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Simple Summary: T-cell leukemia/lymphoma 1A (TCL1A) is a proto-oncogene that is mainly
expressed in embryonic and fetal tissues, as well as in some lymphatic cells. It is frequently overex-
pressed in a variety of T- and B-cell lymphomas and in some solid tumors. In chronic lymphocytic
leukemia and in T-prolymphocytic leukemia, TCL1A has been implicated in the pathogenesis of these
conditions, and high-level TCL1A expression correlates with more aggressive disease characteristics
and poorer patient survival. Despite the modes of TCL1A (dys)regulation still being incompletely
understood, there are recent advances in understanding its (post)transcriptional regulation. This
review summarizes the current concepts of TCL1A’s multi-faceted modes of regulation. Understand-
ing how TCL1A is deregulated and how this can lead to tumor initiation and sustenance can help in
future approaches to interfere in its oncogenic actions.

Abstract: Incomplete biological concepts in lymphoid neoplasms still dictate to a large extent the
limited availability of efficient targeted treatments, which entertains the mostly unsatisfactory clin-
ical outcomes. Aberrant expression of the embryonal and lymphatic TCL1 family of oncogenes,
i.e., the paradigmatic TCL1A, but also TML1 or MTCP1, is causally implicated in T- and B-lymphocyte
transformation. TCL1A also carries prognostic information in these particular T-cell and B-cell tu-
mors. More recently, the TCL1A oncogene has been observed also in epithelial tumors as part of
oncofetal stemness signatures. Although the concepts on the modes of TCL1A dysregulation in
lymphatic neoplasms and solid tumors are still incomplete, there are recent advances in defining
the mechanisms of its (de)regulation. This review presents a comprehensive overview of TCL1A
expression in tumors and the current understanding of its (dys)regulation via genomic aberrations,
epigenetic modifications, or deregulation of TCL1A-targeting micro RNAs. We also summarize
triggers that act through such transcriptional and translational regulation, i.e., altered signals by the
tumor microenvironment. A refined mechanistic understanding of these modes of dysregulations
together with improved concepts of TCL1A-associated malignant transformation can benefit future
approaches to specifically interfere in TCL1A-initiated or -driven tumorigenesis.

Keywords: TCL1 oncogenes; kinase signaling; lymphoma; T-PLL; CLL; BPDCN

1. Introduction

T-cell leukemia/lymphoma 1A (TCL1A) was first described as a proto-oncogene in
hematological neoplasms between 1989 and 1994 [1–3]. It is the prototype of a 3-paralogue
gene family, further including TCL1B and mature T-cell proliferation 1 (MTCP1) [4]. Their
small proteins share high sequence homology [1,5,6] and consist of a common three-
dimensional structure of an orthogonal 8-stranded β-barrel with a hydrophobic core and a
unique topology [7].
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Physiologically, the expression of TCL1A is restricted to embryonic tissues and to
pre-mature B cells and T cells, suggesting its role in reproduction and adaptive immunity,
which could be corroborated in sub-total knockout mice [8,9]. Its aberrant overexpression
was first identified in T-cell prolymphocytic leukemia (T-PLL) via genomic aberrations
involving its locus at chromosome 14 [1]. In contrast, in B-cell tumors, there is a virtual
absence of such rearrangements [10] or gain-of-function mutations [11] involving the
TCL1A locus. In these tumors, TCL1A expression parallels its regulation in non-neoplastic
B cells [12].

The T- and B-cell oncogenic potential of human TCL1A was formally shown in trans-
genic (tg) mice [13–16]. When ectopically expressed in T cells under the proximal Lckpr-
promoter (Lck-TCL1A) or in B cells under the VH-promoter/IgHµ enhancer (Eµ-TCL1A), the
mice develop a disease closely resembling human T-PLL or chronic lymphocytic leukemia
(CLL), respectively. A related model, pEµ-B29-TCL1A mice, produces germinal center (GC)-
derived B-cell tumors that resemble Burkitt lymphoma (BL), follicular lymphoma (FL),
and diffuse large B-cell lymphoma (DLBCL), and in one founder line also a T-PLL-like dis-
ease [15]. TCL1A tg mice, in particular the well-established Eµ-TCL1A model for CLL, have
been crossed with a variety of other alleles (reviewed in [17,18]). This enabled the investi-
gation of novel pathogenic mechanisms, such as interactions with the microenvironment
(e.g., Eµ-TCL1A; CD44−/− [19]; Eµ-TCL1A; CXCR4C1013G [20]) or signaling (e.g., Eµ-TCL1A;
pkcβ−/− [21]; Eµ-TCL1Atg/wt; Cd19Cre/wt; R26-fl-Akt-C [22]), as well as the role of recurrent
genomic lesions (e.g., Eµ-TCL1A; CD19cre/wt; Trp53fl/fl or Eµ-TCL1A; CD19cre/wt; Atmfl/fl [23]).

In T-PLL and CLL patients, the expression of tumor-associated TCL1A mRNA and
protein shows considerable inter-patient variability. Notably, high levels of TCL1A correlate
with aggressive clinical features (e.g., leukemic burden, growth kinetics), high-risk cytoge-
netics, poorer responses to chemo-immunotherapies, and inferior clinical outcomes [24–29].
Therefore, TCL1A has been established as a prognostic marker in both entities. Addition-
ally, in solid tumors, the first evidence links high TCL1A expression to adverse clinical
features and outcomes [30].

Given TCL1A’s important role in tumor initiation, progression, and maintenance,
investigating the modes of its oncogenic function and dysregulation can help to better
understand the pathogenesis of these neoplasms and to contribute to the identification
of possible new treatment targets. This review summarizes the current knowledge on
the spectrum of TCL1A’s modes of upstream regulations in normal and transformed
lymphocytes, as well as in stem cells and solid tumors.

2. The Normal and Tumor-Associated Expression of TCL1A
2.1. The Physiological Expression of TCL1A

The expression of TCL1A is normally restricted to embryonic tissues and pre-mature
B cells and T cells and is conserved to some mammals [31]. Its expression in embryonic
tissues could be observed in murine early cleavage embryos, where it shuttles between
the cortex and the nucleus during the first cleavages until it declines during transition
through the blastocyst stage [9]. In humans, its expression could be detected (rather in cell
subpopulations) in fetal liver, kidney, and thymus, while in adult organisms, only testes,
spleen, tonsil, colon, and bone marrow harbor TCL1A-positive cells (with hematopoietic
stem cells likely being negative) [1,5,30]. Plasmacytoid dendritic cells (pDCs) [32] and
lymphocyte subsets express TCL1A [1].

T cells lose TCL1A expression starting at the CD4/CD8 double-positive (DP) thy-
mocyte stage, and a role for TCL1A in pre-TCR signaling appears attractive to speculate;
post-thymic T cells with matured TCRs no longer express TCL1A [1,33]. It is believed that
during these physiological TRA locus rearrangements, which exchange the pre-TCR to the
TCR at that DP stage, erroneous reassemblies of TRA regions juxtapose the TCL1A locus
under control of regulatory elements of TRA/D genes, causing aberrant TCL1A expression
toward T-PLL [34].
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In B cells, TCL1A experiences a drastic downregulation starting at the entry of the
highly TCL1A-positive mantle-zone B cell into the GC environment. TCL1A is completely
silenced in terminally differentiated B cells, such as plasma cells [12,35].

2.2. Expression of TCL1A in Hematologic Malignancies

Overexpression of TCL1A in the neoplastic context was first identified in T-PLL, where
translocations or inversions juxtapose the gene locus at 14q32 to highly active regulatory
elements of T-cell receptor (TCR) genes [1]. This constitutive expression counters the
physiological silencing of TCL1A in maturing T cells. Interestingly, a germline duplication
of the chromosomal locus 14q32 including the TCL1A gene was identified in several families
with an autosomal dominant myeloid neoplasm predisposition syndrome. However,
TCL1A’s role in its pathogenesis is still under investigation [36,37].

In B-cell tumors, TCL1A expression mostly parallels its regulation in non-neoplastic B
cells. Those of pre-GC derivation, such as B-cell acute lymphoblastic leukemia/lymphoma
(ALL/LBL) and mantle cell lymphoma (MCL), are highly TCL1A positive [12]. Hodgkin
lymphoma (HL), and post-GC tumors such as splenic- and mucosa-associated lymphoid
tissue (MALT) types of marginal zone lymphoma (MZL), as well as multiple myeloma
(MM), are all consistently negative for TCL1A [12]. In CLL, the immunoglobulin heavy
chain variable (IGHV) region gene unmutated subtype of pre-GC origin shows higher
TCL1A levels than the IGHV-mutated TCL1Alow CLL subset [24]. BL shows rather a
uniform expression of TCL1A [12,38]. FL shows variable TCL1A levels with a loss of
expression in higher-grade tumors, while TCL1A expression is found less frequently in
DLBCL, particularly in the subset of the activated B-cell type [12].

2.3. Expression of TCL1A in Solid Tumors

Recent years have seen an increasing number of publications that also implicate
TCL1A in stemness programs of non-hematopoietic cancers. It was unexpected to find
TCL1A to be expressed in epithelial solid tumors such as breast or colorectal cancers
(CRC) [30]. Interestingly, such oncofetal patterns of TCL1A expressions already had been
implicated by its detection in a high proportion of testicular seminomas, ovarian dysgermi-
nomas, and in unclassified intratubular germ cell neoplasms [9,39–41]. Fittingly, TCL1A is
part of molecular stem-cell marker signatures (including OCT3/4, NANOG, SOX2, etc.)
that are detected in carcinomas of the bladder, prostate, colon, and liver [42–44]. It was also
implicated that TCL1A, together with consensus transcriptional regulators of tumor stem
cells (e.g., OCT3/4, SOX2), promotes the transformation of Barrett’s esophagus to adeno-
carcinoma, with an increased expression in Barret’s over normal (negative) esophageal
mucosa [45]. Table 1 provides a summary of the malignancies that express TCL1A.

Table 1. Expression of TCL1A in different malignancies.

Entity N TCL1A Expression
[% Cases] Reference Prognostic

Implications

Leukemia/Lymphoma

T-cell leukemias/lymphomas

T-cell prolymphocytic leukemia 38–59 71–75 [32,33,46] Shorter OS [26]

T-(acute) lymphoblastic
leukemia/lymphoma 7–47 14–36 [32,33] -

Adult T-cell leukemia/lymphoma 5 20 [32] -

B-cell leukemias/lymphomas
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Table 1. Cont.

Entity N TCL1A Expression
[% Cases] Reference Prognostic

Implications

B-(acute) lymphoblastic
leukemia/lymphoma 4–55 75–85 [12,47] -

Mantle cell lymphoma 5–58 84–100 [12,47,48] Shorter LSS [38]

Burkitt Lymphoma 5–16 94–100 [12,47,49] -

Follicular lymphoma 11–49 57–75 [12,47,48] -

Diffuse large B-cell lymphoma 11–15 18–60 [12,47–49] Shorter OS [50]

Pediatric diffuse large B-cell lymphoma 16 31 [51] -

CD5- Lymphoproliferative disorder 2 100 [12] -

MALT lymphoma 9–23 11–83 [12,48] -

Lymphoplasmacytic lymphoma 4 75 [48] -

Small lymphocytic lymphoma 2 100 [48] -

Chronic lymphocytic leukemia 11–126 90–100 [28,47] Shorter TFS/PFS
[24,38]

Cutaneous B-cell lymphoma 9–25 20–55 [47,52] -

Waldenström macroglobulinemia 57 79 [53] No [53]

Myeloid neoplasms

Extramedullary myeloid cell tumors 14 7 [32] -

Blastic plasmacytoid dendritic cell
neoplasm 12–91 83–99 [32,35] -

Solid tumors

Bladder cancer 10 40 [42] -

Prostate cancer 5 80 [42] -

Colon cancer 5 60 [42] -

Colorectal cancer 278 >70 [30] Shorter DSS [30]

Hepatocellular carcinoma 65 >44 [44] Shorter OS [44]

Germ cell tumors

Classical seminoma 13–55 77–100 [9,39,40] -

Embryonal carcinoma 34 9 [40] -

Intratubular germ cell neoplasia 40–50 100 [39,40] -

Spermatocytic seminoma 6 17 [40] -

Ovarian dysgerminoma 25 100 [54] -

Ovarian yolk sac tumor 29 59 [54] -

N = cohort size, range from lowest to highest in the different studies; LSS = leukemia-specific survival; OS = overall survival;
TFS = treatment-free survival; PFS = progression-free survival; DSS = disease-free survival.
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2.4. Clinical Impact of Detection of TCL1A

Given the apparently histogenetically fixed expression of TCL1A in lymphoid tumors,
the expression of TCL1A harbors important diagnostic information. Due to its specific
expression in T-PLL among other mature T-cell lymphomas (MTCL) with prominent
peripheral blood (PB) presentation, TCL1A was established as a first-order marker of high
specificity [46,55]. It is now included in a widely accepted algorithm to differentiate WHO-
recognized subsets of leukemic T-cell tumors, which markedly differ in their treatment
and prognosis. Hard-to-classify cases of leukemic MTCL, especially those showing similar
clinical features, e.g., skin lesions of T-PLL vs. those of primary cutaneous T-cell lymphomas
(CTCL) are now nearly unequivocally assigned by means of TCL1A expression [56–58].

Importantly, detection of TCL1A expression in the former category of CD4+ CD56+

blastic tumors of skin (previously thought to be of NK origin), helped to reclassify them as a
blastic plasmacytoid dendritic cell neoplasm (BPDCN) of (pre)-pDC origin. TCL1A is now
a core marker in its differential diagnosis, which has drastic prognostic and therapeutic
implications [32]. As the expression of TCL1A in B-cell tumors mainly parallels regulation
in non-neoplastic B cells, its expression can be used to distinguish B-cell tumors of pre-GC
origin from those of post-GC origin [12].

In addition to diagnostic value, TCL1A mRNA and protein expression carry prog-
nostic information in several leukemias/lymphomas. In CLL and T-PLL, higher TCL1A
levels correlate with more aggressive disease features, such as higher white blood cell
(WBC) counts and faster tumor cell doubling, as well as a shorter overall/progression-
free survival [24,26,27]. Furthermore, high TCL1A levels correlate with a more pro-
nounced T-cell or B-cell receptor responsiveness and by that functionally define subsets of
T-PLL [26] and CLL [24], respectively, which may guide future inhibitory designs for more
individualized treatments.

Across non-Hodgkin lymphomas, a gene set enrichment analysis associated high
TCL1A levels with important pathways controlling B-cell lymphomagenesis, including,
e.g., B-cell receptor, NF-κB signaling, cell death, and MAP kinase, implicating a central role
of elevated TCL1A expression in their pathogenesis and aggressiveness [38]. In line with
this, high TCL1A was correlated with shorter leukemia-specific survival in MCL [38], as
well as with clinical stage and shorter overall survival in DLBCL [50].

Additionally, in some solid tumors, TCL1A can be utilized as a prognostic marker.
In CRC, high TCL1A correlates with tumor differentiation and clinical stage and is an
independent factor for CRC-specific and disease-free survival. Furthermore, it predicts
the outcome of stage II/III patients who receive standard adjuvant chemotherapy [30]. In
hepatocellular carcinoma (HCC), high TCL1A levels in patients under sorafenib treatment
correlate with an inferior overall and progression-free survival [44].

3. The Physiological and Disease-Associated Function of TCL1A

The expression of TCL1A in embryonic tissues, as well as its recurrent overexpres-
sion and prognostic/predictive value in different malignancies, implicates an important
function of TCL1A in key signaling pathways mediating stemness and survival (Figure 1).
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CD34. Furthermore, a Tcl1a knockout led to reduced proliferation of TA cells, needed for new hair formation [59]; (C) 
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Figure 1. TCL1A functions as a pleiotropic adapter molecule in stemness and survival signaling. Note that “roles” and
“modes of actions” at various levels (e.g., cell function, impacted pathway, concise molecular interaction) are highlighted and
are in part artificially separated (i.e., E part of C and D): (A) in murine blastomeres, Tcl1a is important in early proliferation,
as Tcl1a−/− mice show a block of blastomere development at the 8-cell stage [9]; (B) Tcl1a regulated hair growth, as shown
by hair loss in Tcl1a−/− mice. Tcl1a is expressed in the bulge cells (stem cell niche) and in the secondary hair germ/transit-
amplifying (TA) cells (proliferative structure) during the catagen–telogen (resting phase) transition and early anagen stage
(regeneration phase). In Tcl1a−/− mice, the bulge cells show reduced expression of the stem cell marker CD34. Furthermore,
a Tcl1a knockout led to reduced proliferation of TA cells, needed for new hair formation [59]; (C) upregulation of Tcl1a
leads to metabolic shifts toward aerobic glycolysis via activation of Akt and repression of Pnpt1, thereby contributing
to pluripotency of induced pluripotent stem cells (iPSCs) [60]; (D) in cells of chronic lymphocytic leukemia (CLL) and
T-cell prolymphocytic leukemia (T-PLL), TCL1A increases the responsiveness to B-cell receptor (BCR) and T-cell receptor
(TCR) stimulation, respectively, by a kinase activating effect [24,26,61]; (E) interaction of the TCL1A homodimer with
AKT molecules leads to augmented trans-phosphorylation and catalytic activity of the oncogenic Ser/Thr kinase AKT,
resulting in increased survival signaling [62]; (F) the interaction of TCL1A with AP-1 components—namely, JUN, JUNB,
and FOS, leads to impaired AP-1 signaling and thereby sustained anti-apoptotic signals [11]; (G) TCL1A interacts with IκB
and mediates its phosphorylation via ATM, leading to its subsequent ubiquitination-dependent degradation. Inhibition
of this negative regulator IκB causes increased NF-κB signaling, which is additionally strengthened by the TCL1A-p300
interaction [11]; (H) physical interaction of TCL1A with DNMT3A reduces the methyltransferase activity of DNMT3A,
which leads to a higher number of hypomethylated genomic regions [63], which is implicated in the pathogenesis of
CLL [64]. This figure was created using BioRender.com (accessed on 22 October 2021).

3.1. The Functional Role of TCL1A in Embryonic Development and Stemness

Generally, the 14 kDa TCL1A protein lacks kinase activity and a DNA-binding motif.
Instead, its eight-stranded β-barrel with a hydrophobic core suggests its binding to small
hydrophobic ligands [7]. Its currently best-established function is enhancing the catalytic
activation and mediating the nuclear translocalization of the oncogenic Ser/Thr kinase Akt
by interacting directly with its pleckstrin homology domain [62,65–68].

There is increasing evidence for the role of TCL1A in embryonic development. The
reduced fertility observed in Tcl1a−/− female mice was ascribed to a frequent block of
blastomere proliferation beyond the eight-cell stage, despite displaying normal major
differentiative traits [9]. Furthermore, these mice show defects in hair formation and skin
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homeostasis, which can be attributed to the role of Tcl1a in maintaining the self-renewal,
proliferation, and apoptosis of bulge cells and keratinocytes [59,69]. An effect of Tcl1a on
proliferation, but not differentiation, was also validated in murine embryonic stem cells
(mESCs) and could be at least in part explained by an increase in Akt activation [70,71]. In
contrast, others identified Tcl1a as a member of an interconnected transcriptional network
regulating self-renewal of mESCs in vitro by blocking the differentiation into epiblast-
derived lineages [72]. Furthermore, Tcl1a is involved in the reprogramming of murine-
induced pluripotent stem cells (iPSCs). It is expressed late in the reprogramming process
and partly regulates the metabolic shift from oxidative phosphorylation to glycolysis. This
is mediated by activating Akt to activate glycolysis and by inhibiting the mitochondrial
polyribonucleotide nucleotidyltransferase 1 (PNPT1, also called PNPase) to diminish
oxidative phosphorylation [60]. Fittingly, PNPT1 was shown to interact with TCL1A in B
cells, however, with yet unresolved functional consequences [73]. In contrast to the findings
in iPSCs, the introduction of TCL1A into mature B-cell lymphoma lines led to reduced
aerobic glycolysis and a higher rate of oxygen consumption coupled to ATP-synthesis [74].

3.2. The Functional Role of TCL1A in Cancer Signaling and Pathogenesis

The adverse clinical outcomes in some solid tumors and leukemias in association with
high TCL1A expression are likely to a considerable part the result of the TCL1A-mediated
augmented activity of AKT contributing to enhanced proliferation and multi-nodal re-
sistance [26,35,75,76]. However, the sole activation of AKT was unable to recapitulate
the oncogenic function of TCL1A overexpression, suggesting a more complex functional
spectrum of this unconventional oncogene [77,78]. Indeed, in recent years, more path-
ways that are modulated by TCL1A have been identified. Via interacting with ataxia-
telangiectasia-mutated (ATM) [79] and p300/cAMP response element-binding protein
(CREB) [11], TCL1A has been linked to contributing to accelerated tumorigenic NF-κB
signaling, as important in CLL pathogenesis. By determining the magnitude and qual-
ity of TCR and B-cell receptor (BCR) responses in T-PLL and CLL, respectively, mostly
through a kinase-enhancing effect [24,26], TCL1A provides survival advantages through
threshold-lowering effects in the context of dependence on low-level (tonic) antigen recep-
tor input. Inhibition of activator protein 1 (AP-1) transcriptional activity via interaction
of TCL1A with the AP-1 complex represents another mechanism to antagonize expres-
sion of pro-apoptotic factors, such as the protein tyrosine phosphatase receptor type O
(PTPRO) [11,80].

There is also evidence for TCL1A to form a functional synergism with hypomorphic
ATM toward a prominent phenotype of deficient DNA damage responses in T-PLL [27].
Overexpressed TCL1A promoted increased reactive oxygen species levels, telomere attri-
tion, alongside impaired sensing and protracted processing of DNA double-strand breaks
upon genotoxic stress [27].

TCL1A was also shown to contribute to epigenetic reprogramming via interacting
with the de novo DNA methyltransferase 3A (DNMT3A) and reducing its enzymatic
activity. Accordingly, B cells from Eµ-TCL1A mice show more hypomethylated regions
than age-matched wild-type cells [63]. In several leukemia mouse models, Dnmt3a has
been identified as a tumor suppressor [64], therefore suggesting a meaningful impact of
TCL1A-mediated inhibition of DNMT3A during leukemogenesis.

In HCC, TCL1A overexpression is implicated in mediating metabolic alterations.
TCL1A enhances the pre-mRNA splicing and thereby protein expression of the glucose-6-
phosphate dehydrogenase (G6PD) by interacting with the heterogeneous nuclear ribonucle-
oprotein (hnRNPK), leading to an increased pentose phosphate pathway flux and glucose
consumption [44].

In summary, based on the heterotypic functions of TCL1A on different signaling
branches, its transforming impact is most likely a synergistic net effect of several dysregu-
lated pathways.
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4. The Modes of TCL1A (Dys)Regulation

The marked and safeguarding silencing of TCL1A during embryogenesis, as well as
during T-cell and B-cell differentiation, is tightly regulated. As outlined, dysregulation of
this machinery is associated with carcinogenesis. Understanding TCL1A’s transcriptional
and translational regulation is, therefore, highly important. In the following, we present a
comprehensive overview of modes of TCL1A (dys)regulation, including genomic aberra-
tions, epigenetic modifications, dysregulation of TCL1A-targeting microRNAs (miRs), as
well as modulations via altered signals by the microenvironment, which are likely mediated
through some of these relays (Figure 2).Cancers 2021, 13, 5455 8 of 19 

 

 

 
Figure 2. Schematic overview of the different modes of TCL1A regulation (clockwise categories). ESC/Reprogramming: 
In murine embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), Tcl1a expression is mediated by the 
transcription factors Nanog [75,76,81], Klf2/4/5 [60,82], and Oct3/4 [70]. Genetic aberrations: In T-cell prolymphocytic 
leukemia (T-PLL), an inversion or translocation of the TCL1A gene on chromosome 14 positions its locus under control by 
highly active regulatory regions of T-cell receptor genes. This prevents TCL1A’s post-thymic silencing and causes its 
constitutive expression [1]. Promoter methylation: During T-cell and B-cell development and maturation, a protracted 
epigenetic silencing of TCL1A expression is likely. B-cell lines have shown three different patterns of promoter 
methylation, that might reflect a successive increase in methylation along B-cell differentiation [83]. GC 
reaction/microenvironment: Signals via the BCR and/or via IL4R and CD40 ligation lead to phosphorylation and nuclear 
exclusion of CRTC2 [84] and NR4A1 [85], thereby repressing transcriptional activation of TCL1A. EBV infections: These 
signals by the microenvironment can also be mimicked by the Epstein–Barr virus (EBV) proteins LMP1 and LMP2, leading 
to repression of TCL1A [86,87]. Furthermore, the EBV protein EBNA2 represses [87], whereas EBNA3C increases, TCL1A 
expression [88]. MiRNAs: At the post-transcriptional level, TCL1A is regulated by several microRNAs (miRs), whose 
expressions are deregulated via co-deletion at 13q [89] and 17p [90], the EBV protein LMP1 [86], and the protein MECOM 
[29]. Protein degradation: Integrity of the TCL1A protein is regulated via the chaperones HSP70 [91] and HSP90 [76] that 
protect TCL1A from ubiquitination and subsequent degradation. Expression of HSP90 is also regulated by the stem cell 
factor Nanog, which thereby mediates a bimodal regulation of TCL1A at the gene and protein level [76]. Grey arrows: 
dissociation from the TCL1A promoter. 

Figure 2. Schematic overview of the different modes of TCL1A regulation (clockwise categories).
ESC/Reprogramming: In murine embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs), Tcl1a expression is mediated by the transcription factors Nanog [75,76,81], Klf2/4/5 [60,82],
and Oct3/4 [70]. Genetic aberrations: In T-cell prolymphocytic leukemia (T-PLL), an inversion or
translocation of the TCL1A gene on chromosome 14 positions its locus under control by highly
active regulatory regions of T-cell receptor genes. This prevents TCL1A’s post-thymic silencing and
causes its constitutive expression [1]. Promoter methylation: During T-cell and B-cell development
and maturation, a protracted epigenetic silencing of TCL1A expression is likely. B-cell lines have
shown three different patterns of promoter methylation, that might reflect a successive increase in
methylation along B-cell differentiation [83]. GC reaction/microenvironment: Signals via the BCR
and/or via IL4R and CD40 ligation lead to phosphorylation and nuclear exclusion of CRTC2 [84] and
NR4A1 [85], thereby repressing transcriptional activation of TCL1A. EBV infections: These signals by
the microenvironment can also be mimicked by the Epstein–Barr virus (EBV) proteins LMP1 and
LMP2, leading to repression of TCL1A [86,87]. Furthermore, the EBV protein EBNA2 represses [87],
whereas EBNA3C increases, TCL1A expression [88]. MiRNAs: At the post-transcriptional level,
TCL1A is regulated by several microRNAs (miRs), whose expressions are deregulated via co-deletion
at 13q [89] and 17p [90], the EBV protein LMP1 [86], and the protein MECOM [29]. Protein degra-
dation: Integrity of the TCL1A protein is regulated via the chaperones HSP70 [91] and HSP90 [76]
that protect TCL1A from ubiquitination and subsequent degradation. Expression of HSP90 is also
regulated by the stem cell factor Nanog, which thereby mediates a bimodal regulation of TCL1A at
the gene and protein level [76]. Grey arrows: dissociation from the TCL1A promoter.
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4.1. TCL1A Transcriptional Regulation in Embryonic Stem Cells and Cancer Stem Cells

Most of the evidence on TCL1A’s expression and transcriptional regulation in em-
bryonic tissues derives from murine cells. Tcl1a was shown to be part of an embryonic
expression signature important for self-renewal, also involving POU class 5 homeobox 1
(Pou5f1, encoding Oct3/4), Nanog homeobox (Nanog), SRY-box transcription factor 2 (Sox2),
and the Myc proto-oncogene (Myc) [72,82]. In a global expression profiling of Oct3/4-
manipulated mESCs, Tcl1a was identified as a direct transcriptional target of Oct3/4 by
binding of the transcription factor (TF) to a sequence 410 bp upstream of the Tcl1a gene [70].
Furthermore, chromatin immunoprecipitation (ChIP) studies showed that the Kruppel-
like factor (Klf) 2, 4, and 5 bind to the Tcl1a promoter region in mESCs [82], which could
also be shown for Klf4 in iPSCs [60]. Knockdown of these factors led to a decrease in
Tcl1a expression, suggesting their direct regulation of Tcl1a transcription [60,71,82]. The
reactivation of this embryonic expression pattern also represents a plausible explanation
for high TCL1A levels in solid tumors, especially in cancers harboring a cancer stem cell
population [39,42,45]. Supporting this hypothesis, cancer stem cell-like cells, generated by
cytotoxic T-lymphocyte-mediated immune selection of a cervical cancer cell line, showed
a strong upregulation of TCL1A via transcriptional activation mediated by the stem-cell
factor NANOG, which correlated with higher phosphorylation of AKT and increased
tumorigenicity, as well as immune resistance [75].

4.2. TCL1A Promoter Activation

Next to stem-cell factors regulating TCL1A transcription, its 5′-promoter region con-
tains a TATA box with cis-regulatory elements for several TFs expressed in somatic cells [85].
These include nuclear receptor subfamily 4 group A member 1 (NR4A1, also called Nur77)
with its nerve growth factor-responsive element (NBRE), but also nuclear factor NF-κB,
forkhead box protein O3 (FOXO3, also called FKHRL1), p53, and the TF SP1 [67].

SP1 mediates transactivation of the TCL1A core promoter by binding to three sites
within its first 150 bp [92]. However, tissue-specific silencing of TCL1A expression does
not seem to be dependent on mechanisms involving methylation of SP1 sites, as these
were consistently un- or hypo-methylated in B-lymphoma cell lines of TCL1A-negative
status. Furthermore, no differences in SP1 expression were seen in TCL1A-positive vs.
negative cell lines [92]. Therefore, other mechanisms have to be involved in the protracted
lymphocyte developmental stage-related decline in TCL1A gene expression [12,84].

One explanation could be a staged progression in CpG methylation of the TCL1A
promoter. Overall, three discernable patterns of CpG DNA methylation in the promoter in
TCL1A-silenced B-cell lines were noted, being methylations of only the CpGs in 5′-flanking
regions, methylations of CpGs in 5′- and 3′-regions, and methylations spanning the whole
promoter. Treatment with an inhibitor of DNA methylation, 5-azacytidine, was able to
restore the expression of TCL1A in these cell lines, arguing for epigenetic regulation of
TCL1A promoter repression [83].

There are also repressive relationships of TFs predicted to bind to TCL1A’s transcrip-
tional start site, but most of them are implicated by circumstantial evidence from associative
data. Examples are FOXO3 and p53 [67,93]. A negative feedback loop of the TCL1A-AKT
axis has been identified as well. Here, NR4A1 is activated by phosphorylated AKT and
prevented from binding to the NBRE of the TCL1A promoter, resulting in repression of
TCL1A transcription [85]. This implicates that under normal conditions, lymphocyte ac-
tivation via TCL1A-mediated auto-phosphorylation of AKT dimers entails subsequent
safeguarding repression of this proto-oncogene. This autoregulation might be disturbed in
lymphomatous T cells or B cells.

Next to this negative feedback loop, there is additional B-cell activation-induced repres-
sion of TCL1A, with a safeguarding significance during the GC reaction of B cells [84]. In
fact, experimentally sustained TCL1A expression during the GC reaction is oncogenic [94].
A CREB response element in the TCL1A promoter was identified and its activation was
independent of the phosphorylation of CREB but depended on the CREB-regulated tran-
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scription coactivator 2 (CRTC2, also called TORC2). Interestingly, GC-associated stimu-
lation via CD40 ligand (CD40L)/interleukin 4 (IL4) or via BCR engagement resulted in
phosphorylation of CRTC2, leading to its nuclear exclusion and subsequent partial TCL1A
repression, while other pCREB/E1A binding protein p300 (EP300)-dependent genes were
activated via CREB phosphorylation and EP300 recruitment. However, a reduction in
TCL1A levels of only 40% at more than 95% CRTC2 repression implicates that the control
of the TCL1A gene in the GC B-cell involves other regulatory levels as well [84].

Next to lymphocytes, TCL1A is also highly expressed in pDCs and in the derived
BPDCN [32]. The TF TCF4 strongly expressed in pDCs and crucial for their lineage
commitment and maintenance, was shown to bind to the TCL1A promoter via ChIP-seq
analyses [95,96]. Knockdown of TCF4 reduced the expression of TCL1A, suggesting a
positive regulation by this TF [96]. Furthermore, a negative correlation of TCL1A and
expression of the ETS Variant TF 6 (ETV6) in BPDCN and in B-cell acute lymphoblastic
leukemia (B-ALL) implicates an additional mode of TCL1A transcriptional regulation [97].

Notably, there is also evidence for the role of single nucleotide polymorphisms (SNPs)
in the regulation of TCL1A. A genome-wide association study in women treated with
aromatase inhibitors (AIs) for early breast cancer identified the SNP rs11849538 close to
the 3′ end of TCL1A that generates an estrogen response element. In cell lines carrying
this SNP, an estrogen-dependent expression of TCL1A was suggested [98,99]. This SNP
was associated with a higher risk for the development of musculoskeletal pain under AI
treatment [98]; however, this finding could not be validated in an independent cohort [100].

4.3. Posttranscriptional Regulation of TCL1A by Micro RNAs

Evidence on the relevance of the contribution of miRs to TCL1A suppression derives
from a tg mouse model of full-length TCL1A with its preserved 3′ and 5′ untranslated
regions (UTRs) [101]. In contrast to the initial Eµ-TCL1A model, where only the human
TCL1A open reading frame was overexpressed [16], this model allows for the inhibitory
impact by TCL1A-regulating miRs. Fittingly, the phenotype of the induced CLL is milder
than in the classical Eµ-TCL1A tg mouse [101].

Several miRs were identified to negatively regulate TCL1A at the posttranscriptional
level. MiR-29b-3p and miR-181b-5p, shown to repress TCL1A, inversely correlated in
their expression with TCL1A levels across CLL subsets defined by features of clinical
aggressiveness [102]. Genomic losses of such negative regulators as miRs might be one
mechanism causing the increased TCL1A levels in human CLL besides histogenetic deter-
mination and transcriptional influences [12,28,103]. In support, particularly high TCL1A
levels are observed in the aggressive subsets of CLL that are characterized by chromosomal
losses at 11q22 (ATM) [28] and 17p (TP53) [29], with a suggested codeletion of TCL1A
repressive miR-34b-5p [90] and tRNA-derived small RNA (tsRNA)-3676 (before known as
miR-3676) [89], respectively. Next to deletions, some loss-of-function mutations of ts-3676
were also identified in around one percent of CLL patients [89].

In addition, we identified miR-484 to target the 3′-UTR of TCL1A in CLL [29]. MiR-484
showed a transcriptional downregulation in a large cohort of CLL patients, mediated via
a downregulation of the TF MDS1 and EVI1 complex locus (MECOM, also called EVI1).
Accordingly, we observed an inverse correlation of MECOM and TCL1A expression in
a large cohort of CLL. TCL1A and MECOM showed a strong interactive clinical hazard
prediction in prospectively treated patients, suggesting a contribution of the described
regulatory circuit to an aggressive cellular and clinical phenotype in CLL [29].

4.4. Posttranslational Regulation of TCL1A

Evidence on the regulation by posttranslational modifications of the TCL1A protein
is sparse. However, one site in TCL1A has been identified that, when phosphorylated
potentially by the glycogen synthase kinase-3β (GSK3β), decreases the interaction of TCL1A
with its client protein hnRNPK [44]. Furthermore, there is recent evidence for a regulation
of TCL1A protein integrity by chaperones. The heat shock 70 kDa protein 1A (HSPA1A, in
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the following HSP70) was shown to bind to TCL1A and to protect it from ubiquitination
and subsequent degradation. Accordingly, inhibition of HSP70 led to a reduction in
TCL1A protein in primary CLL cells and impaired signaling of the NF-κB cascade [91].
Given that HSP70 is overexpressed in CLL cells, this could represent a potential mode
of dysregulation of this proto-oncogene [104]. A similar regulation was identified in an
immune-edited tumor cell line with a stem cell-like phenotype. Here, heat shock protein
90 alpha family class A member 1 (HSP90AA1, in the following HSP90) was identified
as a TCL1A-stabilizing chaperone by counteracting its ubiquitination and degradation
and thereby reinforcing the TCL1A-AKT axis [76]. The transcriptional regulator of TCL1A,
NANOG, was also identified to induce transcription of HSP90, thereby mediating a bimodal
regulation of TCL1A at the gene and protein level [76].

5. Exogeneous Triggers of TCL1A-Regulating Mechanisms
5.1. Regulation of TCL1A Levels by the Microenvironment

What triggers these molecular modes of TCL1A (dys)regulation as histogenetically
driven (incl. differentiation-associated) programs? Several publications suggest the role
of micromilieu-derived stimuli in regulating TCL1A levels in B-cell tumors. In sections
of CLL and other B-cell tumors in lymph nodes, spleens, and bone marrow, and as mim-
icked in stimulated suspension cultures, strong TCL1A expression in the resting cells was
paralleled by near-complete losses of TCL1A protein in the fraction of Ki67+ proliferating
paraimmunoblasts [12,28]. This pattern was best characterized as cell-cycle-related oscillat-
ing levels of TCL1A, likely regulated at the level of protein turnover. This unexpectedly
dynamic pattern at the single-cell level was particularly prominent in the pseudofollicular
proliferation centers of CLL that are enriched for bystander T cells. In subsequent in vitro
studies, cytokines typically secreted from such supportive T cells, mainly CD40L and
IL4, induced proliferation and differentiation and ultimately reduced the overall TCL1A
expression in these long-term CLL suspension cultures [28]. This latter phenomenon might
be mediated by the repression of transcriptional activation via NR4A1 and CRCT2 or a
reduced TCL1A protein integrity [84,85]. Based on this, we postulate the existence of
fast-acting cell-cycle-dependent ways to eliminate a mainly anti-apoptotic protein when
entry from the G0/G1 arrest into a proliferative phase is necessary, which is paralleled by
differentiation-associated transcriptional programs of TCL1A silencing.

As another source of TCL1A-regulating milieu-derived stimuli, direct cell–cell contact
of leukemia with bone marrow stromal cells (BMSCs) was identified [105]. In contrast to
the suppressive impact of T-cell-derived stimuli [28], BMSC contact led to the upregulation
of TCL1A mRNA and protein. Gene expression profiling revealed that TCL1A was among
the top genes upregulated in CLL cells by cocultures on BMSC. Stroma-mediated increases
in TCL1A were also associated with decreased levels of TCL1A-repressive miRs (miR-29b,
miR-181b, miR-34b, and miR-484) [105]. These findings demonstrate that the microenvi-
ronment has a proactive role in the regulation of TCL1A in B-cell tumors, i.e., CLL, and
that a fine-tuning modulation via miRs is involved therein as well. This provides a further
molecular rationale for targeting the lymphoma-milieu crosstalk.

5.2. Alterations of TCL1A Expression in EBV Infection

The regulation of TCL1A seems perturbed also in the context of B-cellular Epstein–
Barr virus (EBV) infection. The majority of EBV-infected B-cell non-Hodgkin lymphomas
(B-NHL) appear to be positive for TCL1A to a higher degree than their EBV-negative
counterparts [106,107]. In support of positive regulation of TCL1A expression via EBV,
infection of BL cell lines and a MM cell line by EBV induced upregulation of their TCL1A
expression [106,108]. Furthermore, lymphoblastoid cell lines (LCLs), generated from B cells
infected with EBV in vitro, showed an upregulation of TCL1A that was dependent on the
interaction of the EBV nuclear antigen 3C (EBNA3C) with the host recombination signal
binding protein for immunoglobulin kappa J region (RBPJ) [88].



Cancers 2021, 13, 5455 12 of 18

However, there is also contradicting data for a repressive influence of EBV on TCL1A
expression. EBV infection of DLBCL cell lines in vitro reduced TCL1A levels in an EBNA2-
dependent manner [87]. Furthermore, overexpression of the EBV-derived latent membrane
protein 1 (LMP1) was shown to reduce expression of TCL1A in several B-cell lines [86,87],
in part mediated by the overexpression of the TCL1A-targeting miR-29b [86]. As LMP1 and
LMP2 mimic constitutive activation of CD40 and the BCR, respectively, they might activate
the TCL1A-repressive signals mediated by these cascades (described in Sections 4.2 and 5.1)
as well [109–111].

Several possible reasons might, at least in part, explain these contradicting results,
besides the general limitations of artificial EBV introduction into cell lines. First, the
expression of certain EBV gene products is restricted to a specific latency pattern of EBV
infection, which, in turn, is strongly impacted by the host immune competence. Cells
with a latency I profile only express EBNA1, besides some non-coding genes. In contrast,
proteins negatively regulating TCL1A expression are expressed in latency II and III profiles.
Accordingly, most cell lines that showed an upregulation of TCL1A after infection in vitro
expressed a type I latency. Second, the cell of origin might determine to which extend
the expression of TCL1A can be manipulated by EBV infection. As discussed above,
epigenetic methylation of the TCL1A promoter can be a mechanism by which the TCL1A
gene is silenced during B-cell differentiation. EBV infection may be unable to counteract a
strong epigenetic silencing in some cell types. This could explain why post-GC derived,
TCL1A-negative primary effusion lymphomas (PEL) did not upregulate TCL1A upon EBV
infection [112], whereas expression of TCL1A in BL and DLBCL lines was modulated by
EBV [86–88,106]. However, post-GC-derived AIDS-DLBCL expresses TCL1A at a frequency
equivalent to naïve/GC-derived B-cell lymphomas in immune-competent individuals,
although often expressing type II/III latency.

From the data on the impact of EBV on TCL1A levels, we postulate that generally,
TCL1A expression is also influenced by severe immune dysfunction. In alignment with
the findings of a TCL1A-repressive impact by T-cell-derived CD40L/IL4 stimuli or by
BCR signals (see Sections 4.2 and 5.1) [12,28,84], a depleted T-cell compartment or severe
EBV infection might antagonize the “B-cell developmental” (see Section 2.2) TCL1A down-
regulation. Although some of the discrepancies can be explained by the above points,
they do not fully resolve the heterogeneity of TCL1A expression among the various B-cell
lymphoma subtypes in the context of EBV [112,113].

6. Discussion

The adaptor protein TCL1A has vital functions in reproduction, development, and
adaptive immunity. Identification of its overexpression and oncogenic role in lymphatic
and in part in other tumors, particularly in T-PLL, CLL, and BPDCN, has established its
diagnostic and prognostic marker properties [55,114]. In non-neoplastic settings, its expres-
sion was utilized as a distinct prediction marker, as high TCL1A expression in peripheral
blood mononuclear cells of patients undergone kidney transplantation correlated with
tolerance after transplantation, which mainly results from a higher naïve B-cell population
in tolerant patients (reviewed in [115]).

This review provides a comprehensive overview of the different modes of (dys)regulation
of this prototypic member of the TCL1 oncogene family. Tight regulation of TCL1A’s timely
silencing is important, given the multiple oncogenic functions of TCL1A in mature lym-
phocytes and likely in other cell lineages as well. Mechanistic models of pathogenic
TCL1A upregulation were first restricted to genomic translocations that involve its gene
locus, as shown in T-PLL. However, to date, multi-faceted ways of TCL1A (dys)regulation
have been identified, mostly by data from B-cell malignancies. In addition to promoter
hypomethylation of the TCL1A gene, dysregulation of TCL1A-targeting miRs, but also
chaperone-mediated protection from protein degradation were identified. Additionally, po-
tential phosphorylation sites have been identified in murine and human TCL1A; however,
their role in the function and regulation of the protein is still uncertain [44,116].
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Exogeneous triggers of such TCL1A (dys)regulation in malignant B cells originate
from the microenvironment. TCL1A suppressive signals from T-cell-derived (humoral)
factors or upregulation of TCL1A in CLL cells in the bone marrow niche via cell–cell
contacts with BMSC represent relevant influxes. However, the (disturbed) homeostasis
between these suppressive vs. activating impacts on TCL1A levels is still inadequately
addressed. A better characterization of these specific sources of TCL1A regulation and
their molecular executions within a comprehensive regulatory network of TCL1A could be
of benefit considering the increasing application of inhibitors disrupting the crosstalk of
lymphatic tumor cells with their microenvironment.

In solid tumors, overexpression of TCL1A might originate from the reactivation of an
embryonic program, including expression of NANOG, OCT3/4, MYC, etc., during epithelial
cell transformation. Although there is some evidence for a prognostic impact of TCL1A
expression [30], its functional relevance for oncogenic signaling in solid carcinogenesis
should be further defined.

For several lymphatic tumors, TCL1A’s transforming capacity is firmly established by
the highly recurrent genomic TCL1A rearrangements in T-PLL [25,46] and by TCL1A-tg
mouse models [13,16]. However, it remains unclear whether these leukemias/lymphomas
are centrally (co) initiated by TCL1A (likely the case in T-PLL) and whether they retain a
TCL1A dependence. This should be addressed in models of genetic depletion of TCL1A in
murine and human T-cell and B-lymphocytic leukemias.

As high TCL1A expression correlates with an inferior clinical outcome, an effect
of TCL1A on tumor sustenance is likely, and its impact on several different oncogenic
pathways makes it an appealing target. However, as a small adaptor molecule without
catalytic domains, its pharmaceutical targeting is very challenging. New avenues in such
specific therapeutic interventions would include the profiling for TCL1A dimerization
inhibitors or non-peptide chemotypes that intercept in TCL1A-complex formation. It is
also highly intriguing that TCL1A peptide sequences (TCL1A71-78 LLPIMWQL) were
identified as an HLA-A*0201 binding T-cell epitope [117]. TCL1A71-78 peptide-specific T
cells were shown to be present in CLL patients and to lyse autologous tumor cells but not
normal B cells in vitro in an HLA-A2-restricted manner [117]. This suggests that TCL1A is
processed and presented on the surface of CLL cells for recognition by cytotoxic T cells and
that it can serve as a novel target for vaccinations or in other immune-therapeutic strategies
such as TCL1A-targeting CAR T cells [118].

7. Conclusions

In this review, we summarized the current knowledge on the oncogenic function and
transcriptional and translational regulation of the TCL1A proto-oncogene, resulting in a
mechanistic concept of its context-dependent transforming capacities and multiple modes
of (dys)regulation (Figure 2). This improved biological understanding forms the basis for
future work on approaches to interfere in tumorigenic processes mediated by TCL1A or to
target this molecule directly, i.e., in TCL1A-overexpressing leukemias.
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