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Abstract. We consider Yang-Baxter relations with orthogonal or symplectic symmetry, in
particular L matrices defining the related Yangian algebra. We study the conditions resulting
from the truncation of the expansion of L(u).

1. Introduction

In the case of general linear symmetry the Yang-Baxter (YB) relation of the RLL type,
involving the fundamental R matrix and the L operator, is solved by the linear expression
Lab(u) = uδab + Mab with no restriction on the Lie algebra representation generated by Mab.
This is different in the cases of orthogonal or symplectic symmetries. Here the fundamental R
matrix is quadratic in the spectral prameter u [1, 2, 4]. The restriction of the u expansion of L(u)
leads to constraints which cannot be fulfilled in all Lie algebra representations. The example
of the spinor representation is well known [3]. This and more examples have been pointed out
[4, 6]. We summarise some previous results [7, 8] and continue the study of the constraints
arising from truncation at second order.

2. Fundamental YB matrices and L operators

We start from the fundamental Yang-Baxter matrix obeying the Yang-Baxter relation in the
form

Ra1a2
b1b2

(u)Rb1a3
c1b3

(u+ v)Rb2b3
c2c3

(v) = Ra2a3
b2b3

(v)Ra1b3
b1c3

(u+ v)Rb1b2
c1c2

(u). (1)

and symmetric with respect to the orthogonal or symeplectic Lie algebra. The fundamental
representation of these Lie algebras is defined by matrices obeying

Ad
a εdb + εad Ad

b = 0 , (2)

where εab is a non-degenerate invariant metric

εab = ǫ εba , εabε
bd = δda , (3)

which is symmetric ǫ = +1 for SO(n) case and skew-symmetric ǫ = −1 for Sp(n) case.
The well known fundamental R-matrix [1, 2, 3, 4] can be written in the unified form for an

arbitrary metrics εab (3) as follows (see, e.g., [5])

Ra1a2
b1b2

(u) = u(u+
n

2
− ǫ)Ia1a2b1b2

+ (u+
n

2
− ǫ)P a1a2

b1b2
− ǫ uKa1a2

b1b2
, (4)
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where
Ia1a2b1b2

= δa1b1 δ
a2
b2

, P a1a2
b1b2

= δa1b2 δ
a2
b1

, Ka1a2
b1b2

= εa1a2 εb1b2 , (5)

We consider the RLL relation in the form

Ra1a2
b1b2

(u)Lb1
c1
(u+ v)Lb2

c2
(v) = La2

b2
(v)La1

b1
(u+ v)Rb1b2

c1c2
(u), (6)

with the general form of the L operator expanded in the spectral parameter as

La
b (u) =

∞
∑

k=0

(L(k))ab
uk

, L(0) = I. (7)

The expansion coefficients (L(k))ab generate the Yangian algebra. The relation defining this

algebra are encoded in the above RLL relation (6). We study the conditions on (L(k))ab arising

in the case of truncation of this expansion at k = 2, i.e. if one imposes (L(k))ab = 0, k > 2. In
the study we change the notation to

L(u) = u2I + uM +N. (8)

For this ansatz (6) implies
[K12,M1 +M2] = 0, (9)

[M1,M2] + [P12 − εK12,M2] = 0, (10)

[M1, N2] + [P12 − εK12, N2] = 0, (11)

K12(−βM2 +M1M2 +N1 +N2) = (−βM2 +M2M1 +N1 +N2)K12, (12)

K12(β(N1 −N2) +M1N2 +N1M2) = (β(N1 −N2) +N2M1 +M2N1)K12, (13)

[N1, N2]− (P12 − εK12)M1N2 −N2M1(P12 − εK12) + βε[K12, N2] = 0, (14)

β[N1, N2] + β(P12M1N2 −N2M1P12)− ε(K12N1N2 −N2N1K12) = 0. (15)

The relations are written in terms of (operator valued) matrices in the tensor product of two
fundamental representation labeled by subscripts. Thus they can be written in components with
upper indices a1, a2 and lower indices b1, b2, In particular we have

(M1)
a1,a2
b1,b2

= Ma1
b1
δa2b2 , (M2)

a1,a2
b1,b2

= δa1b1 M
a2
b2
,

(P12)
a1,a2
b1,b2

= δa1b2 δ
a2
b1
, (K12)

a1,a2
b1,b2

= εa1,a2εb1,b2 .

Besides of the notations M1,M2 we use also

(M+)
a1,a2
b1,b2

= Ma1a2εb1b2 , (M−)
a1,a2
b1,b2

= εa1,a2Mb1b2 . (16)

We derive easily the following rules

KP = PK = εK,K2 = εnK, (17)

KA1B2 = ε(AtB)−, A1B2K = ε(ABt)+,

KB2A1 = (BtA)t
−
, B2A1K = (BAt)t+,

KB2 = B−,KA1 = εAt
−
, A1K = A+, B2K = εBt

+,

A+B−P = A+B
t
−
, PA+B− = At

+B−,
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KA1B2K = KSp(ABt) = εKSp(AtB).

The first condition (9) means that the algebra valued matrix M has no graded-symmetric
contribution,

M − εM t = 0, M = c1I +M ′.

M ′ denotes the graded antisymmetric part of M . The second relation (10) represents the Lie
algebra relations. It implies that the matrix elements of M ′ are the generators of the Lie algebra
and c1 represents a central extension commuting with the generators. The third relation (11)
tells that N transforms by the adjoint action of the Lie algebra and c1 commutes with N .

The remaining conditions express further constraints on M and N . The existence of further
constraints on M implies in particular that the truncation is not allowed for arbitrary Lie algebra
representations. Our aim is to identify admissable representations.

In the case of the Yangian based on the sℓ type Lie algebras Y (sℓn) no further constraints on
M appear by truncation, i.e. Y (sℓn) has the evaluation representation, where all higher terms
in the expansion (7) with k > 1 vanish and the matrix elements L(k))abMab are mapped into the
Lie algebra generators. This is well known and can be checked from the conditions in the above
formulation (9 - 15), because they reduce to the sℓn case by the substitution K12 → 0. Indeed,
besides of the Lie algebra relations only the conditions (14, 15) remain which constrain N but
not M .

3. The linear evaluation

The effect of truncation can be illustrated by going one further step of truncation, namely
imposing N = 0 in (9- 15). Besides of the Lie algebra relations only the 4th condition (12) has
a non-trivial remainder,

K12(−βM2 +M1M2) = (−βM2 +M2M1)K12.

It implies the relations for M2,
M ′ 2 + βM ′ = c2I, (18)

where nc2 = tr(M ′ 2). A representation obeying this constraint is formulated in terms of an
undelying algebra generated by ca, a = 1, .., n,

[ca, cb]ǫ ≡ ca cb + ǫ cb ca = εba = ǫ εab, ca c
a = ǫ ca ca =

1

2
εab. (19)

The generators are

−Ma
b → F a

b =
1

2
(ca cb − ǫ cb c

a).

We find that the constraint (18) is fulfilled,

F a
d F d

b − β F a
b =

1

4
(nǫ− 1) δab . (20)

In the orthogonal case (ε = +1) this is the spinorial representation and ca are related to the Dirac
Gamma matrices. The relation to the Jordan-Scwinger type representation will be discussed
below.
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4. The quadratic evaluation

Now we look for solutions of the conditions (9- 15) with N 6= 0. We write M = c1I + M ′,
N = cNI +N ′ + Ñ , where M ′, N ′ are graded anti-symmetric and Ñ is graded symmetric.

Actually, an important example of a representation resulting in a quadratic u dependence
is just the fundamental one. Indeed the expression of the fundamental R matrix (4) can be
rewritten in the form of the quadratic ansatz (8) by substituing M = P − ǫK and perfoming a
shift of u,

R(u−
1

2
β) = u2I + uM +

1

2
(M2 + βM) + const I.

We have here cN = 0, N ′ = 0,M = M ′ and N = Ñ = 1
2(M

2 + βM). This particular matrix of
generators M obeys a cubic relation, since we have

(P − ǫK)2 = 1 + ǫ2β K, (P − ǫK)3 = (P − ǫK) + (nǫ− 1)(n − 2ǫ)K.

It is clear that an example of L quadratic in u is obtained by the product of the L operators
of two linear ones. It is instructive to compare with the conditions in this case.

L(u) = L1(u)L2(u+ δ), Li(u) = Iu−Gi, G2
i − βGi = c

(2)
i I.

The product is performed in the fundamental representation and the subscript label two copies
of representations allowing the first order evaluation, i.e. here the meaning of the subscripts
differs from sect 2.

L(u) = I(u+ δ)− u(G1 +G2)− δG1 +G1G2 = Iu2 + uM +N,

−M = G1 +G2 − δ, N = G1G2 − δG1.

We assume that Gi are graded-antisymmetric.

M = δ +M ′, −M ′ = G1 +G2.

We separate G1G2 into the symmetric and anti-symmetric parts.

G1G2 =
1

2
(G1G2 +G2G1) +

1

2
(G1G2 −G2G1),

N ′ =
1

2
(G1G2 −G2G1)− δG1, Ñ =

1

2
(G1G2 +G2G1) = M ′ 2 + βM ′.

We have to check the consequences of the conditions (9-15) in particular the ones involving the
graded anti-symmetric part N ′ following from (13),

2βN ′ = [c1, cN ]+ + [c1, N
′]− + [c1, Ñ ]+ − [cN ,M ′]− − [M ′, N ′]+ − [M ′, Ñ ]−. (21)

The second and the fourth term vanish. Further we have

[c1, cN ]+ + [c1, Ñ ]+ = −δ(G1G2 +G2G1),

[M ′, Ñ ]− = 0, [M ′, N ′]+ = −2βN ′ − δ(G1G2 +G1G2).

The consequence (21) is fulfilled.
More examples are obtained by fusion from the YB operators obeying an RLL type relation

with the spinorial R matrix and acting in the tensor product of the spinorial and another
representsation with generators G. The latter is constrained by the condition

[G[ae, Gf)b]+ = 0,
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equivalent to
[Gae, Gfb]+ + [Gef , Gab]+ + [Gfa, Geb]+ = 0. (22)

Multiplication by G results in a cubic polynomial relation for the matrix of generators G [7],

G3 + (ε− n)G2 + (εn− 2)G +
1

2
tr(G2)(I−εG) = 0. (23)

The Jordan Schwinger type representations discussed below (case ηε = −1) obey the condition
(22) and provide more examples of quadratic Yangian evaluation with N ′ = 0. The JS type
representations in the case ηε = +1 reduce to the spinorial representations allowing for the
linear evaluation.

5. Jordan-Schwinger representations in metric formulation

Define n canonical pairs xa, ∂a, a = 1, ..., n, and the metric εab,

εab = εεba, εacε
cb = δ b

a = εδba = εδab,

[∂a, x
b]η = δ b

a , [xa, xb]η = 0, [∂a, ∂b]η = 0. (24)

η distinguishes the normal bosonic case η = −1 from the fermionic/Grassmann case η = +1. ε
distinguishes the parity of the metric.

We define the elementary canonical transformation preserving the Heisenberg commutation
relation with metrics.

C[∂a, x
b]ηC

−1 = δ b
a

by

Ca

(

xa
∂a

)

C−1
a =

(

∂a
ηεxa

)

.

This implies in particular for the matrices of two versions of JS gℓn generators

(L+) b
a = ∂ax

b, (L−) b
a = ηεxa∂

b (25)

the duality relation
L+ = C−1L−C.

Further, the scalar product defined as

(x1 · x2) =
∑

εbax
1ax2b = x1ax

2a

in terms of the dual coordinates, is invariant in the sense

[L+
1 + L−

2 , (x
1 · x2)] = 0.

This distinguishes the linear combination of gℓn generators defining the subalgebra so or sp,

Mab = xa∂b − εxb∂a, L+ + L− = I −M. (26)

in two respects- invariance with respect to the canonical transformation and annihilation of
the scalar product, i.e. upon operation on functions of the coordinates this combination is
distinguished by the invariance of the scalar product (x1 · x2) with both coordinate vectors of
the same space.
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The generators in this metric form are related to the earlier used non-metric form [8] in the
following way. In the sp case with the particular metric choice

εab = sign(a)δa,−b, ε
ab = −sign(a)δa,−b, a, b = −m, ...,−1,+1, ... +m,n = 2m

the previous expression

Mab = xa∂b − sign(a)sign(b)x−b∂−a,Mba = −M−a,−b

is to be identified with the metric form

Mab → Ma
b = xa∂b − εxb∂

a,

with
xa = εacx

c, ∂a = ∂cε
ca, ε = −1.

The involved symmetry relation of Mab is mapped into the simple ordinary symmetry relation
obeyed by Mab. In the case so and the metric εab = δab the correspondence is trivial.

We notice that in the case εη = 1

C(∂a ± xa)C
−1 = (∂a ± xa)

On the other hand with the definition

ca =
1

2
(∂a + xa), c̄a =

1

2
(∂a − xa)

the canonical commutation relation imply

[ca, cb]η =
1

4
(1 + εη)εab, [c̄a, c̄b]η = −

1

4
(1 + εη)εab, [cac̄b]η = −

1

4
(1− εη)εab.

Thus at εη = 1 the Heisenberg algebra separates into independent subalgebras of Clifford form.
The so/sp JS form of the Lie algebra also separates in this case. In general we have

Mab = [ca, cb]−ε − [c̄a, c̄b]−ε + [c̄a, cb]+ε − [ca, c̄b]+ε,

and in the case η = ε the last two terms vanish. In this way the JS realisation of the so/sp
algebra at εη = 1 appears in two independent subalgebras,

Mab = Fab − F̄ab, Fab = [ca, cb]−η, [Fab, F̄cd]− = 0.

Above we have pointed out that the matrix with the elements Fab obeys the restriction of the
linear evaluation (20).

We calculate the squares of the JS generator matrices L+, L−.

L+ 2 = L+((xp) + 1), L− 2 = L−(−(xp) + 1 + εηn)

We calculate also the products.

(L+L−)ab = εηx2∂a∂b + (1− εη)L−

ab, (L−L+)ab = εη∂2xaxb + (1− εη)L+
ab.

We recall (26) that the sum L+ + L− contains the generators of the so/sp subalgebra,
L+ + L− = I −M , and consider its square.

(L+ + L−)2 = [(x∂) + 2− ηε]L+ + [ηεn + 2− ηε− (x∂)]L− + εη[x2∂a∂b + ∂2xaxb]. (27)
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The last term vanishes at ηε = +1. Now we proceed with the case ηε = −1. L++L− commutes
with x2 and ∂2.

L+
ac∂

c∂b = [(x∂) + 1]∂a∂b = ∂a∂b[(x∂)− 1], L−

ac∂
c∂b = εηxa∂b∂

2,

L+
acx

cxb = ∂axbx
2, L−

acx
cxb = xaxb[ηεn − 1− (x∂)].

This is used in the calculation of the third power.

(L+ + L−)3 = [(xp) + 3][(xp) + 1]L+ + [(xp) + 3][−p2xaxb + 2L+]+

[−n+ 3− (xp)][−n + 1− (xp)]L− + [−n+ 3− (xp)][−x2∂a∂b + 2L−]−

−x2∂a∂b[(xp)− 1] + x2xa∂bp
2 − p2∂axbx

2 + p2xaxb[n+ 1 + (xp)].

We have

x2xa∂bp
2 = −x2p2L−

ab − 2x2∂a∂b, −p2∂ax
2xb = −∂2x2L+

ab − 2p2xaxb

This results in

(L+ + L−)3 = [(xp) + 3)2 − p2x2]L+ + [(n+ (xp)− 3)2 − x2p2]L− + (n− 4)[p2xaxb + x2∂a∂b].

We use the result (27) for (L+ + L−)2 to substitute the last term and obtain

(L+ + L−)3 = −(n− 1)(L+ + L−)2 +A+L
+ +A−L

−

The coefficients of L+, L− are equal

A+ = A− = (x∂)2 + (n− 2)(x∂) + n− 3− x2p2,

where we have used [∂2,x2] = 2n+ 4(x∂). We insert now the expression for the trace

Sp(L+ + L−)2 = 2(xp)2 + 2(n − 2)(xp) − 2x2∂2 − n

and obtain the polynomial relation in the matrix (L+ + L−)

(L+ + L−)3 + (n− 4)(L+ + L−)2 −
1

2
[Sp(L+ + L−)2 + n− 6)](L+ + L−) = 0 (28)

For comparison we write L+ + L− = I −M, (26), and obtain

M3 − (n− 1)M2 − (
1

2
SpM2 − n+ 2)M +

1

2
SpM2 I. = 0 (29)

The resulting polynomial relation for the matrix of generators M compares with the relation for
the JS generators G (23) with the substitutions

M → εG, n → εn, SpM2 → εtrG2.

We use the relation for the graded anti-symmetric part of M3 which follows from the Lie algebra
relations,

M3 − εM3t = 2M3 − (n − 1)(M2 + εM2t) + ISp(M2),

to rewrite the obtained condition as

M3 − εM3t − Sp(M2)M = 0. (30)

It shows that the polynomial condition constrains the graded anti-symmetric part of the third
power. The graded symmetric part of M3 can be written in terms of the power powers merely
on the basis of the Lie algebra relations.

The calculation of (L+ + L−)3 can be repeated in the case εη = +1.

(L+ + L−)3 = [(x∂) + 1]2L+ + [n− (x∂) + 1]2L− =

−
1

2
[εSp(L++L−)2−n− 2](L++L−)+ (2+n)(L+−L−)+

1

2
n(n+2)[(L++L−)− (L+−L−)].

In this case there is no analogous polynomial relation in terms of only (L+ + L−).
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6. Summary

We have discussed how the truncation of the expansion of L(u) in inverse powers of u constrains
the Lie algebra representations. We have formulated the condition of second order truncation
and investigated their consequences.

The condition of first order evaluation can be formulated as the vanishing of a second order
polynomial in the matrix of generators M . It expresses just the vanishing of the graded-
symmetric part of M2. In the second order evaluation this constraint is lifted, instead just
this polynomial determines the graded-symmetric part of the second term N . The vanishing of
a cubic polynomial in M is a consequence of the conditions in the case of the vanishing of the
graded anti-symmetric part of N . It constrains the graded anti-symmetric part of M3 to be
proportional to M .

We have analysed the representations of Jordan-Schwinger type and shown how they result
in examples of the first and second order evalations of the orthogonal and symplectic Yangian.
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