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Abstract: Drug repositioning can save considerable time and resources and significantly speed up
the drug development process. The increasing availability of drug action and disease-associated
transcriptome data makes it an attractive source for repositioning studies. Here, we have developed a
transcriptome-guided approach for drug/biologics repositioning based on multi-layer self-organizing
maps (ml-SOM). It allows for analyzing multiple transcriptome datasets by segmenting them into
layers of drug action- and disease-associated transcriptome data. A comparison of expression changes
in clusters of functionally related genes across the layers identifies “drug target” spots in disease layers
and evaluates the repositioning possibility of a drug. The repositioning potential for two approved
biologics drugs (infliximab and brodalumab) confirmed the drugs’ action for approved diseases
(ulcerative colitis and Crohn’s disease for infliximab and psoriasis for brodalumab). We showed
the potential efficacy of infliximab for the treatment of sarcoidosis, but not chronic obstructive
pulmonary disease (COPD). Brodalumab failed to affect dysregulated functional gene clusters in
Crohn’s disease (CD) and systemic juvenile idiopathic arthritis (SJIA), clearly indicating that it may
not be effective in the treatment of these diseases. In conclusion, ml-SOM offers a novel approach for
transcriptome-guided drug repositioning that could be particularly useful for biologics drugs.

Keywords: drug repositioning; transcriptome; self-organizing maps; ulcerative colitis; Crohn’s
disease; COPD; sarcoidosis; psoriasis; systemic juvenile idiopathic arthritis

1. Introduction

Drug repositioning (repurposing) is the identification of alternative target diseases for already
approved drugs, which can save tremendous resources and significantly speed up the drug development
process [1,2]. Currently, computational drug repositioning relies on several main strategies or their
blends (reviewed in [2]). The first strategy employs structural bioinformatics approaches (molecular
modeling, dynamics simulations, and docking) to identify compound–target pairs [3]. Though it has
demonstrated its efficacy in several studies, the main limitation of this approach is the knowledge of
the chemical structure of the drug and the 3D structure of its target. This, in turn, severely impedes
the repositioning potential of structural bioinformatics approaches. Particularly, for the category of
drugs known as biologics, such as vaccines, blood components, allergenics, somatic cells, gene therapy,
tissues, and recombinant therapeutic proteins and antibodies, their structural models are not available,
thus making structural bioinformatics-based repositioning studies not suitable [4,5].
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Transcriptome based approaches employ analysis of gene expression and identification of
molecular targets that show anti-correlated differential expression in disease and upon drug
administration [6]. These methods are not aimed at the identification of molecular targets through drug
binding sites, rather they focus on identification of diseases, which share molecular pathomechanisms
that are targeted by the given drug. Pathway and gene set enrichment-based repositioning approaches
can be considered as an extension of transcriptomic methods since the first step in those methods
is identification of differentially expressed genes (DEGs) that is followed by functional annotation
of biological processes and pathways [7,8]. The overlapping processes and pathways are used for
assessment of disease–disease, gene–disease, and drug–disease associations.

Transcriptome and gene set based repositioning pipelines are mainly performed by matching
a list of deregulated genes against genes in drug-perturbation profiles, as in the connectivity Map
project [9] and NFFfinder [10]. Other methods employ correlation [11], network [12], and graph-based
analyses [13] and others reviewed in [14,15]. The main limitation of these methods is that only
overlapping sets of genes or processes that describe the main drug target mechanism are scored for
assessment of repositioning “potential” for a drug, while the off-target and alternative processes and/or
pathways involved in disease pathogenesis or affected by the drug are mainly left aside. The latter
may overtake drug-actions or cause adverse effects that are important to consider. This necessitates
the development of methods that allow for a holistic view of full transcriptome landscapes and for
disentangling functional modules of dysregulated genes in diseases and upon drug action.

Here we propose a transcriptome based approach for drug repositioning, which is based on a
multi-layer self-organizing maps (ml-SOM) algorithm for clustering transcription profiles of genes
in healthy and disease conditions and upon drug action. ml-SOM is an extension of a previously
developed SOM based transcriptome analysis pipeline [16,17] that has been used for comprehensive
analysis of transcription landscapes in cancers and other chronic diseases and proven to be valuable
for the general understanding of disease pathomechanisms, identification of molecular subtypes,
biomarker selection, and functional information mining [18–21].

2. Materials and Methods

2.1. Prediction for Drug Repositioning Based on Expression Signatures

Our prediction method assumes that a certain disease (D1) induces alterations of gene regulatory
programs resulting in differential expression (DE) of a number of disease-associated functional gene
modules with respect to the healthy reference state. An effective drug and/or treatment (T1) then is
expected to reduce or even to completely compensate for this disease-related DE. We further assume
that if another disease (D2) shares the same or similar pathomechanisms with D1, then it eventually
will affect gene regulation in a similar way and, consequently, the expression of virtually the same set of
signature genes will alter in D2 compared with the respective reference state. Based on the assumption
of equal pathomechanisms, drugs/treatment targeting the D1 (T1) are also expected to target D2, i.e.,
we assume T2 = T1. In other words, T1 then constitutes a candidate for drug repositioning for treating
D2. Hence, drug repositioning based on expression signatures requires (i) identification of a set of
signature genes specifically affected by D1; (ii) effect-compensation of these signature genes by T1 and,
(iii) identification of the same pathomechanisms in D2 as in D1 by DE analysis based on signature
genes overlapping between D1 and D2.

2.2. Experiment Design and Datasets

Our method for drug repositioning thus requires at least three types of case-control “basic”
datasets (that could also be partially combined):

• T1 (treatment data set, and potentially additional data sets T2, T3, etc.)—baseline (untreated
disease samples) vs. treated samples;
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• D1 (target disease dataset, and potentially additional target diseases D2, D3, etc.)—disease
(untreated samples) vs. control (healthy) samples;

• R1 (repositioning disease dataset, and potentially additional diseases R2, R3, etc.)—disease
(untreated samples) vs. control (healthy) samples;

In our study, we have used transcriptome datasets taken from the Gene Expression Omnibus
(GEO) [22] to evaluate repositioning after treatment with two biologics drugs (antibodies), namely
infliximab and brodalumab (Figure 1).

In Study 1 we used disease and treatment data to evaluate the effect of infliximab (T1) on
gene expression signatures of ulcerative colitis (D1) and Crohn’s disease (D2) and the possibility of
repositioning as potential therapeutics in chronic obstructive pulmonary disease (R1) and pulmonary
sarcoidosis (R2). Since infliximab is an anti-TNFalpha antibody, we chose chronic obstructive pulmonary
disease (COPD) and sarcoidosis as repositioning targets since this cytokine is implicated in their
pathology [23–26].

The following datasets were included in this experiment:

• GSE23597: Expression data from colonic biopsy samples of infliximab treated UC patients.
The dataset contained expression profiles of colonic biopsy samples from 48 patients with
moderate-to-severe ulcerative colitis (UC). Patients were treated with infliximab (5 or 10 mg/kg)
or placebo at weeks 0, 2, 6, and every 8 weeks thereafter (total duration 46 weeks). One hundred
and thirteen biopsy samples were collected at baseline (before starting treatment), and at 8 and
30 weeks. Infliximab treated patients were further stratified into responder and non-responder
groups [27].

• GSE36807: Genome-wide analysis of Crohn’s disease and ulcerative colitis biopsy samples.
The dataset consisted of gene expression patterns of 13 Crohn’s disease (CD), 15 ulcerative colitis
(UC), and 7 healthy control colonic specimens [28].

• GSE37768: Expression data from lung tissue of moderate chronic obstructive pulmonary disease
(COPD) patients, healthy smokers, and non-smokers. The dataset consisted of global transcriptome
profiling of peripheral lung tissue samples from moderate COPD patients (n = 13), healthy smokers
(n = 11), and nonsmokers (n = 9). The healthy smoker group was not included in this study since
no information about smoking status was available for COPD patients.

• GSE16538: Genome-wide gene expression profile analysis in pulmonary sarcoidosis. The dataset
consisted of gene expression profiles of lung tissues from patients with pulmonary sarcoidosis
(n = 6) and healthy controls (n = 6) [29].

In Study 2, we used disease and treatment data to evaluate the effect of brodalumab (T1) on gene
expression signatures of psoriasis (D1) and the possibility for repositioning as potential therapeutics in
Crohn’s disease (R1) and systemic juvenile idiopathic arthritis (SJIA) (R2). Brodalumab (anti-IL-17
receptor A antibody) was approved for the treatment of severe-to-moderate psoriasis and psoriatic
arthritis [30]. We chose Crohn’s disease (CD) and systemic juvenile idiopathic arthritis (SJIA) as
repositioning targets since IL-17 signaling is implicated in these diseases [31,32].

The following datasets were included in this experiment:

• GSE53552: Gene expression profiling from psoriatic lesional and non-lesional skin [brodalumab
treatment]. The dataset consisted of 99 skin biopsy samples from 25 patients obtained at treatment
baseline and on days 15 and 43 (total duration 6 weeks). Patients were treated with brodalumab
in doses of 140 mg s.c., 350 s.c., and 700 mg i.v. and placebo [33].

• GSE36807: Genome-wide analysis of Crohn’s disease and ulcerative colitis biopsy samples.
The dataset description is provided in Experiment 1. Only Crohn’s disease and healthy control
colonic samples were used.

• GSE7753: Gene expression profiling in peripheral blood in untreated new-onset systemic juvenile
idiopathic arthritis (SJIA). The dataset consisted of gene expression profiles from peripheral blood
mononuclear cells of 17 new-onset SJIA patients and 30 normal controls [34].
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All the datasets were generated using the Affymetrix Human Genome U133 Plus 2.0 arrays (GEO
accession GPL570). Raw Affymetrix CEL files were downloaded for all the datasets. Probe signal
intensity conversions, RMA normalization, and chip annotation were performed using the “affy”
package for R [35].
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Figure 1. The experimental design. Two independent studies were performed. In the first study, we
combined datasets to study the potential of infliximab repositioning in chronic obstructive pulmonary
disease (COPD) and pulmonary sarcoidosis; in the second study, we combined datasets to study
brodalumab repositioning in Crohn’s disease and systemic juvenile idiopathic arthritis. T1—treatment
data set, D1 and D2—target disease datasets for T1, R1, and R2—repositioning disease data sets.
Ex—excluded from the analyses.

2.3. Validation of Drug Target Pathway Signatures

To confirm the drug action, we evaluated the changes in drug-associated gene expression signatures
in target and repositioning disease data sets in a first step before proceeding to the repositioning
analyses. Since both drugs under consideration are biologics and target specific pathways, namely
TNF-alpha signaling for infliximab and IL-17 pathway for brodalumab, we validated their functional
state by performing gene set analysis using Z (GSZ)-score metrics of gene sets characterizing the
respective pathways [36,37]. For GSZ analysis of TNF-alpha- and IL-17-related gene sets we used
precollected gene lists included in the oposSOM package that was populated from various sources,
including the Gene Ontology [38], GSEA-repository [39], the Human Protein Atlas: Tissue Atlas [40],
as well as selected scientific publications [18,36,41].

Topology based evaluation of pathway activity was performed using the Pathway Signal Flow
(PSF) algorithm developed previously [42] and further implemented in the oposSOM package [43].
PSF takes as input gene expression fold change values of pathway nodes and evaluates the flow of
signal in the direction from pathway inputs to outputs via pairwise interactions between the nodes
depicted in the pathway topology. The interactions of an activating nature multiply the signal, while
the inhibitory ones reduce it, reaching a PSF value indicating overall pathway activity in the final sink
nodes [42].

2.4. Multi-Layer Self Organizing Maps (ml-SOM)

Our drug repositioning approach requires robust identification of expression signatures and
of their activation in the different data sets referring to the reference disease (D1), its treatment
(T1), and diseases presumed for repositioning (R1). We made use of self-organizing maps (SOM)
portrayal method, which has been proven to robustly identify sets of co-expressed genes in large
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scale transcriptome data [16,18,36,41]. SOM portrayal treats genes as objects and their expression
profiles across samples as features. SOM clusters objects with similar features (i.e., co-expressed genes)
together into microclusters called “metagenes”, arranges them on a two-dimensional grid, and colors
metagene expression in blue to red scale for low-to-high expression values, respectively. Due to
self-organizing properties of SOM, metagenes of similar profiles aggregate together into spot-like
areas representing clusters of co-regulated metagenes with associated single genes [16,36]. Spots
typically gather metagenes centered around one or several biological functions according to the
guilt-by-association principle [44].

For drug repositioning purposes, we modified the SOM method in such a way that each of the
transcriptome datasets referring to different diseases and treatments were arranged into one separate
layer of SOM-processed data in a multilayered assembly (ml-SOM). An essential requirement for
the datasets used with ml-SOM is the presence of samples from one or several target conditions (i.e.,
disease, or drug), as well as of reference samples (i.e., healthy controls for diseased and baseline
and (or) placebo samples for drug action) on each layer. The workflow of the ml-SOM approach is
presented in Figure 2. In a first step, transcriptomic data were preprocessed, which includes global
centralization of each gene over all datasets, independent quantile normalization of each dataset,
and their mutual harmonization to prevent the overweighting of any layer in the training process, as
described previously [45]. Next, all the datasets were trained together into a unique SOM of size 45 ×
45 metagenes using default SOM parameters settings as implemented in the oposSOM package [17].
Each of the layers was characterized by a series of supporting maps, such as population, variance, and
overexpression maps, as described previously for single-layer SOM [17]. As a result of this combined
SOM training, each of the layers was projected into identical SOM-space formed of metagenes that
contain the same single genes at the same position of the metagene-grid in each of the layers which
made them directly comparable across the layers.
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Figure 2. The workflow of multi-layer self-organizing maps (ml-SOM) based drug repositioning.
The layers of disease and drug action transcriptome datasets were normalized, scaled and concatenated,
and afterwards subjected to SOM training. The SOM algorithm produced sample-wise transcriptomic
portraits by combining genes with similar expression profiles across all the layers and by using blue
(underexpression) to red (overexpression) color scale to visualize them. A global expression summary
map was then produced from individual portraits, and spot-like modules of dysregulated genes were
detected. These modules were then evaluated for identification of disease- or drug-response associated
gene clusters and for evaluation of drug repositioning potential.
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2.5. Spot Calling

After SOM training, the resulting metagene map was segmented into so-called “spots”,
representing clusters of co-expressed genes overexpressed in at least one of the data sets. Spots were
detected in the individual SOM-portraits using an “overexpression” criterion. Particularly metagenes
with expression values exceeding the 95th percentile of the overall distribution of metagene values
were considered as overexpression spots [16]. The spots were then transferred into an overexpression
summary map (Figure 3A), which provided an overview of the transcriptomic landscape of all the
layers [16]. The expression values of each spot detected across the different layers constituted the
respective spot profile (Figure 3B). Genes associated with spots were subjected to functional annotation
with Fisher exact test-based gene set enrichment analysis using the oposSOM package [17].
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Figure 3. Detecting spot-modules of co-regulated genes in SOM portraits. (A) Spot detection on sample
SOM “portraits” from all layers was performed using “overexpression” criteria defined as clusters of
metagenes with values higher than the 95th percentile of metagene value distribution. These spots
were then transferred to the global summary map to provide an overview of the entire transcriptomic
landscape. (B) Evaluation of spot over- or under-expression in samples was performed by comparison
of the mean value of metagenes in a spot with defined thresholds (see Methods section). Spots A and B
were arbitrarily selected for demonstration purposes.

2.6. Differential Spot Expression Analysis

In our study design, each layer contains samples grouped into the target (disease or drug) and
reference states (healthy samples or drug baseline and (or) placebo). Spot detection on these layers
resulted in a list of characteristic spots and their expression values for each studied sample group
across all layers. To perform drug repositioning, we first identified spot modules that were up- or
downregulated in the target (drug or disease) compared to reference groups (healthy controls or
baseline/placebo) in each layer. Detection of such “differentially regulated” spots was performed
using a combination of two approaches (Figure 4A). The so-called “presence/absence” calling of
differential spots relies on the detection of a difference in the presence/absence of spots between target
and reference states using a threshold of ±one standard deviation (SD) of spot metagenes expression
in the corresponding layer [16,36]. The second “t-test” calling approach detected differences in spot
mean expression values between target and reference states with Student’s t-test (using combined
p < 0.05 and spot fold-change > 1.5 criteria) (Figure 4A). The results of both calling methods were then
combined into a joint vote for spot’s presence/differential regulation in target groups for each layer.
These assignments were then visualized as “spot perturbation” heatmaps (Figure 4B). Depending
on the dataset layer, we assigned “disease spots” as those spots that changed in disease compared
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to healthy state, while we referred to “drug spots” as those spots that changed in drug compared
to baseline.

Pharmaceutics 2020, 12, x FOR PEER REVIEW 7 of 21 

 

differences in spot mean expression values between target and reference states with Student’s t-test 
(using combined p < 0.05 and spot fold-change > 1.5 criteria) (Figure 4A). The results of both calling 
methods were then combined into a joint vote for spot’s presence/differential regulation in target 
groups for each layer. These assignments were then visualized as “spot perturbation” heatmaps 
(Figure 4B). Depending on the dataset layer, we assigned “disease spots” as those spots that changed 
in disease compared to healthy state, while we referred to “drug spots” as those spots that changed 
in drug compared to baseline. 

Next, our drug repositioning strategy relied on the identification of those spots which were 
antagonistically regulated between disease and treatment groups. In case such spot(s) existed, the 
drug used for treatment was considered suitable for repositioning. The validity of drug–disease 
associations was evaluated based on published literature describing the effects of drugs on target 
diseases, as well as drug–disease labels available from the U.S. Food and Drug Administration (FDA) 
(https://labels.fda.gov/). 

 
Figure 4. Spot calling for drug repositioning and prediction. For demonstration purposes, we present 
here a hypothetical case of spot calling on drug data layers. (A) Dysregulated spots are “called” across 
the layers by differential analysis using presence/absence(with ± SD of the spot metagenes expression 
in the given layer as criterion) and t-test calling approaches (using combined p < 0.05 and spot fold-
change > 1.5 criteria) that evaluate the difference between target (drug action in this example) and 
reference states (drug baseline in this example). The votes are finally combined into a unique one. (B) 
Spot calling is performed on all data layers (drug and disease) and results in a spot perturbation 
heatmap, which is used for drug repositioning prediction. 

2.7. Data Availability 

The complete analysis results were deposited as supplementary datasets in the open-access 
repository Zenodo (https://zenodo.org/) [46]. 

3. Results 

Figure 4. Spot calling for drug repositioning and prediction. For demonstration purposes, we present
here a hypothetical case of spot calling on drug data layers. (A) Dysregulated spots are “called” across
the layers by differential analysis using presence/absence(with ± SD of the spot metagenes expression in
the given layer as criterion) and t-test calling approaches (using combined p < 0.05 and spot fold-change
> 1.5 criteria) that evaluate the difference between target (drug action in this example) and reference
states (drug baseline in this example). The votes are finally combined into a unique one. (B) Spot
calling is performed on all data layers (drug and disease) and results in a spot perturbation heatmap,
which is used for drug repositioning prediction.

Next, our drug repositioning strategy relied on the identification of those spots which were
antagonistically regulated between disease and treatment groups. In case such spot(s) existed, the
drug used for treatment was considered suitable for repositioning. The validity of drug–disease
associations was evaluated based on published literature describing the effects of drugs on target
diseases, as well as drug–disease labels available from the U.S. Food and Drug Administration (FDA)
(https://labels.fda.gov/).

2.7. Data Availability

The complete analysis results were deposited as supplementary datasets in the open-access
repository Zenodo (https://zenodo.org/) [46].

3. Results

3.1. Evaluation of Infliximab as a Potential Therapeutics for Ulcerative Colitis, Crohn’s Disease, COPD,
and Sarcoidosis

To evaluate the effect of infliximab (T1) on UC (D1), CD (D2), COPD (R1), and sarcoidosis (R2) we
performed ml-SOM training of four transcriptomic datasets, including one drug response and three
diseases-related datasets (see Methods, subsection Experiment Design and Data Sets). Infliximab is
a chimeric monoclonal antibody, which possesses anti-TNF-alpha activity [47]. The mechanisms of

https://labels.fda.gov/
https://zenodo.org/
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infliximab activity include binding to free and membrane-bound TNF-alpha, induction of apoptosis in
T cells, inhibition of cytokine and chemokine expression, as well as cell–cell signaling and immune
cell trafficking [27]. The Active Ulcerative Colitis (UC) Trial 1 (ACT1) study, as well as several other
trials, have proven that infliximab is effective for the treatment of moderate to severe UC [48]. Crohn’s
disease (CD) is also considered as a target for infliximab, and its efficacy was also demonstrated in
clinical trials [49]. Since COPD and sarcoidosis are also characterized by an abnormal inflammatory
response [20], particularly mediated by TNF-alpha and other cytokines [50,51], we aimed to evaluate
similarities of transcriptome landscapes in UC, CD, COPD, and sarcoidosis and the ability of infliximab
to target pathological processes in COPD and sarcoidosis as well.

To prove this functional action, we first evaluated if the expression of TNF-alpha related gene
sets and pathways [36,42] in the groups of the studied samples was potentially targeted by the drug
before proceeding to the ml-SOM based repositioning pipeline. Indeed, using the GSZ-score and PSF
approaches, we found that the TNF-alpha related gene signatures were upregulated in disease vs.
healthy groups, and they were downregulated in response to infliximab (Figure 5, Supplementary
Figure S1). Notably, the downregulation of these gene signatures was also observed in the placebo
group, though to a lesser extent. The mechanism of this effect is unknown. However, recent
studies have shown that in inflammatory bowel diseases, placebo effects, including remission and
endoscopic response, are remarkable [52–54]. This effect could be attributed to the modulation of
cytokine expression by the brain–gut axis, which would in-turn, downregulate the inflammatory
response [55,56]. These results demonstrate that TNF-alpha is indeed implicated in all these diseases
and that infliximab targets TNF-alpha downstream signaling.
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Figure 5. Gene set Z-score and pathway signal flow (PSF) analysis of TNF-alpha associated gene sets
in ulcerative colitis (D1), Crohn’s disease (D2), COPD (R1), and sarcoidosis (R2) as well as infliximab
(T1) datasets. TNF-alpha associated sets were chosen from the gene set collection available in the
oposSOM package [17]. TNF becomes activated in all diseases compared to the respective healthy
states. Treatment with infliximab virtually reverses this effect in responder UC patients. The common
TNF activation in COPD and sarcoidosis makes these disease candidates for infliximab repositioning.
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Next, we generated transcriptome portraits from all samples using the ml-SOM approach
(Supplementary Figures S2 and S3), which enabled us to visually examine the dynamics of drug
response associated alterations of the transcriptome in paired colonic biopsy samples collected at week
0 (baseline), week 8, and week 30 after infliximab treatment. No changes in spot distribution were
seen in SOM portraits of non-responders, while the spot patterns reversed in responders compared to
baseline this way, indicating drug effect (Figure 6).
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Figure 6. Infliximab response associated changes in SOM portraits in ulcerative colitis (UC) patients.
Infliximab dataset (GSE23597) contained paired colonic biopsy microarray data obtained at week 0
(baseline) and week8, week 30, after treatment. This allowed for tracing how transcriptome landscapes
change depending on infliximab response efficacy. Baseline and non-responder portraits contain
distinctive red (overexpressed) spots in the top right and blue (underexpressed) spots in the bottom left.
Responders were characterized by a reversed picture with overexpressed spots in the bottom left and
underexpressed spots in the top right of the portrait.

For an overview, all the spots were combined into a global summary map (Figure 7A), which can
be interpreted as the transcriptome landscape of all samples from all layers. Overall, 25 spots were
identified and labeled with letters A to Y. Based on the spot-calling strategy described in the Methods
section, seven spots were differentially regulated in target versus reference groups (diseases versus
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healthy controls or infliximab action versus disease baseline). Functional annotation showed that these
spots collect genes related to a wide range of biological functions (Table 1).

Table 1. Overrepresentation analysis of dysregulated spots (top 3 most significant gene sets).

Spot Gene Set p FDR GS 1 Type GS Reference

A protein binding 3 × 10−11 2 × 10−9 GO MF 2 [38]
bicellular tight junction assembly 3 × 10−10 1 × 10−8 GO BP 3 [38]

positive regulation of epithelial cell
proliferation 1 × 10−7 7 × 10−6 GO BP [38]

D small intestine 2 × 10−32 4 × 10−30 RS 4 [40]
duodenum 7 × 10−31 1 × 10−28 RS [40]

lipid metabolic process 1 × 10−25 2 × 10−23 GO BP [38]

F extracellular matrix organization 1 × 10−37 1 × 10−35 GO BP [38]
cell adhesion 3 × 10−32 3 × 10−30 GO BP [38]
angiogenesis 8 × 10−22 5 × 10−20 GO BP [38]

T immune related cell surface molecules 1 × 10−13 1 × 10−10 RS [41]
germinal center B-cells 1 × 10−11 1 × 10−8 RS [18]

immune system process 6 × 10−7 0.0001 GO BP [38]

U immune system 1 × 10−98 2 × 10−95 RS [36]
immune system process 9 × 10−86 1 × 10−82 GO BP [38]

immune response 3 × 10−79 3 × 10−76 GO BP [38]
TNFA signaling via NFKB 2 × 10−31 4 × 10−29 HALLMARK 5 [36]

V protein phosphatases 2 × 10−17 2 × 10−15 RS [41]
nucleic acid binding 3 × 10−15 2 × 10−13 GO BP [38]

metabolism 2 × 10−12 1 × 10−10 RS [41]

X cytosceleton 1 × 10−8 1 × 10−6 RS [41]
protein binding 5 × 10−7 3 × 10−5 GO BP [38]

1 GS—Gene set; 2 GO MF—Gene Ontology molecular function; 3 GO BP—Gene Ontology biological process;
4 RS—Reference signatures, 5 HALLMARK—Cancer hallmarks.

Next, we generated a spot perturbation heatmap of dysregulated spots to evaluate the
“repositioning” potential of infliximab (Figure 7B). Spot perturbation heatmaps showed that spot U
was significantly upregulated in UC compared to healthy controls, but was downregulated in the drug
responder group of UC compared to non-responders or baseline groups. Therefore, it was considered
a “drug target” spot (Figure 7B). This spot collects genes associated with the immune/inflammatory
response and TNF-alpha/interferon signaling downstream activities in agreement with the results
presented in the previous subsection (Table 1 and Figure 7C). In addition to UC, this spot showed
marked upregulation in CD and sarcoidosis samples, which suggests that infliximab can also effectively
target these diseases.

In addition, spot F, which was also upregulated in UC, was dysregulated in infliximab responder
vs. non-responder groups. This spot was also associated with biological processes that amplify
inflammation, such as cell and focal adhesion, collagen catabolic processes, activation of complement.
However, this spot was not differentially dysregulated in responders vs. placebo or responders vs.
baseline groups, which did not qualify it as a drug target spot. Spot F was upregulated in UC but not
in other diseases. Hence, this infliximab can have a specific extended effect in UC. No dysregulated
spots were observed for COPD, indicating that infliximab is presumably unsuited for the treatment of
this disease, in contrast to UC, CD, and sarcoidosis. Notably, the expression of genes related to TNF
receptor binding showed the smallest effect in COPD in support of this result (Figure 5).

In addition to drug target spots F and U, UC was also characterized by downregulation of spots
A and D, and CD, by the downregulation of spot A. These spots collected intestine gene signatures,
as well as gene sets related to digestion, transport, and metabolism of various nutrients (Table 1),
demonstrating the loss of function of gastrointestinal tract epithelium [57]. Finally, evaluation of spot
perturbation profiles in sarcoidosis showed upregulation of the other three spots (T, V, and X; Figure 7B);
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however, none of those spots were specifically linked to TNF-alpha mediated immune/inflammatory
response. Hence, expression spot analysis revealed different pathogenic mechanisms related to the
different diseases considered: Specifically, it filters them with regard to common responses to infliximab
according to its action on TNF-pathway.
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Figure 7. Evaluation of infliximab (T1) as a potential therapeutics for UC (D1), Crohn’s disease (CD)
(D2), COPD (R1), and sarcoidosis (R2). (A) Global transcriptome summary map. Co-regulated gene
clusters form spot-like patterns. (B) Drug- and disease-spot perturbation heatmap. (C) Spot expression
profiles. The analysis results suggest that spot U, which was upregulated in UC, CD, and sarcoidosis,
can be antagonistically targeted by infliximab. In addition, spot F, which was upregulated in UC, is
associated with response to infliximab. Other disease-associated spots (A, T, V, X) did not overlap with
infliximab-associated spots.

3.2. Evaluation of Brodalumab as a Potential Therapeutics for Psoriasis, Crohn’s Disease, and Systemic Juvenile
Idiopathic Arthritis

In the next series of analyses, we aimed to evaluate the effects of brodalumab (T1) in psoriasis (D1),
CD (D1), and SJIA (D2). Brodalumab is a human IgG2 monoclonal antibody against IL-17 receptor
A (IL-17RA), which selectively inhibits IL-17 signaling [58]. This drug was shown to be capable of
efficient blocking exacerbated inflammation in keratinocytes and leukocytes and cause improvement
in clinical and histological characteristics in psoriatic patients [33,59]. As brodalumab targets IL-17
associated signal transduction, we first evaluated GSZ-scores and PSF values for corresponding
gene sets associated with IL-17 and IL-22 signaling. Psoriasis and, to a lesser extent CD and SJIA,
were characterized by overexpression of IL-17-associated gene sets, and, on the other hand, their
downregulation in response to brodalumab compared with untreated psoriasis and placebo groups
(Figure 8, Supplementary Figure S4).
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Figure 8. Gene set Z-score and PSF analysis of IL-17 associated gene sets in psoriasis (D1), systemic
juvenile idiopathic arthritis (SJIA) (R1), CD (R2) and brodalumab (T1) datasets. IL-17 associated gene
sets were chosen from gene set collection available in the oposSOM package [17].

SOM portrayal (Supplementary Figures S5 and S6) and spot detection segmented global
transcriptome landscape of psoriasis, CD, and SJIA into 35 spots (Figure 9A), from which only
nine (Figure 9C) were dysregulated in target groups (diseases, or drug) compared to the corresponding
reference group (baseline, placebo or healthy control). The functional annotation of these spots is
presented in Table 2.
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Figure 9. Evaluation of brodalumab (T1) as a potential therapeutics for psoriasis (D1), CD (R1), and
SJIA (R2). (A) Global transcriptome summary map. Co-regulated gene clusters formed spot-like
patterns. (B) Drug– and disease–spot perturbation heatmap. (C) Spot expression profiles. The analysis
results suggest that brodalumab antagonized the deregulation in psoriasis-associated spots D, F,
and J. Other diseases (CD and SJIA) associated spots (P, Q, V, Z, C1, D1) did not overlap with
brodalumab-associated spots.



Pharmaceutics 2019, 11, 677 14 of 22

Table 2. Overrepresentation analysis of dysregulated spots (top 3 most significant gene sets).

Spot Gene Set p FDR GS 1 Type GS Reference

nervous system 2 × 10−12 3 × 10−10 RS 2 [36]
D ion transmembrane transport 8 × 10−6 0.0008 GO BP 3 [38]

Reactome transmembrane transport of
small molecules 1 × 10−5 0.001 GSEA 4 [39]

cornification 1 × 10−18 5 × 10−16 GO BP [38]
F keratinization 7 × 10−15 2 × 10−12 GO BP [38]

keratinocyte differentiation 1 × 10−13 3 × 10−11 GO BP [38]

nervous system 1 × 10−12 0.99 RS [36]

J
calcium-dependent cell-cell adhesion via

plasma membrane cell adhesion
molecules

5 × 10−9 1.00 GO BP [38]

homophilic cell adhesion via plasma
membrane adhesion molecules 1 × 10−7 1.00 GO BP [38]

neutrophil degranulation 1 × 10−17 1 × 10−14 GO BP [38]
P primary lymphoid organs 2 × 10−12 1 × 10−9 RS [36]

defense response to bacterium 4 × 10−11 2 × 10−8 GO BP [38]

endosome to melanosome transport 0.0004 0.04 GO BP [38]
Q neutrophil degranulation 0.0004 0.04 GO BP [38]

negative regulation of macrophage
derived foam cell differentiation 0.0006 0.06 GO BP [38]

endocrine pancreas development 1 × 10−6 0.0002 GO BP [38]
V type B pancreatic cell development 2 × 10−6 0.0002 GO BP [38]

Reactome regulation of beta cell
development 3 × 10−6 0.0003 GSEA [39]

inflammatory response 3 × 10−41 5 × 10−38 GO BP [38]
Z immune system process 2 × 10−26 1 × 10−23 GO BP [38]

immune response 2 × 10−26 1 × 10−23 GO BP [38]

bile acid and bile salt transport 1 × 10−8 9 × 10−6 GO BP [38]
C1 Reactome biological oxidations 2 × 10−7 0.0001 GSEA [39]

KEGG retinol metabolism 1 × 10−6 0.00046 GSEA [39]

KEGG drug metabolism cytochrome p450 8 × 10−9 8 × 10−7 GSEA [39]
D1 cellular response to zinc ion 1 × 10−8 9 × 10−7 GO BP [38]

negative regulation of growth 1 × 10−8 9 × 10−7 GO BP [38]
1 GS—Gene set; 2 RS—Reference signatures; 3 GO BP—Gene ontology biological process; 4 GSEA—Gene set
enrichment analysis gene sets.

Spot perturbation heatmap (Figure 9B) analysis identified spot (F) upregulation in psoriasis
lesional skin compared to normal skin and which was downregulated in the brodalumab group
compared to disease baseline and placebo. Spot F was associated with keratinization, keratinocyte
differentiation, innate immune response, and biosynthesis of ceramide and sphingolipids metabolic
processes. Meanwhile, spots D and J were upregulated in brodalumab group compared to baseline;
however, no differences were observed in brodalumab vs. placebo groups. These spots were
characterized by gene sets related to signal transduction, ion channel activity, actin-binding, and
calcium signaling. Overall the results indicate that brodalumab efficiently targets IL-17 related
pathways. However, its action is much broader than just inhibition of IL-17 associated immune
response in agreement with [33,59].

Transcriptome landscape for SJIA in peripheral blood was characterized by the upregulation of
spots P and Q. These spots collect functional terms associated with an acute response, inflammation,
neutrophil degranulation, and erythrocyte differentiation, which is in line with previous observations
of prominent upregulation of erythropoiesis related gene-expression [60] and innate immune
response [61,62].

CD, in turn, was characterized by downregulation of spots V and D1 in colon tissue samples, that
collect genes related to the ciliary membrane, pancreatic beta-cell differentiation, digestion, transport,
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and lipid metabolic processes. On the other side, spot Z, upregulated in CD, collected gene sets related
to activated inflammatory and immune response, chemotaxis, neutrophil degranulation, and response
to interferon-gamma. Interestingly, genes located in spot Z largely overlapped with infliximab target
genes, as was described in the previous section. In addition, upregulated spot C1 in CD collected genes
linked to bile acid and bile salt transport, lipid metabolism, and oxidation−reduction processes.

Thus, in contrast to the favorable action of brodalumab in psoriasis, our analysis demonstrated
that this drug will not interfere with pathological processes in SJIA and CD since no dysregulation was
observed in drug target spots F, D, and J in both SJIA and CD.

3.3. Result Validation with CMap

We used the Connectivity Map (CMap) [9] to validate the results of the ml-SOM analyses.
The CMap platform provides an interface to determine the association of drugs with a given list of
dysregulated genes via enrichment analysis of gene expression with drug-driven gene profiles [9].
Neither infliximab nor brodalumab was included in the drug collection in CMap. Therefore, we
performed a two-step analysis to validate our findings against the CMap algorithm. First, we performed
differential gene expression analysis to identify the top 150 (the maximum number handled by CMap)
downregulated genes by infliximab and brodalumab, and then queried these lists against the reference
perturbagen signatures in CMap. Then, we queried CMap with top 150 genes from the “drug” spots
identified by ml-SOM (spot U for infliximab, and spots D and F for brodalumab). Finally, we performed
the same analyses with the top 150 upregulated gene lists in diseases. These queries produced scores
for 171 compound classes, reflecting the similarity of supplied gene lists with reference gene set lists in
CMap. Next, we performed pairwise correlations of CMap scores. This provided us with an indirect
measure of the association between drug-, spot- and disease-associated gene lists, according to the
CMap algorithm. The results showed that the CMap compound scores for infliximab were correlated
with those of UC, CD, and sarcoidosis, but not with COPD (Supplementary Figure S7). Moreover,
correlation scores increased for sarcoidosis but not for COPD, when instead of differentially expressed
gene lists, we considered the drug spot-genes for infliximab. These results indicate that ml-SOM better
selects specific drug effects compared with standard two-group differential gene expression analysis.
Similarly, brodalumab profiles showed a marked correlation with psoriasis, but not with SJIA and CD.
Accounting for drug spot-genes did not increase the correlation with SJIA and CD (Supplementary
Figure S8). These results confirm the results of our ml-SOM algorithm against that of CMap.

4. Discussion

Drug repositioning opens new possibilities for the fast delivery of new treatment options by
reducing the time and resources spent on drug development and testing [1,2]. Systematic analysis of
concerted transcriptome changes in response to disease and drug action provides a useful concept in this
field [63–65]. However, it is essential to consider gene expression changes on the whole transcriptome
level and not only identify drug–target processes or genes to improve the predictive power of the
method but also to understand how off-target genes may interfere with disease development, drug
action or be related to the risk of adverse effects.

In this study, we presented a novel approach to drug repositioning based on the evaluation of full
transcriptome landscapes of drug action on diseased states utilizing the multilayer self-organizing maps
(ml-SOM) machine learning technique. ml-SOM segments layers of drug action- and disease-associated
transcriptome landscapes into clusters co-regulated and thus functionally related, which are identified
as spots with similar localization across different layers. This allows for direct comparison of their
expression changes across the layers and identification of “drug target” spots in disease layers, as well
as of similarities of the functional context of drug target and non-target spots. We applied the ml-SOM
approach to evaluate the possibility of repositioning biologics infliximab (in COPD and sarcoidosis)
and brodalumab (in CD and SJIA).
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Infliximab has been proven to be efficient in UC and CD by blocking TNF-alpha activity [47–49].
Our results confirmed the mechanism of infliximab action, including induction of apoptosis in T
cells, inhibition of cytokine and chemokine expression, as well as cell–cell signaling and immune cell
trafficking [27], and its efficacy in these diseases. Our ml-SOM method predicted the repositioning
potential of infliximab in CD [49] based on its effect in UC, which can be considered as a retrospective
validation of our methodology. On the other hand, systemic inflammation and TNF-alpha response
have also been implicated in COPD and sarcoidosis. It has been shown that a number of single
nucleotide polymorphisms in the TNF-alpha promoter were associated with an increased risk of
these diseases [23–25]. Furthermore, elevated levels of affected cytokines were observed in blood,
bronchial biopsies, as well as bronchoalveolar lavage of COPD patients [26]. Our results on TNF-alpha
related gene set enrichment analysis also confirmed these observations (Figure 4). However, with
our ml-SOM approach, we could show that infliximab successfully targets these gene sets in UC, CD,
and sarcoidosis, but not in COPD. It seems that alternative mechanisms not targeted by infliximab
support exacerbation of inflammation and COPD symptom development, confirming little to no effect
of infliximab on the improvement of COPD course in a number of trials [66,67]. Our results, on the
other side, suggest that there is a potential benefit of using infliximab in sarcoidosis since it can target
immune system-related gene modules upregulated in the disease course. These findings are in line
with previous publications suggesting infliximab as an off-label indication for sarcoidosis [68–71].

Brodalumab is another biologics (anti-IL-17 receptor A antibody) drug that was recently approved
by the FDA for the treatment of severe-to-moderate psoriasis and psoriatic arthritis [30]. Since IL-17
signaling is also implicated in the pathophysiology of Crohn’s disease (CD) [31] and systemic juvenile
idiopathic arthritis (SJIA) [32], we evaluated brodalumab repositioning potential for these diseases.
The results of ml-SOM confirmed the action of brodalumab in psoriasis that includes inhibition of
keratinization in epidermal cells and leveraging immune response at the site of psoriatic lesions [33,59].
In contrast to psoriasis, we did not observe the dysregulation of brodalumab target genes in SJIA and
CD. The functional annotation of gene clusters (spots) associated with SJIA showed upregulation
of gene sets related to acute response, inflammation, neutrophil degranulation, and erythrocyte
differentiation. Moreover, recent reports indicate that SJIA can be considered as an autoinflammatory
rather than an autoimmune disease that is driven by T-cell dysregulation [72,73]. While results on
T-cell activation during SJIA are conflicting [74,75], it has been shown that SJIA patients respond well
to IL-1 antagonists [76], which supports the autoinflammatory nature of the disease. Though there are
no studies of the efficacy of the drug in SJIA, it should be noted that no effect for brodalumab was
recorded for the drug in rheumatoid arthritis [77]. Thus, our results suggested little to no efficacy
of brodalumab for SJIA treatment. Our results also showed that brodalumab will not be efficient in
CD either. Indeed, recent trials have shown that brodalumab worsens the clinical course of CD [78].
Moreover, in psoriasis trials, some patients have developed CD during the treatment course, and
according to the FDA, CD is included in contraindications for this drug [79].

Using CMap as a validation approach, we obtained concordant results. CMap, as well as NFFinder,
offers “signature” based analysis, i.e., comparison of user-supplied list against pre-populated “reference”
lists of gene perturbations. CMap has limits on the number of input genes (max 150 genes). Both CMap
and NFF assess the “similarity” of gene expression profiles to a “predefined” list of compounds.
ml-SOM allows for direct analysis of selected drug/biologics in selected diseases and provides lists of
candidate genes. CMap uses the Kolmogorov-Smirnov enrichment statistic score [39] for assessment
of profile similarity, while NFFinder uses the page rank algorithm [80]. ml-SOM uses self-organizing
maps to cluster genes to modules on a transcriptome map based on expression profiles across samples.
This modularization of the expression landscape into groups of co-regulated (and thus functionally
related) genes makes ml-SOM a powerful selection tool for candidate gene search in drug repositioning
tasks. Note that ml-SOM extracts the list of drug-responsible genes, which is required as input for
CMap analysis for drug effects. Hence, ml-SOM can also be effectively combined with CMap for the
evaluation of drug-repositioning.
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The latter results indicate that our approach could also be used to identify possible drug adverse
effects on target and repositioned diseases. Indeed, the ml-SOM analysis showed that the expression
of gene modules targeted by brodalumab (spots D and F) were not dysregulated in CD (Figure 9).
This could mean that brodalumab would further downregulate these modules in the disease. Spots
D and F contained target processes associated with IL17, and their downregulation, along with the
elevated inflammatory response (spot Z), could be a reason for exacerbation of CD symptoms. Indeed,
IL17 is crucial for the recruitment of rTh 17 cells that can suppress inflammation in the gut [81]. In
addition, IL17 suppression could elevate inflammation in the gut by disrupting epithelial integrity
and favoring increased leakage of microorganisms [82]. In a more generalized way, the “drug target
spots” on transcriptome portraits could be considered to cause adverse effects if they are differentially
regulated upon treatment but not in disease. Unfortunately, there is limited data on the role of genes
in adverse effect formation beyond the drug-metabolizing system, but recently this is becoming a
focus area of research [83,84], and the growing annotation data could further be integrated into the
ml-SOM pipeline. Another important advantage of ml-SOM is the possibility of “personalizing” the
assessment of drug repositioning. In the case of infliximab repositioning, spot perturbation heatmaps
show that downregulation of spot F along with the upregulation of spot U was associated with the
response to the drug (Figure 7B,C). Thus, we can speculate here, that “screening for drug target spots”
in sample-specific SOM molecular portraits could be used to predict the drug responses on the levels
of an individual sample.

All in all, the ml-SOM approach proved to be efficient in silico methodology for drug repositioning.
Its main advantage is the ability of a holistic analysis of transcriptome landscapes in different conditions
and their direct comparison. From a performance point of view, the number of data layers that can
be handled by ml-SOM is limited only by computational resources. In addition, datasets with small
numbers of samples can be used with minimum sampling bias, since they are combined in a larger final
dataset. At the same time, ml-SOM is robust towards batch effects since training considers the profile
of gene expression across layers, while differential spot calling is applied on each layer separately.
Compared to other methods, the ml-SOM approach is able to not only identify disease-drug pairs but
also predict drug side effects, as well as provide functional information on the molecular processes
that drive drug–disease and drug–side effect associations. Finally, this approach opens the possibility
of performing a “personalized” assessment of drug repositioning based on individual, sample-specific
SOM molecular portraits.

5. Conclusions

With the increasing availability of various drug action and disease-associated whole transcriptome
data, it has become an attractive source for drug repositioning studies. Our ml-SOM approach not
only extends the limited battery of available transcriptome-guided repositioning tools but also offers
more extended data analysis, interpretation, and visualization capabilities. The strength of our method
is its ability to evaluate changes in the transcriptome in response to disease and drugs across multiple
transcriptome datasets, identification of drug effect linked genes clusters and functional processes, as
well as drug response and adverse effects predictions. We believe that our approach will be particularly
useful for repositioning of biologics that are currently replacing small molecules as the main options
for therapy in many complex diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/12/677/s1:
Figure S1: Heatmap of activation profiles of selected KEGG signaling pathways in ulcerative colitis (D1), Crohn’s
disease (D2), COPD (R1), and sarcoidosis (R2) as well as infliximab (T1) datasets. Figure S2: Individual SOM
portraits in an infliximab (Study 1) repositioning study (see Materials and Methods, Experiment Design and
Data Sets subsection). Figure S3: Infliximab repositioning study: mean group and representative individual
SOM portraits. Figure S4. Heatmap of activation profiles of selected KEGG signaling pathways in psoriasis (D1),
SJIA (R1), CD (R2), and brodalumab (T1) datasets. Figure S5: Individual SOM portraits in a brodalumab (Study
2) repositioning study (see Materials and Methods, Experiment Design and Data Sets subsection). Figure S6:
Brodalumab repositioning study: mean group and representative individual SOM portraits. Figure S7. Comparison
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