
remote sensing  

Article

Combining Multiband Remote Sensing and
Hierarchical Distance Sampling to Establish Drivers
of Bird Abundance

Ronny Richter 1,2,3,*,†, Arend Heim 1,†, Wieland Heim 4 , Johannes Kamp 4,5

and Michael Vohland 1,2

1 Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a,
04103 Leipzig, Germany; arend.heim@posteo.de (A.H.); michael.vohland@uni-leipzig.de (M.V.)

2 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e,
04103 Leipzig, Germany

3 Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Johannisallee 21,
04103 Leipzig, Germany

4 Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
wieland.heim@uni-muenster.de (W.H.); johannes.kamp@uni-muenster.de (J.K.)

5 Dachverband Deutscher Avifaunisten (DDA), An den Speichern 6, 48157 Münster, Germany
* Correspondence: ronny.richter@idiv.de
† Joined first authorship.

Received: 16 November 2019; Accepted: 18 December 2019; Published: 20 December 2019 ����������
�������

Abstract: Information on habitat preferences is critical for the successful conservation of endangered
species. For many species, especially those living in remote areas, we currently lack this information.
Time and financial resources to analyze habitat use are limited. We aimed to develop a method to
describe habitat preferences based on a combination of bird surveys with remotely sensed fine-scale
land cover maps. We created a blended multiband remote sensing product from SPOT 6 and Landsat
8 data with a high spatial resolution. We surveyed populations of three bird species (Yellow-breasted
Bunting Emberiza aureola, Ochre-rumped Bunting Emberiza yessoensis, and Black-faced Bunting Emberiza
spodocephala) at a study site in the Russian Far East using hierarchical distance sampling, a survey
method that allows to correct for varying detection probability. Combining the bird survey data and
land cover variables from the remote sensing product allowed us to model population density as a
function of environmental variables. We found that even small-scale land cover characteristics were
predictable using remote sensing data with sufficient accuracy. The overall classification accuracy
with pansharpened SPOT 6 data alone amounted to 71.3%. Higher accuracies were reached via the
additional integration of SWIR bands (overall accuracy = 73.21%), especially for complex small-scale
land cover types such as shrubby areas. This helped to reach a high accuracy in the habitat models.
Abundances of the three studied bird species were closely linked to the proportion of wetland, willow
shrubs, and habitat heterogeneity. Habitat requirements and population sizes of species of interest
are valuable information for stakeholders and decision-makers to maximize the potential success of
habitat management measures.

Keywords: habitat preference; habitat mapping; SPOT 6; Landsat 8; downscaling; breeding bird;
Emberiza; Russia

1. Introduction

Satellite remote sensing plays an increasingly important role in ecology, e.g., for estimating
and monitoring biodiversity [1,2], the quantification of ecosystem services [3], and for evaluating
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the effectiveness of conservation interventions [1,3]. Yet, despite the rapid global decline in species
richness and abundance over the past decades [4,5], a major challenge in conservation ecology is our
limited knowledge on the population sizes and habitat preferences of animal species in understudied
regions [6–8]. Here, the use of remote sensing data to predict species distributions and abundances is
vital to improve large-scale biodiversity monitoring and species conservation [2,3,9].

Optical remote sensing is often suggested as a powerful tool to assist with the mapping of
protected habitats and vegetation. Moreover, spaceborne remote sensing offers the opportunity to map
larger areas in a systematic, repeatable, and spatially exhaustive manner [10,11]. Apart from the spatial
extent of the data, its grain or spatial resolution is another relevant issue of spatial scale. Ideally, the
pixel resolution of remotely sensed and considered environmental data (e.g., information on habitat
features) should match to model their relationships [12]. For example, the classical multispectral
configuration of Landsat-4 to Landsat-8 provides a pixel size of 30 × 30 m and an image extent of
185 × 185 km. This allows linking Landsat data to environmental data collected at a similar spatial
extent and resolution. For more detailed local analyses, a higher spatial resolution of remotely sensed
data is necessary [13]. Rhodes et al. [14] compared the value of field surveys and remote sensing for
biodiversity assessment while using different datasets for the modelling of bird species abundances
at the 1 km level. They found the resolution of the analyzed remote sensing data (>0.5 ha) to be a
bottleneck for reliable models. Best results were obtained with broad land cover categories combined
with information about landscape features (as hedges or single trees), both recorded in a high spatial
resolution in field surveys.

In addition to spatial extent and spatial resolution, the information that can be generated from
remotely sensed data is also linked to the spectral resolution and range (i.e., wavelength ranges
utilized) [1]. A configuration comprising spectral bands from the visible to the near-infrared is typical
for satellite sensors with a high spatial resolution as, for example, GeoEye, Ikonos, KompSat, Pleiades,
QuickBird, RapidEye, or SPOT-6/7, while spectral bands in the shortwave infrared (SWIR) are usually
missing. At this point, Worldview-3 (launched in 2014) is an exception with 16 multispectral bands
including eight SWIR bands with a nominal pixel ground resolution of 3.7 m. The integration of SWIR
bands with an adequate resolution, however, has been shown to be essential for classification purposes
and the spectral discrimination of vegetation [15,16].

For birds, remote sensing data have been widely used to map their habitats, and to predict
distribution and abundance (e.g., [17–22]). Remotely sensed spectral data were either used directly for
modelling approaches [17] or, more commonly, indirectly by an integration of remote sensing-derived
products such as land cover data [22], vegetation indices [23], or image derived textural metrics [24].
Existing studies were largely based on coarse to intermediate resolution MODIS [21,22,25] or Landsat
products [20,26,27]. The majority of studies using remote sensing derived products were based on
freely available spatial data, such as subregional habitat maps [28], regional cropland data layers [29],
and national or global land cover data sets [30,31]. This often caused temporal mismatches between
animal observations and the acquisition date of derived parameters of landscape composition or
suffered from spatial mismatches due to the commonly coarse resolution of the analyzed products [25].
Associated with the resolution of these data, the studied areas were usually large and the input data
rarely had a higher resolution than 30 m. Hence, small-scale landscape features, such as hedges, shrubs,
and small tree stands were often not mapped, which resulted in a loss of information on habitat–species
dependencies [14]. With few exceptions (harnessing SPOT-5 [32], and Worldview-2 data [33]), studies
linking fine-grained habitat to spatial patterns of bird species diversity or abundance have been relying
on the use of airborne observation data, such as aerial images [34,35] or LiDAR data [36,37]. A low
spatial resolution of the spaceborne remote sensing data is therefore a key bottleneck, and ecologically
relevant small-scale habitat features need to be considered more.

In this study, we focus on an area in the Russian Far East that hosts populations of several globally
threatened bird species [38]. To identify habitat preferences and predict population sizes remote
sensing data with a high spatial resolution are needed. Recent remote sensing methods offer techniques
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to combine fine-scale information for local approaches with the complete coverage of a larger area.
These techniques include the blending of spectrally different sensor data combined with a downscaling
procedure to enhance the spatial resolution of less-resolved bands [39]. Usually, reflectances acquired
in bands with a fine spatial resolution are used as predictor variables to sharpen less-resolved data. All
data may be acquired simultaneously with one sensor, as it is the usual case with pansharpening that
aims at fusing a multispectral and a panchromatic image with the spectral resolution of the first and
the spatial resolution of the second [40]. Alternatively, data may originate from different sensors with
temporally close data acquisitions.

We aimed:

1. to generate a multiband remote sensing product with a sufficient spatial resolution to detect
small-scale landscape features; for this issue, we used data blending techniques to combine
pansharpened SPOT 6 (VIS-NIR bands, 1.5 m pixel size) and Landsat-8 data, the latter providing
SWIR bands with an original resolution of 30 m which were downscaled to a spatial resolution of
6 m.

2. to analyze the benefit of the multiband (VIS-NIR-SWIR) product towards VIS-NIR data alone for
reachable classification accuracies.

3. to combine survey data of three selected breeding bird species—the “critically endangered”
Yellow-breasted Bunting (Emberiza aureola), the “near threatened” Ochre-rumped Bunting
(Emberiza yessoensis), and the Black-faced Bunting (Emberiza spodocephala)—with habitat
information derived from the newly generated remote sensing product to model habitat
preferences and population sizes.

2. Materials and Methods

2.1. Study Area

We collected field data in the Muraviovka Park for Sustainable Land Use, which was the first
private nature reserve established in Russia. The park is located in the very south of the Russian
Far East [38], in the Zeya-Bureya lowland next to the Amur River. The Park mainly consists of
natural floodplain habitats (Figure 1). The vegetation of the Park is composed of extensive wet
meadows and reeds, small forest patches, and steppe grasslands. Of the latter, the largest part has
been transformed into cropland. Characteristic vegetation comprises low-growing willow species
(<2 m). The Muraviovka Park harbors significant populations of multiple globally threatened species
such as the Red-crowned Crane (Grus japonicus), White-naped Crane (Antigone vipio), Swinhoe’s Rail
(Coturnicops exquisitus), and Oriental Stork (Ciconia boyciana) [38,41].
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Figure 1. Location of the study area “Muraviovka Park” within the borders of Russia (right); the
floodplain of the Amur river (black) is visualized by means of the digital elevation model (SRTM,
USGS) (left).
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The Park covers an area of about 6450 ha. Due to the exclusion of cloud-covered parts in the
satellite data at the southern border of the park site, only 6431 ha were included in our analysis.

2.2. Satellite Imagery and Processing

Commercially available SPOT 6 data (acquired on 3 September 2015) and freely available Landsat
8 (L8) Operational Land Imager (OLI) data (acquired on 4 September 2015) were used in a sharpening
and blending approach to generate a multi-band product with a high spatial resolution. SPOT 6 data
comprises one panchromatic band (1.5 m nominal pixel size) and four multispectral bands (blue/B,
green/G, red/R, near-infrared/NIR; 6 m pixel size), all provided as top-of-atmosphere (TOA) reflectances
in a “standard ortho” processing level. Landsat 8 data, unlike SPOT 6, includes two additional bands
in the shortwave-infrared (SWIR-1 covering the wavelength region from 1.57 to 1.65 µm, SWIR-2
from 2.11 to 2.29 µm). Landsat 8 data set was provided as the multispectral Level-2 product with
atmospherically corrected surface reflectances (SR) and a pixel size of 30 m.

To combine the advantages of both data sources, i.e., a high spatial resolution and a high spectral
range including the SWIR region, we implemented a processing chain as follows: first, we masked
all pixels containing clouds and cloud shades. Subsequently, the multispectral SPOT 6 bands were
sharpened with the SPOT 1.5 m panchromatic band. The band-dependent spatial-detail fusion (BDSD)
algorithm was selected as pansharpening approach according to the findings of Vivone et al. [40] and
using their implementation provided in a MATLAB (MathWorks, Inc., Natick, MA, USA) Pansharpening
toolbox (currently available from the Remote Sensing Code Library, see Acknowledgements). This
step provided TOA reflectances in the B, G, R, and NIR SPOT bands, spatially sharpened to a pixel size
of 1.5 m. These data were finally converted to surface reflectance with the respective L8 product based
on the empirical line method [42].

A data blending approach using both SPOT 6 and Landsat 8 data was used to integrate SWIR
bands in a high spatial resolution. In order to model the relationship between the high resolution SPOT
(VIS-NIR, 6 m) bands and the courser resolution Landsat 8 SWIR bands (30 m), we first aggregated the
SPOT four-band SR product to a pixel size of 30 m. At this level, the relationship between these data
(with four predictive spectral variables) and each of the SWIR bands (as target variables) was modelled
using a multiple linear regression. The obtained regression coefficients were then applied to 6 m SPOT
6 surface reflectance data to calculate artificial SWIR-1 and SWIR-2 bands with a pixel size of 6 m. As
the multiple regression explained only 64% (SWIR-1) and 75% (SWIR-2) of the original variance at the
30 m level, we performed a residual correction (see e.g., [43]). Therefore, modelled SWIR bands were
again resampled to 30 m and residuals between these data and the original Landsat 8 SWIR bands
were calculated, resampled to 6 m spatial resolution by cubic convolution, and then added to the
modelled SWIR bands at the 6 m level. A layer stack combining the pan-sharpened SPOT 6 data and
the modelled (and residual-corrected) SWIR bands obtained the final product with a pixel size of 1.5 m.
The downscaled SWIR bands were resampled with the nearest neighbor method to 1.5 m pixel size.

2.3. Field Survey of Breeding Birds and Collection of Land Cover Information

Field surveys were conducted from 1 May to 2 June 2017. Birds were counted at 74 points
(Figure 2). Due to the inaccessibility of some areas, the sample locations were placed opportunistically
along existing paths, aiming to cover all existing habitat types with a sufficient number of replicates.
The exact location of the points was recorded using an Oregon 400t GPS (Garmin Ltd., Olathe, KS,
USA). At each point, from 30 min before sunrise to 2 h after sunrise, we counted all territory indicating
individuals of Yellow-breasted Bunting, Ochre-rumped Buntings, and Black-faced Bunting for 5 min.
We recorded the perpendicular distance to the observer, in order to be able to correct for detectability
varying with observer, species, vegetation, and other factors [44]. Counts were only conducted in
favorable weather (no rain, no strong wind) between 04:00 and 07:00 in the morning. The breeding bird
survey was repeated three times during the course of the breeding season (early May, late May/early
June, late June), with changing observers (Replicate 1: author WH, Replicates 2 + 3: author AH).
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Distances were recorded in fixed bands of 0–10 m, 10–25 m, 25–50 m, 50–100 m, 100–250 m, and
250–500 m. A laser range finder (Bushnell Scout 1000, Overland Park, KS, USA) and topographic
maps were used to calibrate the distance estimation. Inter-point distance was 500 m to avoid the
multiple recording of the same individuals. Thus, there was an overlap of the 250–500 m distance
bands of adjacent points. Habitat parameters that were expected to explain variation in bird abundance
were recorded at each point in May and June 2017. These were moisture level, water coverage, litter
cover, litter depth, and the height of shrubs and trees; assigned to predefined categories using expert
knowledge. The percentage of coverage for the most common plants, aggregated to the genera level,
was also recorded. Cropland was not surveyed. Reference locations of rare and thus underrepresented
land cover types for the land cover mapping were additionally defined manually by visual inspection
of the final high-resolution satellite product. This resulted in a total number of 557 reference locations
that were available for model training and validation of the habitat mapping with remote sensing data.
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Figure 2. An overview of the study area, with bird survey points and reference locations used for
training and validation of the land cover map produced from remote sensing data.

2.4. Classification Approach for Habitat Mapping

There was a trade-off between the detail of target classes, and classification accuracy. Based on
these considerations, seven land habitat classes were selected: forest, open soil, willow shrubs, hazel
and clover, steppe, wetland, and water (see Table 1).
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Table 1. Description of habitat classes and habitat class-wise representation of pixels and polygons
used for model training and validation.

Training Data Validation Data

Land Cover
Class Description of Land Cover Class Polygons Pixels Polygons Pixels

Forest

Single trees, forest patches, and stands with
closed canopy. Mainly deciduous tree species,
such as Betula dahurica, Quercus mongolica, and
Populus tremula with a height of >3 m

22 323 15 138

Open soil Unvegetated or very sparsely vegetated areas 24 349 16 150

Hazel and
clover

Shrubs, dominated either by Asian Hazel
Corylus heterophylla, or Shrubby Bushclover
Lespedeza bicolor. Often very dense, little
groundcover of herbaceous plants, low
moisture level, height: 1–3 m

20 298 14 128

Willow shrubs

Shrubs in moist areas, mostly willow species,
like Salix brachypoda, Salix miyabeana, and Salix
pseudopentandra. Sparse to dense stands with
groundcover of herbs and grasses, shrub
height circa 1.5–2.5 m

36 517 24 221

Steppe
Dry grasslands, dominated by Artemisia spp.
Often on sandbanks and abandoned fields.
Sparse to densely vegetated

45 651 30 279

Water Streams, ponds, and lakes 32 472 22 202

Wetland

Wet meadows, dominated by Carex and
Calamagrostis grasses. In very moist areas and
around lakes: sparse to dense Phragmites
australis stands and mire vegetation. In areas
with lower moisture: often dwarf shrubs, like
Salix myrtilloides

154 2242 103 961

Total 333 4852 224 2079

For the extraction of spectral characteristics of the defined habitat classes, we overlaid the recorded
coordinates of points where land cover ground truthing data was collected with the high-resolution
satellite product. Using R [45] package raster [46], we extracted all pixel values within a buffer with a
radius of 1.5 m around the point coordinates. The preparation of the calibration and test sets (60%
to 40% split) was done by means of the cLHS (conditioned Latin hypercube sampling) algorithm,
implemented in the R package clhs [47]. In contrast to random sampling, cLHS allows for a full
statistical coverage of the data points in the n-dimensional spectral space [48], which has been shown
to result in increased and more robust classification accuracies [16]. To guarantee the independence of
the training and validation data sets we ensured that pixels originating from polygons used in the
training data were not allowed in the test data.

For the spectral classification of the habitat types we utilized the nonparametric Random
Forest classifier [49], which has been found highly valuable for vegetation discrimination based
on multispectral image data [50–52]. The classification was conducted using the R package
randomForest [53]. Random Forest is characterized by its ability to handle large numbers of correlated
and even noisy predictor variables [49,50]. It is an ensemble classifier, constructing a large number of
uncorrelated binary decision trees, stepwise separating the samples into more and more homogenous
groups [54]. Therefore, each tree is generated using a bootstrapping method that randomly selects
samples with replacement [49,54]. The remaining samples, approximately 37% of the total sample size,
are referred to as OOB (out-of-bag) data [55]. Both, the number of randomly chosen predictors tested
for their suitability to split a node and the number of created trees are user-defined. To estimate the
accuracy (OOB-error), each tree classifies its OOB data. The membership of each sample to a certain
class is then determined by the majority vote of all trees [56], which makes the classifier less prone
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to overfitting. The number of trees was set to 5000 to ensure the OOB error term converges. For the
number of predictors, we kept the default value (square root of total number of predictors (n = 2)).
To evaluate classifier stability, Random Forest models were trained and tested on 25 different calibration
sets and subsequently validated with 25 different test sets. Each of these sets was defined with cLHS, as
it does not provide one unique solution in the split of calibration and validation data [50]. Classification
accuracies were evaluated based on contingency tables, derived from classified datasets and reference
data. Here, we present the most common measures of accuracy: the overall accuracy (OAA, percentage
of correctly classified samples); the user’s accuracy (UA, class-wise percentage of correctly classified
samples); the producer’s accuracy (PA, the percentage of samples labelled correctly within a certain
class) and the kappa coefficient (Kappa, overall accuracy corrected from chance correspondences).

2.5. Modelling Drivers of Bird Abundance
Monitoring the abundance and distribution of mobile organisms, such as birds, remains challenging

due to imperfect detection in the field [57]. In order to obtain less biased abundance estimates we
used distance sampling [57] that corrects for a varying detection probability (δ, detection function). For
estimating the population density, we used the extended hierarchical distance sampling model as proposed
by Chandler et al. [58], made available in the R package unmarked [59] as function gdistsamp. It allows
including environmental covariates for the modelling of abundances (λ), and relaxes the assumption
of geographic closure, i.e., no immigration or emigration during the survey period, by introducing a
parameter for temporal population dynamics arising from organism mobility (ϕ, availability).

Habitat proportions derived from the high-resolution habitat map and habitat heterogeneity,
represented by Shannon’s diversity index (H) [60], with pi being the relative proportion of the land
cover class i and S being the total number of land cover types per grid cell (see Equation (1)), were
fitted as abundance (λ)-covariates to calculate habitat-specific species abundances.

H = −
S∑

i=1

pi ln(pi). (1)

The daytime of field data acquisition and the survey replicate (Replicates 1–3) were fitted as
availability (ϕ)-covariates to correct for temporal and inner-seasonal variation of species availability.
Additionally, observer was fitted as a detection (δ)-covariate to allow for varying detection skills among
observers. A half-normal detection function was used in all models. We used the Akaike information
criterion (AIC) to compare model fit and complexity of various candidate models [61]. First, two
null models (intercept only, no covariates), were compared using either a Poisson distribution for the
abundance component (λ) or a negative binomial distribution (including the dispersion parameter α).
Second, single component models were fitted, considering all land cover types and habitat diversity
as covariate for the abundance component (λ). We furthermore included quadratic effects for each
covariate. Additionally, single effect models for the detection component (δ) and the availability
(ϕ) component were fitted, resulting in 22 single effect models in total for each species. Due to the
low availability of Yellow-breasted Bunting in the survey period of the first observer, the detection
(δ)-covariate was excluded from models for this species. Finally, important covariates for each model
component, as indicated by AIC, were selected to fit models with combined effects. To this end, only
positive effects on abundance (λ) were considered to provide parsimonious and meaningful models of
habitat preferences of the target species.

Parametric bootstrapping was used to evaluate the goodness-of-fit for the best model for each
bird species [28,62]. We used the final model to simulate 1000 datasets and refit the model to this data
to compute fit statistics, respectively. In a subsequent step, we compared the values of fit statistics
for the observed data to the modelled distribution of the simulated data using the p-value of the
Freeman–Tukey test which requires no pooling of cells with small values in contrast to the X2 test [28,62].
A good model fit is indicated by a low deviation of the observed distribution from the modelled
distribution, with a p-value excluding significant differences (0.5 in the best case) [63]. The models
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which fitted the data best were finally selected to predict the abundance of the target species based
on the classified habitat proportion per 500 m grid cell (Figure 2), accounting for differences in area
between the point transects and grid cells by linear interpolation. Total population sizes were estimated
by summing up the predicted abundances over all grid cells.

3. Results

3.1. Comparison of Accuracies Achieved in the Habitat Classification
We used two different datasets for the Random Forest classification approach: pan-sharpened

SPOT-6 VIS-NIR data alone and combined with sharpened SWIR bands from Landsat-8. The first
dataset provided an OAA of 71.3% (mean value obtained in all classification runs) for the seven habitat
classes defined according to Table 1. A slightly better OAA (73.2%) was achieved in the classification
of the stacked VIS-NIR-SWIR data (see Figure 3). The benefit of including SWIR data increased with
an increasing number of considered habitat types (see Figure S1). Nevertheless, accuracies generally
dropped by as the number of labelled classes was decreased and amounted to 62.4% for 24 classes
with VIS-NIR-SWIR data (54.9% with VIS-NIR alone). A class-wise analysis of achieved accuracies
indicated marked improvements with SWIR bands especially for classes with small-scale features
(hazel and clover, willow shrubs; Figure 3). Results were different for “open soil” and ”steppe”, for
which VIS-NIR data slightly outperformed full range VIS-NIR-SWIR data. The best VIS-NIR-SWIR
model out of 25 repetitions achieved 76.7% OAA (Kappa = 67.8). This model was thus selected for
the final habitat mapping (Figure 4). On the level of single habitat types, highest user and producer
accuracies were achieved for the classes ‘Open Soil’, ‘Water’, and ‘Wetland’. Lowest class specific
accuracies were achieved for ‘Shrubs: willow’. The class ‘Wetland’ as the dominant habitat type in
our study site caused most classification errors, leading to reduced user and/or producer accuracies
especially for the classes ‘Forest’, ‘Shrub: willow’ and ‘Steppe’ (see Table 2). The spatial distribution of
classified land cover classes is shown in the resulting habitat map (Figure 4).Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 20 
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Figure 3. Comparison of (a) overall accuracies for the VIS-NIR and VIS-NIR-SWIR data sets as obtained
for test data unseen in the training (25 repetitions) and (b) class-wise difference for User (UA) and
Producer Accuracy (PA) between VIS-NIR-SWIR and VIS-NIR (positive values indicate superior results
for the VIS-NIR-SWIR datasets).
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Figure 4. Habitat map resulting from high-resolution VIS-NIR-SWIR remote sensing product.
Proportions of habitat class per 25 ha grid cell were used as covariates in the distance-sampling
models for each species. Exemplary representation of favored habitat types as indicated by the bird
image background color are shown for Black-faced Bunting (a), Yellow-breasted Bunting (b), and
Ochre-rumped Bunting (c).

Table 2. Contingency table and accuracies (UA = user accuracy, PA = producer accuracy, OAA = overall
accuracy, all accuracies given in %) achieved for the best classification model, which was afterwards
used for the habitat mapping of the entire study area.

Forest Open
Soil

Hazel and
Clover

Willow
Shrubs Steppe Water Wetland UA

Forest 78 0 5 4 0 0 7 83.0
Open soil 0 142 0 0 0 8 3 92.8
Hazel and

clover 8 0 96 7 5 0 11 75.6

Willow shrubs 8 0 14 111 10 0 77 50.5
Steppe 0 6 5 3 203 15 66 68.1
Water 0 2 0 0 1 167 0 98.2

Wetland 44 0 8 96 60 12 797 78.4
PA 56.5 94.7 75.0 50.2 72.8 82.7 92.9

OAA 76.7
Kappa 67.8

3.2. Determinants of Bird Abundance

In total, 148 individuals of the Yellow-breasted Bunting, 144 individuals of the Ochre-rumped
Bunting, and 214 individuals of the Black-faced Bunting were detected during our bird survey. Details
on model selection results obtained from the bird species-specific hierarchical distance sampling
models can be found in the Supplementary Material (Table S1). As indicated by lower AIC values,
models fitted using a negative binomial distribution generally received more support than those
that were fitted using a Poisson distribution. The best supported model for the Yellow-breasted
Bunting (AIC = 623.2) suggested that abundance was significantly positively related to the share of
willow shrubs (β = 0.30, SE = 0.140, p = 0.034). The most supported model for the Ochre-rumped
Bunting (AIC = 671.6) suggested that abundance was positively related to percentage wetland (β = 0.36,
SE = 0.175, p = 0.041). The best supported model for Black-faced Bunting (AIC = 971.0) indicated
that abundance was positively related to habitat heterogeneity, represented by the Shannon index
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(β = 0.24, SE = 0.095, p = 0.012). Confidence limits for Yellow-breasted Bunting and Ochre-rumped
Bunting showed an increased uncertainty of the predicted abundance towards higher proportions
of the land cover type (Figure 5). Including seasonality (expressed as survey round) was found to
improve model performance for Yellow-breasted Bunting (Table 3). Accounting for time of day yielded
no improvement for the best supported models for the respective species.

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 20 

 

3.2. Determinants of Bird Abundance 

In total, 148 individuals of the Yellow-breasted Bunting, 144 individuals of the Ochre-rumped 
Bunting, and 214 individuals of the Black-faced Bunting were detected during our bird survey. 
Details on model selection results obtained from the bird species-specific hierarchical distance 
sampling models can be found in the Supplementary Material (Table S1). As indicated by lower AIC 
values, models fitted using a negative binomial distribution generally received more support than 
those that were fitted using a Poisson distribution. The best supported model for the Yellow-breasted 
Bunting (AIC = 623.2) suggested that abundance was significantly positively related to the share of 
willow shrubs (β = 0.30, SE = 0.140, p = 0.034). The most supported model for the Ochre-rumped 
Bunting (AIC = 671.6) suggested that abundance was positively related to percentage wetland (β = 
0.36, SE = 0.175, p = 0.041). The best supported model for Black-faced Bunting (AIC = 971.0) indicated 
that abundance was positively related to habitat heterogeneity, represented by the Shannon index (β 
= 0.24, SE = 0.095, p = 0.012). Confidence limits for Yellow-breasted Bunting and Ochre-rumped 
Bunting showed an increased uncertainty of the predicted abundance towards higher proportions of 
the land cover type (Figure 5). Including seasonality (expressed as survey round) was found to 
improve model performance for Yellow-breasted Bunting (Table 3). Accounting for time of day 
yielded no improvement for the best supported models for the respective species. 

Table 3. Parameter estimations from the Distance-Sampling model with the lowest Akaike 
information criterion (AIC), for all species; standard errors are given in brackets; significance levels 
for p < 0.05, p < 0.01, and p < 0.001 are denoted with asterisks. 

Submodel and Coefficient Yellow-Breasted Bunting Ochre-Rumped Bunting Black-Faced Bunting 
Abundance, ln(λ)    

 Intercept 1.95 (0.197) *** 2.48 (0.203) *** 2.88 (0.134) *** 
 Land cover  0.30 (0.140) * 0.36 (0.175) * 0.24 (0.095) * 

Availability, ln(φ)    
 Intercept  5.84 (27.60)  5.3 (11.00) 
 Replicate 1 −1.7 (0.360) ***   
 Replicate 2 1.01 (0.618)   
 Replicate 3 7.27 (31.47)   

Detection, ln (σ)    
 Intercept 4.89 (0.049) *** 4.34 (0.057) *** 4.35 (0.047) *** 
 Observer 2  0.14 (0.069) *  0.14 (0.054) * 

Dispersion, α    
 Intercept −0.08 (0.326) −0.17 (0.297) 1.87 (0.629) ** 

 

Figure 5. Response curves (including 95% confidence limits) from the models with the lowest AIC 
showing the predicted density per 25 ha grid cell as a function of selected land cover covariates for 
(a) Yellow-breasted Bunting, (b) Ochre-rumped Bunting, and (c) Black-faced Bunting. The inner tick 

Commented [Lca26]: Please remove bottom frame line 

Commented [Lca27]: Please remove bottom frame line 

Commented [Lca28]: Please remove bottom frame line 

Figure 5. Response curves (including 95% confidence limits) from the models with the lowest AIC
showing the predicted density per 25 ha grid cell as a function of selected land cover covariates for
(a) Yellow-breasted Bunting, (b) Ochre-rumped Bunting, and (c) Black-faced Bunting. The inner tick
marks on the x-axis indicate observed values at the sample points. Dashed lines indicate maxima of
observed values at the sample points.

Table 3. Parameter estimations from the Distance-Sampling model with the lowest Akaike information
criterion (AIC), for all species; standard errors are given in brackets; significance levels for p < 0.05,
p < 0.01, and p < 0.001 are denoted with asterisks.

Submodel and Coefficient Yellow-Breasted Bunting Ochre-Rumped Bunting Black-Faced Bunting

Abundance, ln(λ)
Intercept 1.95 (0.197) *** 2.48 (0.203) *** 2.88 (0.134) ***

Land cover 0.30 (0.140) * 0.36 (0.175) * 0.24 (0.095) *

Availability, ln(ϕ)

Intercept 5.84 (27.60) 5.3 (11.00)
Replicate 1 −1.7 (0.360) ***
Replicate 2 1.01 (0.618)
Replicate 3 7.27 (31.47)

Detection, ln (σ)

Intercept 4.89 (0.049) *** 4.34 (0.057) *** 4.35 (0.047) ***
Observer 2 0.14 (0.069) * 0.14 (0.054) *

Dispersion, α

Intercept −0.08 (0.326) −0.17 (0.297) 1.87 (0.629) **

The goodness-of-fit statistics for model evaluation obtained by parametric bootstrapping suggested
that all species-specific models fitted the data well with all p-values obtained from Freeman–Tukey
test being close to 0.5 (Yellow-breasted Bunting = 0.64, Ochre-rumped Bunting = 0.53, Black-faced
Bunting = 0.55).

Based on the retrieved results, different habitat situations can be paralleled with species abundances.
Near the Amur river, in the north-western part of the study area, there was a small-scale mixture of
different habitat types and high portions of willow shrub habitats, considered to be highly appropriate
for the species Black-faced Bunting (a) and Yellow-breasted Bunting (b). The Ochre-rumped Bunting
(c) preferred more open areas dominated by wetland e.g., in the north-eastern part of study area.
The predicted species-specific abundances per grid cell (Figure 6) coincided well with the spatial
patterns of the habitat types found to be important in the modelling procedure. For the entire study
area, the total population size estimates (95% confidence limits in brackets) based on the best models
and the complete habitat map for each species were 706 (415–1249) territories for Yellow-breasted
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Bunting, 1445 (756–2855) territories for Ochre-rumped Bunting, and 1282 (928–1787) territories for
Black-faced Bunting.
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Figure 6. Predicted abundances per grid cell (territories/25 ha) from the models receiving the most
support. The Yellow-breasted Bunting model included percentage of willow shrubs as abundance
effect (a), the Ochre-rumped Bunting model included percentage of wetland as abundance effect (b),
and the Black-faced Bunting model included the Shannon’s diversity index as abundance effect (c).

4. Discussion

In this study we aimed at evaluating the ability of a high-resolution remote sensing product with
a full range spectral band suite (VIS-NIR-SWIR, based on SPOT 6 and Landsat 8 data) to map fine scale
habitat characteristics at a large spatial extent, in comparison to the sole use of SPOT 6 data. In addition,
we intended to identify suitable habitats for endangered bird species in a floodplain ecosystem and to
predict their population sizes using hierarchical distance sampling models informed by the remote
sensing derived habitat structure.

4.1. Habitat Mapping

Classification accuracies of small-scale habitat structures such as shrubs, small forest fragments,
and small water streams improved when using full range spectral data instead of VIS-NIR data
alone, given a sufficient spatial resolution. These findings are in line with those of Naegeli de
Torres et al. [43], where RapidEye images were combined with Landsat 5 SWIR bands (downscaled
to 5 m spatial resolution) to map vegetation elements and erosion features of pastures at a very
high spatial resolution. In our study, the benefit of adding SWIR bands to the remote sensing data
to discriminate different vegetation types increased with the number of classes considered in the
classification process. Further improvements of classification results may be expected when time
series of remote sensing data are used instead of single date imagery, e.g., by capturing phenological
variation [16,64]. The habitat type wetland, the most dominant habitat type at the Muraviovka Park,
caused most misclassification, especially with forest, willow shrubs, and steppe. Grassland plant
species also occur in forest understories and steppe. Hence, a separation of these classes based only on
spectral image characteristics remains challenging. Furthermore, it could be beneficial to additionally
include remotely sensed stand structure information, as e.g., obtained from LiDAR data [23,65].
The recently launched (Dec. 2018) GEDI mission (NASA, USA), for example, provides data with
a relatively high spatial resolution of 25 m, but does not provide the level of detail as required in
this study.
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4.2. Species Specific Habitat Preferences

The applied modeling framework was based on the distance-sampling model presented by
Chandler et al. [58], but additionally included bird count data from repeated surveys as ϕ-covariate
and corrected for the detection skills of the observer (δ-covariate). The resulting hierarchical model thus
enabled us to analyze spatially and temporally replicated counts of bird observations and provided
spatially explicit estimates of density as a function of environmental factors. As such, we were able
to evaluate how changes in such covariates could affect the population densities and habitat specific
abundances. Since the applied hierarchical distance-sampling models were solely based on remotely
sensed habitat characteristics, the excellent fit statistics for all three bird species models indicated
remote sensing to be a valuable tool to derive habitat preferences for bird species at the local scale.
Although there have been only few studies on the habitat preferences of the birds under study (as
e.g., [66]), previous studies on other birds living in grassland dominated habitats have shown that
these birds prefer territorial sites with a particular habitat structure [67]. The fact that the proportion of
willow shrubs and wetland as well as habitat heterogeneity, the latter indicated by the Shannon index,
showed the strongest relationship to species-specific abundances, suggest that small scale habitat
suitability is driven by local, fine-grained habitat conditions [68]. The difficulty of finding an effect of
habitat type on the abundance of Black-faced Bunting might be explained by its preference towards
heterogeneous habitats, which could mirror its flexibility with regard to the selection of nest sites [66].
Mikami and Kawata [67] found a preference of Ochre-rumped Buntings towards habitats with low
growing reeds and tall monocotyledons others than reed.

We are aware that the design of the breeding bird survey has some limitations, and might introduce
some bias in the estimation of species abundances. Bias might also arise e.g., from double counting
birds situated in the outer sampling corridors. The nonrandom sampling might also lead to an
overrepresentation of certain habitat types in the sample. Detection probability might vary by habitat
type. We assumed constant detectability across habitat type, since accounting for this is unreasonable
as the covariate affects abundance and detection at the same time [28]. However, as our study site is an
open landscape, we believe that the overall effect of habitat type on detection is low. The temporal
discrepancy between the acquisition of the remote sensing data and the bird count data, which was
caused by the unavailability of cloud free remote sensing data for the survey period, might also be a
potential source of error. As the survey of breeding birds and collection of land cover information used
for habitat mapping were undertaken simultaneously, we were able to ensure that no pronounced
changes in land cover were detectable in the study area between 2015 and 2017. The land cover type
“cropland” being more frequent subject to changes of land use and land cover was thus excluded from
our analysis.

4.3. Management Implications

The predicted total numbers of 706, 1445, and 1282 territories for Yellow-breasted Bunting,
Ochre-rumped Bunting, and Black-faced Bunting, respectively, at the Muraviovka Park provide a
reliable baseline for further population monitoring. This is especially important in the light of the
alarming population decline of the Yellow-breasted Bunting [69] and the resulting upgrade to the status
“critically endangered” according to the IUCN Red List [70] in 2017. For the Ochre-rumped Bunting, the
global population size was estimated as 6000–15,000 individuals [71]. Given the fact that we predicted
1445 territories (which equates to 2890 adult individuals), Muraviovka Park would harbor a large
share of the global population of this species. As the breeding population in the Amur region is not
included in the BirdLife range map for this species [71], it seems likely that the global population of the
Ochre-rumped Bunting is significantly larger than the BirdLife estimate. Our results demonstrate that
the floodplains of Muraviovka Park provide large areas of sufficient breeding ground, especially for
the Ochre-rumped Bunting and the Black-faced Bunting, among many others [38]. Overall, monitoring
protected areas and their surroundings is essential given their vulnerability to anthropogenic pressures,
including those associated to climate change, fires, and agriculture [72,73]. Our presented framework
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could furthermore be used to estimate population sizes for larger areas, to get a better understanding
of the current situation for endangered taxa such as the Yellow-breasted Bunting.

5. Conclusions

The value of remote sensing satellite data for habitat mapping increases with its spatial resolution
(for the detection of fine-scale habitat structures) and the covered spectral range. Full range satellite
data with a fine spatial resolution are still a bottleneck for mapping approaches, but data blending
can provide improved image products to fill this gap. SWIR data were found to contribute to a
successful spectral mapping of small-scaled vegetation attributes such as hazel and willow shrubs,
where the latter was found to be a strong determinant to predict densities of the critically endangered
Yellow-breasted Bunting. We showed that remote sensing can play a key role in establishing baselines
of the extent, condition, and also the change of habitats and associated species diversity. The direct link
between ecologically meaningful habitat characteristics and species abundances may be of great value
to reveal more general ecological strategies of certain taxa, for example to identify habitat generalists
and specialists. In this way, important information for stakeholders and decision-makers on the habitat
requirements of species of interest may be provided to maximize the potential success of habitat
management measures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/1/38/s1,
Figure S1: Achieved overall accuracies for the classification of different aggregation levels for land cover classes,
VIS-NIR (SPOT6) compared to the multi-band VIS-NIR-SWIR product. Figure S2: Scheme explaining the
aggregation of land cover types used for the mapping with remote sensing data. Table S1: AIC values as achieved
in model selection.
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