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Abstract: Yangian symmetric correlators provide a tool to investigate integrability features of
QCD at high energies. We discuss the kernel of the equation of perturbative Regge asymptotics,
the kernels of the evolution equation of parton distributions, Born scattering amplitudes and
coupling renormalization.

Keywords: gauge field theories; high-energy scattering; quantum integrable systems

1. Introduction

In 1993, L.N. Lipatov pointed out the relation of the perturbative Quantum Chromodynamics
(QCD) Regge aymptotics [1–5] to integrable quantum spin chains and showed that the contributions of
multiple reggeized gluon exchanges can be treated by the methods of quantum integrable systems [6].
This result has great significance far beyond the particular questions of Regge asymptotics. Up to that
time, the application of such methods to Quantum field theory was restricted to sophisticated models
in 1 + 1 dimensions.

Symmetries of physical systems are ordinarily related to Lie algebras with a finite number of
generators and a finite rank. Yangian algebras, originally defined by Drinfeld [7], provide an extension
of a Lie algebra, where the number of generators T[k]

ab and the rank are in general infinite. T[1]
ab are the

generators of the underlying Lie algebra. We shall be concerned with the Lie algebras of the general
and the special linear transformations, g`n and s`n. The generators can be collected into the generating
function T(u)ab = 1 + ∑∞

1 u−kT[k]
ab . The monodromy matrices considered below are particular cases.

Like in the case of finite Lie algebras, the symmetries based on Yangian algebras imply
conservation laws (as many as the algebra rank). A number of well-studied integrable models are
based on Yangian symmetries. Quantum Chomodynamics (QCD) is not an integrable quantum system;
however, starting from L.N. Lipatov’s work [6], it turned out that several aspects of its high-energy
behaviour are related to such integrable systems.

After Lipatov’s paper [6], it was immediately clear that the Bjorken asymptotics [8–13] and the
composite operator renormalization have similar features of integrability [14]. In both cases, the
Yangian symmetry underlying integrability is based on conformal symmetry, which is broken by loop
corrections in the case of QCD. The breaking is suppressed by supersymmetry and is absent in N = 4
super Yang–Mills theory. Much work has been devoted in the last two decades to super Yang–Mills
under this aspect. Quantum integrability works in the composite operator renormalization in the planar
limit to all orders [15,16] and in the computation of scattering amplitudes and Wilson loops [17–21].

As in the cases of the finite Lie algebras, Yangian algebra symmetries manifest themselves in
physical quantities transforming in simple ways, first of all in invariants.

Yangian symmetric correlators (YSC) have been proposed as a convenient formulation of the
Yangian symmetry of amplitudes. Formally, they are Yangian algebra invariants in particular
representations. They are shown to provide a tool of amplitude construction [22,23]. YSC depend
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on a set of spectral parameters, some combination of which are related to the helicities of scattering
particles. The construction method of YSC are related to the method of on-shell graphs in the amplitude
construction [24]. In the original form of the latter method [19–21], no such parameters appeared. In a
number of papers, the deformation of amplitude expressions by such parameters has been studied
and their eventual role for regularization of loop divergencies has been discussed [25–29].

In this contribution, we argue that YSC are useful not only in relation to amplitudes but allow to
treat all features of integrability based on Yangian symmetry appearing in QCD at high energies in a
uniform way. The notion of YSC is recalled and a few examples of their construction by R operations
are given, which appear in the following applications.

We explain how the kernel of the BFKL equation in dipole form [30–32] emerges from a four-point
YSC based on s`2 symmetry. Based on [33,34], we discuss the relation of the parton evolution kernels
and the amplitude of parton splitting [11] to three-point YSC based on s`2 symmetry. The relation of
the Born level scattering amplitudes of gluons and quarks to four-point YSC with s`4 symmetry
is considered. Finally, we consider the convolution of two three-point YSC, similar to a gluon
self-energy Feynman graph, and show how the leading Gell–Mann–Low coefficient of the coupling
renormalization appears. This relation is actually known in terms of the parton splitting amplitude [11]
and the momentum sum rules for parton evolution kernels [12] and has been shown recently to extend
to arbitrary helicity values [35].

2. Yangian Symmetric Correlators

Consider n Heisenberg canonical pairs, xa, ∂a, a = 1, ..., n,

[∂a, xb] = δab, [xa, xb] = 0, [∂a, ∂b] = 0.

Lab = ∂axb obey the general linear g`n Lie algebra commutation relations. We define the L operator as
a n× n matrix with these entries with the unit matrix I multiplied by the spectral parameter u added,

L(u) = uI + L(0), L(0)ab = Lab = ∂axb.

This operator acts on functions of xa, a = 1, ..., n. We consider the case of homogeneous functions
with the weight denoted by 2`, e.g., x2`

n · ψ(
x1
xn

, ... xn−1
xn

). The L operator restricted to such homogeneous
functions depends additionally on the weight 2` or on u+ = u + 2`,

L(u)x2`
n · ψ = x2`

n L(u+, u)ψ.

This results in (L(u+, u))ab = (L(u))ab + δa,n(u+ − u) xb
xn

.
We need N copies of the above sets of canonical pairs, xi,a, ∂i,a and of the L operator Li(ui, u+

i ),
i = 1, ..., N to define the monodromy matrix operator in terms of the matrix product

T(u) =
N

∏
1

Li(u+
i , ui).

It is convenient to display the parameters in the form

u =

(
u1 ... uN
u+

1 ... u+
N

)
.

Furthermore, we consider functions of N points in n dimensional space, homogeneous with
respect to the coordinates of each point xi of weight 2`i. We define a Yangian symmetric correlator
(YSC) to be such a homogeneous function of N points obeying the eigenvalue relation with the
monodromy matrix

T(u)Φ(x1, ...xN ; u) = E(u)Φ(x1, ...xN ; u). (1)
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The monodromy matrix can be separated into two factors, e.g., T(u) = T1(u1)T2(u2), where T1

denotes the product of the first Li, i = 1, ..., N1 and T2 the product of the subsequent Li, i = N1 + 1, .., N.
Then, Φ = Φ1Φ2 solves (1) (with E = E1E2) if T1Φ1 = E1(u1)Φ1 and T2Φ2 = E2(u1)Φ2.

The case of one point is trivial but provides a convenient starting point. We have two obvious
one-point YSC, L(u, u) · 1 = (u+ 1)1, L(u, u− n)δ(n)(x) = uδ(n)(x), and from these the trivial product
N-point YSC,

ΦK,N(x1, ...xN ; u) =
K

∏
1

δ(n)(xi), E(u) = u1...uK(uK+1 + 1)...(uN + 1),

u =

(
u1 ... uK uK+1 ... uN

u1 − n ... uK − n uK+1 ... uN

)
.

The Yang–Baxter RLL relations provide a way to non-trivial YSC. We have

R12(u1 − u2) L1(u+
1 , u1)L2(u+

2 , u2) = L1(u+
1 , u2)L2(u+

2 , u1) R12(u1 − u2),

R21(u+
1 − u+

2 ) L1(u+
1 , u1)L2(u+

2 , u2) = L1(u+
2 , u1)L2(u+

1 , u2) R21(u+
1 − u+

2 ),

where the R operator can be represented by

R12(u) =
∫ dc

c1+u e−c(x1·p2) (2)

with the integration over a closed contour. If Φ(u) is a YSC obeying Equation (1), then Φ(u′) =

Ri,i+1(ui − ui+1)Φ(u) obeys the YSC relation with u replaced by

u′ =

(
u1 ... ui+1 ui ... uN
u+

1 ... u+
i u+

i+1 ... u+
N

)
,

i.e., the entries at i, i + 1 in the first row are permuted. Φ(u′′) = Ri+1,i(u+
i − u+

i+1)Φ(u) obeys the YSC
relation with u replaced by

u′′ =

(
u1 ... ui ui+1 ... uN
u+

1 ... u+
i+1 u+

i ... u+
N

)
,

i.e., the entries at i, i + 1 in the second row are permuted. The resulting YSC are less trivial and, by
repeated R operations, we obtain completely connected correlators characterized by the permuted
parameter set of the resulting monodromy matrix,

u =

(
uσ(1) uσ(2) . . . uσ(N)

u+
σ̄(1) u+

σ̄(2) . . . u+
σ̄(N)

)
. (3)

We shall use the abbreviation of writing the indices carried by the parameters only. Notice that
by the substitution of parameters uσ(1), uσ(2), . . . , uσ(N) → v1, v2, . . . , vN applied to both rows the first
row can be put into the standard ordering.

One may draw an analogy of Equation (1) to the time-independent Schrödinger equation. In this
respect, we have considered so far the position representation. Furthermore, we need the helicity
representation. It is defined in the case of even n, n = 2m by the elementary canonical transformation
applied to half of the canonical pairs at each point, a = m + α = m + 1, ..., n, leaving the first half
a = α̇, α̇ = 1, ..., m unchanged,(

xi,m+α

∂i,m+α

)
→
(

∂λ
i,α
−λi,α

)
,

(
xi,α̇
∂i,α̇

)
→
(

λ̄i,α̇
∂̄λ

i,α̇

)
. (4)
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The N-point YSC can be written in the link integral form which became a standard of the modern
tools of amplitude calculations [19–21]. In the position representation, it is given by

ΦK,N(x1, ...xN ; u) =
∫

dcϕ(c)
K

∏
i=1

δ(n)(xi −
N

∑
j=K+1

cijxj). (5)

K denotes the number of δ(n) factors.
To change to the helicity representation, we apply the Fourier transformation to the dependence

on the components xi,a, a = m + 1, ..., n at each point i = 1, ..., N. The Fourier variable conjugate to
xm+α is denoted by λi,α, α = 1, ..., m. The components xi,a, a = 1, ..., m are not changed and merely
renamed by λ̄i,α̇, i.e., λ̄i,α̇ = xi,α̇, α̇ = 1, ..., m. Thus, the link integral form of a YSC in the helicity
representation is

Φλ
K,N(λ̄1, λ1, ...λ̄N , λN ; u) =

∫
dcϕ(c)

K

∏
i=1

δ(m)(λ̄i −
N

∑
j=K+1

cijλ̄j)
N

∏
j=K+1

δ(m)(λj +
K

∑
i=1

cijλi). (6)

Notice that the integrand function ϕ is the same in both representations. dc abbreviates
dc = ∏K

i=1 ∏N
j=K+1 dcij.

3. Examples of YSC for N = 2, 3, 4

We present examples of YSC encountered in the applications below and indicate their construction
by R operations.

We start with the two-point YSC, N = 2, K = 1

Φ1,2(x1, x2; u) = R21(u+
1 − u2)δ

(n)(x1), (7)

ϕ1,2(c12) = c−1+u2+n−u1
12 , u =

(
1 2
2 1+

)
.

In the second row, 2 stands for u2 and 1+ for u1 − n = u+
1 .

Next, we give the three-point YSC with N = 3, K = 1

Φ1,3(x1, x2, x3; u) = R++
21 (u+

3 − u+
2 )R++

31 (u+
1 − u+

3 ) · δ
(n)(x1), (8)

ϕ1,3 =

(
c1+u3−u2

12 c
1+u+

1 −u3
13

)−1
, u =

(
1 2 3
2 3 1+

)
,

and with N = 3, K = 2,

Φ2,3(u) = R32(u+
2 − u+

1 )R31(u+
1 − u+

3 )δ
(n)(x1)δ

(n)(x2), (9)

ϕ2,3 =

(
c

1+u+
2 −u+

1
23 c

1+u+
1 −u+

3
13

)−1
, u =

(
1 2 3
3 2+ 1+

)
.

We give also the relevant examples of four-point YSC. Because all of these have coincident values
of K and N, K = 2, N = 4, other labels like ∆, X, || are used to distinguish them.

As an intermediate YSC, from which the following ones are constructed, we write

Φ∆(u) = R32(u+
2 − u+

3 )R41(u+
1 − u+

4 )δ
(n)(x1)δ

(n)(x2), (10)

ϕ∆ = δ(c13)δ(c24)

(
c

1+u+
2 −u+

3
23 c

1+u+
1 −u4

14

)−1
, u =

(
1 2 3 4
4 3 2+ 1+

)
.
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This YSC is incompletely connected with delta distributions in ϕ. It takes two more steps of R
operations to arrive at the completely connected one.

ΦX(u) = R43(u+
2 − u+

4 )R21(u+
4 − u+

3 )Φ∆, (11)

ϕX =
(

c1+u2−u1
24 c1+u4−u3

13 (c14c23 − c23c13)
1+u+

2 −u3
)−1

,

u =

(
1 2 3 4
3 4 1+ 2+

)
.

The sequence of operations leading to a YSC is not unique. In this case, we may also choose

ΦX(u) = R12(u1 − u2)R21(u+
4 − u+

3 )Φ∆|u1↔u2

with the indicated substitution as the last step to obtain the standard ordering in the upper row of
u parameters.

The permutation pattern u fixes the monodromy operator. However, the YSC is not uniquely
fixed. For example, the pattern

u =

(
1 2 3 4
4 3 2+ 1+

)
is the same as for Φ∆ and is also one of the following two YSC:

Φ||1(u) = R34(u3 − u4)R12(u1 − u2)R12(u1 − u2)R21(u+
4 − u+

3 )Φ∆|u3↔u4 ,

ϕ||1 =
(

c24c13cu1−u2+u3−u4
14 (c14c23 − c23c13)

1+u+
2 −u3

)−1
,

Φ||2(u) = R43(u+
2 − u+

1 )R21(u+
3 − u+

4 )R12(u1 − u2)R21(u+
4 − u+

3 )Φ∆|u1↔u2 ,

ϕ||2 =
(

c24c13c1+u2−u1+u4−u3
23 (c14c23 − c23c13)

1+u+
1 −u4

)−1
.

There are more YCS with the above parameter pattern. In the following, we shall use Φ||(u) with

ϕ|| =
(

c24c13cu3−u4
14 cu2−u1

23 (c14c23 − c23c13)
1+u+

1 −u3
)−1

. (12)

It is the result of the convolution of two YSC of the form ΦX. At u1 = u2, it coincides with Φ||1
and at u3 = u4 it coincides with Φ||2.

The integration variables cij may be regarded as coordinates on the corresponding Grassmannian
variety GK,N and in the case of completely connected YSC the closed integration contours extend
over a maximal Schubert cell. The delta distributions involving the correlator variables x or λ̄, λ

fix some of these integration variables cij. In the following applications, we have cases where all
are fixed, e.g., in the position representation for n = 2 with (K, N) = (1, 3) and (K, N) = (2, 4).
The helicity representation has the feature that the delta distributions can be rewritten in a way with
the factor δ(∑N

1 λ̄iλi) independent of cij. The integrations are removed in this representation for n = 4
with (K, N) = (2, 4).
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4. The BFKL Kernel

YSC may be used as kernels of integral operators. The symmetry of the kernels implies symmetry
properties like Yang–Baxter relations for these operators. At n = 2, we may change the homogeneous
coordinates xi = (xi,1, xi,2) to the normal coordinates xi =

xi,1
xi,2

and find

Φ(x1, ..., xN) =
N

∏
1

x2`i
i,2 φ(x1, ..., xN).

We define the integral operator with a 4-point YSC as kernel,

[Rψ](x1, x2) =
∫

dx′1dx′2ψ(x′1, x′2)φ(x′1, x′2, x1, x2|u).

In the case of the action on functions on the complex plane, we consider the complex x as (x, x̄)
and define

[Rψ](x1, x2) =
∫

dx′1dx′2dx̄′1dx̄′2ψ(x′1, x′2, x̄′1, x̄′2)φ(x′1, x′2, x1, x2|u)φ(x̄′1, x̄′2, x̄1, x̄2|ū).

We substitute the YSC at n = 2 in the normal coordinate form and perform the integrals over
c13, c14, c23, c24:

φ(x′1, x′2, x1, x2|u) = x−2
12 ϕ(c∗).

Provided the substitution 1, 2, 3, 4,→ 1′, 2′, 1, 2, we have

c∗13 =
x14

x34
, c∗14 = − x13

x34
, c∗23 =

x24

x34
, c∗24 = − x23

x34
.

We use the abbreviation xij = xi − xj for the difference of normal coordinates (not to be mixed
with the component notation xi,1, xi,2).

In the case of the 4-point YSC (11), we obtain

φX(x1, x2, x3, x4) =
x1+u+

2 −u3
34

x1+u2−u1
23 x1+u4−u3

14 x
1+u+

1 −u4
12

=
x1+2`1−ε

12

x1+2`1−2`2−ε
23 x1−ε

14 x1+2`2+ε
24

.

In the last step, we have used the relation between the spectral parameters and the weight at each
point i, 2`i = u+

σ̄(i) − uσ(i), referring to the parameter permutation pattern (3). In our case (11), we have

2`1 = u3 − u1, 2`2 = u4 − u1, 2`3 = u1 − n− u3 = −2`1 − n, 2`4 = u2 − n− u4 = −2`2 − n.

We introduce ε = u3 − u4 and express the exponents in terms of the independent weights 2`1, 2`2

and the parameter ε, substituting also n = 2 for the considered case.
We substitute 1, 2, 3, 4,→ 1′, 2′, 1, 2 . At `1′ = `2′ = `, the kernel for the complex plane is

φ(x′1, x′2, x1, x2)φ(x̄′1, x̄′2, x̄1, x̄2) =
|x1′2′ |2(−1−2`−ε)|x12|2(1+2`−ε)

|x1′2|2(1−ε)|x12′ |2(1−ε)
.

In the decomposition in ε, the leading ε−1 term corresponds to the kernel of the permutation
operator P12. The finite term is

|x1′2′ |2(−1−2`)|x12|2(1+2`)
(
|x1′2|2δ(2)(x12′) + |x12′ |2δ(2)(x1′2)− δ(2)(x12′)δ

(2)(x1′2)
∫

d2x3|x13|2|x13|2
)

.
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The subtraction is the appropriately modified + prescription. In the limiting case corresponding
to the reggeized gluon exchange ` = 0, the action is defined on functions vanishing at coinciding
arguments x1′ = x2′ . The kernel can be better rewritten as

|x12|2
∫ d2x3

|x13|2|x23|2
(

δ(2)(x21′)δ(x2′3) + δ(2)(x12′)δ(x1′3)− δ(2)(x12′)δ(x21′)
)

.

This is the dipole (or Moebius) form of the BFKL kernel [30–32,36].
The other argument line to BFKL starts with noticing that the integral operator obeys the standard

RLL relation for intertwining representations with weights `1, `2. The x, ∂ operator form of its
holomorphic part can be represented in the factorized form [37–39], R(ε) = R1(ε)R2(ε),

R1(u1|v1, v2) =
Γ(x21∂2 + ε + `1 + `2 + 1)

Γ(x21∂2 + 2`2 + 1)
, R2(u1, u2|v2) =

Γ(x12∂1 + ε + `1 + `2 + 1)
Γ(x12∂1 + 2`1 + 1)

,

and then the decomposition in ε results in one of the operator forms of the BFKL operator (compare
e.g., [40], Equation (184)). This line of arguments is the one in the original paper by L.N. Lipatov on
the relation to the integrable spin chains [6].

5. The Parton Evolution Kernels

In the helicity representation, we have at n = 2, m = 1,

Φ(λ̄1, λ1, . . . , λ̄N , λN) =
N

∏
1

λ̄
2hi
i δ(∑ ki)φ(k1, ..., kN),

where ki = λ̄iλi have one component only in this case. In the application to parton evolution, these
variables ki have the physical meaning of light-cone momenta and the arguments z of the parton
evolution kernels are defined as their ratios. We obtain for the YSC with N = 3 and K = 1 (8)
or K = 2 (9)

φ(k1, k2, k3; a1, a2, a3) = (k1k2k3)
1
2 k−ηa1

1 k−ηa2
2 k−ηa3

3 .

Here, 2ai = 2`1 + 1 and ∑3
1 2ai = η, with η = ±1. The positive sign η = +1 corresponds to

K = 1 (8) and the negative η = −1 to K = 2 (9). The amplitude of parton splitting 3 → 1 + 2 is
obtained from this three-point YSC by substitutions of ki in terms of the momentum fraction z and ai
by the parton helicities hi as follows:

Split(h1, h2, h3; z) = φ(−z, z− 1, 1; h1, h2, h3 −
1
2

η).

The parton splitting probabilities are calculated as squares of the corresponding splitting
amplitudes. The helicities hi refer to ingoing momenta, i.e., h1, h2 are opposite to their physical
values in the decay 3→ 1 + 2:

Ph2
h1 h3

(z) = (Split(h1, h2, h3; z))2 =

(
φ(−z,−1 + z, 1; h1, h2, h3 −

1
2

η)

)2
.

The expressions for the leading order parton evolution kernels are reproduced—compare,
e.g., [40].

6. Scattering Amplitudes

We consider the four-point YSC at n = 4 with K = 2 in the helicity representation and do the
integrals over the c variables:

Φλ
2,4 = ϕ(c∗) δ(4)(∑ ki), (13)
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c∗13 =
[14]
[34]

, c∗14 =
[13]
[43]

, c∗23 =
[24]
[34]

, c∗24 =
[23]
[43]

.

Here, we denote (ki)α̇,α = λ̄i,α̇λi,α, [ij] = λ̄i,1λ̄j,2 − λ̄i,2λ̄j,1.
From Equation (13), we obtain the explicit expressions as functions of the independent helicities

and the extra parameter ε. As in Section 4, we use the relation between the spectral parameters and
the weights referring to the parameter permutation scheme u (3). The weights are substituted by the
helicities as 2`i + 2 = 2hi. In case (11), we have

2h1 = u3 − u1 + 2 = −2h3, 2h2 = u4 − u2 + 2 = −2h4.

We introduce ε = u3 − u4 and express the exponents in terms of the helicities h1, h2 and
the parameter ε:

ϕX(c∗; h1, h2, ε) =

(
[14][23]
[12][34]

)ε [12]1+2h1 [34]1−2h2

[14][23]1+2h1−2h2
.

Thus, in the case of ΦX , the helicities are related by h1 = −h3, h2 = −h4. With these conditions,
only four of the six helicity configurations of the 2→ 2 helicity amplitudes are accessible.

In case (12), we have instead

2h1 = u4 − u1 + 2 = −2h4, 2h2 = u3 − u2 + 2 = −2h3.

We introduce ε = u4 − u3 and express the exponents in terms of the helicities h1, h2 and
the parameter ε:

ϕ||(c
∗; h1, h2, ε) =

(
[13][24]
[12][34]

)ε [12]1+2h1 [34]1−2h2

[14][23][24]2h1−2h2
.

With Φ||, we cover the remaining cases because here the helicities are related by h1 = −h4, h2 = −h3.
With these conditions, again four helicity configuration cases can be covered, two of them doubling
some of the above correlators.

We observe that the gluon tree amplitudes in spinor-helicity form [41,42] are reproduced by these
two YSC as

M(1, 1,−1,−1) = ϕX(c∗, 1, 1, 0), M(−1,−1, 1, 1) = ϕX(c∗,−1,−1, 0),

M(1,−1,−1, 1) = ϕX(c∗, 1,−1, 4), M(−1, 1, 1,−1) = ϕX(c∗,−1, 1, 0),

M(1, 1,−1,−1) = ϕ||(c
∗, 1, 1, 0), M(−1,−1, 1, 1) = ϕ||(c

∗,−1,−1, 0),

M(1,−1, 1,−1) = ϕ||(c
∗, 1,−1, 4), M(−1, 1,−1, 1) = ϕ||(c

∗,−1, 1, 0).

The quark tree amplitudes are reproduced as

M(
1
2

,
1
2

,−1
2

,−1
2
) = ϕX(c∗,

1
2

,
1
2

, 0),

M(
1
2

,−1
2

,−1
2

,
1
2
) = ϕX(c∗,

1
2

,−1
2

, 3), M(−1
2

,
1
2

,
1
2

,−1
2
) = ϕX(c∗,−

1
2

,
1
2

, 1),

M(
1
2

,
1
2

,−1
2

,−1
2
) = ϕ||(c

∗,
1
2

,
1
2

, 0),

M(
1
2

,−1
2

,
1
2

,−1
2
) = ϕ||(c

∗,
1
2

,−1
2

, 3), M(−1
2

,
1
2

,−1
2

,
1
2
) = ϕ||(c

∗,−1
2

,
1
2

, 1).

The gluon-quark tree amplitudes are reproduced as

M(1,
1
2

,−1,−1
2
) = ϕX(c∗, 1,

1
2

, 1), M(1,−1
2

,−1,
1
2
) = ϕX(c∗, 1,−1

2
, 3),
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M(1,
1
2

,−1
2

,−1) = ϕ||(c
∗, 1,

1
2

, 1), M(1,−1
2

,
1
2

,−1) = ϕ||(c
∗, 1,−1

2
, 3).

7. Asymptotic Freedom

We reconsider the convolution of three-point YSC with a two-particle intermediate state:∫
dnx1′d

nx2′Φ1,3(1, 2′, 1′) Φ2,3(1′, 2′, 2) =∫
dc1,1′dc12′ϕ1,3(1, 2′, 1′)dc2′2dc1′3 ϕ2,3(1′, 2′, 2)δ(x1 − c11′x1′ − c12′x2′) δ(x1′ − c1′2x2)δ(x2′ − c2′2x2).

In the function arguments, we have abbreviated the points xi by the indices i. The result can be
written in the form of a two-point correlator∫

dc̄12 ϕ̄(c̄)δ(x1 − c̄12x2),

where
ϕ̄(c̄) =

∫ dc2′2
c2′2

dc11′dc1′2 ϕ1,3(
c̄12 − c11′c1′2

c2′3
, c11′)ϕ2,3(c2′ ,2, c1′ ,2).

We substitute Equations (8) and (9) substituting the variables correspondingly. The spectral
parameters of the first factor are denoted by u1, u2′ , u1′ and the ones of the second factor by v1′ , v2′ , v2.

ϕ̄(c̄) =
∫ dc2′2

c2′2
dc11′dc1′2

(
(c̄12 − c11′c1′2)

1+u1′−u2′ c
1+u+

1 −u1′
11′ c

1+v+
2′−v1′+u2′−u1′

2′2 c
1+v+

1′−v2

1′2

)−1
.

We calculate the weights in terms of the spectral parameters marking the weights of the second
factor by a prime:

2`1 = u2′ − u1, 2`2′ = u1′ − u2′ , 2`1′ = u+
1 − u1′ ,

2`′1′ = v2 − v1′ , 2`′2′ = v+1′ − v2′ , 2`′2 = v2′ − v2.

We impose the weight balance condition,

v+2′ − v+1′ = −2`′2′ − n = 2`2′ , v+1′ − v2 = −2`′1′ − n = 2`1′ .

By the change of integration variables c11′ → c = c11′ c1′2
c̄12

, we obtain

ϕ̄(c̄) =
∫ dc2′2dc1′2

c2′2c1′2
B(−2`1′ ,−2`2′)

1

c̄1+2`1′+2`2′
13

.

Thus, the result of the symmetric convolution of three-point YSC is the two-point YSC multiplied
by a factor depending on the weights of the intermediate two-particle state,∫

dx1′dx2′Φ1,3(1, 2′, 1′) Φ2,3(1′, 2′, 2) = const B(−2`1′ ,−2`2′)Φ1,2(1, 2).

We study the resulting dependence on the intermediate state weights entering the Euler beta
function factor. We have 2`1 + 2`1′ + 2`2′ + n = 0, and we change to the helicities 2`+ 1

2 n = 2h:

B(−2`1′ ,−2`2′) = B(2h1 + 2h2′ ,−2h2′ +
1
2

n).

In the interesting case of QCD, where n = 4, h1 = 1, we have with 2h2′ → 2h = 2h̄ + 2ε, 2h̄ integer,

B(2h + 2,−2h + 2)− 1
12ε

(2h̄ + 1)2h̄(2h̄− 1) + (−1)2h̄−12h̄2 + 1
6

+O(ε).
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The finite term results in the contributions to the leading Gell–Mann–Low coefficient with the
values h̄ = 1 for the gluon loop contribution and h̄ = 1

2 for the quark loop contribution.

8. Conclusions

Yangian symmetric correlators provide a tool to treat some features of the high-energy aymptotics
of Quantum Chromododynamics in their realation to Quantum Integrable Systems. We have shown
this in the examples of the kernel of the equation of perturbative Regge asymptotics, the kernels of the
evolution equation of parton distributions, Born scattering amplitudes and coupling renormalization.
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