
applied  
sciences

Article

A Novel Approach of Modelling and Predicting Track Cycling
Sprint Performance

Anna Katharina Dunst 1,∗ and René Grüneberger 2

����������
�������

Citation: Dunst, K.; Grüneberger, R.

A Novel Approach of Modelling and

Predicting Track Cycling Sprint

Performance. Appl. Sci. 2021, 11,

12098. https://doi.org/10.3390/

app112412098

Academic Editor: Mark King

Received: 15 November 2021

Accepted: 16 December 2021

Published: 19 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institut für Angewandte Trainingswissenschaft, 04109 Leipzig, Germany
2 Monteverde Bicycles, 10625 Berlin, Germany; rene@monteverde.bike
* Correspondence: dunst@iat.uni-leipzig.de; Tel.: +49-341-4945-184

Abstract: In cycling, performance models are used to investigate factors that determine performance
and to optimise competition results. We present an innovative and easily applicable mathematical
model describing time-resolved approaches for both the physical aspects of tractional resistance
and the physiological side of propelling force generated by muscular activity and test its validity
to reproduce and forecast time trials in track cycling. Six elite track cyclists completed a special
preparation and two sprint time trials in an official velodrome under continuous measurement
of crank force and cadence. Fatigue-free force-velocity profiles were calculated, and their fatigue-
induced changes were determined by non-linear regression analysis using a monoexponential
equation at a constant slope. Model parameters were calibrated based on pre-exercise performance
testing and the first of the two time-trials and then used to predict the performance of the second
sprint. Measured values for power output and cycling velocity were compared to the modelled
data. The modelled results were highly correlated to the measured values (R2 > 0.99) without any
difference between runs (p > 0.05; d < 0.1). Our mathematical model can accurately describe sprint
track cycling time trial performance. It is simple enough to be used in practice yet sufficiently accurate
to predict highly dynamic maximal sprint performances. It can be employed for the evaluation of
completed runs, to forecast expected results with different setups, and to study various contributing
factors and quantify their effect on sprint cycling performance.

Keywords: force-velocity profile; fatigue characteristics; performance modelling; track cycling;
performance optimisation

1. Introduction

In track cycling time trial events (contre la montre, against the clock), cyclists compete
for the shortest run-time over a given distance, typically 500 m, 1 km or 4 km, with a
standing start. Sprint time trials (200 m, 500 m, 1 km) are usually executed in an all-out
fashion until complete exhaustion and are indicated by very high maximal and mean
power output [1,2]. Competition performance results from the balance of an athlete’s
energy supply and physical demands [3]. The propulsive power output supplied by the
athlete is directly consumed to overcome physical resistance, bearing and drive-train losses,
the rolling resistance of the tires and the aerodynamic drag. Power output can be measured
by power meters, and data can be applied to performance models in order to analyse the
contributing factors and to optimise competition results.

A numerical simulation of human locomotion requires modelling of the supply, as
well as the demand side of the energy budget [4]. Different physical and mathematical
models have been published since the late 1970s to model (track) cycling performance
based on physiological, anthropometric and environmental parameters, which describe the
fundamentals [5–7] and details [8] of cycling performance via mathematical equations and
investigate the effect of changes in modelling parameters on performance [5–7,9,10].

Lukes, Carré and Haake [11] , Martin et al. [12], Underwood and Jermy [13] and
Fitton et al. [8] developed models specifically for track cycling, which, in contrast to the
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models for road cycling, incorporate an oval track. Underwood additionally describes
the inclined position in the curves of an indoor velodrome, and Fitton’s model presents a
comprehensive description of all relevant physical quantities.

The most recent contributions include measurements of power output [8,12–16]. Most
of these models are very complex and require either data from previous testing and a priori
assumptions in order to be properly calibrated, something that renders them cumbersome for
application in sports practice.

There is no model available that can describe the energy supply component without
major assumptions and limitations , as was recently also noticed by Ferguson et al. [17]. So
far, either a priori data is used as an input [12,15], or an attempt is made to estimate fatigue-
induced performance losses based on the number of revolutions at time t [14,18]. This
limits their applicability to a replication of already completed runs. A mathematical tool
capable of predicting scenarios requires a generic physiological model, with its parameters
fitted to the individual athlete’s characteristics.

To address this problem, we combined a physiological model with a physical model
specifying the transient power required for cycling. The physiological model is based on
the predictability of fatigue-induced changes in maximum possible power output and
uses linear force-velocity (F/v) and parabolic power-velocity (P/v) profiles to describe
these changes mathematically. We tried to increase the practicality of our method by
limiting the amount of input values and reducing the complexity of the computational
process. These simplifications increase the appeal of this approach for use in track cycling
to optimise performance.

This study aims to investigate the validity and predictive quality of our approach by
comparing data measured by high-precision power meters during training runs of elite
sprinters in the velodrome with corresponding modelled results. The verified model was
applied to study the isolated effects of single parameters on the athlete’s performance.

2. Materials and Methods
2.1. Physiological Model

Time trial efforts, particularly the 1 km, are usually executed in an all-out fashion to
complete exhaustion [1,2]. This strategy is considered to lead to the best result possible due
to the optimal utilisation of physiological capacity [19]. The mechanical power exerted by
the athlete equals the maximal power attainable for the present pedal rate and exhaustion
state at all times. The maximal force and maximal power an athlete can generate at a given
cadence can be described by linear force-velocity (F/v) and parabolic power-velocity (P/v)
profiles, where F denotes the mean tangential pedal force per one revolution, P is the
power output, and v corresponds to the movement velocity of the cranks or pedals. As the
pedalling rate PR is proportional to the tangential speed of motion v at the pedal, the F/v
and P/v profiles are usually based on cadence in cycling. The linear function:

F(v) = a · PR + b (1)

approximates the relationship between mean pedal force F and the movement velocity PR
in the absence of fatigue [20,21]. Constant a < 0 specifies the decline in mean pedal force
with increasing cadence and b the individual maximum force Fmax.

The relationship between power (P) and the pedalling rate is then parabolic:

P(v) = a · PR2 + b · PR (2)

From these functions, parameters such as the current maximum force (Fmax = b),
maximum pedalling rate (PRmax = −b/a), maximum power output (Pmax = −b2/4a) and
related optimal pedalling rate (PRopt = −b/2a) can be derived [20,22]. These profiles
have been used to describe a (track) cyclist’s fatigue-free neuromuscular performance by
determining the maximal resistance an athlete can overcome at a certain cadence and the
maximal power output at that cadence [22–24].
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Previous research results revealed that elite track sprinters leave this fatigue-free
F/v profile after less than 3 s in maximal sprints [25]. An approximately synchronous
and uniform reduction in force development and velocity of contraction is reported with
increasing fatigue in muscles [26–29]. These fatigue-induced changes can be described
by a parallel shift in the F/v profile towards the origin [29,30]. Power output declines in
an approximately exponential fashion as a result of increasing fatigue when performing
maximal exercise to exhaustion [1,2]. In accordance, we found that the time course of the
shift in the F/v profile with fatigue is also exponential.

By adding a time-domain and incorporating the duration of exercise, two-dimensional
F/v profiles form a three-dimensional model. This method is limited to sprints with a
maximum duration of ≈60 s:

F(v, t) = F(v) · e−t/τ (3)

where F(v) is the fatigue-free F/v profile, and τ denotes the time constant of its decline
due to fatigue.

With the parallel shift in the F/v profile, characteristic parameters of the fatigue-free
profiles also decrease [3]. This enables a simplification from three dimensions to two
dimensions by eliminating the dependence on cadence. The temporal behaviour of the
F/v or P/v profile can, therefore, be characterised by the variation of a single parameter,
such as the maximum mean pedal force:

Fmax(t) = Fmax · e−t/τ (4)

with Fmax derived from the fatigue-free F/v profile. Equation (4), analogue to Equation (3),
returns the state of the F/v profile at time t and allows for the calculation of the maximum
average pedal force and maximum power output of an athlete at a given cadence at
that time.

In our recent publication [31], we demonstrate the application of this method by
calculating optimal cadences to maximise mean power output in maximal sprints in the
laboratory and on the cycling track. We also demonstrate that the F/v profile approaches
a plateau with increasing fatigue at an exponential rate, and consequently, Equation (4)
should be reformulated as:

Fmax(t) = A · e−t/τ + c (5)

with Fmax = A + c, A as the amplitude of power loss and c as the residual value.

2.2. Physical Model

The physical model should be capable of specifying, at every instance, the counter-
balance between power input by the cyclist and the main power loss factors in cycling,
i.e., aerodynamic drag and tire friction. Since a well-trained athlete will keep the bike close
to the 250 m measuring line in time-trial runs, changes in potential energy can be neglected.
The effects of dynamic load that occur during cornering are considered in the model.

Perhaps the most elaborate physical description of track cycling to date was published
by Fitton et al. in [8]. These authors addressed all contributing factors, including bank
angle of the track, cycling up and downhill and the increase in rolling resistance due to a
steering angle. Judging from practical experience, we are convinced that these additional
features require numerous additional coefficients to be established while delivering only
a minor gain in information. A suitable physical description was published by Martin
et al. in [12] , which we will adopt, but reformulate it in terms of force, not power, for
convenience in implementation. Furthermore, their consideration of potential energy will
be omitted.

The system is comprised of a cyclist and bicycle that is considered as a single mass
point (mass m), which moves along a straight trajectory with constant height level. In this
situation, the propulsive force FP acts collinear to the resistance forces FRR for rolling
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resistance, and FD for aerodynamic drag. The dynamic force balance for this single mass
point system reads as:

m · a = FP − FRR − FD (6)

where a surplus of available propulsive force over the force required to sustain the current
speed results in an acceleration of the system, while a lack of force input leads to a decrease
in velocity.

The rolling resistance is modelled as Coulomb’s friction:

FRR = m · g · µ (7)

Ambient conditions, such as air temperature, humidity and barometric pressure, needs
to be established to calculate the air density $ accordingly. With the drag area (cD · A) being
known from, e.g., wind-tunnel measurements, the aerodynamic drag can be estimated by:

FD = $/2 · v2 · (cD · A) (8)

The propulsive force FP can be deducted from FT the tangential force at the pedals
averaged per revolution, the crank arm length l, the rear wheel radius r and the gear ratio
i as:

FP =
FT · l
r · i

(9)

Assuming that a non-slip condition between the rear tire and the track surface exists,
the pedalling rate is connected to the velocity by:

PR =
v

2π · i · r
(10)

Cycling in a velodrome is characterised by a periodic sequence of straights and curves,
with lengths and corner radii R specific to the particular track. In the curves, the rider has
to lean inwards to compensate for the centrifugal forces acting. The lean angle ϕ for cycling
free of transverse forces is given by:

tan ϕ =
v2

g · R
(11)

and leaning inwards creates an additional dynamic load factor n:

n =
1

cos ϕ
(12)

which increases the downward force on the wheels, resulting in the rolling resistance
becoming a function of the velocity and the corner radius. Moreover, with the contact
point of the wheels travelling at track radius R, we assume in contrast to [12] , that the
centre of gravity moves with approximately constant , not reduced, tangential speed along
a concentric trajectory smaller in radius by ∆R, depending on its height H above ground:

∆R = sin ϕ · H (13)

The bicycle’s velocity is usually captured by a frequency counter at the wheel or at
the crank arm. The velocity vw measured by such devices will periodically increase when
the rider starts to lean inwards and decrease to its original value when cornering finishes,
since in the curves, the wheel’s contact point with the track surface covers a larger distance
than the centre of mass in the same period of time:

vw = v
(

1 +
∆R
R

)
(14)
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Often, a start machine is used in the effort. In this case, trained athletes will exhibit a
distinctive upper body movement prior to the start signal so that at t = 0, major parts of
the body are already in motion. This can be included in the physical model by selecting
a velocity v > 0 at t = 0. The exact value has to be determined from on-board or video
measurements until a good agreement between the modelled data and the observation
is reached.

In time trial disciplines, bikes are usually equipped with disc wheels due to their
aerodynamic advantages. These wheels have a considerable moment of inertia J since their
mass is distributed away from the axis. This can be addressed by adding an additional
mass m∗ to the system’s weight, increasing its translatoric inertia:

m∗ =
J

r2 (15)

The exact values for J have to be determined by laboratory experiments.
Even a well-maintained drive-train is subject to mechanical losses due to friction that

occurs in the bearings, the chain, etc. As a result, only a part of the pedal force applied is
transferred to the rear wheel and made available for propulsion. This can be considered
by inserting an efficiency factor η in Equation (9), with typical values in the range of
0.95 to 0.97:

FP = η · FT · l
r · i

(16)

2.3. Implementation

The explicit-forward iteration of all time-dependent variables is conducted in the
distance domain at equidistant points to facilitate the direct comparison of computed
values to observations taken at fixed positions in the velodrome (start line, half-round,
round, finish line, etc.). A suitably small increment ∆s has to be selected to account for the
unsteady characteristics of all variables. Within each distance increment ∆s, a non-uniform
linear motion with constant acceleration is assumed.

The sequence of computational steps is outlined in Figure 1. Starting from a standstill,
with initial values t = 0, s = 0, v = 0, ϕ = 0, the resulting drag forces FD and FRR can
be determined using Equations (7) and (8). The cadence PR results from Equation (10).
With these status variables known, the pedal force applied by the athlete is returned
from the physiological model and the propulsive force at this position is estimated using
Equation (16). The momentary acceleration of the system can now be calculated from the
force balance in Equation (6). The time increment ∆t elapsed for moving one increment is
computed by solving the differential equation of motion for the time interval t, taking into
account that due to the lean angle, the centre of gravity travels a distance shorter than ∆s:

∆t1,2 = −v
a
±
√

v2

a2 +
2∆s · (1 − sin ϕ/H)

a
(17)

The result of the square root is positive for a > 0, negative for a < 0 and the case
a = 0, which is numerically most unlikely to appear, has to be excluded. Now, the initial
velocity for the next distance increment can be calculated:

v1 = v0 + a0 · ∆t0 (18)

The absolute position of the system relative to the start and the total run-time until
this position is reached results from a summation of the respective increments:

s = ∑ ∆s; t = ∑ ∆t (19)

In this contribution, a generic track 250 m in length with circular corners of radius
R = 25 m shall be assumed. This results in a 46.46 m straight, followed by a 78.54 m long
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curve, with a period of 125 m. With the absolute distance known, the position s∗ within
half a lap can be computed:

s∗ = mod
(

d
125 m

)
(20)

From s∗, the local corner radius can be determined, and the corresponding lean angle
computed using Equation (11), assuming that the transition between cycling upright in the
straights and inclined in the curves or vice versa occurs in a linear fashion over a distance of
ca. 20 m centred around the geometric origin of the bend. Thus, the lean angle is multiplied
with a form function that is defined to be zero in the straights, “1” in the bends and a linear
function of s during the transition from one to the other. From this adjusted lean angle,
the local load factor from Equation (12) and all derivatives thereof can be calculated.

Usually, at the start, the athlete accelerates the bike in a standing position (STAND)
for the initial 140 to 170 m. This affects the aerodynamic characteristics, as well as the
physiological capabilities. To account for this, a different set of parameters is used for
cD · A, A, τ and c for this phase. The iteration cycle is repeated until the system reaches the
desired finish position.

initial values 
v0/ s0/ t0/ f0/ n0 =0

Cadence, Resistance 
PF/ FRR/ FD

Pedal Force 
F(v,t)

Propulsive Force, Acceleration 
FP, a

time increment 
Dt

velocity, distance, time 
vi/ si/ ti

corner radius, lean angle, load factor 
Ri/ fi/ ni

End

linear motion w/ 
constant acceleration

dynamic force balance

physiological model

curve model

si < sfinish

Figure 1. Computation sequence.

2.4. Determination of Model Parameters
2.4.1. Track Cycling Time Trials

Six elite track cycling sprinters (19.5 ± 0.76 years, 183.50 ± 10.08 cm, 83.6 ± 13.91 kg)
performed two 500 to 1000 m all-out time-trials (length specific to the athlete’s competitive
event) from a standing start on an official cycling track, each with substantially different
gear ratios (Frankfurt/Oder, Germany).

The athletes were requested to refrain from consuming alcohol and from intense
training during the 24 h period prior to the experimental session and asked to maintain
their normal drinking and eating habits. They provided written informed consent to
participate in this study, which was approved by the institute’s ethical committee and
performed in accordance with the Declaration of Helsinki.
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2.4.2. Exercise Protocol

Before the first run, the athletes with their clothes and bikes were weighed to determine
the mass of the rider-bike system. The warm-up prior to the tests consisted of 15 min
of low-intensity cycling (1–1.5 W per kg bodyweight), followed by three short maximal
sprints on the cycling track. The athletes rested passively for 10 min between warm-up
and testing.

All athletes first performed two 6 s sets of maximal-cadence low-resistance cycling
on a free-standing roller (motoric sprint) and two 6 s maximal sprints in a seated position
on the track to generate additional data points in the high-frequency cadence range for a
valid determination of the F/v profiles. These points were added to the fatigue-free pedal
revolutions from the acceleration phase of the time trials [32].

The athletes then completed two 500 to 1000 m all-out sprints from a standing start
with two different gear ratios. In the first run, athletes were asked to choose their preferred
gear. In the second run, a much larger gear was selected. The sprints were separated by
at least 20 min of low-intensity cycling (1–1.5 W per kg bodyweight) for active recovery
and 20 min passive recovery. The next test began when comparable levels of blood lactate
were observed.

Throughout the testing, pedal force and crank velocity were monitored continuously
with a special power meter. The system supplied by the Institute for Research and De-
velopment of Sports Equipment (FES) in Berlin captures the tangential force on the crank
arm with a sampling frequency of 200 Hz. This system allows for the observation of sport-
specific movements and the creation of sport-specific force-velocity and power-velocity
profiles [33]. From this high-resolution power-meter data, the mean tangential force FT at
both pedals, averaged per one revolution, as well as the corresponding mean pedal rate
PR, was derived.

The air density was measured prior to each run with a commercial weather meter
(KESTREL 5200, Kestrel AU) located close to the cycling track. Before and every tenth
minute after each sprint, 20 µL capillary blood was collected from the hyperaemic ear
lobe for haemolysis and enzymatic-amperometric determination of lactate (Biosen, Eppen-
dorf/Germany).

2.4.3. Data Analysis

In the 500 m and 1000 m-time trials, athletes usually use a standing position in the
initial phase (acceleration phase) and a seated position at high speed [2].

To establish the fatigue-free F/v profile in a seated position, the first 3 or 4 cycles
from the seated maximal sprint and, as proposed in [32], 1 or 2 cycles at pedal rates above
160 rpm derived from the motoric test were taken. To reproduce the performance potential
of the athlete in a standing position on the bike, the F/v profile was adjusted for the first
3 or 4 pedal revolutions of the acceleration phase during the standing start of each run.
The profile parameters were determined by linear regression analysis, and the calculated
slope was used for further analysis.

The model parameters for Equation (5) were determined by non-linear regression
separately for the first phase of the race, where the athlete accelerates while standing
(STAND), and for the second phase with the athlete adopting a seated position until the
end of the race (SIT). A sudden systematic drop in power output in the raw data separated
the two phases.

A time delay TD was used to account for any delays in the onset of fatigue. To im-
plement this delay in our model, the coefficient Fmax(t) is estimated based on the average
value of the pedal force FT for time t within [0; TD].

The parameters derived from an athlete’s first sprint were applied to the raw biome-
chanical data of the following sprint. If the model quality matched the R2 of the first run,
the parameters were kept constant; otherwise, the model parameters were adjusted to
improve the fit.
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2.4.4. Statistics

Linear regression analysis was used to study the relationship between data. The ab-
solute value of the difference between the measured and modelled data was used to
determine the bias of the measurements. Paired t-tests were employed to investigate for
any difference within the data. Cohen’s d (small = 0.2; medium = 0.5; large = 0.8) was
employed as a measure of effect size, with statistical significance being set at an alpha level
of <0.05. All mathematical analysis and statistical tests were processed using IBM SPSS
statistics version 24 Software for Windows (SPSS Inc., Chicago, IL, USA) and Office Excel
2016 (Microsoft Corporation, Redmond, WA, USA). The quality of the regression analyses
was examined by calculating the coefficient of determination R2.

3. Results

Mean pedal force and the pedalling rate with corresponding power output for one
athlete during both 750 m-time trials is illustrated in Figure 2. The gear ratio of the first run
(i = 3.6) corresponds to a distance of 7.56 m per pedal revolution. Here, the mean power
output was 651 W at a mean cadence of 117 rpm. In the second run, a higher gear ratio
i = 4.14, resulting in the development of 8.7 m was chosen. In the second race, the mean
power was 691 W at a mean cadence of 104 rpm.

(a)

(b)

Figure 2. Mean pedal force FT , pedalling rate PR and power output P during two 750 m time trials.
(a) First run at the development of 7.56 m per pedal revolution, (b) second run at the development of
8.7 m.
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In Figure 3, the maximum pedal force Fmax attained at PR = 0 was calculated from
the data measured in the first run and the physiological model fitted, returning high to
excellent agreement. The physiological model parameters were then used to approximate
the data measured in the consecutive run with different gearing, and the fit quality was
assessed again. It was established that the physiological model can accurately reproduce
the decline in Fmax with time and that this athlete-specific fatigue characteristic can be
generalised and reused to forecast following runs, even in a different setup.

(a)

(b)

Figure 3. Time-dependent maximal mean pedal force Fmax with model function (prediction) calcu-
lated by Equation (5) for (a) the first and (b) the second run. The physiological model parameters
were fitted to the data of the first run.

While this worked sufficiently well for five athletes, the physiological parameters had
to be adjusted for athlete no. 6 to fit the data captured in the second run. Model parameters
found for all six athletes in the two different phases (STAND, SIT) of the race with the
associated model quality, measured by the determination coefficient R2, are detailed in
Table 1. When comparing the R2 of the different runs using a paired t-test, no statistically
significant differences were found (p > 0.05; d < 0.1).
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Table 1. Parameters of the physiological model with their coefficient of determination for the initial
standing (STAND) and the following phase ridden in a seated position (SIT) (n = 6).

Athlete a A τ c R2

ST
A

N
D

1 −6.03 1581.51 50.17 0.00 0.93
2 −4.63 1151.82 60.40 0.00 0.85
3 −7.42 2205.73 45.69 0.00 0.96
4 −8.01 2190.36 56.48 0.00 0.82
5 −6.80 1894.02 70.40 0.00 0.84
6 −7.30 2261.81 46.02 0.00 0.94

SI
T

1 −4.80 754.93 77.50 340.84 0.91
2 −4.14 912.37 86.26 0.22 0.94
3 −4.88 1121.83 19.90 675.15 0.95
4 −4.40 1165.73 31.22 410.83 0.93
5 −3.94 1107.77 28.13 414.44 0.96
6 −5.30 1315.08 40.09 432.45 0.94

In the next step, the physiological model was tested for correct reproduction of the
dependency between cadence PR and mean pedal force FT by comparing the measured
pedal forces to projected values. Figure 4 illustrates for all six athletes, each in two runs,
the deviation between the modelled and the measured data, plotted against the distance
travelled. With a bias of 2.05 N at a standard deviation of 14.77 N, the overall agreement
was found to be satisfactory.

Figure 4. Dispersion between the measured and modelled pedal force FT as a function of the
distance travelled for all runs measured. Black lines indicate upper and lower limits of the 95%-
confidence interval.

Applying the physical model to the pedal force returned by the physiological model
as an input, the expected instantaneous velocity of the system and the mechanical power
required by the athlete can be computed. In Figure 5, the modelled velocity at the wheels
is compared to the measurements, and a very good agreement was observed. A similar
comparison is displayed in Figure 6 for the mechanical power, where both quantities are
highly correlated despite the data returned from the power meter showing significant
fluctuations. A linear regression analysis was employed to the modelled and measured
velocity and power output, respectively. A high degree of agreement was returned for both
quantities. Table 2 tabulates the R2 found in the two runs and the proportionality factor k
between the modelled and measured data.
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(a) (b)

Figure 5. Comparison of measured and modelled velocity vw in the first run of a 750 m-time trial.
(a) Measured and modelled data, (b) linear regression analysis.

(a) (b)

Figure 6. Comparison of measured and modelled mechanical power output in the first run of a
750 m-time trial. (a) Measured and modelled data (b) linear regression analysis.
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Table 2. Correlation between the modelled and measured data of cycling velocity vw and power
output with the corresponding coefficient of determination R2 (n = 6).

First Run Second Run

Athlete k R2 k R2

ve
lo

ci
ty

v w

1 1.002 0.997 1.009 0.996
2 1.003 0.997 1.002 0.997
3 1.007 0.993 1.005 0.998
4 1.003 0.995 0.998 0.998
5 1.005 0.999 1.003 0.995
6 1.001 0.999 1.004 0.995

po
w

er
ou

tp
ut 1 0.969 0.959 0.988 0.975

2 0.973 0.958 0.992 0.969
3 0.982 0.976 1.002 0.998
4 0.994 0.968 0.973 0.979
5 1.018 0.936 0.989 0.968
6 0.965 0.952 0.971 0.941

Keeping the model parameters constant for multiple runs with different setups, our
combined physiological and physical model predicted the actual cycling velocity and
power output with unaltered accuracy. No statistically significant differences in model
quality between different runs could be observed. Figure 7 demonstrates an example for
the wheel’s velocity of the same athlete as in Figure 5, captured in the second run with 15%
higher gearing, and the corresponding results of the linear regression analysis.

(a) (b)

Figure 7. Comparison of the measured and modelled velocity vw in the second run of a 750 m-time
trial. (a) Measured and modelled data, (b) linear regression analysis.

Finally, Figure 8 illustrates the dispersion of the modelled data points for velocity
related to the distance travelled across all data sets from six athletes. It becomes apparent
that larger deviations between modelled and measured data appear primarily in the
standing phase of the runs.
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Figure 8. Dispersion of the modelled from measured velocity vw vs. the distance travelled for both
runs of all six athletes. Black lines indicate upper and lower limits of the 95%-confidence interval.

4. Discussion

We experimentally demonstrated, in test runs with six athletes, that using our com-
bined physio-physical model, time trial track cycling performed in an all-out fashion can
be modelled, and the results can be predicted with reasonable precision. This enables the
evaluation of each individual factor’s contribution to the overall performance.

A generic rider was created as proposed in [24], with its physiological parameters
derived from the arithmetic mean of the respective parameters found on our six individual
athletes. Figure 9 depicts the sensitivity of the run-time for a change in the system’s mass for
distances of 250 to 1000 m. For each distance, a monotonous linear correlation was observed.
The slope of these curves decreases with the increasing length of the run, indicating that
the effect of a change in the system’s mass is more prominent in short-distance races. This
is plausible, as an increase in mass is particularly detrimental during the acceleration phase.
Once accelerated, mass only affects the rolling resistance, which is orders of magnitude
smaller than the inertia force.

Figure 9. Change in the calculated run-time T of the generic athlete as a function of change in system
mass m for distances from 250 to 1000 m.

In Figure 10, the effect of a change in aerodynamic drag area on run-time is shown
for four different distances. This result is particularly useful as it helps to translate an
improvement found by wind-tunnel measurements into run-time savings on the track.



Appl. Sci. 2021, 11, 12098 14 of 19

In contrast to the effect of a change in mass, the importance of a change in aerodynamic
drag increases with increasing run distance, as is apparent by the slope of the curves
becoming steeper. As aerodynamic resistance is proportional to v2, its impact increases at
higher speeds and accumulates over time.

Perhaps the most relevant setup parameter is the gear-ratio, physically coupling
power available and power required. It cannot be changed during the effort but has to be
chosen carefully in advance. A relatively low gear ratio will augment the acceleration of
the system at the expense of premature fatigue of the cyclist, while too high a gear ratio
will keep the athlete from reaching top speed in a reasonable time. Our model can be used
to create individual gear ratio profiles and determine an athlete’s optimal gear for different
race distances.

Figure 10. Change in the calculated run-time T of the generic athlete as a function of change in
aerodynamic drag area cD · A for distances from 250 m to 1000 m.

Figure 11 exhibits the expected change in run-time of the generic athlete, normalised
to the minimum run-time found, for four race distances at different developments, i.e., the
distance travelled per one crank revolution. A distinct optimum development, resulting
in the shortest possible run-time under given circumstances and training level, can be
observed at 0%. This optimum is shifted towards higher gearing with increasing race
distance. This observation is supported by practical experience: short-distance events are
dominated by start performance, which is improved with lower gearing, while longer
distances emphasise maintaining a high speed for a prolonged time, where a higher gearing
is advantageous.

Comparing the gradient of the curves left and right of the apex, it becomes evident
that too high a gear ratio is less detrimental on the run-time than a gear ratio too low by
the same amount. In practice, this implies that if there is uncertainty about the individual
optimum, it is advisable to select a gear that is slightly too large rather than one that is
slightly too small. To our knowledge, this observation is in contradiction to the recent
common practice on the track.

Similar studies can be conducted with regard to the athlete’s physiological parameters.
In Figure 12, the time constant τ of the generic rider, which is a measure linked to its
individual resistance to fatigue, was varied. For short races, the importance of the time
constant, or endurance, is much lower than for longer distances.
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Figure 11. Change in the calculated run-time ∆T of the generic athlete as a function of development
for distances from 250 m to 1000 m.

Figure 12. Change in the calculated run-time of the generic athlete as a function of change in the time
constant τ for distances from 250 m to 1000 m.

A congruent observation is found for the sensitivity of the run-time for changes in
the residual value c, to which the pedal force drops when fatigue is “fully” developed and
which, according to Monod and Scherrer’s critical power concept [34], may be related to an
athlete’s aerobic power. After a 250 m run, this situation is not yet reached, but it is realised
in longer efforts of up to 1000 m. Consequently, in Figure 13, the graph for 250 m shows a
negligible impact, while at 1000 m, a linear correlation is present.
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Figure 13. Change in the calculated run-time of the generic athlete as a function of change in the
residual value c for distances from 250 m to 1000 m.

In Figure 14, the effect of maximum power attainable for the non-fatigued athlete
on run-time is studied. It is important to note that all curves collapse on the same line,
rendering this correlation independent from a distance. The gradient slightly decreases
with increasing level of Pmax, indicating that for every step gained in maximum power by,
e.g., training, an ever-smaller benefit in run-time will be achieved. This is mainly caused
by the aerodynamic drag being proportional to v2, the power required to maintain a given
velocity increasing rapidly with v3. Nevertheless, changes in Pmax show nominally the
largest impact on run-time.

Figure 14. Change in the calculated run-time of the generic athlete as a function of change in the
fatigue-free maximum power output Pmax for distances from 250 to 1000 m.

Our physical model describing the demand side of the energy budget is based on
fundamental engineering and physical principles and is similar to various models proposed
by previous investigators [5–13].

The innovative element in our contribution is the combination of a physical model
describing the instantaneous energy demand in time-trial track cycling with a description of
maximal fatigue-free power output and fatigue characteristics as current maximal cadence-
independent biomechanical performance. This enables the computing of (future) time-
dependent power output for any setup or ambient conditions. This aspect has recently
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been re-identified as one of the most important topics for research in track cycling by
Ferguson et al. [17].

The physiological model is reliable and reproduces the athlete’s current performance
potential with reasonable accuracy, provided that the athlete performs in an all-out fashion
and, in the case of multiple runs, that fatigue is controlled by an appropriate recovery
protocol during the rest phase. Our results suggest that power development potentiation
effects after activation can increase power output in cycling [35], while fatigue can decrease
it [36,37].

The fatigue-free power output had to be slightly adjusted for the accurate reconstruc-
tion of the second run for one athlete. To avoid a misjudgement due to an unaddressed
change in fatigue-free power output, the fatigue-free F/v profile should be retested shortly
before the start of each run.

Physical performance is also subject to daily fluctuations [38], so a regular, preferably
daily adjustment of the personal model parameters would be beneficial to ensure a suffi-
ciently good prediction quality. Expanding this idea, the physiological model parameters
also offer the possibility to document and analyse individual biomechanical performance
in a more generalised way on a long-term basis. A clarification of the physiological back-
ground of the model parameters should be the subject of future research.

All data sets yielded larger deviations between modelled and measured values in the
STAND phase of the runs. This phenomenon occurs due to the initial crank revolutions,
which differ from the systematic scheme of the following regression, were estimated using
an average value. In addition, the measured raw data showed a high degree of inconsis-
tency, particularly in this initial phase, which proved difficult to accurately implement in
the model. This inconsistency is presumably due to the coordinatively demanding situation
of starting out of a starting machine with maximum acceleration. As long as the athlete
is capable of starting in a similar manner in subsequent runs, our model can be carefully
adjusted individually, and a comparison amongst several runs and between modelled and
measured data is feasible. For less capable athletes, a start where the athlete is held by
hand in a sitting position may be required.

5. Conclusions

A novel approach of modelling time trial track cycling to predict sprint performance is
presented. It combines a physiological model for the athlete’s instantaneous power output
with a physical model that returns the transient power required for cycling. A comparison
of the power output and velocity data predicted by the model with actual measurement
values confirmed its validity.

Models accurately replicating a known performance using known power output–time
characteristics exist. Our contribution expands this knowledge by achieving a comparable
accuracy with generalised maximal power output and fatigue characteristics measured
beforehand, independent of the actual run or setup. By varying the gear ratio and calculating
the time-dependent power output and cycling velocity for several runs, we demonstrated
experimentally that our method is capable of predicting time trial results with good accuracy.

This combined model provides a useful means to assess and optimise the performance
of individual athletes on a theoretical basis. It enables users to study the isolated effect
of single parameter changes, translate improvements made by training and technical
optimisation into increases in performance, and optimise multiple other variables in a way
that the mean velocity during the effort is maximised and run-time reduced.

In this first attempt, only factors of fundamental importance were considered. During
the track tests in the velodrome, we experienced that the impact of unsteady start perfor-
mance on the results of each run was especially severe, rendering any further sophistication
of the physical or physiological model unnecessary for training purposes in time-trial track
cycling. Instead, the method was deliberately kept as simple as possible to promote its
application in practice. All input values necessary to calibrate the model can be measured
in standard performance tests or derived by the analysis of training data.
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