy-to-use four-gene mRNA
signature and nomograms to predict the OS and RFS, which may contribute to clinical
individualized treatment decisions based on risk stratification in clinical practice and pos-
sible future targeted therapy development. The repeatability of the 4GS-risk score was
confirmed in an independent cohort of 309 samples. The 4GS-risk score could be an instru-
ment to help in the clinical case-by-case decision in the future of whether chemotherapy
would be beneficial for the patient or not and which treatment regimen should be chosen
ideally.
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