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Abstract. We solve RLL-relation with fundamental orthogonal/symplectic R-matrix
examining polynomial with respect to u expressions for L-operator. We use creation-annihilation
operators to construct a realization of Yangian generators.

1. Introduction
The simplest and well known mechanism of appearance the projectivity of unitary
representations is related to Heisenberg group. Upon passing to central extension in simplest
quantization models the Planck constant appears as a measure of the central charge.

In infinite-dimensional case the projective representations appear as the groups of
automprphysms of canonical (anti-)commutation relations, i.e. Metaplectic and Metagonal
groups.

In other words, if the given group of automorphysms of some algebra (say, Clifford algebra)
or group (say, Heisenberg group) maps the Fock representation (fermionic or bosonic) to itself,
then in that representation space appears, generally speaking, projective representation of that
group of automorphysm.

In finite-dimensional case the projective representation of the orthogonal group by
automorphysms of Clifford algebra leads Cartan in 1913 to discovery of spinor group, which
provides the twofold covering of the orthogonal group. Later A. Weil shown that S1- covering of
the symplectic group is reduced to the Z2 one [1]. The similarly S1-extension of the orthogonal
group is Metagonal group. It can be illustrated by the following scheme:

MO(2n,R) ⊃ Spin(2n,R) −→ SO(2nR),

Mp(n,R) ⊃ Sp2(n,R) −→ Sp(nR),

here the Metagonal group MO(2n,R) includes Spin(2n,R) as S1 covering, which is in turn is Z2

covering of SO(2nR). Similarly the Metaplectic group contains Spinsymplectic Sp2(n,R) and
symplectic Sp(nR) groups [2], [3].

So one can conclude from these considerations that the algebra of fermion and boson
oscillators is naturally related to orthogonal and symplectic symmetry.
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2. Yang-Baxter relations
In this work we shall follow to notations of our previous work.

The fundamental Yang-Baxter equation:

Ra1a2b1b2
(u)Rb1a3c1b3

(u+ v)Rb2b3c2c3(v) = Ra2a3b2b3
(v)Ra1b3b1c3

(u+ v)Rb1b2c1c2(u) ⇒
R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) .

(1)

has following solution:

Ra1a2b1b2
(u) = u(u+

n

2
− ε)Ia1a2b1b2

+ (u+
n

2
− ε)P a1a2b1b2

− ε uKa1a2
b1b2

, (2)

where
Ia1a2b1b2

= δa1b1 δ
a2
b2
, P a1a2b1b2

= δa1b2 δ
a2
b1
, Ka1a2

b1b2
= εa1a2 εb1b2 , (3)

and the choices ε = +1 and ε = −1 correspond to the SO(n) and Sp(n) cases respectively. We
note that the R-matrix (2) is invariant under the adjoint action of any real form (related to the
metric εab) of the complex groups SO(n,C) and Sp(n,C). Here εab is a non-degenerate invariant
metric in V

εab = ε εba , εabε
bd = δda , (4)

which is symmetric ε = +1 for SO(n) case and skew-symmetric ε = −1 for Sp(n) case. We
denote by εbd (with upper indices) the elements of the inverse matrix ε−1. Namely the existence
of the invariant tensors εab leads to the above mentioned problems in SO(n) and Sp(n) cases,
e.g., it causes a third term in the corresponding expressions of R-matrices and leads to the
dependence on the spectral parameter of second power.

Let the index range be a1, a2, · · · = 1, . . . , n for the SO(n) case and a1, a2, · · · =
−m, . . . ,−1, 1, . . . ,m – for the Sp(n) (n = 2m) case. For the choice εa1a2 = δa1a2 in the
SO(n) case we have

Ra1a2b1b2
(u) = u(u+ β)δa1b1 δ

a2
b2

+ (u+ β)δa1b2 δ
a2
b1
− uδa1a2δb1b2 , β = (n/2− 1) , (5)

and for the choice εa1a2 = εa2δ
a1,−a2 (here εa = sign(a) and εab = −εab) in the Sp(2m) case we

have

Ra1a2b1b2
(u) = u(u+ β)δa1b1 δ

a2
b2

+ (u+ β)δa1b2 δ
a2
b1
− uεa2εb2δa1,−a2δb1,−b2 , β = (m+ 1) . (6)

3. Linear resolution of g`(n) Yangian
The simplest form fundamental R-matrix acquires in the case of g`(n) symmetry:

R12(u) = uI12 + P12, (7)

and choosing linear ansatz for L-operator: L(u) = u+G one deduces that RLL-relation:

R12(u)L1(u+ v)L2(v) = L2(v)L1(u+ v)R12(u),

consists of contribution, proportional to u:

[G1 + P12, G2] = 0 = [G1, G2 + P12]. (8)

Rewriting this relation in matrix indices:

[Ga1c1 , G
a1
c1 ] = δa1c2G

a2
c1 − δa2c1Ga1c2 , (9)

one immediately recognizes g`(n)-algebra.
So in the case of g`(n) symmetry the linear ansatz for L-operator solves RLL-relations with

fundamental R-matrix upon restriction that generators G realize g`(n)-algebra.
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4. Truncated Yangians of so and sp types
Let G be the Lie algebra so(n) or sp(2m) (2m = n). Then the corresponding Yangian Y (G)
is defined [10] as an associative algebra with the infinite number of generators (L(k))ab with

(L(0))ab = Iδab , where I is an unit element in Y (G), and (L(k))ab for k > 0 satisfy the quadratic

defining relations. The generators (L(k))ab ∈ Y (G) are considered as coefficients in the expansion
of the L-operator

Lab (u) =

∞∑
k=0

(L(k))ab
uk

, L(0) = I , (10)

which satisfies to the Yang-Baxter RLL-relations

Ra1a2b1b2
(u− v)Lb1c1(u)Lb2c2(v) = La2b2 (v)La1b1 (u)Rb1b2c1c2(u− v) ⇔
R12(u− v)L1(u)L2(v) = L2(v)L1(u)R12(u− v) .

(11)

which play role of the Yangin Y (G) defining relations.
Here Ra1a2b1b2

(u− v) is the Yang-Baxter R-matrix (2).
The defining relations (11) are homogeneous in L and allow the redefinition L(u) →

f(u)L(u+ b0) with any scalar function f(u) = 1 + b1/u+ b2/u
2 + . . . , where bi are parameters.

The Yangian (2), (11) possesses the set of automorphisms

L(u) → (u− a)k

uk
L(u) , (k = 1, 2, . . . ) ,

where a is a constant (in general a is a central element in Y (G)). At k = 1 the generators L(j)

are transforming as

L(1) → L(1) − aIn , L(2) → L(2) − aL(1) , L(3) → L(3) − aL(2) , . . . , (12)

Taking a = 1
nTr(L(1)) one can fix L(1) to be traceless. Note that Tr(L(1)) is central element in

Y (G)).
One has for the fundamental R-matrix (2):

1
u2v2

R(u− v) = ( 1v −
1
u)( 1v −

1
u + β

uv )− ( 1
uv2
− 1

u2v
+ β

u2v2
)P − ε( 1

uv2
− 1

u2v
)K. (13)

here β = (n2 − ε). Then the defining relations for the generators (L(k))ab of the Yangians Y (G):

[L
(k)
1 , L

(j−2)
2 ]− 2[L

(k−1)
1 , L

(j−1)
2 ] + [L

(k−2)
1 , L

(j)
2 ] +

+β([L
(k−1)
1 , L

(j−2)
2 ]− [L

(k−2)
1 , L

(j−1)
2 ]) +

+ P
(
L
(k−1)
1 L

(j−2)
2 − L(k−2)

1 L
(j−1)
2 + βL

(k−2)
1 L

(j−2)
2

)
−

−
(
L
(j−2)
2 L

(k−1)
1 − L(j−1)

2 L
(k−2)
1 + βL

(j−2)
2 L

(k−2)
1

)
P +

+ε
(
K (L

(k−2)
1 L

(j−1)
2 − L(k−1)

1 L
(j−2)
2 )− (L

(j−1)
2 L

(k−2)
1 − L(j−2)

2 L
(k−1)
1 )K

)
= 0 ,

(14)

where the operators K, P are given in (3), ε = +1 for G = so(n) and ε = −1 for G = sp(2m).
The defining relations are obviously completed for infinite set of generators, but it can be

truncated at finite values as well, which will impose the additional restrictions on generators
(L(k))ab

3

ISQS                                                                                                                                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 804 (2017) 012022         doi:10.1088/1742-6596/804/1/012022



At k = 1 we obtain from (14) the set of relations

[L
(1)
1 , L

(j−2)
2 ] = −

[
(P12 − εK12) , L

(j−2)
2

]
, (∀ j) , (15)

which in particular lead to the statement that Tr(L(1)) is a central element in Y (G):
[Tr(L(1)), (L(j))ab] = 0 (∀j). For j = 3 we deduce from (15) the defining relations for the

Lie algebra generators Gab ≡ −(L(1))ab:

[G1, G2] = [(P12 − εK12) , G2] . (16)

Permutation of indices 1 ↔ 2 in this equation gives the consistency conditions and the same
conditions are obtained from (14) directly.

K12 (G1 +G2) = (G1 +G2)K12 ,

Acting on this equation by K12 from the left (or by K12 from the right) we write it as

K12 (G1 +G2) =
2

n
Tr(G)K12 = (G1 +G2)K12 , (17)

where we have used

K2
12 = ε nK12 , K12N1K12 = K12N2K12 = εTr(N)K12 , (18)

Here N is any n× n matrix.
Then, according to the automorphism (12) we redefine the elements G → G − 1

n Tr(G) in
such a way that for the new generators we have Tr(G) = 0 This leads to the (anti)symmetry
conditions for the generators:

K12 (G1 +G2) = 0 = (G1 +G2)K12 ⇒

Gda εdb + εad G
d
b = 0 .

(19)

The equations (16) and (19) for ε = +1 and ε = −1 define the Lie algebra G = so(n) and
G = sp(2m) (2m = n), respectively. The defining relations (16) and (anti)symmetry condition
(19) for the generators Gab = εad G

d
b can be written in the familiar form

[Gab, Gcd] = εcbGad + εdbGca + εcaGdb + εdaGbc , Gab = −εGba . (20)

This means (see [10]) that an enveloping algebra U(G) of the Lie algebra G = so(n), sp(2m) is
always a subalgebra in the Yangian Y (G).

5. L operators
The Yangian Y (G) (14) with infinite number of generators can be truncated to some set with
finite number of ones restricted to some special representation. We will suppose that the Yangian
representation space is realized as a space of (matrix) polynomials of So (Sp)-generators G
and start with consideration of some general properties of such monomials. Then, thinking
generators G and spectral parameter as a dimensionfull variables (their ratio and L-operator
are dimensionless) one will describe the Yangian as Z graded space with finite-dimensional
components corresponding to irreducible representations.

1. Linear evaluation of Y (G).
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We put equal to zero all generators L(k) ∈ Y (G) with k > 1 and take the L-operator linear
by spectral parameter:

Lab(u) = uδab +Gab. (21)

Then defining RLL-relation takes the form:

(u(u+ β)I12 + (u+ β)P12 − uεK12)(u+ v +G1)(v +G2) =

= (v +G2)(u+ v +G1)(u(u+ β)I12 + (u+ β)P12 − uεK12).

This relation can be rewritten as follows:

(u+ β)
(

[G1, G2] + (G1 −G2)P12 − ε[K12, G2]
)
− εv[K12, G1 +G2]−

−εK12(G1 − β)G2 + εG2(G1 − β)K12 = 0,

and has to take place identically by powers of u and v, implying three restrictions on generators
G:

−vC(1,1) = −εv[K12, G1 +G2] = 0, (22)

as a coefficient at v, which is takes place upon (22),

(u+ β)C(1,2) = (u+ β)
(

[G1, G2] + (G1 −G2)P12 − ε[K12, G2]
)

= 0, (23)

as a coefficient at u and expresses the SO (Sp)-algebra relations. The remaining terms are:

−C(1,3) = −ε
(
K12(G1 − β)G2 −G2(G1 − β)K12

)
= 0. (24)

One can summarize constraints following from the Yang-Baxter RLL-relation for linear ansatz
(21) as:

C(1,1)[εK12, G1 +G2] = 0, (25)

C(1,2) = [G1 + P12 − εK12, G2] = 0, (26)

C(1,3) = [εK12, G1G2 +G2G1] = 0. (27)

Introducing graded oscillators ca = εabc
b:

cacb + εcbca = εab, cac
b + εcbca = δba, cacb + εcbca = εba, (28)

in orthogonal case (ε = +1) operators ca will have Grassmann nature and representation is finite-
dimensional, while in symplectic case one has the ordinary oscillators and an infinite-dimensional
representation.

Note, that (28) is just ”half” of set of oscillators. Indeed, the algebra of automorphysms,
corresponding to Bogolyubov transformation of the set of Fermi (Bose) creation-annihilation
operators is O(2n) (Sp(2n)).

Then one can solve RLL-constraints by simple bilinear ansatz

G(1)a
b = −cacb +

ε

2
δab =

ε

2
(cbc

a − εcacb) = ε(cbc
a − 1

2
δab ), (29)

ensuring symmetry properties of G: expressions with lower and upper indices are G(1)
ab =

−cacb + ε
2εab, G

(1)ab = ε(−cacb + 1
2ε
ab). The overall coefficient is chosen according to (26).
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Note that the metric is the unique invariant tensor and the single invariant combination:

εabcacb =
1

2
εab(cacb + εcbca) =

n

2
, (30)

can be constructed in the case of one set of oscillators.
2. Quadratic evaluation of Y (G).
Now we put all generators L(k) ∈ Y (G) with k > 2 equal to zero. In this case the L-operator

(10), after a multiplication by u2, can be written in the form

L(u) = u(u− a) + uG′ +H . (31)

where we introduce
L(1) = G′ − a = G , L(2) = H , (32)

where the constant a is chosen to be TrG′, so the generator G is traceless.
We are going to consider the general quadratic ansatz

L(u) = u(u− a) + uG′ +H = u2 + uG+H , (33)

and to solve the restrictions imposed by RLL Yang-Baxter relation.
The defining relation (11) has the form:

[u(u+ β)I12 + (u+ β)P12 − εuK12]((u+ v)2 + (u+ v)G1 +H1)(v
2 + vG2 +H2)− (34)

(v2 − vG2 +H2)((u+ v)2 − (u+ v)G1 +H1)[u(u+ β)I12 + (u+ β)P12 − εuK12] = 0.

This relation must take place at arbitrary values spectral parameters u and v, i.e. the
coefficients at independent monomials ukvr (k + r ≤ 4 must vanish. The l.h.s. of (34) can be
represented as a sum of following eight combinations:

C(2,1) = ε[K12, G1 +G2] = 0, (35)

C(2,2) = [G1 + P12 − εK12, G2] = [G1, G2 − P12 − εK12] = 0, (36)

C(2,3) = [K12, H1 −
1

2
(G2

1 +G2
2) +H2] = 0, (37)

C(2,4) = [G1 + P12 − εK12, H2] = 0, (38)

C(2,5) = [H1, G2 − P12 + εK12] = 0, (39)

C(2,6) = [K12, H1G2 +H2G1 +G1H2 +G2H1] = [K12, {H1, G2}+ {H2, G1}] = 0. (40)

C(2,7) =
(

[H1, H2] + (G2H1 −H2G1)P12 −
ε

2
[K12, {G1, H2 −

ε

2
G2}]

)
= 0, (41)

C(2,8) = ε
(
K12(H1 − βG1 + β2)H2 −H2(H1 − βG1 + β2)K12

)
= 0. (42)

Let us now turn to oscillator realization of generators G and H.
Consider first the case of one set of oscillators. As we prove above the most general expression

for G is given then by (29), for which constraints (35-36) take place. Then equation (35) allows
to determine ε-symmetric traceless part of H, which is zero, because the only ε-symmetric tensor
of second rank constructed from oscillators (28) is metric tensor. Then due to identity:

(G(1))2ab + βG(2)
ab =

1

4
(nε− 1)εab, (43)
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one deduces:
H

(1)
ab = αG(1)

ab + γεab,

where α and γ are arbitrary constants. In other words H
(1)
ab is an arbitrary tensor, constructed

from oscillators (28). Substituting H(1) and G(1) into remaining constraints one obtains identity
at γ = −α2 and the quadratic ansatz for L-operator will take the form:

L(u) = u2 + (u+ α)G(1) − α2 = (u+ α)(u− α+G),

which is just shifted linear ansatz up to the overall factor and one comes to:

Proposition Operator dependence of RLL-relations on single set of oscillators leads to the
linear solution.

Let us now turn to the case of two sets of oscillators.
Oscillators have the natural grading (28). From the other hand in our previous work

mentioned that a particular solution corresponding to quadratic ansatz is given by Jordan-
Schwinger construction:

Gab = xb∂a − εxa∂b, (44)

where the variables xa have an opposite grading (even for So- and odd for Sp-case):

∂a∂b − ε∂b∂a = 0, xaxb − εxbxa = 0, ∂axb − εxb∂a = εab. (45)

Labeling oscillators by index α = 1, 2:

d1a = xa, d2a = ∂a, (46)

one can rewrite commutation relations (??) in more compact form:

dαad
β
b − εd

β
b d

α
a = −εαβεab, (47)

where εαβ is two-dimensional Levi-Civita tensor (ε12 = 1 = −ε21, ε11 = 0 = ε22).
The bilinear ansatz (44) is compatible with cyclic identity:

{Gab, Gcd}+ {Gca, Gbd}+ {Gbc, Gcd} = 0, (48)

upon substitution Gab = G
(0)
ab relation (48) becomes identity. The identity (48) is necessary to

satisfy the constraints (35-42) following from the RLL-relation.

Then it is not hard to check that along with G
(0)
c1c2 = 1

2εαβ(dαc2d
β
c1 − εdαc1d

β
c2) the relation:

H = G2 + βG, (49)

solves all constraints and provides the quadratic resolution through oscillators (47).

6. Oscillator realization
Let us consider the most general expression for Gab depending on oscillators (28):

Gab =
∞∑
k=0

G
(k)
ab =

∞∑
k=0

∑
e1,...,ek

Aab,e1...ekc
e1 . . . cek , (50)

and try to solve constraints (25-27). In this expansion the operator Gab and the coefficients
Aab,e1...ek is in one-to-one correspondence if the summation in (50) is ordered, say normally,
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when all creation operators ca with a > 0 stand from the left of annihilation ones ca with
a < 0. This restriction on summation rule can be lifted if we redefine coefficients A to be
ε-antisymmetric:

Aab,e1...ei...ej ...ek = −εAab,e1...ej ...ei...ek . (51)

Indeed, any tensor A...ei...ej ... can be represented as the sum of ε-symmetric and ε-antisymmetric
parts:

A...ei...ej ... =
1

2
(A...ei...ej ... + εA...ej ...ei...) +

1

2
(A...ei...ej ... − εA...ej ...ei...) = A′...ei...ej ... +A′′...ei...ej ...,

(52)
and upon contraction with oscillators the symmetric part becomes reducible

A′...ei...ej ...c
eicej =

1

2
(A...ei...ej ... + εA...ej ...ei...)c

eicej =
1

2
A...ei...ej ...ε

eiej .

So without the loss of generality one can suppose coefficients Aab,e1...ei...ej ...ek ε-antisymmetric
and traceless by indices ei:

Aab,e1...ei...ej ...ekε
eiej = 0. (53)

In the first relation:
Gc1c2 + εGc2c1 = Gbbεc1c2 , (54)

generator G can be chosen traceless without loss of generality. Then substituting expansion (50)
into (54) one obtains:

Ac1c2,e1...ek + εAc2c1,e1...ek = 0, ⇒ εabAab,e1...ek = 0. (55)

The first two indices a, b are different from the remaining ones e1 . . . ek. Indeed, generator Gab
should rotate tensor quantities, which determine the possible form of corresponding commutator.
In particular, the construction (29) can serve as generator, so we start with the simplest quadratic
ansatz (29) and examine the most general expression quadratic by oscillators:

[ca1cc1 −
ε

2
δa1c1 , (G

(k))a2c2 ]. (56)

The commutator with Aab zeroth term of expansion (50) vanishes, because these are c-numbers,
not operators. Similarly the first term is vanishes too, because we have no any chosen vector.
For quadratic term of expansion one has:

[ca1cc1 −
ε

2
δa1c1 , (G

(1))a2c2 ] = [ca1cc1 −
ε

2
δa1c1 , A

a2
c2,bdc

bcd] = Aa2c2,c1dc
a1cd −Aa2c2,bdεba1cc1cd+

+Aa2c2,bc1c
bca1 −Aa2c2,bdεda1cbcc1 = 2Aa2c2,ed(ε

ea1εc1b − δec1δ
a1
b )cbcd =

= (δa1c2A
a2
c1,bd − δa2c1A

a1
c2,bd + εa2a1Ac1c2,bd − εc1c2Aa2a1bd)cbcd.

The only chosen tensor we can operate is metric εab, so the second term of expansion is given
by:

G
(1)
ab = Aab,e1e2c

e1ce2 = −1

2
(εae1εbe2 − εεbe1εae2)ce1ce2 = −cacb −

ε

2
εab. (57)

Following to these arguments one deduces that the higher term of expansion (50) vanish because
commutator (56) contains too many terms and one deduces that the linear by oscillators term
of the expansion is unappropriate

So the ansatz (29) is the most general in this case.
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Suppose now that we have more than one set of oscillators, which are ε-commutative or
ε-anticommutative each to other such that the bilinear combinations (57) are commutative:

Gi,abGj,ab = Gj,abGi,ab, i 6= j. (58)

One can suppose the following commutation relations between oscillators:

cai c
b
j + εcbjc

a
i = δijε

ab, 1 ≤ i, j ≤ N. (59)

One can construct the quadratic combinations from our oscillators:

Cab
ij = cai c

b
j , (60)

Consider first N diagonal ones Cab
jj : the ε-antisymmetric by group indices combinations are:

Gab
j = ε(caj c

b
j −

1

2
εab), (61)

while the ε-symmetric ones are equal to metric tensor. The N(N − 1)/2 non-diagonal
combinations Cab

ij i < j can be separated by ε-symmetry:

Sabij =
1

2
(cai c

b
j + εcbic

a
j ) = εSbaij = −Sabji , (62)

Aab
ij =

ε

2
(cai c

b
j − εcbicaj ) = −εAba

ij = Aab
ji , (63)

here we used commutation rule (59). So we see that the remaining N(N − 1)/2 combinations
Cab
ij with i > j are expressed by ones with i < j. Using (62) one can construct n(n− 1)/2 scalar

combinations

sij =
1

2
εabS

ab
ij =

1

2
εabc

a
i c
b
j , (64)

contraction Aab
ij with metric vanishes.

Definitions (62) and (63) can be extended to values i = j:

Sabii =
1

2
(cai c

b
i + εcbic

a
i ) = εab, (65)

Aab
ii =

ε

2
(cai c

b
i − εcbicai ) = Gab

i , (66)

Then we again suppose the most general ansatz for generators G, depending on n sets of
oscillators :

Gab =

n∑
j=1

γj(sk`)G
ab
j +

∑
1≤i<j≤n

αij(sk`)A
ab
ij =

∑
1≤i≤j≤n

αij(sk`)A
ab
ij , (67)

and calculate the following algebra between them:

[sij ,G
ab
k ] = (δjk − δik)Aab

ij , ⇒ [sij ,

n∑
k=1

Gab
k ] = 0, (68)

2[sij , sk`] = δjksi` − δiksj` + δj`ski − δi`skj , (69)

2[sij ,A
ab
k`] = δjkA

ab
i` − δikAab

j` + δj`A
ab
ki − δi`Aab

kj , (70)
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2[Gab
k ,A

cd
ij ] = ε(δik + δjk)A

bc,ad
ij + (δik − δjk)Sbc,adij . (71)

4[Aab
ij ,A

cd
k`] = δjkS

bc,ad
i` + δikS

bc,ad
j` − δj`Sbc,adki − δi`Sbc,adkj +

+ε
(
δjkA

bc,ad
i` + δikA

bc,ad
j` + δj`A

bc,ad
ki + δi`A

bc,ad
kj

)
, (72)

where
Sbc,adij = εbcSadij − εcaSbdij + εadSbcij − εdbSacij ,

and
Abc,adij = εbcAad

ij − εcaAbd
ij + εadAbc

ij − εdbAac
ij .

7. Conclusion
The oscillator realization, presented in previous section being the most general way to describe
an arbitrary operator dependence, allows to represent generators of the finite resolution of
orthogonal or symplectic Yangian. Substituting it into the set of constraints (22-24), (35-42),
etc. following from the RLL-relation for the particular truncation. This involving program
will allow to construct the complete set of the particular representations compatible with finite
resolutions of orthogonal and symplectic Yangians.
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