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Abstract: Bisphenol S (BPS) is an industrial chemical used in the process of polymerization of
polycarbonate plastics and epoxy resins and thus can be found in various plastic products and thermal
papers. The microbiota disrupting effect of BPS on the community structure of the microbiome
has already been reported, but little is known on how BPS affects bacterial activity and function.
To analyze these effects, we cultivated the simplified human intestinal microbiota (SIHUMIx) in
bioreactors at a concentration of 45 µM BPS. By determining biomass, growth of SIHUMIx was
followed but no differences during BPS exposure were observed. To validate if the membrane
composition was affected, fatty acid methyl esters (FAMEs) profiles were compared. Changes in the
individual membrane fatty acid composition could not been described; however, the saturation level
of the membranes slightly increased during BPS exposure. By applying targeted metabolomics to
quantify short-chain fatty acids (SCFA), it was shown that the activity of SIHUMIx was unaffected.
Metaproteomics revealed temporal effect on the community structure and function, showing that BPS
has minor effects on the structure or functionality of SIHUMIx.

Keywords: in vitro model; bisphenol S; metaproteomics; short-chain fatty acids; fatty acid methyl
ester; intestinal microbiota

1. Introduction

Bisphenols are an initial material in the production of polycarbonate plastics and epoxies resins,
and thus can be found in a variety of everyday products, e.g., plastic bottles and boxes used for liquid
and food storage or the inner coating of food cans [1,2]. However, a growing number of studies indicate
that bisphenols show health-threatening effects on humans [3].

The most commonly applied bisphenol A (BPA) has been classified as endocrine disruptor and
has been associated with the development of diseases e.g., diabetes [4]. Due to its endocrine disrupting
properties BPA has been banned from products in food packaging and consumer products used
by small children and has been added to the EU candidate list for substances of very high concern
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(SVHC) [5]. BPA is increasingly replaced by structure analogues, including bisphenol S (BPS). However,
BPS was also found to impact human health. It was reported that BPS impairs blood functions by
affecting blood cells, glucose and cholesterol metabolism and inducing cardiovascular risks in rats [6].
It has also similar estrogenic activity when compared with BPA, although it showed lower acute
toxicity in vivo [3]. In 2017, BPS has been added to the Chemicals of High Concern to Children (CHCC)
Reporting List in Washington state [7].

Bisphenols are detected up to concentrations of 1000 µg/L in environmental samples such as
surface waters of rivers and lakes [8]. They enter the human body through different exposure routes
and also find their way towards human gut microbiota. Studies reported the accumulation of BPA
and its analogues in the human body [9] and quantified metabolites in blood and urine [10–12].
The host–microbiota-interactions in the human gut are essential for human health [13]. This interaction
can be effected by environmental chemicals if they support or suppress bacterial growth or if taxonomic
composition and functions are effected, both has been shown for bacterial communities in the
past [14,15]. Furthermore bacterial growth can also be supported by environmental chemicals due
to the provision of its energy or carbon supplying properties mostly due to hydrolytic and reductive
reactions [16]. The transformation potential has been proved to mediate BPA and BPS degradation by
bacteria in industrial wastewater treatment plants, water, and seawater [17,18].

It was reported that bisphenols can also be toxic to bacteria by destabilizing cell membranes,
thereby disturbing its integrity and effecting specifically the membrane permeabilization [19]. Recently,
it was observed that bisphenols (especially BPA, BPS, and BPF) are likely to accumulate at bacterial
membranes due to their lipophilicity and therefore may lead to disturbances in the cell functioning
and to cell destruction [20]. Importantly, bisphenols were also shown to modify microbial composition.
In mice, at a concentration of 120 µg/mL BPA solved in DMSO, the alpha- and beta-diversity of the
intestinal microbiota was altered by favoring the growth of Proteobacteria [21]. In zebrafish, a different
concentration of BPA and its analogues including BPS were shown to affect zebrafish gut microbiota [22].
Catron et al. found that different bisphenols alter the intestinal microbiota by changing specific family
abundances (e.g., Neisseriaceae, Cryomorphaceae), with BPS being the least toxic BPA analogues for host
development and estrogenicity but the most potent in microbial disruption at a concentration of 45 µM
(11.2 µg/mL) BPS solved in DMSO. However, little is known about how the intestinal microbiota is
altered on a functional level when exposed to BPS. To our knowledge, concentrations of bisphenols
in the human gut have not been measured yet, hence we used the concentration of 45 µM that was
previously shown to affect zebrafish gut microbiota to investigate how BPS affected microbial functions.

Recently, we established an in vitro bioreactor model for continuous cultivation of the extended
simplified human intestinal microbiota (SIHUMIx) [23]. SIHUMIx comprises of eight species
representing a majority of metabolic activities typically found in the human intestine. The cultivation
in vitro is highly reproducible and reaches a constant state giving a starting point for stress exposure
studies [24]. In this study, we investigated how the exposure of 45 µM BPS in DMSO modulates
(i) overall growth, (ii) membrane fatty acid composition, (iii) taxonomic composition, and (iv) functional
changes of SIHUMIx.

2. Materials and Methods

2.1. Simplified Human Intestinal Microbiota—SIHUMIx

The extended simplified human intestinal microbiota (SIHUMIx) consists out of the following
eight species: Anaerostipes caccae (DSMZ 14662), Bacteroides thetaiotaomicron (DSMZ 2079), Bifidobacterium
longum (NCC 2705), Blautia producta (DSMZ 2950), Clostridium butyricum (DSMZ 10702), Clostridium
ramosum (DSMZ 1402), Escherichia coli K-12 (MG1655), and Lactobacillus plantarum (DSMZ 20174) [25].
The cultivation protocol, the growth conditions and the medium ingredients were used as reported
(Supplementary material Table S1).
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2.2. Experimental Set-Up

For inoculation of the bioreactor system, the single strain bacteria were thawed from a fresh
glycerol stock two weeks before the experiment started and grown in Brain–Heart-Infusion (BHI) as
described (Supplementary material Table S1). Bacteria from three-day old cultures were counted at a
Multisizer 3 (Beckman Coulter, Brea, CA, USA) prior to inoculation. 1 × 109 bacteria per strain (a total
of 8 × 109 bacteria per 250 mL) were inoculated into the bioreactors (d0). The continuous cultivation
was started after 24 h.

The bioreactor run consists of two phases: (i) The adaption phase where the community established
and reached a constant community state (d1–d7) and the treatment phase (d8–d14) in which the effect
of 7 days BPS exposure was investigated (Figure 1).
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Figure 1. Experimental set-up of the bioreactor run: six bioreactors were inoculated with
1 × 109 cells/250 mL and run for 7 days under continuous culture conditions. On day 7, three bioreactors
were exposed to bisphenol S (BPS) resulting in a constant BPS exposure of 45 µM until day 14.

A concentration of 45 µM BPS (Sigma Aldrich, St. Louis, MI, USA) dissolved in DMSO
(final concentration in the bioreactor 1%) was applied, since this concentration has been reported
to alter the intestinal microbiota taxonomy in zebrafish [22]. It represents a concentration equal to
the 4x ADI of BpA in humans. In the control bioreactors, an equal amount of DMSO was added as
solvent control. During the whole experiment, samples were taken every 24 h starting the day after
inoculation (d1). Community adaption was followed by targeted metabolomics of short-chain fatty
acid [26,27]. Microbiota growth was evaluated with determination of absolute biomass. The community
structure and function of SIHUMIx was analyzed with metaproteomics on day 5, 6, 7, 8, 12, 13, and 14.
Bacteria suspensions were centrifuged at 3200× g for 10 min at 4 ◦C and immediately frozen at −80 ◦C
for subsequent sample analysis.

2.3. Microbial Growth

For microbial biomass determination, 4 mL of bioreactor liquid including bacterial cells were
centrifuged (5000× g, 10 min), washed twice (Phosphate Saline Buffer; PBS), dried in a centrifugal
vacuum concentrator (350× g, 40 ◦C; N-Biotek, Bucheon, South Korea) and weighed using a standard
precision scale.

2.4. Metaproteomics

2.4.1. Protein Extraction

Two mL bioreactor liquid was centrifuged (3200× g, 10 min, 4 ◦C) and the pellet was solved
in 1 mL lysis buffer (8M Urea, 2M Thiourea, 1 mM Phenylmethylsulfonylfluorid). Bacteria were
disrupted by bead beating (FastPrep-24, MP Biomedicals, Sanra Ana, CA, USA; 5.5 ms, 1 min,
3 cycles) followed by ultra-sonication (UP50H, Hielscher, Teltow, Germany; cycle 0.5, amplitude
60%) and centrifugation (10,000× g, 10 min) [28]. The supernatant was used for protein concentration
determination using the PierceTM 660 nm Protein Assay (Thermo Scientific, Thermo Fischer Scientific,
Waltham, MA, USA). Ten micrograms of protein lysate was incubated with 25 mM 1,4-dithiothreitol
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(in 20 mM ammonium bicarbonate) for 1 h and 100 mM iodoacetamide (in 20 mM ammonium
bicarbonate) for 30 min. Protein cleaning, cleavage and peptide cleaning were done with hydrophobic
Sera-Mag SpeedBead Carboxylate-Modified Magnetic Particles (GE Healthcare, Chicago, IL, USA) as
described elsewhere [29]. Proteins were digested with Trypsin (1:50), peptides were eluted with 2%
dimethylsulfoxide solved in water without fragmentation. Peptides were solved in 0.1% formic acid
for mass spectrometric measurement.

2.4.2. Nano LC MS/MS Measurement

Five micrograms peptides were injected into nano high-performance liquid chromatograph (HPLC)
(UltiMate 3000 RSLCnano, Dionex, Thermo Fisher Scientific). Peptide separation was performed on a
C18-reverse-phase trapping column (C18 PepMap100, 300 µm × 5 mm, particle size 5 µm, nano viper,
Thermo Fischer Scientific), followed by a C18-reverse-phase analytical column (Acclaim PepMap® 100,
75 µm × 25 cm, particle size 3 µm, nanoViper, Thermo Fischer Scientific). Mass spectrometric analysis
of peptides was performed on a Q Exactive HF mass spectrometer (Thermo Fisher Scientific) coupled
with a TriVersa NanoMate (Advion, Ltd., Harlow, UK) source in LC chip coupling mode. LC gradient,
ionization mode and mass spectrometry mode have been used as described before [30].

2.4.3. Data Analysis

Raw data were processed with Proteome Discoverer (v2.2, Thermo Fischer Scientific).
Search settings for the Sequest HT search engine were set to trypsin (Full), max. missed cleavage: 2,
precursor mass tolerance: 10 ppm, fragment mass tolerance: 0.02 Da. The protein-coding sequences
of the eight SIHUMIx strains were downloaded from UniProt (http://www.uniprot.org/), combined
and used as database resulting in 29,558 protein sequences. The false discovery rates (FDR) were
determined with the node Percolator [31] embedded in Proteome Discoverer and we set to the
FDR threshold at a peptide level of <1%. The same threshold was set for the protein FDR (<1%).
Protein grouping was performed as described [24]. GhostKOALA was used to assign KO numbers from
Kyoto Encyclopedia of Genes and Genomes (KEGG) to identified functions of identified protein
sequences [32,33]. Protein report from Proteome Discoverer with assigned taxa and functional
information from KEEG are provided (Supplementary Material Table S2). Only pathways with sufficient
coverage (>10%) on total per sample were used for analysis. For specific pathway abundances only
pathways with sufficient relative abundance (>0.1%) and pathway coverage (>3 proteins) per sample
were evaluated. Visualization and statistical analysis were done with GraphPad Prism (v8.0.2) using
unpaired multiple t-tests per p-value adjustment and are given for taxa and pathways (Supplementary
Material Table S2). Principal component analysis was performed using the prcomp function with
default setting in R and visualized with ggplot. Statistical protein analysis was performed with
MSqRob [34,35]. Protein report from Proteome Discoverer was used as input matrix and pre-processing
was applied by log2 transformation, linear regression normalization (Rlr) and no further filtering.
Quantification was done by setting treatment per day as fixed settings and bioreactor as random
effects, Analysis type: standard, Minimum Fold Change: 0, Number of contrast 1, Contrasts: -1/4 for
DMSO control day 8, 12, 13, and 14, respectively and 1/4 for BPS day 8, 12, 13, and 14 respectively.
Result table is shown (Supplementary Material Table S3). Volcano plot and boxplots of relevant proteins
are provided (Supplementary Material Figure S2).

2.5. Short-Chain Fatty Acid Analysis

2.5.1. Metabolite Extraction

For the short-chain fatty acids (SCFAs) analysis the method of Han et al., was modified [26,27].
Briefly, the samples were mixed with acetonitrile to a final concentration of 50% acetonitrile. SCFAs were
derivatized with 0.5 volumes of 200 mM 3-nitrophenylhydrazine and 0.5 volumes of 120 mM

http://www.uniprot.org/
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N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride in pyridine for 30 min at 40 ◦C.
The derivatized SCFA solutions were then diluted 1:50 in 10% acetonitrile.

2.5.2. Measurement and Data Analysis

For identification and quantitation, 50 µL of the diluted SCFA derivatives was injected into the
LC-MS/MS system. Chromatographic separation of SCFAs was performed on an Acquity UPLC BEH
C18 column (1.7 µm; Waters, Eschborn, Germany) using H2O (0.01% formic acid, FA) and acetonitrile
(0.01% FA) as the mobile phases. The column flow rate was set to 0.35 mL/min, the column temperature
at 40 ◦C. The gradient elution was performed as follows: 2 min at 15% B, 15–50% B in 15 min, then held
at 100% B for 1 min. Finally, the column was equilibrated for 3 min at 15% B. Mass spectrometric analysis
of metabolites was performed QTRAP® 5500 (AB Sciex, Framingham, MA, USA). For identification and
quantitation, a scheduled MRM method was used, with specific transitions for every SCFA. Peak areas
were determined in Analyst® Software (v1.6.2, AB Sciex) and areas for single SCFAs were exported.
Normalization and statistics were performed with in-house written R scripts.

2.6. Lipid Analysis

2.6.1. Lipid Extraction and Derivatization to Fatty Acid Methyl Esters (FAME)

Extraction and derivatization of membrane lipids was carried out according to Bligh and Dyer [36].
Two microliters of bioreactor liquid was taken, centrifuged (3200× g, 10 min, 4 ◦C) and the lipids were
extracted with chloroform/methanol/water as described [36]. Fatty acid methyl esters (FAME) were
prepared by incubation for 15 min at 80 ◦C in boron trifluoride/methanol, applying the method of
Morrison and Smith, and FAME samples were extracted with hexane [37].

2.6.2. Analysis of Fatty Acid Composition by GC-FID

Analysis of FAME in hexane was performed using a quadruple GC System (HP5890, Hewlett &
Packard, Palo Alto, Santa Clara, CA, USA) equipped with a split/splitless injector. A CPSil 88 capillary
column (Chrompack, Middelburg, The Netherlands; length, 50 m; inner diameter, 0.25 mm; 0.25 lm
film) was used for the separation of the FAME. GC conditions were: injector temperature was held at
240 ◦C, detector temperature was held at 270 ◦C. The injection was splitless, carrier gas was helium at a
flow of 2 mL/min. The temperature program was: 40 ◦C, 2 min isothermal; 8 ◦C/min to 220 ◦C; 15 min
isothermal at 220 ◦C. The pressure program was: 27.7 psi (=186.15 kPa), 2 min isobaric; 0.82 psi/min
(5.65 kPa/min) to the final pressure 45.7 psi; 15.55 min isobaric at 45.7 psi (310.26 kPa). The relative
amount of FAMEs were calculated based on peak areas of the total ion chromatograms (TIC). Fatty acids
were identified by GC and co-injection of authentic reference compounds obtained from Supelco
(Bellefonte, PA, USA).

2.6.3. Data Analysis

The degree of saturation of membrane fatty acids was calculated as described [38] and is defined as
the ratio between the two saturated fatty acids (16:0 and 18:0), the two unsaturated fatty acids (16:1cis,
18:1cis 18:1cis). Furthermore, two cyclopropane fatty acids (17cyc and 19cyc) and the two-branched
fatty acids (15:0iso, 15:0anteiso) were detected. The degree saturation of the membrane of SIHUMIx
was calculated based on the ratio of saturated to unsaturated fatty acids and cyclopropyl fatty acids (1)
and based on the ratio of saturated anteiso- and iso-methyl-branched fatty acids (2) [38,39].

sat/unsat + cyclo =
(16 : 0 + 18 : 0)

(16 : 1 cis + 17 cyc + 18 : 1 cis + 19 cyc)
, (1)

anteiso/iso =
(15 : 0 anteiso)
(15 : 0 iso )

, (2)
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3. Results

3.1. BPS Does Not Affect Total Biomass

First, biomass production of SIHUMIx was followed, to investigate growth suppressing effect of
BPS exposure. Bioreactors (n = 6) were inoculated with 1 × 109 cells/250 mL per species (n = 8) and
cultivated for seven days until reaching a structural and functional constant state [23]. After sampling
on day 7, BPS solved in DMSO or DMSO (equal volume in the control) was spiked into the bioreactors
and added to the feed medium to maintain a constant BPS concentration of 45 µM. The redox potential
and pH were followed during the experiment (Supplementary Material Figure S1). The bacterial
biomass increased starting from day 1 until day 7 to 11.4 ± 0.63 mg/mL in all bioreactors (Figure 2).
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Figure 2. Bacterial growth of simplified human intestinal microbiota (SIHUMIx) indicated by biomass
development (mean of n = 3 bioreactors).

After BPS addition, the biomass was slightly lower in the BPS vessels; however, no statistical
significance was observed. Except on day 10, the biomass increased and the variation among the three
bioreactors vessels was larger compared to the other days. On the last sampling day, the BPS and
control bioreactor vessels had similar biomass of 11.6 ± 0.42 mg/mL and 11.1 ± 0.5 mg/mL, respectively.

3.2. BPS Does Not Affect SCFA Concentrations

To investigate microbial activity, SCFA concentrations were measured. The total amount of all
analyzed SCFA and the three highest SCFA propionate, acetate and butyrate, are shown (Figure 3).
Less abundant SCFAs are given in the supplement (Supplementary Material Figure S3).
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During the establishment of SIHUMIx, the SCFA concentrations were statistically similar in all
six bioreactor vessels until day 7. After reaching a comparable concentration at day 7, the total SCFA
further deceased after day 7 in all 6 bioreactors, before again reaching a comparable concentration of
31,264.9 ± 1522.8 ng/mL (DMSO control) and 31,030.2 ± 1722.1 ng/mL (BPS), respectively, at day 14.
After BPS addition, no statistical significant change was observed on day 8, 11, 12, 13 or 14.
Maximal concentration in BPS treated bioreactors of total SCFA (34,314 ± 27,887 ng/mL), acetate
(172,467 ± 967 ng/mL), propionate (11,760 ± 1193 ng/mL), isobutyrate (167 ± 8 ng/mL) and isovalerate
(168 ± 5 ng/mL) were reached at day 7 and remained unchanged until day 14. 2-methylbutyrate and
valerate reached a concentration of 47 ± 4 ng/mL (2-methylbutyrate) and 42.1 ± 10 ng/mL (valerate) at
day 7 but decreased afterward towards 24± 17 ng/mL and 16± 3 ng/mL, respectively at day 14. Butyrate
and caproate decreased until day 7 to 4880 ± 642 ng/mL (butyrate) and 1 ± 0.3 ng/mL (caproate),
whereas butyrate further decreased to 2613 ± 140 ng/mL at day 14 and caproate concentrations
remained unchanged. Overall, no significant difference was found between the BPS treated bioreactor
vessels and the control.

3.3. BPS Slightly Increases Membrane Saturation Level

A recent study of Hąc-Wydro et al., reported that bisphenols are likely to interfere with bacterial
membranes [20].To validate changes in the lipid composition, the relative abundance of saturated
(16:0, 18:0), unsaturated (16:1cis, 18:1cis), saturated branched-chain fatty acids (15:0iso, 15:0anteiso) and
cyclopropane fatty acids (17:0cyc, 19:0cyc) during the last two days of the experiment were determined
(Figure 4A).
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Figure 4. (A) The relative abundance of membrane fatty acids in BPS treated and control bioreactors
based on the average concentrations at day 13 and 14 (n = 6). Degree of saturation of the membrane of
SIHUMIx based on the ratio of saturated to unsaturated and cyclopropyl fatty acids (B) and on the
ratio of anteiso- and iso-methyl-branched fatty acids (C). No statistical differences were found between
BPS-treated and control samples.

The proportion of fatty acids was ranked as followed: C16:0 > C18:0 > 15:0iso > 15:0antiso > C14 >

C18cis > C19cyc > C17cyc > C16:1cis while no significant difference between BPS exposure SIHUMIx
and the control was observed. To investigate the bacterial membrane response to environmental
stress, the degree of saturation was calculated as described before [38]. The degree of saturation of
sat/unsat+cyclo was moderately but not significantly higher in the BPS exposed SIHUMIx (3.9 ± 0.4)
compared to the control (3.6 ± 0.5; Figure 4B). However, no statistical difference was observed in the
degree of saturation of anteiso/iso branched-chain fatty acids in the BPS treated bioreactors (0.55 ± 0.03)
and the control (0.57 ± 0.03; Figure 4C). The sample size necessary to detect significant differences
between the BPS-treatment and control was calculated with the following parameter: mu1 = 3.9,
mu2 = 3.6, sigma = 0.5, α = 0.05, desired power = 90 (https://www.stat.ubc.ca/~rollin/stats/ssize/n2.
html) and showed that 59 replicates are needed.
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3.4. Metaproteomics Revealed Temporal Effects on the Community, Structure and Functionality

To assess the species distribution of SIHUMIx, the label-free quantification (LFQ) of species-specific
proteins was performed [40]. The list of protein identifications per sample is provided (Supplementary
Material Table S2). In all six bioreactor vessels, the relative species abundances were similar on
day 7. Between day 8 and day 14, the species abundances slightly changed to day 7 in both, the BPS
treated and the control bioreactors, respectively (Supplementary Material Figure S4). Figure 5A
shows the Principal Component Analysis (PCA) based on the relative protein intensity per taxa.
During the adaptation, all bioreactors developed into the same direction until day 7. After the addition
of BPS-DMSO (red ellipse) or DMSO (black ellipse), the bacterial community structure differed on day 8
between the groups as highlighted (Figure 5A). However, after 14 days both community structures
developed into a similar structure again (Figure 5A). This was mainly based on the abundance changes
of the low abundant (>1%) of SIHUMIx that were more abundant (E. ramosum) or less abundant
(B. longum) in the BPS treated bioreactors on day 8 (Supplementary Material Table S2). After day 8,
the species reached similar abundances again, indicating no long-term effect of BPS on the community
structure (Figure 5A). As also the control bioreactors differed from day 7 after the DMSO solvent
control was added but reached a similar state again at day 14, this difference could be the result of the
solvent itself on the bacterial community.

To describe functional changes during BPS exposure, first individual protein abundances were
analyzed. In the dataset (n = 42 samples), a total of 4,931 different proteins were quantified and
fold change between BPS treated and DMSO-control bioreactors were calculated (see Volcano plot in
Supplementary Material Figure S2). Sixteen proteins showed significantly higher abundances within
the DMSO control bioreactors (n = 12, day 8, 12, 13, 14, bioreactor A, B, C) and 30 proteins were
significantly higher abundant in the BPS treated bioreactors (n = 12, day 8, 12, 13, 14 bioreactor D,
E, F). An overview of significantly changed proteins is provided (Supplementary Material Table S3).
However, from 46 differently abundant proteins, only 17 were functionally annotated by KEGG.
Functions assigned to the proteins higher in the BPS treated bioreactors included a subunit of an
Acetyl-CoA carboxylase and a phosphoglucosamine mutase from A. caccae (Uniprot accession B0MI45
and B0MGA4), involved in fatty acid synthesis as well as peptidoglycan and lipopolysaccharide
(LPS) synthesis, respectively. Also three transporters, two assigned to B. thetaiotaomicron (Uniprot
accession Q8A992 and Q8A991), one assigned to B. producta (Uniprot accession AOA1C7|531) are
functional associated with teichoic acid and LPS export. All were less abundant in the DMSO control
(Supplementary Material Figure S2).
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To investigate weather specific functions of SIHUMIx were affected during BPS exposure, functional
categories were determined by metaproteomics. LFQ values of protein groups assigned to a KEGG
pathway-level were summed up for each sample. After quality filtering, in the total dataset, 73 different
pathways passed quality filtering and were selected for further data interpretation. Principal component
analysis (PCA) was performed based on the relative abundance per day (Figure 5B). For biological
interpretation, individual pathways were compared (Supplementary Material Table S2). We observed
no significant changes in the relative abundances of assigned pathways BPS exposure compared to the
DMSO control (Supplementary Material Table S2. Only one bioreactor (F) responded functionally at
day 8, which was not the case for the two other biological replicates D and E.

4. Discussion

The investigation of bisphenol exposure on different model organisms revealed concerning findings.
Effects of BPA and the structural similar BPS were observed in estrogenic activity, serum consumption,
and reproduction in rats, mice, or zebrafish [6,41,42]. Recent findings showed a concentration-dependent
disruption of the microbial community structure in zebrafish after in vivo exposure to different
bisphenol analogues [4,22]. Catron et al., tested different bisphenols at concentrations from 0.2 to 45 µM.
Interestingly, they found that microbial disruption was inversely related to host developmental toxicity
with BPS being the bisphenol with the highest microbiota-disrupting potential [22]. Considering the
fact that the median estimated daily intake of BPS ranges between 0.023–1.67 µg/person [43] and there
is clear evidence that gut microbiota are affected by environmental chemicals, potentially affecting
health [15], it is of great interest how BPS impacts the human intestinal microbiota.

In this study, we used SCFA analysis and metaproteomics to analyze the impact of BPS on the
structure and function of the human intestinal model community. Together with the investigation
of membrane fatty acids composition, we obtained deeper insights into how BPS can affect human
intestinal bacterial cells. We showed that a 7-day exposure of SIHUMIx to 45 µM BPS had no effect on
the community growth or SCFA metabolism compared to the DMSO control. FAME analysis showed
that the membrane saturation level was slightly increased after 7 days of BPS exposure compared to the
solvent control. This is in agreement with previous findings showing that BPS changes the organization
of bacterial membranes [20]. Functional analysis revealed slight differences between the DMSO control
and the BPS treated bioreactors, regarding fatty acid, peptidoglycan and LPS synthesis and transport.
Furthermore, we observed that SIHUMIx species abundances temporally differed after 24 h of the
treatment at day 8 but reached a similar state after 14 days. This temporal response was observed
in all bioreactors, indicating an effect of DMSO itself, which might interfered with the function and
membranes of SIHUMIx.

4.1. Overall Biomass and Activity of SIHUMIx Comparable to DMSO Control

Although most environmental chemicals, such as BPS, are do not target the gut microbiota directly,
they can enter the body and might interact with bacteria [14]. As a result, they potentially affect growth
or function of bacterial community members.

The biomass development was similar in the control and BPS treated bioreactors, indicating no
obvious effect of BPS on the overall growth of SIHUMIx (Figure 2). This is in contrast to BPA, were for
single species, it was shown that BPA exposure at high concentrations (>10 mM) resulted in a reduction
of total biomass [44], whereas 5 mM showed no effect.

To describe the effect of BPS exposure on the metabolic activity of SIHUMIx, the SCFA production
of SIHUMIx was analyzed. Fermentation products such as SCFA play a beneficial role for the host
health and changes would directly impact host metabolism [45,46]. In BPA exposed rats (200 µg/kg
body weight/day), a decrease in SCFA acids was already shown [47]. So far, this is the first time
that the effect of BPS on SCFA acid production of intestinal bacteria outside of a host has been
described. Enzymes from carbohydrate metabolism involved in SCFA synthesis were not affected by
BPA exposure. Although the concentration of the SCFA of SIHUMIx reached a comparable amount on



Microorganisms 2020, 8, 1436 10 of 15

day 7, it decreased after the treatment in the DMSO control and the BPS treated bioreactors. However,
no changes were observed in the BPS treated bioreactors compared to the control (Figure 3A–D).
This suggests that the solvent itself affected the fermentation capacity of SIHUMIx.

4.2. BPS Exposure Slightly Increased Membrane Saturation

Since Hąc-Wydro et al., revealed that bisphenols are likely to accumulate at bacterial membranes
and therefore may lead to destruction alteration in the membranes of SIHUMIx were investigated.
Bacteria can alter their cell membrane fluidity by changing the protein content, the phospholipid head
groups or the fatty acid composition in the lipid bilayers [19]. The bacterial lipid metabolism, including
regulation, structure and biosynthetic machinery of fatty acid synthesis in bacteria, showed extremely
high diversity [48]. SIHUMIx is dominated by the Gram-negative bacterial species B. thetaiotaomicron
and E. coli and Gram-positive B. producta (Supplementary Material Figure S2A). In B. thetaiotaomicron
the main fatty acids are branched-chain fatty acids from C13 to C17 whereas saturated C16:0 is present
in a low amount [49,50]. In strains closely related to B. producta the dominant lipid is C16:0, followed by
C18:0 C18:1 cis [51,52]. Together the FAME profile of B. thetaiotaomicron and B. producta correspond to
the FAME profile of SIHUMIx, were saturated (C16:0 > C18:0) and branched-chain (C18:0 > C15) fatty
acids were the most abundant. However, studies analyzing the membrane composition of single strains
can only partly be compared to findings in communities since lipid profiles in terms of quantitative
and qualitative distribution differ when bacteria grow in communities [53].

As the change in fatty acid saturation is known as a long term adaptation, fatty acid composition
at the last days after the begin of the exposure were compared [54]. Bacterial membranes consist of
saturated and unsaturated fatty acids. Cis-unsaturated fatty acids can be transformed into cyclopropyl
fatty acids [55], leading to the conversion of 16:1 cis to 17:0 cyclopropane (17:0cyc) and 18:1 cis to 19:0
cyclopropane (19:0cyc). Bacterial membranes also consist of branched-chain fatty acids. Differences in
the amount of iso-branched chained fatty and anteiso-branched-chain fatty acids have been described in
bacteria from contaminated environments since they directly affect membrane fluidity [54]. To validate
weather BPS caused changes in the membrane composition of SIHUMIx, fatty acids methyl esters
(FAME) were measured (Figure 4B).

When comparing individual FAME abundances, membrane composition in terms of saturated
to unsaturated and cyclopropane fatty acids have not been clearly changed between the BPS treated
bioreactors and the control. In addition, the degree of saturation calculated by anteiso/iso ratio of
branched fatty acids was not affected. Bacteria are known to increase their anteiso/iso ratio, leading to
a more rigid membrane and counteracting the fluidity to resist environmental stress [39]. However,
when calculating the degree of saturation of the sat/unsat+cyclo, the level was moderately but not
significantly increased in the BPS treated bioreactors.

Generally, the degree of saturation increases with the incorporation of saturated fatty acids in the
bacterial membrane, resulting in greater membrane stability able to resist the toxic effects of external
stressors [56].

The enzymes involved in fatty acid synthesis vary between bacterial species but have been
extensively investigated in E. coli [48,57,58]. The regulation of the synthesis rate and the product
structure is influenced by various enzymes in the process [48]. If BPS exposure increases the synthesis
of fatty acids to more saturated and branched-chain fatty acids or if it causes a conversion of the fatty
acids already present in the membranes, it needs to be addressed in further studies.

4.3. SIHUMIx Showed Treatment-Dependent Temporal Responses

DMSO is often used in biological research to solve hydrophobic compounds [59]. However, DMSO
might be able to directly affect bacterial cells itself. It has been reported that it affects the structure
and properties of cell membranes, even at low concentrations [60]. We assumed that the observed
temporal changes were caused by the DMSO itself rather than the BPS as reported previously [61] due
to no significant differences between the BPS treatment and the control. DMSO influences the packing
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of hydrocarbon chains of lipid as a result of the dehydration of membrane surface [60]. This means
that both DMSO and BPS might cause changes in the bacterial membrane saturation, which cannot be
distinguished within this experimental set up.

Metaproteomics revealed that species abundances slightly fluctuated during the exposure (days 7
to 14) in both, BPS treated and control bioreactors. When comparing the relative species abundances
at day 8, it was shown that the low abundant species E. ramosum and B. longum were either less or
higher abundant in the BPS treated bioreactors, but with no statistical significance (Supplementary
Material Table S2). At day 14, the individual species abundances reached again a comparable cell
number. This led us to the conclusion that the microbes showed a temporal response to the treatment.
SIHUMIx responded to the treatment, but reaches a constant state as reported previously [24]. This may
still indicate that microbes are affected, but can cope with chemicals occurring in the gut. Previous
findings revealed disruption of the microbial structure during BPS-DMSO exposure [22]. Catron et al.,
reported that the growth of the family Cytophagaceae was affected by BPS exposure in zebrafish.
However, these findings can only partly be compared since the zebrafish intestinal microbiota differ
compared to the gut microbiota found in humans. As SIHUMIx does not consist of a species belonging
to Cytophagaceae, it most likely does not include BPS growth-sensitive species.

When comparing KEGG-pathways, BPS showed no specific effect on SIHUMIx on the functional
level (Figure 5B). PCA analysis showed that all bioreactors differed at day 8 from day 7 but reached a
similar state again at day 14. Changes in the proteins belonging to three SIHUMIx species (A. caccae,
B. thetaiotaomicron, B. producta) could be found, when fold change of the individual protein abundances
were compared. Three transporters and two proteins involved in fatty acid, peptidoglycan and LPS
export and synthesis were increased in the BPS treated bioreactors, compared to the DMSO control at
day 8 (Supplementary Material Figure S3).

The outer layer of the bacterial membrane functions as a barrier to protect the cells from external
influences and preventing environmental chemicals from reaching the cytosol. As a typical stress
response bacteria modify the outer membrane either by alteration of the membrane structure or by
accumulation of hydrophobic substances [62].

Both proteins upregulated in the fatty acid, peptidoglycan and LPS synthesis are assigned to
A. caccae. Enhanced production of fatty acids could be a coping mechanism for disturbances in the
lipid membrane, likely by changing the fluidity of the membrane, as shown in our finding of moderate
increase in degree of saturation of sat/unsat+cyclo. Bacteria with reduced LPS are more sensitive to
antibiotics and therefore more vulnerable in changing environments [63].

The upregulated ATP binding cassette (ABC) transporter from B. producta is the ATP binding
region of a two component transport system, involved in the export of wall teichoic acids (WTAs) [64].
Deficiency of WTAs leads to increased temperature sensitivity, can induce defective septum initiation,
promoting the generation of round offspring of bacterial cells and influence biofilm forming
capacity [65–67].

Furthermore, two ABC transporter subunits from the gram negative bacterium B. thetaiotaomicron
were overrepresented in the BPS treated SIHUMIx community. Both are associated with ABC type-2
transporter units, which are assigned with exporting LPS or teichoic acids from the cytosol for
integration into the cell membrane or wall [68]. Based on these findings an increased production
and export of LPS, peptidoglycan and WTAs, indicate the need of cell envelope modification during
BPS treatment.

The integrity of the bacterial membrane and the homeostasis of various overall cell envelope
components are critical for growth and the viability of bacteria. It requires a balance between synthesis
of peptidoglycan, phospholipids and LPS [69]. Due to changing the lipid, phospholipid, and glycan
metabolism, SIHUMIx might adapted the composition of the membrane to resist organic chemical
toxicity. However, functional changes were restricted to single proteins and no functional differences
were found when comparing functional pathways of the BPS exposed bioreactors to the DMSO control.
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As both BPS and DMSO have been reported to affect bacterial membranes, solvent tolerance of the
model system should be taken into account in future studies to investigate bisphenols.

5. Conclusions

It was shown that the overall growth of SIHUMIx remained unchanged and SCFA production
was unaffected by the exposure to 45 µM BPS. Changes in individual membrane fatty acid composition
could not be clearly distinguished; however, the adaptation and saturation level of the membranes
slightly increased during BPS exposure. Metaproteomics revealed temporal functional and structural
response to the treatment, independent of BPS exposure. This is the first study investigating the
function of intestinal bacteria after BPS exposure when cultivated in continuous bioreactors. At the
tested concentration of 45 µM BPS, we observed changes that were restricted to the bacterial membrane
indicating that through their adaptation no key physiological function of intestinal bacteria was affected.
Due to the capability of bisphenols to accumulate in the human body it is necessary to test the effects
of a range of concentrations. It is still of interest to evaluate the impact of other substitutes used
for BPA, taking into account that the structural analogy could imply similar effects. The exposure of
chemical mixtures could uncover cooperative effects on the gut microbiota and contribute to a more
environmentally relevant picture.
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Relative protein abundance of SIHUMIx species.
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20. Hąc-Wydro, K.; Połeć, K.; Broniatowski, M. The comparative analysis of the effect of environmental toxicants:
Bisphenol A, S and F on model plant, fungi and bacteria membranes. The studies on multicomponent
systems. J. Mol. Liq. 2019, 289, 111136. [CrossRef]

21. Lai, K.P.; Chung, Y.T.; Li, R.; Wan, H.T.; Wong, C.K. Bisphenol A alters gut microbiome: Comparative
metagenomics analysis. Environ. Pollut. 2016, 218, 923–930. [CrossRef]

22. Catron, T.R.; Keely, S.P.; Brinkman, N.E.; Zurlinden, T.J.; Wood, C.E.; Wright, J.R.; Phelps, D.; Wheaton, E.;
Kvasnicka, A.; Gaballah, S.; et al. Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely
Related to Microbiota Disruption in Zebrafish. Toxicol. Sci. 2019, 167, 468–483. [CrossRef]

23. Krause, J.L.; Schaepe, S.S.; Fritz-Wallace, K.; Engelmann, B.; Rolle-Kampczyk, U.; Kleinsteuber, S.;
Schattenberg, F.; Liu, Z.; Mueller, S.; Jehmlich, N.; et al. Following the community development of
SIHUMIx—A new intestinal in vitro model for bioreactor use. Gut Microbes 2019. [CrossRef] [PubMed]

24. Schäpe, S.S.; Krause, J.L.; Engelmann, B.; Fritz-Wallace, K.; Schattenberg, F.; Liu, Z.; Müller, S.; Jehmlich, N.;
Rolle-Kampczyk, U.; Herberth, G.; et al. The Simplified Human Intestinal Microbiota (SIHUMIx) Shows High
Structural and Functional Resistance against Changing Transit Times in In Vitro Bioreactors. Microorganisms
2019, 7, 641. [CrossRef] [PubMed]

25. Becker, N.; Kunath, J.; Loh, G.; Blaut, M. Human intestinal microbiota: Characterization of a simplified and
stable gnotobiotic rat model. Gut Microbes 2011, 2, 25–33. [CrossRef] [PubMed]

26. Wissenbach, D.K.; Oliphant, K.; Rolle-Kampczyk, U.; Yen, S.; Hoke, H.; Baumann, S.; Haange, S.B.; Verdu, E.F.;
Allen-Vercoe, E.; von Bergen, M. Optimization of metabolomics of defined in vitro gut microbial ecosystems.
Int. J. Med. Microbiol. 2016, 306, 280–289. [CrossRef] [PubMed]

27. Han, J.; Lin, K.; Sequeira, C.; Borchers, C.H. An isotope-labeled chemical derivatization method for the
quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry.
Anal. Chim. Acta 2015, 854, 86–94. [CrossRef] [PubMed]

28. Starke, R.; Jehmlich, N.; Alfaro, T.; Dohnalkova, A.; Capek, P.; Bell, S.L.; Hofmockel, K.S. Incomplete cell
disruption of resistant microbes. Sci. Rep. 2019, 9, 5618. [CrossRef] [PubMed]

29. Hughes, C.S.; Foehr, S.; Garfield, D.A.; Furlong, E.E.; Steinmetz, L.M.; Krijgsveld, J. Ultrasensitive proteome
analysis using paramagnetic bead technology. Mol. Syst. Biol. 2014, 10, 757. [CrossRef]

http://dx.doi.org/10.1016/j.chemosphere.2014.10.044
http://dx.doi.org/10.1016/j.envres.2019.108576
http://dx.doi.org/10.1016/j.envpol.2019.113779
http://dx.doi.org/10.1016/j.chemosphere.2018.10.090
http://dx.doi.org/10.1186/gm228
http://www.ncbi.nlm.nih.gov/pubmed/21392406
http://dx.doi.org/10.1126/science.aag2770
http://www.ncbi.nlm.nih.gov/pubmed/28642381
http://dx.doi.org/10.1038/npjbiofilms.2016.3
http://www.ncbi.nlm.nih.gov/pubmed/28721242
http://dx.doi.org/10.1038/nrmicro.2016.17
http://dx.doi.org/10.1007/s00253-013-4949-z
http://dx.doi.org/10.3390/ijerph6041472
http://dx.doi.org/10.1016/0167-7799(94)90029-9
http://dx.doi.org/10.1016/j.molliq.2019.111136
http://dx.doi.org/10.1016/j.envpol.2016.08.039
http://dx.doi.org/10.1093/toxsci/kfy261
http://dx.doi.org/10.1080/19490976.2019.1702431
http://www.ncbi.nlm.nih.gov/pubmed/31918607
http://dx.doi.org/10.3390/microorganisms7120641
http://www.ncbi.nlm.nih.gov/pubmed/31816881
http://dx.doi.org/10.4161/gmic.2.1.14651
http://www.ncbi.nlm.nih.gov/pubmed/21637015
http://dx.doi.org/10.1016/j.ijmm.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/27020116
http://dx.doi.org/10.1016/j.aca.2014.11.015
http://www.ncbi.nlm.nih.gov/pubmed/25479871
http://dx.doi.org/10.1038/s41598-019-42188-9
http://www.ncbi.nlm.nih.gov/pubmed/30948770
http://dx.doi.org/10.15252/msb.20145625


Microorganisms 2020, 8, 1436 14 of 15

30. Haange, S.B.; Jehmlich, N.; Hoffmann, M.; Weber, K.; Lehmann, J.; von Bergen, M.; Slanina, U. Disease
Development Is Accompanied by Changes in Bacterial Protein Abundance and Functions in a Refined Model
of Dextran Sulfate Sodium (DSS)-Induced Colitis. J. Proteome Res. 2019, 18, 1774–1786. [CrossRef]

31. Käll, L.; Canterbury, J.D.; Weston, J.; Noble, W.S.; MacCoss, M.J. Semi-supervised learning for peptide
identification from shotgun proteomics datasets. Nat. Methods 2007, 4, 923–925. [CrossRef]

32. Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene
and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [CrossRef]

33. Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional
Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [CrossRef]
[PubMed]

34. Goeminne, L.J.; Gevaert, K.; Clement, L. Peptide-level Robust Ridge Regression Improves Estimation,
Sensitivity, and Specificity in Data-dependent Quantitative Label-free Shotgun Proteomics. Mol. Cell Proteom.
2016, 15, 657–668. [CrossRef] [PubMed]

35. Goeminne, L.J.E.; Gevaert, K.; Clement, L. Experimental design and data-analysis in label-free quantitative
LC/MS proteomics: A tutorial with MSqRob. J. Proteom. 2018, 171, 23–36. [CrossRef] [PubMed]

36. Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Phys.
1959, 37, 911–917. [CrossRef]

37. Morrison, W.R.; Smith, L.M. Preparation of Fatty Acid Methyl Esters + Dimethylacetals from Lipids with
Boron Fluoride-Methanol. J. Lipid. Res. 1964, 5, 600–608.

38. Heipieper, H.J.; de Bont, J.A. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of
fatty acid composition of membranes. Appl. Environ. Microbiol. 1994, 60, 4440–4444. [CrossRef]

39. Unell, M.; Kabelitz, N.; Jansson, J.K.; Heipieper, H.J. Adaptation of the psychrotrophArthrobacter
chlorophenolicusA6 to growth temperature and the presence of phenols by changes in the anteiso/iso
ratio of branched fatty acids. FEMS Microbiol. Lett. 2007, 266, 138–143. [CrossRef]

40. Kleiner, M.; Thorson, E.; Sharp, C.E.; Dong, X.; Liu, D.; Li, C.; Strous, M. Assessing species biomass
contributions in microbial communities via metaproteomics. Nat. Commun. 2017, 8, 1558. [CrossRef]

41. Horan, T.S.; Pulcastro, H.; Lawson, C.; Gerona, R.; Martin, S.; Gieske, M.C.; Sartain, C.V.; Hunt, P.A.
Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent
Generations. Curr. Biol. 2018, 28, 2948–2954 e2943. [CrossRef]

42. Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.;
Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not
safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [CrossRef]

43. Liao, C.; Kannan, K. Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs
from the United States and their implications for human exposure. J. Agric. Food Chem. 2013, 61, 4655–4662.
[CrossRef] [PubMed]

44. Vijayalakshmi, V.; Senthilkumar, P.; Mophin-Kani, K.; Sivamani, S.; Sivarajasekar, N.; Vasantharaj, S.
Bio-degradation of Bisphenol A by Pseudomonas aeruginosa PAb1 isolated from effluent of thermal paper
industry: Kinetic modeling and process optimization. J. Radiat. Res. Appl. Sci. 2019, 11, 56–65. [CrossRef]

45. Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of
butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [CrossRef] [PubMed]

46. Nyangale, E.P.; Mottram, D.S.; Gibson, G.R. Gut microbial activity, implications for health and disease:
The potential role of metabolite analysis. J. Proteome Res. 2012, 11, 5573–5585. [CrossRef]

47. Reddivari, L.; Veeramachaneni, D.N.R.; Walters, W.A.; Lozupone, C.; Palmer, J.; Hewage, M.K.K.;
Bhatnagar, R.; Amir, A.; Kennett, M.J.; Knight, R.; et al. Perinatal Bisphenol A Exposure Induces Chronic
Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites. mSystems 2017, 2.
[CrossRef]

48. Parsons, J.B.; Rock, C.O. Bacterial lipids: Metabolism and membrane homeostasis. Prog. Lipid. Res. 2013, 52,
249–276. [CrossRef]

49. Bakir, M.A.; Kitahara, M.; Sakamoto, M.; Matsumoto, M.; Benno, Y. Bacteroides finegoldii sp. nov., isolated
from human faeces. Int. J. Syst. Evol. Microbiol. 2006, 56, 931–935. [CrossRef]

50. Sakamoto, M.; Ohkuma, M. Bacteroides reticulotermitis sp. nov., isolated from the gut of a subterranean
termite (Reticulitermes speratus). Int. J. Syst. Evol. Microbiol. 2013, 63, 691–695. [CrossRef]

http://dx.doi.org/10.1021/acs.jproteome.8b00974
http://dx.doi.org/10.1038/nmeth1113
http://dx.doi.org/10.1093/nar/gkv1070
http://dx.doi.org/10.1016/j.jmb.2015.11.006
http://www.ncbi.nlm.nih.gov/pubmed/26585406
http://dx.doi.org/10.1074/mcp.M115.055897
http://www.ncbi.nlm.nih.gov/pubmed/26566788
http://dx.doi.org/10.1016/j.jprot.2017.04.004
http://www.ncbi.nlm.nih.gov/pubmed/28391044
http://dx.doi.org/10.1139/o59-099
http://dx.doi.org/10.1128/AEM.60.12.4440-4444.1994
http://dx.doi.org/10.1111/j.1574-6968.2006.00502.x
http://dx.doi.org/10.1038/s41467-017-01544-x
http://dx.doi.org/10.1016/j.cub.2018.06.070
http://dx.doi.org/10.1016/j.fertnstert.2014.11.005
http://dx.doi.org/10.1021/jf400445n
http://www.ncbi.nlm.nih.gov/pubmed/23614805
http://dx.doi.org/10.1016/j.jrras.2017.08.003
http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x
http://www.ncbi.nlm.nih.gov/pubmed/17973645
http://dx.doi.org/10.1021/pr300637d
http://dx.doi.org/10.1128/mSystems.00093-17
http://dx.doi.org/10.1016/j.plipres.2013.02.002
http://dx.doi.org/10.1099/ijs.0.64084-0
http://dx.doi.org/10.1099/ijs.0.040931-0


Microorganisms 2020, 8, 1436 15 of 15

51. Paek, J.; Shin, Y.; Kook, J.K.; Chang, Y.H. Blautia argi sp. nov., a new anaerobic bacterium isolated from dog
faeces. Int. J. Syst. Evol. Micr. 2019, 69, 33–38. [CrossRef]

52. Park, S.K.; Kim, M.S.; Roh, S.W.; Bae, J.W. Blautia stercoris sp. nov., isolated from human faeces. Int. J. Syst.
Evol. Microbiol. 2012, 62, 776–779. [CrossRef]

53. Haack, S.K.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J. Accuracy, Reproducibility, and Interpretation
of Fatty-Acid Methyl-Ester Profiles of Model Bacterial Communities. Appl. Environ. Microb. 1994, 60,
2483–2493. [CrossRef] [PubMed]

54. Murinova, S.; Dercova, K. Response mechanisms of bacterial degraders to environmental contaminants on
the level of cell walls and cytoplasmic membrane. Int. J. Microbiol. 2014, 2014, 873081. [CrossRef] [PubMed]

55. Grogan, D.W.; Cronan, J.E. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol.
Biol. Rev. 1997, 61, 429–441. [CrossRef]

56. Heipieper, H.J.; Fischer, J. Bacterial Solvent Responses and Tolerance: Cis–Trans Isomerization. In Handbook
of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 4203–4211. [CrossRef]

57. Oh, H.Y.; Lee, J.O.; Kim, O.B. Increase of organic solvent tolerance of Escherichia coli by the deletion of two
regulator genes, fadR and marR. Appl. Microbiol. Biotechnol. 2012, 96, 1619–1627. [CrossRef]

58. Ramos, J.L.; Duque, E.; Gallegos, M.T.; Godoy, P.; Ramos-Gonzalez, M.I.; Rojas, A.; Teran, W.; Segura, A.
Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 2002, 56, 743–768. [CrossRef]

59. Dyrda, G.; Boniewska-Bernacka, E.; Man, D.; Barchiewicz, K.; Slota, R. The effect of organic solvents on
selected microorganisms and model liposome membrane. Mol. Biol. Rep. 2019, 46, 3225–3232. [CrossRef]

60. Gordeliy, V.I.; Kiselev, M.A.; Lesieur, P.; Pole, A.V.; Teixeira, J. Lipid membrane structure and interactions in
dimethyl sulfoxide/water mixtures. Biophys. J. 1998, 75, 2343–2351. [CrossRef]

61. Chang, C.Y.; Simon, E. The effect of dimethyl sulfoxide (DMSO) on cellular systems. Proc. Soc. Exp. Biol. Med.
1968, 128, 60–66. [CrossRef] [PubMed]

62. Eberlein, C.; Baumgarten, T.; Starke, S.; Heipieper, H.J. Immediate response mechanisms of Gram-negative
solvent-tolerant bacteria to cope with environmental stress: Cis-trans isomerization of unsaturated fatty
acids and outer membrane vesicle secretion. Appl. Microbiol. Biotechnol. 2018, 102, 2583–2593. [CrossRef]
[PubMed]

63. Zhang, G.; Meredith, T.C.; Kahne, D. On the essentiality of lipopolysaccharide to Gram-negative bacteria.
Curr. Opin. Microbiol. 2013, 16, 779–785. [CrossRef] [PubMed]

64. Lazarevic, V.; Karamata, D. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC
transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 1995, 16, 345–355. [CrossRef]
[PubMed]

65. Schirner, K.; Marles-Wright, J.; Lewis, R.J.; Errington, J. Distinct and essential morphogenic functions for
wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J. 2009, 28, 830–842. [CrossRef] [PubMed]

66. Neuhaus, F.C.; Baddiley, J. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic
acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 686–723. [CrossRef] [PubMed]

67. Vergara-Irigaray, M.; Maira-Litran, T.; Merino, N.; Pier, G.B.; Penades, J.R.; Lasa, I. Wall teichoic acids
are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface.
Microbiology 2008, 154, 865–877. [CrossRef] [PubMed]

68. Paulsen, I.T.; Beness, A.M.; Saier, M.H., Jr. Computer-based analyses of the protein constituents of transport
systems catalysing export of complex carbohydrates in bacteria. Microbiology 1997, 143 Pt 8, 2685–2699.
[CrossRef]

69. Klein, G.; Raina, S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS
Defects. Int. J. Mol. Sci. 2019, 20, 356. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1099/ijsem.0.002981
http://dx.doi.org/10.1099/ijs.0.031625-0
http://dx.doi.org/10.1128/AEM.60.7.2483-2493.1994
http://www.ncbi.nlm.nih.gov/pubmed/16349327
http://dx.doi.org/10.1155/2014/873081
http://www.ncbi.nlm.nih.gov/pubmed/25057269
http://dx.doi.org/10.1128/.61.4.429-441.1997
http://dx.doi.org/10.1007/978-3-540-77587-4_328
http://dx.doi.org/10.1007/s00253-012-4463-8
http://dx.doi.org/10.1146/annurev.micro.56.012302.161038
http://dx.doi.org/10.1007/s11033-019-04782-y
http://dx.doi.org/10.1016/S0006-3495(98)77678-7
http://dx.doi.org/10.3181/00379727-128-32943
http://www.ncbi.nlm.nih.gov/pubmed/4297822
http://dx.doi.org/10.1007/s00253-018-8832-9
http://www.ncbi.nlm.nih.gov/pubmed/29450619
http://dx.doi.org/10.1016/j.mib.2013.09.007
http://www.ncbi.nlm.nih.gov/pubmed/24148302
http://dx.doi.org/10.1111/j.1365-2958.1995.tb02306.x
http://www.ncbi.nlm.nih.gov/pubmed/7565096
http://dx.doi.org/10.1038/emboj.2009.25
http://www.ncbi.nlm.nih.gov/pubmed/19229300
http://dx.doi.org/10.1128/MMBR.67.4.686-723.2003
http://www.ncbi.nlm.nih.gov/pubmed/14665680
http://dx.doi.org/10.1099/mic.0.2007/013292-0
http://www.ncbi.nlm.nih.gov/pubmed/18310032
http://dx.doi.org/10.1099/00221287-143-8-2685
http://dx.doi.org/10.3390/ijms20020356
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Simplified Human Intestinal Microbiota—SIHUMIx 
	Experimental Set-Up 
	Microbial Growth 
	Metaproteomics 
	Protein Extraction 
	Nano LC MS/MS Measurement 
	Data Analysis 

	Short-Chain Fatty Acid Analysis 
	Metabolite Extraction 
	Measurement and Data Analysis 

	Lipid Analysis 
	Lipid Extraction and Derivatization to Fatty Acid Methyl Esters (FAME) 
	Analysis of Fatty Acid Composition by GC-FID 
	Data Analysis 


	Results 
	BPS Does Not Affect Total Biomass 
	BPS Does Not Affect SCFA Concentrations 
	BPS Slightly Increases Membrane Saturation Level 
	Metaproteomics Revealed Temporal Effects on the Community, Structure and Functionality 

	Discussion 
	Overall Biomass and Activity of SIHUMIx Comparable to DMSO Control 
	BPS Exposure Slightly Increased Membrane Saturation 
	SIHUMIx Showed Treatment-Dependent Temporal Responses 

	Conclusions 
	References

