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Abstract: To date, only a few studies have investigated relationships between Diffusion-weighted
imaging (DWI) and Vascular endothelial growth factor (VEGF) expression in tumors. The reported
results are contradictory. The aim of the present analysis was to review the published results and
to perform a meta-analysis regarding associations between apparent diffusion coefficients (ADC)
derived from DWI and VEGF expression. MEDLINE library was screened for relationships between
ADC and VEGF expression up to January 2019. Overall, 14 studies with 578 patients were identified.
In 10 studies (71.4%) 3 T scanners were used and in four studies (28.6%) 1.5 T scanners. Furthermore,
seven studies (50%) had a prospective design and seven studies (50%) had a retrospective design.
Most frequently, prostate cancer, followed by rectal cancer, cervical cancer and esophageal cancer were
identified. The pooled correlation coefficient of all tumors was r = −0.02 [95% CI −0.26–0.21]. ADC
values derived from routinely acquired DWI do not correlate with VEGF expression in various tumors.
Therefore, DWI is not sensitive enough to reflect angiogenesis-related microstructure of tumors.
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1. Introduction

Diffusion-weighted imaging (DWI), quantified by apparent diffusion coefficients (ADC) besides
diagnostic potential can also provide information regarding tumor microstructure [1–4]. This method
utilizes the constant random movement of water molecules, called Brownian motion [4]. ADC is
widely acknowledged to be mainly influenced by the cellularity of tumors and is inversely correlated
with cell density in tissues [3]. The principle of this is that the cell membrane might hinder the water
movement and, therefore, lead to a restriction of diffusion [5]. However, important factors are not
only cell count but also cell size, cell nucleus size, and membrane permeability [5]. Moreover, it was
shown that water molecules are also hindered by extracellular components, such as collagen fibers and
extracellular matrix [6].

DWI is usually acquired by two b-values, a low one, usually 0 s/mm2 and a high one, usually
800–1000 s/mm2 [1,7]. The low signal intensity of DWI, up to 200 s/mm2 is more sensitive to perfusion
than the latter [1,7]. There is an ongoing debate on whether ADC values can also reflect perfusion
related tumor features, such as vessel density [8–10]. Presumably, more water molecules can move
freely and particularly fast within vessels. Moreover, it was hypothesized that ADC is even has
the capacity to reflect factors influencing vascular angiogenesis, for example, expression of vascular
endothelial growth factor (VEGF) [11,12].
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Tumor angiogenesis is a hallmark, which provides oxygen and nutrients to tumor cells during
cancer progression and metastasis [13]. VEGF has been generally regarded as a key factor in
angiogenesis [14]. It is a protein family consisting of five subtypes with the regulation of the vessel
cells by three cell membrane receptors [14].

The inhibition of VEGF-A with bevacizumab was the first angiogenesis-related tumor treatment,
which nowadays is used for several different tumor entities [14,15]. Functional imaging biomarker
guidance of VEGF treatment might be crucial due to the fact that anti-VEGF therapy might not
primarily lead to shrinkage of the tumor, which could be assessed by morphological imaging, but to a
devascularization of the tumor assessable only by functional imaging.

The associations between ADC and VEGF have been elucidated in preliminary small studies
with incoherent results. Presumably, if routinely acquired ADC values are correlated with VEGF
expression in tumors, this might also establish the opportunity for DWI to display treatment response
to anti-angiogenesis therapy, which was previously shown in xenograft studies [11,16].

Therefore, the purpose of the present systematic review and meta-analysis was to review the
published studies and to provide data of possible associations between ADC and VEGF expression in
several tumors.

2. Materials and Methods

Data Acquisition

MEDLINE and SCOPUS library were screened for associations between ADC values and VEGF
expression up to September 2019. The following search words were used: ADC OR apparent diffusion
coefficient OR DWI OR Diffusion weighted imaging AND VEGF OR vascular endothelial growth
factor. Overall, 68 articles were identified throughout this search process.

The primary endpoint of the systematic review was the correlation between VEGF expression and
ADC derived from DWI.

Studies (or subsets of studies) were included if they satisfied all of the following criteria: (1) patients
with histopathologically confirmed tumors and expression analysis of VEGF on immunohistochemical
stained specimens (2) DWI quantified by ADC (3) correlation analysis.

Exclusion criteria were (1) systematic review (2) case report (3) treatment prediction or
histopathology performed after treatment (4) non-English language (5) xenograft or mouse
model studies.

After thorough review 14 articles were suitable for the present meta-analysis [17–30]. The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used for the
research [31]. Figure 1 displays the PRISMA flow chart of the paper acquisition.

The following data were extracted from the literature: authors, year of publication, study design,
tumor entity, number of patients, MRI scanner, b-values of DWI and correlation coefficients.

The methodological quality of the acquired studies was independently checked by two observers
(HJM and AS) using the Quality Assessment of Diagnostic Studies (QUADAS 2) instrument, according
to previous descriptions [32]. Figure 2 displays the QUADAS results. Most studies showed an overall
low risk of bias.
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Associations were analyzed by Spearman’s correlation coefficient. The Pearson’s correlation
coefficients in some studies were converted into Spearman’s correlation coefficients, as reported
previously [33].

Furthermore, the meta-analysis was undertaken by using RevMan 5.3 (Computer Program,
version 5.3, The Cochrane Collaboration, 2014, The Nordic Cochrane Centre, Copenhagen, Denmark).
Heterogeneity was calculated by means of the inconsistency index I2 [34,35]. Additionally, DerSimonian
and Laird random-effects models with inverse-variance weights were used without any further
correction [36].

3. Results

Overall, the collected 14 articles included 578 patients. In 10 studies (71.4%) 3 T scanners were
used, and in four studies (28.6%) 1.5 T scanners. Furthermore, seven studies (50%) had a prospective
design, seven studies (50%) had a retrospective design (Table 1). Table 2 summarizes the included tumor
entities. Most frequently, prostate cancer, followed by rectal cancer, cervical cancer and esophageal
cancer were identified.

Table 1. Overview of the included studies.

Author, Year Country Design Number of
Patients Tumor Entity Field

Strength (T)
b-Values
(s/mm2)

Aoyagi et al. 2012 [17] Japan prospective 17 Esophageal cancer 1.5 0;1000

Cong et al. 2019 [30] China retrospective 52 Esophageal cancer 3 0;800

Heo et al. 2010 [18] South Korea retrospective 27 Hepatocellular carcinoma 1.5 0;1000

Huang et al. 2014 [19] China retrospective 36 Hepatocellular carcinoma 3 0;800

Lindgren et al. 2017 [20] Finland prospective 40 Ovarian cancer 3 0;300;600

Liu et al. 2013 [21] China prospective 56 Cervical cancer 1.5 0;100;0;3000

Ma et al. 2018 [22] China prospective 39 Prostate cancer 3 0;800

Meng et al. 2016 [23] China prospective 91 Rectal cancer 3 0;800

Meyer et al. 2018 [24] Germany retrospective 11 Rectal cancer 3 0;1000

Meyer et al. 2018 [25] Germany retrospective 32 Head and neck cancer 3 0;800

Meyer et al. 2018 [26] Germany retrospective 18 Cervical cancer 3 0;1000

Oto et al. 2011 [27] USA retrospective 73 Prostate cancer 1.5 0;1500

Shi et al. 2017 [28] China prospective 58 Thyroid cancer 3 0;1000

Xie et al. 2015 [29] China prospective 28 Pancreatic cancer 3 0;1000

Table 2. Overview of the included tumor entities.

Tumor Type n (%)

Prostate cancer 112 (19.4)

Rectal cancer 102 (17.7)

Cervical cancer 74 (12.8)

Esophageal cancer 69 (11.9)

Hepatocellular carcinoma 63 (10.9)

Thyroid cancer 58 (10.0)

Ovarian cancer 40 (6.9)

Head and neck cancer 32 (5.5)

Pancreatic cancer 28 (4.9)

Total 578 (100)

The pooled correlation coefficient between ADC and expression of VEGF r = −0.02 [95% CI
−0.26–0.21], heterogeneity Tau2 = 0.17, I2 = 89 (Figure 3).
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4. Discussion

The present systematic review and meta-analysis did not find significant associations between
ADC values and the expression of VEGF in tumors.

We identified a positive correlation for four studies including esophageal cancer, ovarian cancer,
cervical cancer and pancreatic cancer. On the contrary, there were four studies with an inverse
correlation including hepatocellular carcinoma, prostate cancer, rectal cancer and thyroid cancer. In five
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studies, there were no relationships between VEGF expression and ADC. These findings resulted in an
overall non-existing association.

Previously, numerous investigations showed that ADC inversely correlated with cellularity in
different malignant and benign lesions [3]. Moreover, it was widely acknowledged that DWI may
discriminate tumor grades and tumor subtypes. For example, it was shown that benign lesions tended
to have higher ADC values than malignant tumors [37,38].

Furthermore, according to the literature, ADC can also reflect other histopathological features,
such as expression of proliferation factor Ki67, epidermal growth factor receptor expression and
hypoxia-inducible factor 1-alpha [25,26,39].

However, as mentioned above, there are inconclusive results regarding possible associations
between ADC and VEGF expression [17,22,24]. Hypothetically, a positive correlation between the
parameters may exist. The rationale is that with higher VEGF expression there are more vessels and,
thus, there are more fast protons within the vessels reflected by a higher ADC value.

VEGF is a key factor of tumor neoangiogenesis [14]. It has been shown that overexpression
of VEGF is an overall indicator of poor survival in various tumor entities emphasizing its clinical
importance [40–42]. Therefore, it may be beneficial, when imaging can correctly predict VEGF
expression of tumors enabling a non-invasive and serial approach compared to bioptic samples.

However, the direct association between VEGF expression and vascularity of tissues and, thus,
the overall perfusion is complex. So far, there were no differences in colorectal cancers with high
VEGF expression compared to tumors with low expression in regard to microvessel density [43].
Yet, in other studies, a moderate to strong correlation was identified between VEGF expression and
microvessel density in several tumors [44–46]. In a recently published preliminary study investigating
head and neck cancer, no correlation between microvessel density and ADC values was identified,
which corroborates the present results that DWI is not able to reflect perfusion related histopathology
features of tumors [47].

When ADC values would be sensitive enough for tissue alterations caused by VEGF expression,
predominantly vessel growth and vessel density, DWI may aid in treatment response evaluation to
VEGF targeted therapy. In fact, this has been shown in previous studies, for example, in glioblastoma
patients and in a glioma experimental tumor model [48,49]. However, there were also reports
indicating that DWI might not be sensitive in this regard [9]. Clearly, more studies are needed to
validate these findings.

Intravoxel incoherent motion (IVIM), as an advanced DWI technique was introduced, which takes
advantage of the perfusion related signal intensity [7]. By using several low b-values up to 200 mm2/s,
IVIM can provide perfusion related parameters like perfusion fraction f and pseudo diffusion D*,
which might be more sensitive to predict VEGF expression and vessel density of tumors [7]. However,
the acquisition of IVIM and perfusion parameters is associated with several problems. IVIM protocols
take a longer time duration of the sequence, which might hinder the translation into clinical routine.
Furthermore, there is still lack of standardization of this technique. This fact hinders the external
validations of the reported results.

Possible clinical implications of the present results are that ADC values derived from clinical
routine DWI are not able to reflect VEGF expression in tumors. Further on, ADC values might,
therefore, not be capable of predicting treatment response assessment with VEGF-targeted therapy.

There are several limitations of the present analysis to address. Firstly, it comprised half of the
retrospective studies with known inherent potential bias. Secondly, there were not enough studies
to perform tumor-specific sub analyses. Presumably, the heterogeneity shown in the analysis could
be induced by differences in tumor types. Thirdly, there were different scanner types and DWI
protocols, which have an influence on ADC values and consequently might result in possible bias.
Fourthly, there might be possible publication bias, as it is known that negative studies are less likely to
be published.
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5. Conclusions

The present analysis showed that ADC does not correlate with the expression of VEGF and,
therefore, cannot be used as a surrogate marker for this histopathological parameter in tumors using a
routinely acquired DWI.
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DWI Diffusion-weighted imaging
ADC Apparent diffusion coefficient
VEGF Vascular endothelial growth factor
IVIM Intravoxel incoherent motion
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