
Introduction to the BioChemical
Library (BCL): An Application-Based
Open-Source Toolkit for Integrated
Cheminformatics and Machine
Learning in Computer-Aided Drug
Discovery
Benjamin P. Brown1*, Oanh Vu2, Alexander R. Geanes2, Sandeepkumar Kothiwale2,
Mariusz Butkiewicz2, Edward W. Lowe Jr2, Ralf Mueller2, Richard Pape2,
Jeffrey Mendenhall 2* and Jens Meiler3,4*

1Chemical and Physical Biology Program, Medical Scientist Training Program, Center for Structural Biology, Vanderbilt University,
Nashville, TN, United States, 2Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN,
United States, 3Department of Chemistry, Departments of Pharmacology and Biomedical Informatics, Center for Structural
Biology, Vanderbilt University, Nashville, TN, United States, 4Institute for Drug Discovery, Leipzig University Medical School,
Leipzig, Germany

The BioChemical Library (BCL) cheminformatics toolkit is an application-based academic
open-source software package designed to integrate traditional small molecule
cheminformatics tools with machine learning-based quantitative structure-activity/
property relationship (QSAR/QSPR) modeling. In this pedagogical article we provide a
detailed introduction to core BCL cheminformatics functionality, showing how traditional
tasks (e.g., computing chemical properties, estimating druglikeness) can be readily
combined with machine learning. In addition, we have included multiple examples
covering areas of advanced use, such as reaction-based library design. We anticipate
that this manuscript will be a valuable resource for researchers in computer-aided drug
discovery looking to integrate modular cheminformatics and machine learning tools into
their pipelines.

Keywords: drug discovery, drug design, cheminformatics, open-source, deep neural network, QSAR, biochemical
library, BCL

INTRODUCTION

Computer-aided drug discovery (CADD) methods are routinely employed to improve the efficiency
of hit identification and lead optimization (Macalino et al., 2015; Usha et al., 2017). The importance
of in silico methods in drug discovery is exemplified by the multitude of cheminformatics tools
available today. These tools frequently include capabilities for tasks such as high-volume molecule
processing (Hassan et al., 2006; SciTegic, 2007), ligand-based (LB) small molecule alignment (Labute
et al., 2001; Jain Ajay, 2004; Chan, 2017; Brown et al., 2019), conformer generation (Cappel et al.,
2015; Kothiwale et al., 2015; Friedrich et al., 2017a, 2019), pharmacophore modeling (Hecker et al.,
2002; Acharya et al., 2011; Vlachakis et al., 2015), structure-based (SB) protein-ligand docking
(Friesner et al., 2004; Meiler and Baker, 2006; Davis and Baker, 2009; Hartmann et al., 2009; Morris

Edited by:
Adriano D. Andricopulo,

University of Sao Paulo, Brazil

Reviewed by:
N Sukumar,

Shiv Nadar University, India
Wenyi Wang,

Genentech, Inc., United States

*Correspondence:
Jens Meiler

jens@meilerlab.org
Jeffrey Mendenhall

jeffreymendenhall@gmail.com
Benjamin P. Brown

benjamin.p.brown17@gmail.com

Specialty section:
This article was submitted to

Experimental Pharmacology and Drug
Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 10 December 2021
Accepted: 24 January 2022

Published: 21 February 2022

Citation:
Brown BP, Vu O, Geanes AR,

Kothiwale S, Butkiewicz M, Lowe EW,
Mueller R, Pape R, Mendenhall J and

Meiler J (2022) Introduction to the
BioChemical Library (BCL): An

Application-Based Open-Source
Toolkit for Integrated Cheminformatics
and Machine Learning in Computer-

Aided Drug Discovery.
Front. Pharmacol. 13:833099.

doi: 10.3389/fphar.2022.833099

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330991

TECHNOLOGY AND CODE
published: 21 February 2022

doi: 10.3389/fphar.2022.833099

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.833099&domain=pdf&date_stamp=2022-02-21
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full
http://creativecommons.org/licenses/by/4.0/
mailto:jens@meilerlab.org
mailto:jeffreymendenhall@gmail.com
mailto:benjamin.p.brown17@gmail.com
https://doi.org/10.3389/fphar.2022.833099
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.833099

et al., 2009; Kaufmann and Meiler, 2012; Lemmon et al., 2012),
and ligand design. Increasingly, modern drug discovery relies on
customizable and target-specific machine learning-based
quantitative structure-activity relationship (QSAR) and
structure-property relationship (QSPR) modeling during
virtual high-throughput screening (vHTS) (Lo et al., 2018;
Vamathevan et al., 2019).

Frequently, building a drug discovery pipeline with all of these
parts requires users to combine multiple different software
packages into their workflow. This can be challenging because
of different version requirements in package dependencies.
Moreover, file- and data-type incompatibilities between
packages can lead to errors and pipeline inefficiencies. Here,
we describe the BioChemical Library (BCL) cheminformatics
toolkit, a freely available academic open-source software
package with tightly integrated machine learning-based QSAR/
QSPR capabilities.

The BCL is an application-based software package
programmed and compiled in C++. This means that BCL
applications can be integrated into existing pipelines without
the need for package dependency management
(i.e., maintaining directory-dependent virtual
environments, or keeping separate Miniconda
environments for each task). In addition, BCL applications
are modular and can be easily combined into complex
protocols with simple Shell scripts. Output files from the
BCL are primarily common file types that can also be read
as input by other software packages. Its command-line usage
will be familiar to users of the popular macromolecular
modeling software ROSETTA (Kaufmann et al., 2010). The
simple command line user interface (UI) makes it easy to
create complex protocols without extensive coding or
scripting experience. Our goal with this manuscript is to
describe the core functionalities of the BCL
cheminformatics toolkit and provide detailed examples for
real use cases. At the end, we briefly discuss ongoing software
developments that may be of interest to users.

MOLECULE PREPARATION AND
PROCESSING
Fundamentals of BioChemical Library
Command-Line Syntax
The first thing to complete after downloading and installing the
BCL is to add the license file to the/path/to/bcl folder. We further
recommend adding/<path>/<to>/bcl to the
LD_LIBRARY_PATH and PATH environment variables in
the. cshrc/.bashrc. This allows users to access the BCL from
any terminal window simply by typing bcl. exe into the
command-line. For detailed setup instructions, read the
appropriate operating system (OS)-specific ReadMe file in bcl/
installer/.

The BCL is organized into application groups each of
which contains multiple applications. To view the application
groups and associated applications, run the BCL help
command:

bcl.exe help

The BCL has application groups for cheminformatics, protein
folding, machine learning, and other tasks (Supplementary
Table S1). To isolate and view the applications associated with
the application group molecule, for example, run the application
group help command:

bcl.exe molecule:Help

Generally, the syntax to access a BCL application is as follows:

bcl.exe application_group:Application

The help menu for any application cans similarly be
accessed as

bcl.exe application_group:Application --help

These help options list the basic arguments and parameters
available for each application. More detailed help options are also
frequently available for individual application parameters. In this
way, all of the documentation required to run the BCL can be
readily accessed from the command line. The application groups
composing the core of the BCL cheminformatics toolkit include
the following: Molecule, Descriptor, and Model (Table 1).

Filtering
Molecules are input to the BCL in the MDL structure-data format
(SDF) file. Often, molecules that are downloaded or converted
from one source to another contain errors (e.g., incorrect bond
order assignments, undesired protonation states/formal charge,
etc.). Dataset sanitization is a critical component of
computational chemistry and informatics projects. The BCL
molecule: Filter application is the first step in correcting these
errors or identifying molecules that cannot be easily and
automatically corrected.

To see all of the options available in molecule:Filter, run the
following command:

bcl.exe molecule:Filter--help

or view the supplementary material (Supplementary Table
S2,S3).

For the following examples we will make use of a set of the
PlatinumDiverse Dataset, a subset of high-quality ligands in their
protein-bound 3D conformations (Friedrich et al., 2017b).

bcl.exe molecule:Filter \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. matched.
sdf.gz \
-output_unmatched platinum_diverse_dataset_2017_01.
unmatched.sdf.gz \
-add_h -neutralize \
-defined_atom_types–simple \
-logger File platinum_diverse_dataset_2017_01. Filter.log

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330992

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

This command reads in the SDF platinum_diverse_
dataset_2017_01. sdf.gz, saturates all molecules with hydrogen
atoms, neutralizes any formal charges, checks to see whether the
molecules have valid atom types (e.g., carbon atoms making five
covalent bonds are not valid), and then checks to see whether the
molecules have simple connectivity (e.g., whether they are part of
a molecular complex, such as a salt). The neutralization flag
identifies atoms with formal charge and tries to remove the
formal charge. The default behavior allows modification of the
protonation state of the atom (i.e., pH) and/or the bond order.
Other options (more or less aggressive neutralization schemes)
are also available and can be seen in the help menu. Adding
hydrogen atoms and neutralizing charges are not required
operations but are shown above to demonstrate the functionality.

All molecules that match the filter (i.e., molecules with defined
atom types and are not part of molecular complexes) are output
into platinum_diverse_dataset_2017_01. matched.sdf, and
molecules that fail to pass the filters are output into
platinum_diverse_dataset_2017_01. unmatched.sdf. In this
case, all molecules pass the filter. This allows the user to
review the molecules that failed the filter and choose to either
fix them or continue without them.

The molecule:Filter application can also be used to separate
molecules by property and/or substructure using the
compare_property_values flag. For example, to filter out
molecules that contain 10 or more rotatable bonds and a
topological polar surface area (TPSA) less than 140 Å2, the
following command can be used:

bcl.exe molecule:Filter \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. veber_pass.
sdf.gz \
-output_unmatched platinum_diverse_dataset_2017_01. veber_
fail.sdf.gz \
-compare_property_values TopologicalPolarSurfaceArea less 140 \
NRotBond less_equal 10 \
-logger File platinum_diverse_dataset_2017_01. veber.log

Of 2,859 molecules, 395 were first filtered out for have a TPSA
≥140 Å2, and then an additional 84 molecules that had greater
than 10 rotatable bonds were filtered out. Notice that the filters
are applied sequentially, and molecules must pass both filters to

be output to the matched file. Alternatively, the any flag can be
specified such that if a molecule meets any one of the filter
criteria, then it is output to the matched file:

bcl.exe molecule:Filter \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_matched platinum_diverse_dataset_2017_01. any_pass.
sdf.gz \
-output_unmatched platinum_diverse_dataset_2017_01. any_fail.
sdf.gz \
-compare_property_values TopologicalPolarSurfaceArea less 140 \
NRotBond less_equal 10 \
-any -logger File platinum_diverse_dataset_2017_01. any.log

In this example, 2,801 molecules passed at least one of the
filters and only 58 were filtered out.

One may also filter based on substructure similarity. This is
particularly useful if there are specific substructures that are
desired or that need to be avoided. For example, aromatic
amines are a well-known toxicophore and cannot be
incorporated into potential druglike molecules; however, it is
not uncommon to find these substructures in datasets. Here, we
will filter a subset of DrugBank (Wishart et al., 2018) molecules to
remove aniline-containing compounds:

bcl.exe molecule:Filter \
-input_filenames drugbank_nonexperimental.simple.sdf.gz \
-output_matched drugbank_nonexperimental.simple.anilines.
sdf.gz \
-output_unmatched drugbank_nonexperimental.simple.clean.
sdf.gz \
-contains_fragments_from aniline. sdf.gz \
-logger File drugbank_nonexperimental.simple.toxicity_check.
log

In practice, we usually explicitly filter certain toxicophore
substructures via graph search with the
MoleculeTotalToxicFragments descriptor in conjunction with
compare_property_values flag; however, this example
illustrates the flexibility to filter by substructure similarity with
molecule:Filter. In addition to the standard use cases presented
here, molecule:Filter can identify molecules with clashes in 3D
space, conformers outside of some tolerance value from a
reference conformer, exact substructure matches, specific
chemical properties, and more. Some of these filters will be
further explored in other subsections.

Removing Redundancy
Another critical aspect of dataset sanitization is removing
redundancy. This is especially important when preparing
datasets for QSAR model training and testing. If molecules
appear more than once in a dataset, then it is possible that
they could appear simultaneously in the training and test sets,
leading to an artificial inflation in test set performance.

The BCL application molecule:Unique can help with this task.
It has four levels at which it can compare and differentiate
molecules:

TABLE 1 | Overview of BCL application groups covered in this manuscript.

Application
Group

Typical Inputs Typical Outputs

Molecule Molecules (.sdf) Molecules (.sdf)

Descriptor Descriptor sets Dataset binary file (.bin)
Molecules (.sdf;
GenerateDataset only)

Dataset comma-separated
file (.csv)

Dataset binary file (.bin)
Dataset comma-separated
file (.csv)

Model Dataset binary file (.bin) Machine learning model(s)
Machine learning model(s) Predictions

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330993

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

1. Constitutions–compares atom identities and connectivity
disregarding stereochemistry;

2. Configurations–compares atom identities, connectivity, and
stereochemistry;

3. Conformations–compares configurations as well as 3D
conformations;

4. Exact–checks to see whether atom identities and order are
equal with the same connectivities, bond orders,
stereochemistry, and 3D coordinates.

The first time the BCL encounters a molecule in an SDF it
will store it in memory. Any additional encounters with the
same molecule (at the chosen level described above) will be
marked as duplicate encounters. The default behavior is to
output only the first encounter of each molecule. There are
cases in which a molecule appears multiple times but has
different MDL properties and/or property values. It may
not be desirable to lose the stored properties on
duplicate compounds. In such cases, the user can choose
to merge the properties or overwrite the duplicate descriptors
instead.

For example, one may want to see if any high-throughput
screening (HTS) hits have activity onmultiple targets. Previously, we
published nine high-quality virtual HTS (vHTS) benchmark sets
for QSAR modeling binary classification tasks (Butkiewicz et al.,
2013). Here, wewill take a look at the active compounds from each of
those nine datasets and see if any of them have activity on multiple
targets.

bcl.exe molecule:Unique \
-input_filenames 1798_actives.sdf.gz 1843_actives.sdf.gz \
2258_actives.sdf.gz 2689_actives.sdf.gz \
435008_actives.sdf.gz 435034_actives.sdf.gz \
463087_actives.sdf.gz 485290_actives.sdf.gz 488997_actives.sdf.
gz \
-compare Constitutions \
–output_dupes all_actives.dupes.sdf.gz \
–logger File all_actives.unique.log

The output file all_actives.dupes.sdf.gz contains 22 molecules
that are active in at least two different datasets (note that each
individual dataset was pre-processed to remove redundant
molecules). If we want to merge the properties of these 22
compounds and isolate them from the rest of the actives, we
can perform a second molecule: Unique with the
merge_descriptors flag set, and then use molecule:Filter with
the contains flag to isolate the duplicated compounds:

bcl.exe molecule:Unique \
-input_filenames 1798_actives.sdf.gz 1843_actives.sdf.gz \
2258_actives.sdf.gz 2689_actives.sdf.gz \
435008_actives.sdf.gz 435034_actives.sdf.gz \
463087_actives.sdf.gz 485290_actives.sdf.gz 488997_actives.sdf.
gz \
-compare Constitutions–merge_descriptors \
-output all_actives.unique_merged.sdf.gz \
–logger File all_actives.unique_merged.log

followed by

bcl.exe molecule:Filter \
-input_filenames all_actives.unique_merged.sdf.gz \
-contains all_actives.dupes.sdf.gz \
-output_matched all_actives.dupes_merged.sdf.gz \
–logger File all_actives.dupes_merged.log

When merge_descriptors is passed, all unique properties are
included in the resultant output file. If the same property is present
on duplicates, then thefirst observation of that property is stored on the
output molecule. If overwrite_descriptors is passed instead of
merge_descriptors, the last observation of a duplicate property is
stored. By default, without either of these flags only the MDL
properties on thefirst occurrence of amolecule are stored in the output.

It may be that some of the compounds in the previous example
that have activity on multiple targets are actually stereoisomers.
Here, the molecules were compared based on atom identity and
connectivity (Constitutions). Iterative runs of molecule:Unique
coupled with molecule:Filter can be used to identify such cases.

Sorting and Reordering
Sortingmolecules is also useful during vHTS. Aftermaking predictions
on a million compounds with a QSAR model, frequently users will
want to identify some small top fraction of most probable hits for
experimental testing. This can be readily achieved with molecule:
Reorder (note–this example utilizes pseudocode for filenames):

bcl.exe molecule:Reorder \
-input_filenames < screened_molecules.sdf> \
-output < screened_molecules.best.sdf > -output_max 100 \
-sort <QSAR_Score> -reverse \
–logger File < screened_molecules.best.log>

In this example, the reverse flag indicates that the scores will be
sorted from largest to smallest (default behavior is smallest to
largest). Not more than 100 molecules will be output into the file
screened_molecules.best.sdf.gz because of the output_max
specification (the default behavior returns all molecules in the
new order).

In the previous section, we demonstrated that the BCL could
identify duplicate compounds at multiple levels of discrimination.
One important note is that redundant molecules are excluded
(i.e., sent to the output_dupes file) in the order in which they are
observed in the original input. Often, the user may want to control
this sequence by sorting the molecules according to some property.
In these cases, molecule:Reorder can be used to do just that.

Finally, a general note on SDF input and output. Aromaticity is
automatically detected when reading input files; however, output
structures are Kekulized (represented as alternating single-double
bonds) by default. To output an SDF that contains explicit aromatic
bonds (achieved by labeling bond order as 4 in the MDL SDF), pass
the explicit_aromaticity flag on the command line.

Making Fragments
The BCL application molecule:Split gives researchers a tool to
derive fragments from starting small molecules to aid in

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330994

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

pharmacophore modeling, fragment-based drug discovery, and
de novo drug design. There are many different types of fragments
molecule:Split is able generate from whole molecule(s) (Table 2).

For example, we can derive the Murcko scaffold from the
FDA-approved 3rd generation tyrosine kinase inhibitor (TKI)
osimertinib (Ramalingam et al., 2017) as follows:

bcl.exe molecule:Split \
-input_filenames osimertinib. sdf.gz \
-output osi. murcko.sdf.gz \
-implementation Scaffolds

Alternatively, we could remove the Murcko scaffold and
return the other components:

bcl.exe molecule:Split \
-input_filenames osimertinib. sdf.gz \
-output osi. inverse_scaffold.sdf.gz \
-implementation InverseScaffold

Substructure comparisons are described in more detail in
Section 5.1.

Coordinate Information
The last application of interest for molecule processing is
molecule: Coordinates molecule: Coordinates is a minor
application that performs several convenience tasks. First,
molecule: Coordinates can recenter all molecules in the input
file(s) to the origin. Second, it can compute molecular centroids.

Third, molecule: Coordinates can compute statistics onmolecular
conformers.

For example, passing the statistics flag compute statistics on
bond lengths, bond angles, and dihedral angles. Passing the
dihedral_scores flag will compute a per-dihedral breakdown of
the BCL 3D conformer score. The BCL 3D conformer score, or
ConfScore, computes an amide non-planarity penalty in addition
to a normalized dihedral score. Passing the amide_deviations and
amide_penalties will output the amide deviations and penalties
on a per-amide basis, respectively. This can be useful when
comparing conformations obtained from conformation
sampling algorithms, crystal structures, and/or molecular
dynamics (MD) trajectory ensembles. See Section 4 for more
information on conformer sampling.

COMPUTING MOLECULAR PROPERTIES

Computing molecular descriptors/properties is a critical
component of cheminformatics model building. We use the
term “properties” to refer to individual chemical features and
“descriptors” to refer to combinations of properties, often used to
train QSAR/QSPR models; however, the terms are often used
interchangeably in the BCL. In conjunction with substructure-
based comparisons, generating molecular descriptors is arguably
the foundation of LB CADD. The BCL was designed with a
modular descriptor interface and extensible property definitions
framework. This allows both developers and users alike to write
new descriptors for specific applications as needed. To see a list of

TABLE 2 | Fragment splits currently supported by the BCL.

Molecule Split
Implementation

Description Customizations

Scaffolds returns Murcko scaffolds of molecules (Bemis and Murcko, 1996) None

Inverse Scaffold returns the remaining components of a molecule after the Murcko scaffold is removed
(Bemis and Murcko, 1996)

None

GADD Fragments splits molecules into GA-based Drug Database fragments (Daylight Theory: SMILES) None
Largest Common Substructure splits molecules into their maximum common substructures relative to an input set level of equivalence of element-

and bond- type comparisons
ECFP Fragments splits molecules into radial fingerprint fragments similar to those used for extended connectivity

fingerprints (Rogers and Hahn, 2010)
bond distance from each
reference atom

Linear Fragments splits molecule into linear non-branching fingerprint fragments similar to Obabel FP2 fingerprints bond distance from each
reference atom

Rings returns all ring components of molecules None
Rings With Unsaturated
Substituents

returns ring components of molecules along with their unsaturated substituents None

Unbridged Aromatic Rings returns unbridged aromatic ring components of molecules None
Unbridged Rings returns unbridged ring components of molecules None

Chains returns non-ring (chain) components of molecules None
Rigid splits a molecule into rigid components; defined by breaking non-ring, non-amide single-bonds to

heavy atoms
None

Rigid Sans Amide splits a molecule into rigid components; defined by breaking non-ring, non-amide single-bonds to
heavy atoms

None

Isolate splits a molecule with multiple disconnected parts (e.g., salt crystal) into component parts None
Largest splits a molecule with multiple disconnected parts (e.g., salt crystal) into component part and

returns the largest component by molecular weight
None

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330995

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

available predefined molecular properties, perform the following
command:

bcl.exe molecule:Properties–help

The property interface is organized into two general
categories: 1) Descriptors of Molecules, and 2) Descriptors of
Atoms. As you will see throughout this section and Section 6,
properties can be modified and recombined in a highly
customizable fashion. See the Supplementary Materials for an
example containing multiple custom property definitions, as well
as for sample output from the molecule:Properties help menu
options detailing available features.

Computing Whole Molecule Properties
As the names suggest, some descriptors are intrinsic to the whole
molecule, while others are specific to atoms. For example,
compute some whole molecule descriptors for the EGFR
kinase inhibitor osimertinib:

bcl.exe molecule:Properties \
-input_filenames osimertinib. sdf.gz \
-output osi. mol_properties.sdf.gz \
-addWeight NRotBond NRings TopologicalPolarSurfaceArea \
-tabulateWeightNRotBondNRingsTopologicalPolarSurfaceArea \
-output_table osi. mol_properties.table.txt

The flag add will add the specified properties to the SDF as
MDL properties. The tabulate flag will output the properties for
each molecule in row-column format in the file specified by
output_table. There is also a statistics flag that will compute basic
statistics for each of the specific descriptors across all the
molecules in the input SDFs and output to output_histogram.
The key observation regarding the output file is that the values for
Weight, NRotBond, etc., are emergent properties of the whole
molecule.

Computing Atomic Properties
Next, compute some atomic descriptors for osimertinib:

bcl.exe molecule:Properties \
-add_h–neutralize \
-input_filenames osimertinib. sdf.gz \
-output osi. atom_properties.sdf.gz \
-add Weight Atom_SigmaCharge Atom_TopologicalPolar
SurfaceArea \
-tabulate Atom_SigmaCharge Atom_TopologicalPolarSurfaceArea \
-output_table osi. atom_properties.table.txt \
-statisticsAtom_SigmaChargeAtom_TopologicalPolarSurfaceArea \
-output_histogram osi. atom_properties.hist.txt

Notice here that the statistics flag outputs statistics across each
atom property rather than across each molecule property. This is
also the behavior when there are multiple input molecules.
Importantly, here we see that the output is an array of values
for each property. The indices of the array correspond to the atom
indices of the molecule.

Performing Operations on Descriptors
Each category of descriptors can further be modified by
molecule-specific or atom-specific operations. For example,
some whole molecule properties can be obtained by
performing simple operations on the per-atom properties.
TopologicalPolarSurfaceArea (whole molecule property) is the
sum of Atom_TopologicalPolarSurfaceArea (atomic property)
across the whole molecule.

bcl.exe molecule:Properties \
-add_h–neutralize \
-input_filenames osimertinib. sdf.gz \
-output osi. mol_properties.sdf.gz \
-add TopologicalPolarSurfaceArea \
“MoleculeSum (Atom_TopologicalPolarSurfaceArea)”

Check to verify that TopologicalPolarSurfaceArea and
MoleculeSum (Atom_TopologicalPolarSurfaceArea) yield the
same value for osimertinib.

Examples of additional operations include other basic statistics
(mean, max, min, standard deviation, etc.), property radial
distribution function (RDF), Coulomb force, and shape
moment. See the help menu for additional options and details.

Combining Properties to Evaluate
Druglikeness
In Section 2.2 we discussed using the molecule:Filter application
to remove molecules from a dataset that failed specific
druglikeness criteria (e.g., TPSA ≥140 Å2). Several familiar
druglikeness metrics come prepackaged in the BCL
(i.e., Lipinski’s Rule of 5 and Veber’s Rule), as well as several
others inspired by the literature and conventional medicinal
chemistry practices. For each molecule in the Platinum
Diverse dataset, count how many Lipinski and Veber
violations there are. In addition, count as drug-like all
molecules that have fewer than two Lipinski violations:

bcl.exe molecule:Properties \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. druglike.txt \
-tabulate LipinskiViolations LipinskiViolationsVeber
LipinskiDruglike

The property LipinskiViolations counts how many times a
molecule violates one of Lipinski’s Rules (≤ 5 hydrogen bond
donors (HBD; –NH and–OH groups), ≤10 hydrogen bond
acceptors (HBA; any–N or–O), molecular weight (MW) < 500
Daltons, and water-octanol partition coefficient (logP) < 5). The
LipinskiViolationsVeber property computes the number of
times a molecule violates Veber’s Rule (infraction if TPSA
≥140 Å2 and/or number of rotatable bonds >10). The
LipinskiDruglike property is a Boolean that returns 1 if fewer
than two Lipinski violations occur; 0 otherwise. There is
no equivalent Boolean operator for Veber druglikeness;
however, it is simple to implement one using the aforementioned
operators.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330996

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

bcl.exe molecule:Properties \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. veber_druglike.
txt \
-tabulate “Define [VeberDruglike = Less (lhs =
LipinskiViolationsVeber, rhs = 1)]” VeberDruglike

This command makes use of the Define and Less operators to
return 1 if there are no violations to Veber’s Rule and 0 otherwise.
New properties created with Define can also be passed to
subsequent operators on the same line. For example, one
could create a descriptor called VeberAndLipinskiDruglike by
doing the following:

bcl.exe molecule:Properties \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. veber_druglike.
txt \
-tabulate \
“Define [VeberDruglike = Less (lhs = LipinskiViolationsVeber,
rhs = 1)]” \
“Define [VeberAndLipinskiDruglike =Multiply (LipinskiDruglike,
VeberDruglike)]” \
VeberAndLipinskiDruglike

This new descriptor returns 1 if a molecule passes both
druglikeness filters, and 0 otherwise.

Many metrics can be created using the BCL descriptor
framework without modifying the source code. This can be
useful to users who come across novel methods in the
literature and wish to implement them in their own work.
Take as an example a seminal work from Bickerton et al.,
which sought to quantify the chemical aesthetics of potential
druglike compounds. Bickerton et al. asked 79medicinal chemists
at AstraZeneca to answer “would you undertake chemistry on this
compound if it were a hit?” for ~200 compounds each, to which
chemists replied either “yes” or “no” (Bickerton et al., 2012). They
generated a regression function that yielded a quantitative
estimate of druglikeness (QED) using eight chemical
descriptors: molecular weight, logP, number of hydrogen bond
acceptors, number of hydrogen bond donors, polar surface area,
number of rotatable bonds, number of aromatic rings, and
number of ALERTS (Bickerton et al., 2012).

Using the same dataset and descriptors as Bickerton et al.
(generously provided in their Supplemental Materials), similar
druglikeness metrics can be implemented in the BCL through the
descriptor framework. One approach could be to use the
operators described above to reproduce the algebraic
expression described in Eq. 1 of Bickerton et al. with the
parameters described in their Supplemental Materials. The
algebra expressed in BCL notation can be saved to an external
text file and passed to the command-line using standard shell
script syntax (e.g., @File.txt in Bash). Because there are relatively
few descriptors in the Bickerton et al. model, an alternative
approach could be to create a classification model.

Here, we demonstrate the latter by (Eq. 1) generating a
decision tree (DT) model and then 2) converting our DT into

a single logic statement to pass to the BCL descriptor interface.
For comparison, we also generate linear regression (LinReg) and
artificial neural network (ANN) models, and we include the
original QED score. All models are trained to predict a
chemist’s verdict for each potential compound based on the
descriptors used in Bickerton et al. (for details on model
training and validation, see Supplementary Methods; for
details on how to build machine learning models with the
BCL, see Section 7).

Model classification performance is displayed as a receiver-
operating characteristic (ROC) curve (Figure 1). Bickerton et al.
found that the mean QED score for molecules that medicinal
chemists found favorable was 0.67 (±0.16 standard deviation).
Taking the mean and mean plus standard deviation QED scores
as cutoffs, we see that QED performs comparably to multiple
linear regression. The ANN and DT perform better, but perhaps
owing to the small number of and simple relation between
variables there is no performance benefit of the ANN over the
DT (Figure 1).

Now that we have our DT, we can reduce it to a readable if-else
style format that can be converted into a BCL descriptor. Run the

FIGURE 1 | Classifying small molecules’ potential for hit optimization.
Models were trained to predict whether medicinal chemists would perform hit
optimization on target molecules (“yes” or “no”) starting with seven
descriptors: molecular weight, logP, number of hydrogen bond
acceptors, number of hydrogen bond donors, polar surface area, number of
rotatable bonds, number of aromatic rings. Model types include linear
regression (red), decision tree (blue), single-layer artificial neural network
(yellow), and the quantitative estimate of druglikeness score with cutoffs at
mean score for attractive molecules (0.67; gray) and the mean plus one
standard deviation (0.83; black) by Bickerton et al. (Bickerton et al., 2012).
Models trained on supplemental data from Bickerton et al. (Bickerton et al.,
2012).

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330997

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

script SimplifyDecisionTree.py, passing as an argument the DT
model:

/path/to/bcl/scripts/machine_learning/analysis/
SimplifyDecisionTree.py \
./models/DT/model000000. model > DT. logic_summary.txt

We can see in the contents of DT. logic_summary.txt that the
first thing the DT checks is whether the small molecule has less
than two aromatic rings. Molecules with no aromatic rings are
excluded, and molecules with one aromatic ring are subject to
different criteria than molecules with two or more. Subsequent
criteria are then evaluated. We can rewrite the logic summary as a
descriptor and save it in a file called “dt.obj”. Then, we pass that
file to molecule:Properties as a descriptor definition and use it to
classify molecules:

bcl.exe molecule:Properties \
-add_h -neutralize \
-input_filenames platinum_diverse_dataset_2017_01. sdf.gz \
-output_table platinum_diverse_dataset_2017_01. dt_druglike.
txt \
-tabulate “Define (Hitlike = @dt.obj)” Hitlike

The “dt.obj” code object file is a plain text file that can be
opened with any text editor. The syntax mimics the BCL
command-line syntax. Code object files are a convenient way
to write a long, multi-line BCL command-line that makes it easier
to build and reuse feature sets.

On the topic of druglikeness, it is worth noting that additional
advanced methods are also available to classify the chemical space
of molecules in a dataset. In some cases, it is useful to identify
potential drug-like compounds that not only fit the criteria
discussed above but are also similar to some known class (es)
of drugs. For example, when performing fragment-based
combinatorial library design for kinase inhibitors, in addition
to filtering out molecules that violate Veber’s rules, it may also be
desirable to filter molecules that are not sufficiently chemically
similar to existing kinase inhibitors. This can be accomplished by
building and scoring against an applicability domain (AD)model.
For further details on creating and using AD models in the BCL,
see Section 7.4.3.

We have described multiple uses of the molecule:Properties
application, placing special emphasis on how it can be utilized to
build different types of druglikeness metrics. As it is
fundamentally a tool to obtain information from small
molecule chemical structures, molecule:Properties can also be
used to help generate statistical potentials, chemical filters,
QSAR/QSPR models, and more. Some of these use-cases will
be explored in later sections.

SMALL MOLECULE CONFORMER
GENERATION

Small molecule 3D conformer generation is a critical aspect of
both SB and LB CADD because the biologically relevant

conformation of the molecule of interest is rarely known a
priori. In SB molecular docking, small molecule flexibility is
often represented through the inclusion of multiple discrete
pre-generated conformers (Brylinski and Skolnick, 2008;
Morris et al., 2009; Lemmon and Meiler, 2012; Combs et al.,
2013; DeLuca et al., 2015). Small molecule conformations need to
be sampled to arrive at the correct binding pose. Molecules that
appear in binding pockets of substantially different proteins often
bind in distinct modes for each protein, suggesting that the
binding pose of the molecule need not be near the global
energy minima of the molecule (Nicklaus et al., 1995; Boström
et al., 1998; Perola and Charifson, 2004; Sitzmann et al., 2012;
Friedrich et al., 2018). Likewise, in LB pharmacophore modeling,
small molecules need to be flexibly aligned according to their
chemical properties to identify the biologically relevant 3D
features conferring bioactivity.

The BCL conformer generator, also called BCL:Conf, utilizes a
fragment-based rotamer library derived from the crystallography
open database (COD) to combine rotamers consisting of one or
more dihedral angles according to a statistically-derived energy
(Mendenhall et al., 2020). Clashes are dynamically resolved by
iteratively identifying clashed atom pairs and rotating the central-
most bonds between them without changing dihedral bins. In this
way, conformational ensembles are stochastically generated
according to likely rotamer combinations from the COD.

The BCL small molecule conformation sampler is a leader
among general purpose small molecule conformer generation
algorithms (Kothiwale et al., 2015; Mendenhall et al., 2020). In
this section, we demonstrate how to use the BCL to generate
global and local conformational ensembles and sample discrete
rotamers within a molecule.

Generating Global Conformational
Ensembles
Start by generating conformers of osimertinib with the default
settings. Here, all that is needed is an input filename and an
output filename:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. global_confs.sdf.gz

The ensemble_filenames argument is equivalent to the
input_filenames argument used elsewhere (the difference is
historical). The conformers_single_file argument is one of two
output options. The other option is conformers_separate_files. As
implied by the name, in the former case all conformers are output
to a single file. In the latter case, if multiple molecules are input to
ensemble_filenames, then a unique SDF will be written for the
conformational ensembles of each of the input molecules [e.g., if
the input SDF(s) contained 10 molecules, then
conformers_separate_files would output 10SDFs each with a
conformational ensemble of one of the input molecules].

By default, BCL:Conf will perform 8,000 conformer generation
iterations, each of which rebuilds the molecule essentially from
scratch (excepting rigid ring structures and bonds that do not

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330998

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

vary substantially in length or angle). Without any other options,
the top conformations will be clustered, yielding the 100 best-
scoring representatives of each different cluster. An unbiased
view of the conformational space around the ligand can be
obtained by setting the skip_cluster flag. For this application,
it is advisable to lower the number of iterations to roughly double
the number of desired conformations; the conformers are rebuilt
from scratch at every iteration, so there is little gain from doing
more iterations than conformers desired. The returned
conformers are sorted by score. Number of iterations and final
conformers can be specified with the max_iterations and
top_models flags, respectively.

Conformations can be filtered to remove highly-similar
conformations using the conformation_comparer flag (e.g., to
standard RMSD, dihedral distance, etc.) and the tolerance for
what constitutes an “identical” conformer increased from the
default (0.0) to an arbitrarily large value (note that RMSD- and
dihedral-based metrics have units of Å and degrees, respectively)
(Kothiwale et al., 2015). For most applications, we recommend
the use of SymmetryRMSD with a modest tolerance of 0.25 Å. By
default, the tolerance is adjusted automatically to yield the desired
number of clusters so as to best represent conformational space,
however, a user-provided tolerance is treated as a minimal
acceptable difference between clusters.

For high-throughput applications, we recommend reducing
iterations from 8,000 down to 800 or even 250. BCL:Conf’s speed
is nearly linear in number of iterations. Generally, more iterations
yield better performance, at a trade-off of slightly-faster than
linear increase in time per conformation when clustering is used
(Mendenhall et al., 2020).

Alternatively, if conformation_comparer is set to “RMSD 0.0”,
then no filtering or clustering is specified, and BCL:Conf will
perform max_iterations conformer generation iterations,
randomly select top_models conformers, sort them from best to
worst by score, and return them. This option is the fastest, and the
ensembles returned are arguably the most Boltzmann-like. For a
recent comparison of each set of parameters to one another and
other conformer generation algorithms, please see Mendenhall
et al., 2020 (Mendenhall et al., 2020). We recommend generating
conformers with explicit hydrogen atoms added.

Generate conformers using two of the protocols described
protocols. First, run

bcl.exe molecule:ConformerGenerator \
-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. symrmsd_cluster.confs.
sdf.gz \
-max_iterations 8,000 –top_models 25 \
-conformation_comparer SymmetryRMSD 0.25

Then,

bcl.exe molecule:ConformerGenerator \
-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. raw.confs.sdf.gz \
-max_iterations 8,000 –top_models 250 –skip_cluster
-conformation_comparer RMSD 0.0

Notice that the ensemble generated with the SymmetryRMSD
comparer and clustering enabled occupies the densest part
of the broader conformational space sampled in the raw
distribution.

Generating Local Conformational
Ensembles
Local sampling was implemented in the recent algorithmic
improvements to BCL:Conf (Mendenhall et al., 2020). The idea
is that sometimes users know or have predicted with some degree
of certainty a chemically meaningful or bioactive pose of a small
molecule, but additional refinement is needed. This is a common
use case when modeling protein-ligand complexes starting with
another ligand with some similarity to the ligand of interest
(Bozhanova et al., 2021; Hanker et al., 2021). When using pre-
generated conformers for docking or small molecule flexible
alignment, it is unlikely that the best ligand conformer will be
chosen and simultaneously have its position fully optimized in
Cartesian space. Local sampling around an input conformer allows
the user to refine ligand poses after an initial search.

Local sampling in the BCL is accomplished by restricting the
rotamer search in one of four ways:

1. -skip_rotamer_dihedral_sampling–preserve input dihedrals
to within 15-degrees of closest 30-degree bin (centered on
0°) in non-ring bonds.

2. -skip_bond_angle_sampling–preserve input conformer bond
lengths and angles

3. -skip_ring_sampling–preserve input ring conformations
4. –change_chirality–by default, input chirality and isometry are

preserved. Use this flag to allow for generation of enantiomers
and stereoisomers.

These options are not mutually exclusive. Depending on how
they are combined, different levels of sampling can be achieved.
Moreover, they can be used in combination with any of the other
options (e.g., conformation comparison type, clustering)
described above. Generate local conformational ensembles of
osimertinib by first placing all three restrictions:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. skip_all.local_confs.sdf.
gz \
-skip_rotamer_dihedral_sampling
-skip_bond_angle_sampling \
-skip_ring_sampling–skip_cluster

Next, apply only the skip_rotamer_dihedral_sampling and
skip_bond_angle_sampling restrictions to generate a local
ensemble:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. skip_dihed_ring.local_confs.
sdf.gz \

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8330999

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

-skip_rotamer_dihedral_sampling
-skip_ring_sampling–skip_cluster

Both of the ensembles show less conformational diversity than
the global conformational ensemble created in the previous
section. Notice the relative sampling differences between each
of the local conformation sampling protocols described.

Conformational Sampling of Substructures
Often times one may wish to only sample conformations of part
of a molecule. For example, in docking congeneric ligand series,
the core scaffold pose may be known with a high degree of
confidence, and the goal is to optimize the pose of the rest of the
molecule while keep the core scaffold fixed. Alternatively, crystal
structures of protein-ligand complexes often have low or missing
density for part of a bound ligand, and thus coordinate
assignment may not accurate. Discretely sampling specific
small molecule rotamers thus becomes a useful task to perform.

In the BCL, this is accomplished by first assigning an MDL
miscellaneous property named “SampleByParts” to the
molecule(s) of interest. The value of the SampleByParts
property corresponds to the 0-indexed atom indices of atoms
in dihedrals that are allowed to be sampled by molecule:
ConformerGenerator. By encoding this as a molecule-specific
property, we avoid multiple command-line calls with different
atom index specifications, allowing users to generate conformers
more rapidly for multiple molecules and/or different independent
rotamers within a molecule.

As an example, consider a crystal structure of epidermal growth
factor receptor (EGFR) kinase in complex with osimertinib (PDB
ID 4ZAU) (Yosaatmadja et al., 2015). This is the first publicly
available crystal structure of the EGFR-osimertinib complex. In
this structure, the solvent-exposed ethyldimethylamine substituent
is missing density. We will sample alternative conformations of the
ethyldimethylamine substituent than that which is proposed in the
PDB ID 4ZAU. First, add the corresponding atom indices to the file
osimertinib. sdf:

bcl.exe molecule:Properties \
-add “Define [SampleByParts = Constant (3,36,18,19,6,20,21)]”
SampleByParts \
-input_filenames osimertinib. sdf.gz–output \
osimertinib.sample_by_parts.sdf

Also, note that if you have many molecules for which you want
to assign SampleByParts atom indices and you do not want to have
to manually identify the relevant indices, you can also use the
molecule:SetSampleByPartsAtoms application. This application
sets SampleByParts indices based on comparison to user-
supplied substructures. With the SampleByParts property defined
in the SDF, generate global conformers as previously described:

bcl.exe molecule:ConformerGenerator \
-ensemble_filenames osimertinib. sample_by_parts.sdf.gz \
-conformers_single_file osimertinib. sample_by_parts.confs.sdf.
gz \
-top_models 250 –cluster

Observe that sampling global conformers (i.e., sampling across
dihedral bins allowing bond angle/length adjustment and ring
conformer changes) with SampleByParts maintains the
coordinates of all unspecified atoms. In this case, only
dihedrals containing strictly the ethyldimethylamine atoms are
sampled (Figure 2). Similarly, SampleByParts can be used in
conjunction with the local sampling methods described above.

MOLECULE PROPERTY- AND
SUBSTRUCTURE-BASED COMPARISONS

A critical component of LB CADD is molecular similarity
analysis. Provided a set of molecules, we frequently want to
know how similar each molecule is to a reference molecule(s).
Fundamentally, this requires 1) defining what specifically will be
compared between the molecules, and 2) defining the metric with
which similarity will be measured. In the BCL, this is
accomplished primarily through use of the molecule:Compare
application. The command-line syntax of molecule:Compare
differs from the syntax of other applications discussed so far.
The SDF input files to molecule:Compare are passed as
parameters instead of argument flags.

bcl.exe molecule:Compare < mandatory_parameter_one.sdf> \
<optional_parameter_two.sdf> –output <mandatory_output.file> \

This syntax strictly enforces two types of behavior:

1. If a single SDF is specified as a parameter, then all molecules in
the file are compared with one another

2. If two SDFs are specified, then the molecule(s) in the second
file will be compared against the molecule(s) in the first file.

Finally, it is worth noting that molecule:Compare’s performance
scales approximately linearly with number of threads for costly
comparisons. To enable threads, set -scheduler PThread
<number_threads>. We suggest setting number_threads to
number of physical cores on the device for maximum performance.

Defining Molecular Structures
The BCL encodesmolecules as graphs where the edges are bonds, and
the atoms are nodes. For substructure-based comparisons, we can
define equivalence between bonds and atoms using various
comparisons dubbed comparison types. For any substructure-based
comparison between two or more molecules, some combination of
atom and bond comparison types is required, which defines the
equivalence class for the atoms and bonds, respectively. The default
combination differs between tasks. For a summary of available atom
and bond type comparisons, examine the help menu options of any
comparer that utilizes substructures. For example,

bcl.exe molecule:Compare \
-method “LargestCommonSubstructureTanimoto (help)”

will display the default atom and bond comparison types for
this comparison method as well as list the available comparison

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309910

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

types. For example, if atom type resolution occurs at AtomType,
then an SP3 carbon would match another SP3 carbon but not an
SP2. If the resolution is lowered to ElementType, then all carbon
atoms can match one another independent of their orbital
configuration. Similarly, bond type resolutions of BondOrder
and BondOrderAmideWithIsometryOrAromaticWithRingness
will yield different substructure matches.

Not all similarity comparisons occur at the structural/
substructural level. A number of comparison metrics in the
BCL occur between properties computed at the whole
molecular, substructural, or atomic level. Further, distance-
based comparisons between molecules that are constitutionally
identical can also be made.

Similarity Scoring Between Constitutionally
Unique Molecules
In cases where the similarity between unique molecules is desired
there are broadly two approaches for measuring similarity: by
substructure and by property. These are not mutually exclusive;
depending on the desired resolution of the substructure
comparisons, one can further measure property differences
between substructures of different molecules.

One common substructure similarity metric is the Tanimoto
coefficient (TC), expressed between two molecules as the ratio of
matched-to-unmatched atoms:

TC � |A ∩ B|
|A| + |B| − |A ∩ B|, (1)

where A and B are the twomolecules. The intersection of atoms in
(Eq. 1) is the size of the largest common substructure under the
specified comparison types. This is a specific formalism of the
more general Tversky index when both α and β are equal to 1:

TC � |A ∩ B|
|A ∩ B| + α|A − B| + β|B − A|, (2)

The first-generation EGFR tyrosine kinase inhibitor gefitinib
and the second-generation inhibitor afatinib are structurally very
similar. Afatinib is modified from the gefitinib scaffold and

incorporates an acrylamide linker. Visualize the maximum
common substructure (MCS) of afatinib and gefitinib using
molecule:Split (Figure 3):

bcl.exe molecule:Split \
-implementation “LargestCommonSubstructure (file =
afatinib.sdf)" \
-input_filenames gefitinib. sdf.gz–output mcs_gef_afa.sdf.gz

Next, calculate the MCS TC of the gefitinib and afatinib:

bcl.exe molecule:Compare gefitinib. sdf.gz afatinib. sdf.gz \
-method LargestCommonSubstructureTanimoto–output
gef_afa_mcs_tani.txt

This method searches for the single largest common connected
substructure as the intersection of two molecules and computes
the TC. In this case, the MCS TC is approximately 0.48.
Sometimes searching for a single connected substructure can be
disadvantageous. For example, if the primary differences between
molecules results from core substitutions bridging two otherwise
identical halves, then the single largest common substructure
approach will fail to account for the complete degree of
similarity. Alternatively, the user can calculate the maximum
common disconnected substructure (MCDS) TC:

bcl.exe molecule:Compare gefitinib. sdf.gz afatinib. sdf.gz \
-method
LargestCommonDisconnectedSubstructureTanimoto \
–output gef_afa_mcds_tani.txt

As expected, the MCDS TC is greater than the MCS TC at
approximately 0.86.

Distance-Based Scoring Between
Constitutionally Identical Molecules
In Section 4 we demonstrated how the BCL can be used to
generate small molecule conformational ensembles. One
common way to measure the performance of small molecule

FIGURE 2 | Substructure sampling of small molecule rotamers with BCL:Conf. (A) Crystallographic structure of osimertinib bound to EGFR kinase (PDB ID 4ZAU)
contains missing density of the ethyldimethylamine substituent of osimertinib. (B) Global conformational sampling of the osimertinib ethyldimethylamine substituent
without perturbing the rest of the bound pose using BCL:Conf. Osimertinib electron density visualized with green mesh by importing the 2fo-fc map in PyMOL and
contouring at 2σ.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309911

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

conformer generators is to measure how close we can recover
biologically relevant conformations. We can do this in the BCL by
measuring the RMSD or SymmetryRMSD of molecules in our
conformational ensemble to the experimentally determined
conformations. Generate a global ensemble of osimertinib:

bcl.exe molecule:ConformerGenerator \
-add_h -ensemble_filenames osimertinib. sdf.gz \
-conformers_single_file osimertinib. confs.sdf.gz \
-max_iterations 8,000 –top_models 50 –cluster \
-conformation_comparer SymmetryRMSD 0.25 –generate_3D

Note that we are generating the molecule completely de novo
ignoring all information from input coordinates by using
generate_3D. Measure the heavy-atom symmetric RMSD to
the native conformation:

bcl.exe molecule:Compare osimertinib. sdf.gz osimertinib.
confs.sdf.gz \
-method SymmetryRMSD -logger File osi. sym_rmsd_native.log \
-output osi. sym_rmsd_native.txt -remove_h

On examination of osi. sym_rmsd_native.txt, we see that see
that of our 25 generated conformers, 3 are less than 2.0 Å from
the native conformer, and the best is approximately 0.66 Å from
native. If we repeat this process for two additional TKIs, the first-
generation inhibitor erlotinib and the second-generation
inhibitor afatinib, we also see that we are able to obtain
multiple conformers less than 1.0 Å from native.

In addition to RMSD-based metrics, molecule:Compare can
also measure distance in the form of dihedral angle sums and
dihedral distance bins. For additional information, examine the
help menu options.

Largest Common Substructure Alignment
The BCL can be used to align small molecules according to their
MCS. Unlike most of the examples in this section, this is
accomplished through the molecule:AlignToScaffold
application by passing three parameters:

bcl.exemolecule:AlignToScaffold<scaffold><ensemble><output>

For example, to align afatinib to gefitinib based on their MCS,
use the following command:

bcl.exe molecule:AlignToScaffold gefitinib. sdf.gz afatinib.
sdf.gz \
afatinib.ats.sdf.gz \

Instead of aligning by MCS, the user may also align the target
ensemble to the largest rigid component of the scaffold structure
by passing the align_rigid flag. Moreover, if the user wants to a
define an alternative set of atoms to be aligned instead of the
defaults, this can be accomplished by specifying those atoms for
each the scaffold and target ensemble with align_scaffold_atoms
and align_ensemble_atoms, respectively.

Property-Based Flexible Alignment
In addition to substructure-based alignment, we can also perform
property-based alignment. Property-based alignment algorithms
typically maximize the overlap or minimize the distance between
molecular and/or atomic properties (Sliwoski et al., 2014). We
have previously demonstrated that the performance of the BCL
property-based alignment algorithm, also referred to as BCL:
MolAlign, is on par with leading academic and commercial
molecular alignment algorithms (Brown et al., 2019).

BCL:MolAlign combines the conformational sampling ability
of BCL:Conf with the property framework described in Section 3
to minimize the property-distance between two molecules
through flexible superimposition. The property-distance is
computed between mutually-matching atom pairs that are
dynamically updated with each iteration. Alignment pose
sampling is accomplished through a series of moves that
traverse the co-space defined by the relative position of the
two molecules to one another (Brown et al., 2019). BCL:
MolAlign can be used to perform alignments which can be
classified as rigid (two molecules with fixed conformers), semi-
flexible (one molecule with a fixed conformer, one molecule
whose conformers are sampled), and fully-flexible (two
molecules whose conformers are sampled).

To demonstrate how BCL:MolAlign can be used to perform
each of these alignments, consider the classic problem of
obtaining the crystallographic alignment of methotrexate
(MTX) and dihydrofolic acid (DHF). This example is a good
one because the intuitive heterocyclic overlap is not the correct
one (Labute et al., 2001). Instead, alignment of the binding
pockets of dihydrofolate reductase (DHFR) co-crystallized with
MTX (PDB ID 1DLS) and DHF (PDB ID 1DHF) shows only
partial heterocycle overlap and superimposition of the

FIGURE 3 | Maximum common substructure between gefitinib and afatinib. (A) Afatinib (PDB ID 4G5J) and (B) gefitinib (PDB ID 4I22) in their binding mode 3D
conformations next to (C) their maximum common substructure extracted with the BCL.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309912

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

heterocycle carbonyl in DHF and an aromatic hydrogen bond
accepting nitrogen in MTX (Figure 4A). Perform a rigid
alignment of MTX to DHF with the following command:

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf. sdf.gz \
-add_h–neutralize \
-output mtx_dhf_rigid_rmsdx.output \
-logger File rigid_alignment.log -random_seed \
-method “PsiField \
(
output aligned mol a = mtx. rigid_aligned.sdf,
iterations = 1,000,
number outputs = 1
)"

The rigid alignment ranks the correct alignment mode as the
top scoring alignment (Figure 4B). Rigid alignments are rarely
useful for drug discovery because the bioactive conformation of
the target small molecule is usually unknown; however, they
provide a useful check for alignment scoring functions. Next,
flexibly align MTX to the DHFR-binding pose of DHF:

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf. sdf.gz \
-add_h–neutralize \
-output mtx_dhf_rigid_rmsdx.output \
-logger File semi-flexible_alignment.log -random_seed \
-method “PsiFlexField
(
output_aligned_mol_a = mtx. semiflex_aligned.sdf,
rigid_mol_b = true,
number_flexible_trajectories = 3,
fraction_filtered_initially = 0.25,

fraction_filtered_iteratively = 0.50,
iterations = 400,
filter_iterations = 200,
refinement_iterations = 50,
conformer_pairs = 500,
number_outputs = 1,
sample_conformers = SampleConformations (
conformation_comparer = SymmetryRMSD,
generate_3D = 1,tolerance = 0.10,rotamer_library = cod,
max_iterations = 8,000,max_conformations = 50,
cluster = true)
)”

Here, we can see that BCL:MolAlign correctly determines the
alignment of the heterocycles, central aromatic rings, and
(partially) the acidic groups (Figure 4C). Note that
rigid_mol_b is enabled, which fixes the pose of the second
parameter molecule. For a detailed description of how each
argument modifies the alignment algorithm, see Brown et al.
(Brown et al., 2019). For performance considerations, we
generally find that the number of conformer pairs is more
critical to pose recovery than the numbers of iterations at each
stage. For complex ligands with many rotational bonds, we
recommend increasing max_conformations and
conformer_pairs.

Fully-flexible alignment is useful when one is trying to recover
pharmacophore features without knowing the binding pose of
either molecule. Here, the goal is to align pharmacophore features
of the molecules, not recover the native pose of the target
molecule(s) by aligning to another molecule with a known
binding mode. Perform a fully-flexible alignment of MTX
and DHF.

FIGURE 4 | Property-based alignment of dihydrofolic acid and methotrexate with BCL:MolAlign. (A) Superimposed crystallographic structures of dihydrofolic acid
(DHF; PDB ID 1DHF) and methotrexate (MTX; PDB ID 1DLS) in complex with dihydrofolate reductase (DHFR). (B) Rigid alignment of DHF and MTX starting from the
bioactive conformers from the crystal structures. (C) Flexible alignment of MTX (flexible) to DHF (rigid, bioactive conformer). (D) Fully flexible alignment of DHF and MTX.
DHF is colored white and MTX is colored wheat. MTX was randomly rotated and translated prior to rigid alignment to DHF. All flexible alignments performed using
generate_3D to remove bias from start coordinates.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309913

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

bcl.exe molecule:Compare mtx. perturbed.sdf.gz dhf.
perturbed.sdf.gz \
-add_h–neutralize \
-output mtx_dhf_rigid_rmsdx.output \
-logger File fully-flexible_alignment.log \
-random_seed–scheduler PThread 8 \
-method “PsiFlexField \
(\
output_aligned_mol_a = mtx-dhf. fullflex_aligned.sdf, \
rigid_mol_b = false, \
number_flexible_trajectories = 5, \
fraction_filtered_initially = 0.25, \
fraction_filtered_iteratively = 0.50, \
iterations = 800, \
filter_iterations = 400, \
refinement_iterations = 100, \
conformer_pairs = 2,500, \
number_outputs = 1, \
sample_conformers = SampleConformations (\
conformation_comparer = SymmetryRMSD, \
generate_3D = 1,tolerance = 0.10,rotamer_library = cod, \
max_iterations = 8,000,max_conformations = 50, \
cluster = true) \
)”

Fully-flexible alignment of MTX and DHF does not recover
the most native-like conformations ofMTX and DHF; however, it
does recover correct alignments of the heterocycles, central
aromatic rings, and acidic groups (Figure 4D). Notice that we
increased the number of conformer pairs from 500 to 2,500 when
we went from semi-flexible to fully-flexible alignment.

FEATURE GENERATION

The descriptor application group is the workhorse for molecule
featurization. Similar to the molecule:Properties application, the
descriptor application group provides command-line access to
the internal descriptor framework. Unlike molecule, descriptor is
dataset centric; its primary purpose is to generate, manipulate,
and analyze feature datasets for QSAR/QSPR. In this section, we
will demonstrate core applications in descriptor and how they can
be utilized in QSAR/QSPR modeling.

Generating Simple Datasets From
Molecules
Four specifications are required to generate feature datasets from
small molecules:

1. The molecules for which to generate the features; these can be
any valid SDF.

2. The types of features to generate; these are properties such as
those described in Section 3. Typically, these are stored in a
separate file and passed to the command-line at run-time;
however, they can also be specified directly on the command-

line. Importantly, combining multiple descriptors for feature
generation requires the use of the Combine descriptor.

3. The feature result label; this indicates the output(s) that
models will train toward. This can be a constant value
(i.e., if featurization is being done for some purpose other
than model training), a property (e.g., LogP for a QSPR
model), or another label (e.g., bioactivity label from
experimental data).

4. The output filename; three output types are available. The BCL
has a partial binary format with the “.bin” suffix that is used for
all model training. Feature datasets can also be output with the
“.csv” suffix for a comma-separated values (CSV) file.
Moreover, “.csv” files and “.bin” files can be interconverted.
In this way, features generated with the BCL can be used by
other software, and vice versa. For inter-operability withWeka
software, “.arff” format is also supported, with a limitation of
only working with continuous variables.

Generate a simple feature dataset consisting of several scalar
descriptors for a set of confirmed active M1 Muscarinic Receptor
positive allosteric modulators (PAMs) and corresponding true
negatives (Butkiewicz et al., 2013). The SDF corresponding to
these compounds is 1798. combined.sdf. These molecules have
been labeled with the MDL property “IsActive” such that the
confirmed actives have a value of 1 and the negatives have a value
of 0.

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename = 1798. combined.sdf)” –id_labels
“String (M1)” \
-result_labels “Combine (IsActive)” \
-feature_labels “Combine (Weight, LogP,HbondDonor,
HbondAcceptor)” \
-output 1798. combined.scalars.bin

Binary files were designed for rapid non-consecutive reading
and writing, but the interested reader will find that the file format
consists of a textual header specifying the properties and their
sizes followed by a simple binary output of all features. Dataset
information and statistics can be obtained by calling descriptor:
GenerateDataset compare. For example:

bcl.exe descriptor:GenerateDataset–compare 1798.
combined.scalars.bin

To better understand the binary file encodings, convert 1798.
combined.scalars.bin to a CSV file:

bcl.exe descriptor:GenerateDataset \
-source “Subset (filename = 1798. combined.scalars.bin)” \
-output 1798. combined.scalars.csv

The first column of every row contains the ID label “M1” as
specified when the binary file was generated. The next four
columns contain the descriptors specified above: Weight,
LogP, HbondDonor, and HbondAcceptor. The very last

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309914

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

column is the result value, which contains either 0 or 1 depending
on the value in the SDF MDL property “IsActive”.

Convert CSV file back to a binary file:

bcl.exe descriptor:GenerateDataset \
-source “Csv(filename = 1798. combined.scalars.csv, number
result cols = 1, number id chars = 2)” \
-output 1798. combined.scalars.bin

CSV files do not contain all of the supplementary
information contained within the partial binary file format.
Thus, certain information needs to be provided directly. For
example, we need to specify the number of characters that
are part of the row ID label, otherwise the BCL will try to
convert the string (or numerical) ID into feature values. ID
labels therefore must be fixed-width. In addition, we need to
tell the BCL how many of the columns are result values. By
default, the BCL will assume that only the last column is
the result label. By specifying number result cols = N, we tell
the BCL to take the last N columns of the CSV as the result
value(s).

Also notice that the feature and result label information is not
informative after converting from CSV to binary. The values are
transferred to the new file format, but the BCL obviously cannot
know where those values came from. These must be manually
specified.

bcl.exe descriptor:GenerateDataset \
-source “Csv(filename = 1798. combined.scalars.csv, number
result cols = 1, number id chars = 2)” \
–id_labels “String (M1)” \
-result_labels “Combine (IsActive)” \
-feature_labels “Combine (Weight, LogP,HbondDonor,
HbondAcceptor)” \
-output 1798. combined.scalars.bin

In this case, the feature labels are internal parsable properties
of the BCL; however, when relabeling feature labels upon
converting from CSV to binary format, the user can specify
any labels so long as the total number of labels is consistent
with the number of feature columns.

Modifying Datasets
After generating a dataset or importing a CSV file and converting
it to binary format, feature datasets can be modified. The most
frequent form of modification is randomization. Training a
machine learning model, for example a neural network, often
requires dataset randomization.

bcl.exe descriptor:GenerateDataset \
-source “Randomize [Subset (filename = 1798. combined.scalars.
bin)]” \
-output 1798. combined.scalars.rand.bin

Binary files are read by the “Subset” retriever. The Randomize
operator is passed through the source flag and provided the
dataset retriever option corresponding to the binary file.

Additional dataset operators can be classified by how they
modify the dataset. For example, the PCA (principal components
analysis) and EncodeByModel operators perform dimensionality
reduction across feature (column) space, while the KMeans
operator reduces dimensionality across molecule (row) space.
Other operators are useful during model training and validation,
such as Balanced, Chunks, and YScramble. Still others can be
used to select particular ranges of rows from a dataset, such as
Rows. Here, we will take a look at a few dataset operators. For full
details on all available dataset operators, see the descriptor:
GenerateDataset help menu.

Start by generating a dataset for the Kir2.1 inward rectifying
potassium channel using the dataset compiled in Butkiewicz et al.
(Butkiewicz et al., 2013) and the best performing LB descriptor set
from Mendenhall and Meiler (Mendenhall and Meiler, 2016).
This dataset contains 301,493 small molecules, 172 of which are
confirmed active molecules. For eachmolecule, there will be 1,315
feature columns and 1 result column.

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename = 1843. combined.sdf.gz)”
–scheduler PThread 8 \
-feature_labels MendenhallMeiler2015. Minimal.object \
-result_labels “Combine (IsActive)” \
–output 1843. Minimal.bin–logger File 1843. Minimal.log

Randomize the dataset:

bcl.exe descriptor:GenerateDataset \
-source “Randomize (Subset (filename = 1843. combined.bin))” \
-output 1843. combined.rand.bin–logger File 1843. Minimal.
rand.log

Note that we could have generated a randomized dataset with
a single command by wrapping the SdfFile dataset retriever with
Randomize; however, the Randomize dataset retriever is unable
to support hyperthreading. Consequently, it is faster to generate
larger datasets first using multiple threads and randomize them
afterward. Next, perform PCA on the dataset using OpenCL to
accelerate the calculation with a GPU. The flag opencl is optional
and may not be supported on all platforms, but may provide a
substantial speedup, depending on the GPU and dataset size:

bcl.exe descriptor:GeneratePCAEigenVectors \
-training “Subset (filename = 1843. Minimal.rand.bin)” \
-output_filename 1843. Minimal.PCs.dat–opencl \
-logger File 1843. Minimal.PCs.log

Finally, generate a new feature dataset accounting for 95% of
the variance:

bcl.exe descriptor:GenerateDataset \
-source “PCA(dataset = Subset (filename = 1843. Minimal.
rand.bin), fraction = 0.95, filename = 1843. Minimal.PCs.
dat)” \
-output 1843. Minimal.rand.pca_095. bin–opencl \
-logger File 1843. Minimal.rand.pca_095. log

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309915

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Performing PCA on the dataset has reduced the number of
descriptors from 1,315 to 695. Alternatively, one could use
EncodeByModel to reduce the number of feature columns
using a pre-generated model. The following example utilizes
pseudocode and a hypothetical pre-generated ANN with the
MendenhallMeiler2015. Minimal.object features.

bcl.exe descriptor:GenerateDataset/
-source “EncodeByModel [storage = File (directory = /path/to/
model/directory, prefix = model),retriever = Subset
(filename=<my_binary_file.bin>)]” \
-output < my_encoded_binary_file.bin>

The input file < my_binary_file.bin > would have 1,315
descriptors from MendenhallMeiler2015. Minimal.object, and
the output file < my_encoded_binary_file.bin > would have a
number of descriptors corresponding to the number of neurons
in the final hidden layer preceding the output layer of our
hypothetical pre-generated ANN.

As a practical note, we have found that PCA-based
dimensionality reduction useful for dataset visualization, but of
limited value in improving model performance. Performance can
often be recovered to that of the initial dataset when requiring at
least 95% of the variance to be preserved, but performance
improvement is rare from PCA, when using a regularized
method such as dropout-ANNs.

Suppose you encoded the same original feature set using two
different models and now want to combine the new encoded files
for further training. This can readily be accomplished with the
Combine operator.

bcl.exe descriptor:GenerateDataset \
-source “Combined [Subset (filename=<my_binary_file_1.
bin>), Subset (filename=<my_binary_file_2. bin>)]” \
-output < my_combined_binary_file.bin>

Next, instead of performing dimensionality reduction along
the column (features) axis, we will reduce the dimensionality
along the row (molecule) axis. Perform K-means clustering of the
feature dataset to reduce our row number from 301,493 to 300.

bcl.exe descriptor:GenerateDataset \
-source “KMeans [dataset = Subset (filename = 1843.
combined.rand.bin), clusters = 300]” \
-output 1843. combined.rand.k300. bin \
-logger File 1843. combined.rand.k300. log

This form of dimensionality reduction is unlikely to be as
useful for training a deep neural network (DNN); however, it can
be useful in similarity analysis in low dimensional feature space.
Some of the datasets generated in this section will be referenced
again in Section 7 to train classificationmachine learning models.

Small Molecule Autocorrelation Descriptors
As indicated in the previous section, the BCL can also compute
signed autocorrelation functions. Autocorrelations are regularly
used as features in cheminformatics machine learning models

(Sliwoski et al., 2014). When computed for atomic descriptors,
such as Atom_SigmaCharge, the autocorrelations sum pairwise
property products into distance bins by calculating the separation
between molecule atom pairs in number of bonds (2DA) or
Euclidean distance (3DA). Each distance bin is further separated
into three sign-pair bins corresponding to property value sign of
each atom in the pair (Eq. 3) (Sliwoski et al., 2015).

A(ra, rb) � ∑N

j
∑N

i
δ(ra ≤ ri,j < rb)PiPj, (3)

where ra and rb are the boundaries of the current distance interval,
N is the total number of atoms in the molecule, r(i,j) is the distance
between the two atoms being considered, δ is the Kronecker delta,
and P is the property computed for each atom. 2DAs are
conformation-independent, while 3DAs are conformation-
dependent (Figure 5).

The “dasatinibs.sdf” file contains the coordinates and
connectivity for two dasatinib molecules: one with 2D
coordinates, the other with 3D coordinates. Compute the
signed 2DA and 3DA for Atom_SigmaCharge on both
dasatinib molecules.

bcl.exe descriptor:GenerateDataset \
–source “SdfFile (filename = dasatinibs.sdf)” \
-feature_labels “Combine (3daSmoothSign (property = Atom_
SigmaCharge))” \
-result_labels “Combine [Constant (999)]” -output dasatinibs.
3da.csv \
–logger File dasatinibs.3da.log
bcl.exe descriptor:GenerateDataset \
–source “SdfFile (filename = dasatinibs.sdf)” \
-feature_labels “Combine [2DASmoothSign (property = Atom_
SigmaCharge)]” \
-result_labels “Combine [Constant (999)]” -output dasatinibs.
2da.csv \
–logger File dasatinibs.2da.log

Upon examination of the tabulated 2DA and 3DA values for
the two different dasatinib molecules, we observe that the 2DA
contains the same values in both cases, while the 3DA contains
unique values for the different conformers. To visualize the
variance in each 3DA distance bin, we can tabulate the 3DAs
for Atom_SigmaCharge on an ensemble of 3D conformations for
several different molecules (Figure 6). Dasatinib is a TKI with 7
rotatable bonds, amprenavir is a HIV protease inhibitor with 12
rotatable bonds, AZD1283 is an antagonist of the P2Y12 receptor
with 9 rotatable bonds, and ethinyl estradiol is a synthetic
estradiol with only 1 rotatable bond that binds and activates
estrogen receptors.

We can see that the variance in each descriptor column
increases as a function of distance and number of rotatable
bonds. In ethinyl estradiol there is little change in descriptor
column variance as a function of distance. In contrast, molecules
with increasing numbers of rotatable bonds display increasingly
large variances at longer distance bins. This suggests that
increasing conformational heterogeneity at longer distance
bins leads to increased noise. Indeed, we have previously

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309916

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

found that extending LB 3DAs beyond approximately 6.0 Å
generally results in reduced performance on QSAR
classification tasks (Sliwoski et al., 2015), consistent with our
example here (Figure 6). Importantly, however, at shorter
distances where there is less conformational heterogeneity we
are able to improve our performance with 3DAs even when the
active conformation of the small molecule is unknown (Sliwoski
et al., 2015; Mendenhall and Meiler, 2016). Moreover, models
making predictions on molecules that are fairly rigid (e.g., steroid
derivatives) may benefit from longer range distance bins.

It is also possible to use molecule:Properties to tabulate and
compute statistics for molecules instead of plotting the CSV
file data from descriptor:GenerateDataset. Here, we used
descriptor:GenerateDataset to illustrate its usage. In
practice, we do not just use a single 3DA or 2DA, but
instead build sets of descriptors for feature and result

labels and store them as separate code object files. As
mentioned previously, the code object file format is the
same format as allowed on the command line.

MACHINE LEARNING ARCHITECTURES
AND APPLICATIONS

The BCL supports multiple machine learning algorithms for
QSAR/QSPR modeling. Among the methods available are
ANNs (including DNNs and multitasking neural networks)
(Dahl, 2014; Bharath et al., 2015; Mendenhall and Meiler,
2016; Xu et al., 2017), support vector machines (SVM) (Kawai
et al., 2008; Ma et al., 2008; Mariusz et al., 2009), Kohonen
networks (KN) (Kohonen, 1990; Korolev et al., 2003; Wang
et al., 2005), restricted Boltzmann machines (RBM) (Le Roux
and Bengio, 2008; Tijmen Tieleman, 2008), and decision trees
(DT) (Mariusz et al., 2009; Sheridan, 2012; Butkiewicz et al.,
2013). GPU acceleration is available for ANNs and SVMs
through OpenCL (Munshi, 2008). The primary application
group for machine learning in the BCL is model. To see the
applications within model, check the help menu:

bcl.exe model:Help

Overview of BioChemical Library Model
Training and Validation
Here, we will first introduce the user to the overall workflow
involved in training, analyzing, and subsequently testing BCL
machine learning models. The basic workflow for model training
is the same for each machine learning method and can be
completed via the model:Train application. To see the
available machine learning methods, access the help options
within model:Train.

bcl.exe model:Train --help

FIGURE 5 | Illustration of signed autocorrelation descriptors. Signed autocorrelations are the sums of products of each atom property pair (e.g., i0,j2) in a distance
bin defined by (A) bond separation, or (B) Euclidean distance in 3D space. Within each distance bin, atom property pairs are further separated into bins corresponding to
the sign of the property of the first (left hand side of ‘/’) and second (right hand side of ‘/’) atoms in the pair.

FIGURE 6 | Signed 3DA variance increases with bin distance in flexible
molecules. The 3DA distance bins extend to 6.0 Å at intervals of 0.25 Å. At
each distance bin, there are three sign-pair bins (−/−, +/+, −/+).

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309917

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

As of this writing, the available model types can be found in
Table 3. The most reliable way to see available model types is via
the help menu options of your version of the BCL.

To expose all options for a particular machine learning
method, pass the algorithm name as the first parameter to the
application with the help menu request:

bcl.exe model:Train “<training algorithm>(help)”

The following is a typical command-line format to train a
model beginning with a pre-generated descriptor binary file:

bcl.exe model:Train < training algorithm> \
-max_minutes < maximum time of training in minutes> \
-max_iterations < maximum number of training iterations> \
-final_objective_function < performance metrics for model
evaluation> \
-feature_labels < names of descriptors> \
-training < training set> \
-monitoring < monitoring set> \
-independent < independent set> \
-storage_model < location in which to store the model> \
-opencl < enables GPU acceleration> \
-logger File < log file>

Model performance is evaluated with the user-specified
objective function. The choice of objective function is typically
related to the task being performed (e.g., classification vs
regression) (Table 4).

BCL model:Train is designed to readily enable cross-
validation. The application is flexible with respect to
serialization of model predictions for each of the monitoring,
independent, and training partitions as well as writing of
the model itself. For example, in five-fold cross-validation, the
dataset is split into five chunks. For each round of cross-

validation, the model is trained on four-fifths of the dataset,
and the other fifth “independent” set is left out for testing. One of
the chunks can additionally be specified as the monitoring
dataset. The monitoring dataset can be used for early
termination of the model training session to prevent
overtraining (early termination is largely deprecated in favor
of dropout to prevent earlier termination; we demonstrate it
here to illustrate the syntax).

The initial dataset set is split into monitoring,
independent, and training partitions with model:Train by
assigning chunks with the dataset retriever responsible for
binary format files, Subset. In the following pseudocode
example, we will set the options to divide the training set
into the following five chunks (0-indexed): chunks one to four
will be used as the training set, and chunk 0 will be used as
both the monitoring set and the independent set (this is
appropriate only if the monitoring dataset is not being
used for early termination).

-training “Subset (number chunks = 5,chunks = [1, 4],
filename=<my_dataset.bin>)”
-monitoring “Subset (number chunks = 5,chunks = [0],
filename=<my_dataset.bin>)”
-independent “Subset (number chunks = 5,chunks = [0],
filename=<my_dataset.bin>)”

Dataset partitioning is repeated for each round of cross-
validation until each chunk takes a turn as the independent
set. Then, the predictions of all the test sets are pooled
together by the model:PredictionMerge application:

bcl.exe model:PredictionMerge \
-input_model_storage ‘File (directory = /path/to/models/
,prefix = model)’ \
-output < output_pooled_predictions>

TABLE 3 | Machine learning model types.

Model Name Description

Applicability Domain Kohonen A Kohonen map-based implementation to detect whether a point is within the applicability domain of a model. All nodes will
use the same spline for computing applicability. This implies an assumption that the model in question has the most difficulty
predicting things far from any node center, regardless of which node center it is

Applicability Measure Kohonen A Kohonen map-based implementation to detect whether a point is within the applicability domain of a model. All nodes will
have their own distance metric, which is valid if the model is capable of distinguishing between classes of features (e.g., if the
model in question is a Kohonen map itself)

Decision Tree A decision tree trained using one of several methods to partition feature indices

Kappa Nearest Neighbor A k-nearest-neighbor predictor; iteration optimizes k
Kohonen A Kohonen-network based predictor
Leverage Computes the leverage matrix (projection or hat matrix), which allows identification of significant outliers that would likely

substantially influence any simple linear model of system. A returned value >2 represents probable outliers, while greater
than 3 represent definitive outliers. The average value is 1 for all values in the training set

Linear Regression Performs multiple linear regression
Multiple Output Support Vector Machine A support vector machine with multiple outputs using sequential-minimal-optimization
Neural Network A neural network with many customizable hyperparameters (e.g., hidden layer count, layer size, dropout type and fraction,

transfer function, initialization with pre-generated models, learning rate, weight update/backpropagation scheme, etc.)

Restricted Boltzmann Machine A restricted Boltzmann machine neural network
Support Vector Machine A support vector machine trained using sequential-minimal-optimization

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309918

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

This command line averages predictions made on the same
independent set, though other pooling operations are available
(see help). Prediction performance is evaluated with the specified
objective function on the pooled predictions using the model:
ComputeStatistics application:

bcl.exe model:ComputeStatistics \
-input < output_pooled_predictions> \
-obj_function < performance_metric> \
-filename_obj_function < output_performance_metric_file>

Simplifying the Model Training and
Validation Framework in Practice
To simplify model training, we have written a Python script
“launch.py” to perform training and cross-validation with one
command.

To see a list of model training operations (descriptor selection
or scoring, for example):

/path/to/bcl/scripts/machine_learning/launch.py–h

To see the list of available flags for cross-validation, call

/path/to/bcl/scripts/machine_learning/launch.py–t cross-
validation–h

The following pseudocode example generates a simple linear
regression model:

/path/to/bcl/scripts/machine_learning/launch.py -t cross-
validation \
--cross-validation 5 --local \
--learning-method LinearRegression (objective function =
RMSD, \

solver = Cholesky (smoothing = 0)) \
--id linear_regression --final-objective-function RMSD \
--datasets <my_dataset.bin > --override-memory-multiplier: 1.25

More complex commands can be easily prepared inside of
a configuration file to be passed to the “launch.py” script. A
sample configuration file is available in the Supplementary
Material.

bcl/trunk/scripts/machine_learning/launch.py–t
cross_validation \
--config-file config. example.ini

The “launch.py” script will automatically generate three
new directories titled “log_files”, “results”, and “models”. Into
each of those three directories a labeled directory (name
specified with the id flag) is made. Model prediction output
files and results of the final objective function are stored in
the labeled directory within the “results” folder. Log files,
commands, and autogenerated scripts are stored in the
labeled directory within the “log_files” folder. Finally, final
model details are stored in the labeled directory within the
“models” folder.

In addition to running the training jobs locally, training can be
run on a SLURM cluster using the slurm flag. In this way, large
cross-validation jobs may leverage high-performance computing
with minimal changes to the configuration. See additional
configuration operations, such as slurm-host, using launch.
py–t cross-validation–h.

Applying Models to Independent Test Sets
for Virtual High-Throughput Screening
Note that in the above examples the training and test splits are
derived from the same binary format file. This is not strictly

TABLE 4 | Objective functions for machine learning models.

Name Prediction task Formula

Accuracy Classification Accuracy � TP+TN
P+N

AUC (Area under the receiver operating characteristic curve) Classification TPR � TP
FN+TP

FPR � FP
TN+FP

AUC � ∫ TPR d(FPR)
LogAUC Classification

logAUC � ∫0.1

0.001
TPR d(log(FPR))∫0.1

0.001
d(log(FPR))

MCC (Matthew’s correlation coefficient) Classification MCC � TPpTN−FPpFN����������������������
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

√
PPV (Positive predictive value) Classification PPV � TP

TP+FP
Enrichment factor Classification EF(x%) � PPV(x%)

PPV(100%)
MAE (Mean absolute error) Regression

MAE � 1
N∑N

i
|f(xi) − yi |

MAE_NMAD (MAE normalized by the mean absolute deviation) Regression MAENMAD � MAE
1
N∑N

i
|yi−�y|

RMSD (Root-mean-square deviation) Regression
RMSD �

�������������
1
N∑N

i
(f(xi) − yi)2

√
NRMSD (RMSD normalized by the range) Regression NRMSD � RMSD

max(y)−min(y)
RMSD_NSTD (RMSD normalized by the standard deviation) Regression RMSD NSTD � RMSD

Stdev(y)

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309919

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

necessary, and the user can supply alternatively derived
validation splits prepared in separate files. Moreover, using
a dataset split as the independent test set is generally only
useful for model validation. To apply trained model
predictions to new molecules in a vHTS, either model:Test
or molecule:Properties can be used. For example, if a model is
trained and validated using five-fold cross-validation, then the
merged prediction on an external test set can be made as
follows with model:Test:

bcl.exe model:Test \
-retrieve_dataset “Subset (filename=<vHTS.test.bin>)” \
-storage_model “File (directory = /path/to/models/,prefix =
model)” \
-average output < vHTS.model_test.csv> –logger File <
vHTS.model_test.log>

Likewise, predictions can be made with molecule:Properties
using the Prediction operators:

bcl.exe molecule:Properties–input_filenames < vHTS.test.sdf> \
–tabulate \
“Define {predicted_activity = PredictionMean [storage = File
(directory = /path/to/models/,prefix =model)])}” predicted_activity \
“Define {local_ppv = PredictionInfo [predictor = File
(directory = /path/to/models/,prefix = model),metrics
(LocalPPV)]}” local_ppv \
“Define {XActive = Multiply [predicted_activity, Greater (lhs
= local_ppv,rhs = 0.50)]}” XActive \
-output_table < vHTS.prop.test.csv > -logger File < vHTS.prop.
test.log>

Notice that scoring new compounds via molecule:Properties
allows multiple outcome metrics to be reported and modified on-
the-fly, while scoring with model:Test just outputs the raw
prediction values (and optionally just the mean with average).
In this case, the output of model:Test is equivalent to
“predicted_activity” from molecule:Properties. The property
“XActive” is the “predicted_activity” score when the local PPV
is greater than 0.5, and 0.0 otherwise. The localPPV metric
calibrates model output values to local classification
probability on the test sets. It is an estimate of the PPV at a
singular model output value. This is in contrast to traditional
PPV, which specifies the value of a prediction at, or above, a given
output value (assuming positive parity). This metric assumes that
the trained model prediction value varies monotonically with the
actual prediction likelihood.

Supervised Learning
Training a Standard Artificial Neural Network to
Classify Kir2.1 Positive Allosteric Modulators
ANNs are one of the most commonly employed classes of non-
linear classifiers in QSAR modeling for LB-CADD due to their
strong predictive power (Dahl, 2014; Xu et al., 2017; Vamathevan
et al., 2019). To see all the options available to a neural network in
the BCL, call

bcl.exe model:Train “NeuralNetwork (help)”

The BCL supports shallow and deep single- and multi-tasking
neural networks. Transfer functions include linear, sigmoid,
rectified linear, and leaky rectified linear. For a network with L
hidden layers indexed l ∈ (1 . . . L), forward propagation for
l ∈ (0 . . . L − 1) can be described as

z(l+1) � w(l+1)yl + b(l+1), (4)
y(l+1) � f(z(l+1)) (5)

where yl is the output vector at layer l connected to the input
vector z(l+1) at layer l+1 by weights w and biases b, and f is the
transfer function applied to each set of inputs into the l+1 layer.
Correspondingly, the activation of a single neuron i in hidden
layer l+1 can be represented as

z(l+1)i � w(l+1)
i yl + b(l+1)i , (6)

y(l+1)
i � f(z(l+1)i) (7)

to yield the output y(l+1)
i from layer l+1. We have found that for

classical QSAR tasks a simple mean-squared error (MSE) cost
function is adequate.

Historically, overtraining in ANNs has been prevented by
early termination of training when the monitoring dataset
improvement rate or improvement scores fail to progress
beyond a pre-determined extent. More recently, we have
demonstrated that dropout is a better alternative to prevent
model overtraining in QSAR tasks (Mendenhall and Meiler,
2016). The dropout approach has been described elsewhere in
detail (Nitish et al., 2014). Briefly, during forward propagation
each layer of the ANN is assigned a probability p according to
which the output value yl

i of each i neuron in the layer l will be
independently set to zero (i.e., “dropped”).

z(l+1)i � w(l+1)(rl*yl) + b(l+1)i , (8)
Here, rl is a vector with the same dimensions as yl whose

values are either 0 (at fraction p) or 1 (at fraction 1—p) and
multiplied elementwise by the values in yl. At the end of every
training batch, rl is shuffled. If neurons are dropped with a
probability p, then at test time the corresponding weights are
scaled down by the factor 1—p.

Train a shallow (single hidden layer) neural network to classify
molecules as either active or inactive PAMs of Kir2.1 beginning
with the randomized dataset we generated in Section 6.2:

launch.py -t cross-validation --local \
--datasets 1843. combined.rand.bin --id 1843. ann.1x32_005_025 \
--config-file config. example.ann.ini \

The configuration file specifies the learning method as follows:

learning-method: ‘NeuralNetwork (\
transfer function = Sigmoid, \
weight update = Simple (alpha = 0.50,eta = 0.05), \
dropout (0.05,0.25), \

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309920

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

objective function = % (objective-function)s, \
scaling = AveStd, steps per update = 1, hidden architecture (32), \
balance = True, balance target ratio = 0.10, \
shuffle = True, input dropout type = Zero \
)’

Note that we are asking for an ANN with one hidden layer
composed of 32 neurons. The input and hidden layers will have 5
and 25% dropout, respectively. In addition, we have enabled class
balancing. We have far fewer active (172) than inactive (301,321)
compounds. Balancing oversamples the underrepresented
(minor) class to achieve a ratio of (in this case) 0.10 with the
most common class (major). The balance max repeats flag can
also be set to specify the maximum number of times that a feature
can be repeated. This does not lead to overtraining because of
dropout. Batch size is controlled with the steps per update flag.
The objective-function variable is defined in the configuration
file as

“AucRocCurve (cutoff = 0.5,parity = 1,x_axis_log = 1, min fpr
= 0.001, max fpr = 0.1)”

Additional variables, such as the maximum number of
training iterations (20), number of rounds of cross-validation
(5), monitoring dataset (independent set), etc. are also set in the
configuration file.

As a comparison, train an additional ANN with the same
parameters using the feature set whose dimensions were reduced
with PCA in Section 6.2:

launch.py -t cross-validation --local \
--datasets 1843. combined.rand.pca_095. bin \
--id 1843. pca_095. ann.1x32_005_025 \
--config-file config. example.ann.ini \

The “launch.py” pipeline automatically generates a ROC curve
for each model with and without a log scaled x-axis (Figure 7).
The overall AUC is quite similar between the two methods
(Figures 7B,D); however, the model trained with the PCA
descriptors has worse early enrichment (logAUC = 0.39) than
the model trained with the full descriptors (logAUC = 0.46)
(Figures 7A,C).

Training a Deep, Multitasking Neural Network to
Predict Solubility
Predicting physicochemical properties such as solubility is a
challenging but critical component of lead compound
optimization. Many substitutions to a candidate molecule may
increase the potency or selectivity, but at the cost of worsening
solubility, metabolic stability, or other properties. Therefore, it is
advantageous to prioritize synthesis and evaluation of derivatives
that are simultaneously predicted to be active and have a
promising chemical profile. To do this, we need a target-
agnostic QSPR model.

Dahl and colleagues demonstrated that multitask learning
could improve the prediction of multiple outputs
simultaneously if the training tasks are correlated (Dahl, 2014;

Xu et al., 2017). As an example of how such a model is trained
with the BCL, we will train a deep neural network to
simultaneously predict three measures relating to solubility:
the water-octanol partition coefficient (logP), the aqueous
solubility (logS), and the hydration free energy (i.e., the
solvation free energy in water; ΔGhydration). Note that not the
descriptors, model architecture, nor hyper-parameters have been
optimized for performance. This can be seen as an “out of the
box” model a user might create.

Molecules for training and validation are sourced from
previously published databases (Syracuse Research
Corporation, 1994; Edward W.; Lowe et al., 2011; Mobley and
Guthrie, 2014;Wu et al., 2018) and combined with BCLmolecule:
Unique to remove redundant compounds (see Supplementary
Methods for details). Note that we anticipate some additional
error in predictions introduced by not averaging replicate
experimental measurements of QSPR properties prior to
removing redundancy. Generate three datasets: One with all of
the unique compounds (Full), another that contains only those
compounds with all three result labels (Dense), and one that
contains all of the compounds minus those with all three result
labels (Full–Dense). The following command generates the
feature set for all of the compounds with three result labels
encoded by MDL property labels:

bcl.exe descriptor:GenerateDataset \
-source “SdfFile (filename = all_logp_logs_dgsolv.sdf.gz)” \
-feature_labels VuMendenhallMeiler2019. Scalar_Mol2D.object \
-result_labels “Combine (LogP_actual, LogS_actual,dG_hydration_
kcal-mol)” \
-output all_logp_logs_dgsolv.Scalar_Mol2D.bin \
-logger File all_logp_logs_dgsolv.Scalar_Mol2D.log \
-scheduler PThread 8 –compare

To generate the Dense feature set, add
the–forbid_incomplete_records flag. The two binary format
files should contain 35,874 and 448 rows, respectively, and the
third dataset should contain the difference between them, 35,426.
The distribution of result values overlaps reasonably well between
the Full and Dense datasets, with the exception of the LogS
distributions (Figure 8).

Randomize the datasets before training the model. The
configuration file config. exmple.mdnn.ini sets up the neural
network architecture:

learning-method: “NeuralNetwork (\
transfer function = Rectifier (0.05), \
weight update = Simple (alpha = 0.50,eta = 0.005), \
dropout (0.05,0.25, 0.05), \
objective function = % (objective-function)s, \
scaling = AveStd, steps per update = 10, hidden architecture
(128,32), \
balance = False, shuffle = True, input dropout type = Zero \
)”

Note that our network contains 2 hidden layers with 128 and
32 neurons, respectively, with 5% dropout on the input layer, 25%

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309921

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

dropout on the first hidden layer, and 5% dropout on the second
hidden layer. Our objective function will be MAE_NMAD since
this is a regression task. We will perform five-fold cross validation
(specified in the configuration file). Train the network:

launch.py -t cross-validation --local \
--datasets all_logp_logs_dgsolv.Scalar_Mol2D.rand.bin \
--id all_logp_logs_dgsolv.Scalar_Mol2D.2x256-32_005_025_005 \
--config-file config. example.mdnn.ini --just-submit

The just-submit flag sends the process to the background.
Train the dense network as well; it should take less time since
there are relatively few examples in the training sets. Check the
log_merge.txt file in the corresponding “log_files” subdirectory to
view the final objective function for each of the three result labels
(Table 5).

In cases where the training set has small deviation from the
mean value, MAE will be lower, which can be misleading. To

address this, we normalize MAE by MAD. Here, we see that the
model trained on the Dense set of features learned LogP the best.
However, this may be an artifact of the reduced training space. If
we were to evaluate whether the Dense model was able to
extrapolate beyond the very small training set, we would
almost certainly see worse performance.

To illustrate this, evaluate the predictive power of our
Dense model on molecules in our Full–Dense training set,
and vice versa. This can be accomplished using either model:
Test or molecule:Properties as described in Section 7.1. The
results of this analysis are in Table 6. The model trained on
the Full–Dense set does a good job predicting the QSPR
properties for the Dense molecule set, achieving Pearson
correlation coefficients between 0.82 and 0.99 for the three
tasks. We see that the values we obtained in the internal
random-split 5-fold cross validation (Table 5) agree with
those obtained on the Dense set predictions (Table 6). In
contrast, despite having the best five-fold cross-validation

FIGURE 7 |ROC curve comparison Kir2.1 activity predictionmodels with different descriptors. Models were trainedwith either (A,B) theMinimal dataset containing
959 non-redundant standard LB descriptors (see Supplemental Data) on a log10 (A) or linear (B) x-axis, or PCA-modified LB descriptors accounting for 95% variance on
a log10 (C) or linear (D) x-axis.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309922

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

performance (Table 5), the model trained on the Dense
feature set performs extremely poorly at predicting
quantitative QSPR properties of the Full–Dense molecule
set (Table 6).

Taken together, these data suggest that there is likely a
significant fraction of molecules in the Full–Dense set that
occupy an area of feature space not represented in the 448
molecule Dense set. This is a good example that internal
randomized cross-validation on a small training set is not an
accurate predictor of external test set performance unless the
external test set is within a similar domain of applicability
(Tetko et al., 2008; Sheridan, 2012). Applicability domains in
the BCL will be discussed in more detail in Section 7.5.

Training a Decision Tree
DT is a tree-based machine learning algorithm that partitions
the dataset into smaller subsets as it develops. A DT starts
from a root node, branches out to internal nodes, and ends at
leaf nodes. To see the different options of a decision tree, call

bcl.exe model:Train “DecisionTree (help)”

The default option of the decision method chooses the features
for data splitting with the maximum information gain, and its
prediction performance is scored by accuracy.

learning-method: DecisionTree (\

FIGURE 8 |Result value overlap between the Full and Dense datasets. Density normalized histograms of LogP, LogS, and ΔGhydration between the Full (35874 total,
35113 LogP, 20721 LogS, 1,339 ΔGhydration; gray) and Dense (448 total for all values; green) datasets.

TABLE 5 | Five-fold cross validation results for multitask modeling of solubility prediction. These table values are automatically calculated and output in the log_merge.txt file
in the corresponding subdirectory of the autogenerated “log_files” directory. The Full set consisted of 35,874 molecules (with 35113 LogP, 20721 LogS, and 1,339
ΔGhydration result labels). The Dense set consisted of 448 molecules (with 448 LogP, 448 LogS, and 448 ΔGhydration result labels). The Full–Dense set contained 35,428
molecules (with 34665 LogP, 20273 LogS, and 891 ΔGhydration result labels).

QSPR Prediction

LogP LogS ΔGhydration

Analysis Metric MAE MAD MAE/MAD MAE MAD MAE/MAD MAE MAD MAE/MAD

Model Feature Set Full 0.61 0.95 0.64 0.21 1.51 0.14 1.64 3.62 0.45
Dense 0.20 0.68 0.29 0.24 1.51 0.16 1.53 3.58 0.43
Full—Dense 0.51 0.97 0.53 0.23 1.51 0.15 2.03 3.85 0.53

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309923

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

objective function = Accuracy, \
partitioner = InformationGain, \
Activity cutoff = 0.5, \
nodes core = SplitRating, \
min split = 0 \
)

There are two factors that determine the order of features and
their corresponding splitting values in dataset partitioning in a
decision tree: partitioners and node scores. Four types of
partitioners are currently implemented in the BCL:
InformationGain, Gini, ROC, and Sequence. The first three
options rate the feature to split the dataset by information
gain, Gini index, and area under the curve of the local ROC
curves (Ferri et al., 2002), respectively. The last option only allows
splits that result in at least one pure node.

While the partitioner determines how to calculate the split
rating of different configurations of dataset partition, the node
score type dictates how to rank different combinations of
feature order and their corresponding splitting values. Four
types of node scores are currently implemented in the BCL:
split rating (SplitRating), number of correct predictions before
splitting (InitialNumIncorrect), split rating times initial
number of correct predictions
(RatingTimesInitialNumIncorrect), and sum of number of
incorrect predictions before and after data splitting
(InitialIncorrectPlusFinalCorrect). The users can also
control the minimum number of incorrect classifications of
a node by assigning a value to the min split flag.

A DT was employed in Section 3.4 to classify small molecules’
potential for hit optimization. The BCL can convert DTs into
descriptor files that can be used to help defined new properties.
For more details, see Section 3.4.

Unsupervised Learning
Adjusting Tunable Parameters in a
Self-Organizing Map
A self-organizing map (SOM), also commonly referred to as a
Kohonen map, is an unsupervised learning method that is
commonly used in clustering and dimensionality reduction.
The SOM produces a low-dimensional (typically one to two
dimensions), discretized representation of the input space of
the training samples, called a map. This method applies

competitive learning to reach a solution, as opposed to
conventional feed-forward neural networks, which utilize
error-correction learning. To see the options available to a
Kohonen map model, call

bcl.exe model:Train “Kohonen (help)”

Here is the typical configuration file setup to build a Kohonen
map model:

learning-method: Kohonen (
shuffle = True, scaling = AveStd, map dimensions = (10, 10), \
steps per update = 0,radius = 7.5, length = 140, Neighbor
kernel = Bubble, \
Initializer = RandomlyChosenVectors, cutoff = 0.5, objective
function = RMSD \
)
Before training a Kohonen map, users may shuffle the

training set (shuffle = True). Similar to the ANNs, there
are two options for scaling the input: AveStd and MinMax.
The former works best when the input descriptors are
continuous, and the latter is ideal for sparse and/or
discretized input data. Regarding the configuration of the
SOM, the map dimensions option dictates the number of
nodes, or neurons, in each direction of the map. Setting the
steps per update flag (i.e., batch size) to 0 indicates that all
training rows will be used for each iteration.

The initial radius of the neighborhood function, radius, is the
maximum distance between the neighbor neuron and the best
matching unit (BMU). Increasing the radius generally increases
model quality at the expense of training time. In our experience,
diminishing returns are met when the radius approaches 1/3 to 1/2
the total distance of themap. The number of iterations it takes for the
radius to decrease to 0 in the given neighbor kernel function is given
by length. The radius of the neighborhood is gradually reduced as the
number of the iterations t increases, such that by 4plength the
original radius is reduced to size 0:

radiust+1 � radiust�0(1 − t + 1
4 × length

), (9)

Each iteration, the neurons compete by measuring their
distances to the input dataset. The neuron j, with associated

TABLE 6 |QSPR external test-set predictions. Results of predicting QSPR properties on the Dense dataset with the model trained on the Full–Dense feature set, and results
of predicting QSPR properties on the Full–Dense dataset with the model trained on the Dense feature set. The table is organized such that the values indicate the
performance of the model trained with the indicated set of descriptors on the alternate test set. The Dense set consisted of 448 molecules (with 448 LogP, 448 LogS, and
448 ΔGhydration result labels). The Full–Dense set contained 35,428 molecules (with 34665 LogP, 20273 LogS, and 891 ΔGhydration result labels).

Model Feature Set

Full—Dense Dense

QSPR Prediction LogP LogS ΔGhydration LogP LogS ΔGhydration

Analysis Metric MAE 0.94 0.27 1.71 580.32 65.18 30.03
MAE/MAD 1.37 0.18 0.48 599.81 43.20 7.80
R 0.88 0.99 0.82 0.00 -0.11 -0.05
p 0.89 0.99 0.88 0.48 0.88 0.75

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309924

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

weight vector w, with the lowest distance d to the randomly
selected input vector x is the winner.

dj(x) �
�����������∑
i

(xi − wji)2√
, (10)

Iterations proceed for the entire batch size prior to updating
neuron weights. The next step is updating the weights within the
neighborhood of the winning node. There are two options for the
neighbor kernel function: Bubble and Gaussian. The new weights
are updated as

wt+1
ij � wt

ij + αt
jBj(xt

i − wt
ij), (11)

where the β is 0.8 for the wining node and 0.2 for other nodes in
the neighborhood and learning rate α is exp(−(distance to winner)2

2 × radius2)
for the Gaussian kernel and 1 for the Bubble kernel. The Bubble
kernel keeps the learning rate constant inside the neighborhood,
while the Gaussian kernel reduces the learning rates for more
distant nodes, at a substantial performance cost.

Finally, users can select one of the objective functions
mentioned above to evaluate the prediction performance of
the model. At test time, the model will assign an AD score for
each external compound. This AD score is the normalized
distance of that compound to the closest node of the training
set. For instance, a tested molecule with an AD score of 0.90 is
further from the closest node than 90% of other molecules in the
training set. In other words, that molecule’s feature space was not
so well-represented in the training dataset.

Training a Self-Organizing Map Druglikeness
Applicability Domain
We will use the BCL to build class-specific druglikeness
applicability domain (AD) models from the structures of
FDA approved drugs: 58 opioid receptor modulators and 82
kinase inhibitors (Wishart et al., 2018). From each set of
molecules, 5 molecules are randomly removed from the
training set for external validation. Training occurs on the
remaining molecules. The AD models will be used to
measure the similarity between external compounds and a
“typical drug” targeting opioid receptors or kinases. Generate
a configuration file for the AD called AD. config containing the
following:

learning-method: “ApplicabilityDomainKohonen (\
shuffle = 0, map dimensions (% (cluster_num)s), steps per
update = 0, \
length = 140, radius = 7.5, neighbor kernel = Bubble, \
initializer = RandomlyChosenVectors, scaling = AveStd, cutoff
= 0.5, \
share distance metric = True
)”

Note that the map dimensions are set by the cluster_num flag
in the training command. Generate feature set for each molecule
file using descriptor:GenerateDataset. Train the kinase set AD
model:

launch.py -t cross_validation --config-file AD. config \
--datasets kinase. train.Scalar_UMol2D.bin \
--id kinase. Scalar_UMol2D.AD --max-iterations 200 \
--local --no-cross-validation --cluster_num 5

Afterward, train the opioid receptor set AD model. Next,
we can evaluate the test sets with each AD model, beginning
with the kinase inhibitor test set with the kinase inhibitor AD
model:

bcl.exe model:Test -retrieve_dataset \
“SdfFile (filename = kinase.test.sdf.gz)” \
-storage_model \
“File (directory = ./models/kinase_mol2d_scalar_AD, prefix =
model)” \
-output kinase_kinaseAD.test.out

The AD scores are listed in the output data file. The first two
lines are the format name, and the dimension of the data table.
The AD scores of five test compounds are stored in the second
columns of the last 5 lines. We can see that our test set
compounds from the FDA approved kinase inhibitor list have
a shorter AD distance than our molecules in the opioid receptor
test set, and vice versa (Figure 9). These scores represent the
distance of each test compound to the feature space occupied by
the training set FDA approved kinase inhibitors. In other words,
they tell us how far we are from drug-like feature space for this
group of inhibitors. The output AD scores are summarized in
Figure 9.

DRUG DESIGN

Up to this point we have demonstrated vHTS predictions on pre-
existing external datasets. Screening external datasets can be very
valuable because of the ever-increasing number and availability of

FIGURE 9 | Applicability domain models differentiate molecular
structures targeting unique proteins. Each box plot represents AD scores of
five drugs that target either kinases or opioid receptors. AD models trained on
kinase and opioid training datasets are colored in red (legend: kinaseAD)
and blue (legend: opioidAD), respectively.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309925

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

public, commercial, and institutional small molecule repositories.
Nevertheless, it is also frequently the case that computation can
be applied to assist specific medicinal chemistry projects. For
example, in silico drug design can conceivably be utilized for
library design, hit explosion, or scaffold hopping. Here, we will
demonstrate how to perform multicomponent reaction (MCR)-
based drug design with the BCL.

Defining Reaction Files for Drug Design
Reaction-based drug design in the BCL proceeds according to user-
defined MDL RXN (.rxn) files. There are a number of predefined
reactions located in bcl/rotamer_library/functional_reactions.
Reactions can be single-component intramolecular reactions, or
multi-component intermolecular reactions of up to four unique
reagents. Reactants must have their atomsmapped to corresponding
atoms in the product(s). Atom mapping is required for substituents
on the input reagents to be merged with the product(s).

The reaction design framework functions in part by performing
substructure comparisons of candidate reagents to reactant structures
drawn in the RXN file. Substructurematching occurs at a resolution of
ElementType for atoms and BondOrderOrAromatic for bonds. If
there are candidate reagents that collectively can match all reactant

positions in a reaction, then the reaction can proceed. Note that unlike
input SDFs for molecule files, aromaticity must be shown explicitly in
the RXN file to be interpreted. Also note that reactant matching will
only match hydrogen atoms if they are drawn explicitly.

Executing Reaction Design
In this example, we will generate products according to a 4-
component split-Ugi reaction utilizing piperazine as the diamine
scaffold in all designs (Figure 10A).

bcl.exe molecule:React \
-starting_fragments piperazine. sdf -reagents reagents_le_20. sdf \
-reactions./rxns_dir/ -routine Random -repeats 9 -
ligand_based \
-fix_geometry -fix_ring_geometry -extend_adjacent_atoms 2 \
-output_filename ugi_products.sdf -logger File ugi_reaction.log

The individual molecule fragments passed via
starting_fragments are treated as required reaction
components. The reactions flag is given the path to a directory
containing all RXN files the user wishes to include in the reaction.
The reagents flag specifies candidate reactants with which the

FIGURE 10 |Multicomponent reaction-based design of dopamine receptor D4 antagonist candidates. (A) The 4-component split-Ugi reaction utilizing a piperazine
as the diamine. Hydrogen atoms are represented implicitly. Atom numbers correspond to mappings between reactant and product atoms. The density of molecules
generated with respect to (B) the predicted activity local PPV for each classification result label, (C) number of hydrogen bond donors, hydrogen bond acceptors, or
rotatable bonds, (D) topological polar surface area, and (E) the computed logP. LogP estimates are computed using the Full neural network from Section 7.4
(XLogP; gray), the property-based cLogP approach from Xing and Glen, 2002 (Xing and Glen, 2002), and the atom-based cLogP approach from Mannhold et al., 2008
(Mannhold and Van deWaterbeemd, 2001). (F)Density of generatedmolecules with respect to synthetic accessibility score (x-axis) and predicted dopamine receptor D4
antagonist activity (local PPV for 100 nM classification; y-axis). The 2D histogram density is log10-scaled. (G) Structural representation of six randomly selected
molecules from a sample of 198 designs that had local PPV values greater than or equal to 0.80 for predicted activity at 100 nM.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309926

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

starting_fragments molecules are reacted. Thus, for every entry in
the SDF passed via starting_fragments, the molecule: React
application will check to see if it is a valid reactant for any of
the reactions in the directory specified by reactions; for those
reactions that the current starting_fragments molecule is a valid
reactant, the remaining possible reactant positions are fit against
the molecule fragments provided via reagents.

The routine flag specifies how to continue with reaction
sampling. Currently, there are two options, though additional
options are under development. The default is Random, which
will perform one valid reaction (if any exist) for each molecule in
starting_fragments using a randomly selected reaction and
reagents from the user input. By default, the Random routine
will run one time; however, by specifying repeats users can
increase the number of cycles. If the starting_fragments SDF
contains 100 entries and repeats is set to 4, then the molecule:
React application will run 500 times–one initial run for all entries
followed by four repeats of all 100 entries. Alternatively, users
may specify Exhaustive, which will enumerate all possible
products from all given reactions and reagents for each
starting_fragments molecule. Ongoing efforts to expand the
reaction-based drug design framework include additional
optimization routines, such as evolutionary fragment
generation and simulated annealing, as well as mixed intra-
and inter-reagent reactions. Other options are related to
generation of 3D conformers for the product molecules and
are explained in the help menu.

bcl.exe molecule:React --help

Analyzing Designs
For illustration purposes, we generated ~700,000
configurationally unique molecules with the split-Ugi reaction
(Figure 10A). As our starting fragment, we used a solitary
piperazine ring. For simplicity and to keep the size of the
product library reasonably small, we also utilized a
formaldehyde in the second reactant position (though another
aldehyde is possible). We passed a collection of commercially
available building block fragments, filtered such that the heavy
atom count was less than or equal to 20, to fill positions three and
four via our reagents flag. We analyzed the resulting library
without any additional filtering (e.g., for druglikeness,
predicted mutagenicity, Lipinski’s rules, etc.).

Piperazine rings and related substructures are well-defined core
components of dopamine receptor (DR) antagonists (Lindsley and
Hopkins, 2017). Utilizing BCL commands described in previous
sections along with publicly available PubChemBioassays, we trained
a single QSAR model to simultaneously predict dopamine receptor
D4 (DRD4) antagonist activity at multiple thresholds (10, 100, 500,
1,000, and 5,000 nM). Subsequently, we employed this QSAR model
to predict the DRD4 antagonist activity of our newly created library
(Figure 10B).

As might be expected, there are a high density of molecules
with a low (< 0.20) local PPV for activity at 10 nM; however, as
the threshold for activity increases, the density of molecules that
are identified as active increases (Figure 10B). We also quantified
the number of HBDs, HBAs, and rotatable bonds in our

molecules (Figure 10C). Most compounds have fewer than 5
HBD and 10 rotatable bonds. Approximately half of the dataset
contains 10 or more HBA, which would contribute to Lipinski’s
rules violations, though many FDA-approved molecules do not
follow Lipinski rules strictly (DeGoey et al., 2018). Nevertheless,
number of HBAs may be one criterion by which to filter out
molecules from the library from further analysis.

We also estimated topological polar surface area (TPSA)
(Figure 10D) and water-octanol partition coefficient (logP)
(Figure 10E). More than half of the molecules have a TPSA
less than 150 Å2. One could also filter out molecules from the
library that have TPSA greater than 150 Å2 and/or greater than 10
rotatable bonds (Veber rules for druglikeness). We performed
logP estimates with three uniquemethods: 1) the DNNwe trained
in Section 7.4.2; 2) a property-based metric from Xing and Glen,
2002 (Xing and Glen, 2002); and 3) an atom-based metric from
Mannhold et al., 2008 (Mannhold and Van de Waterbeemd,
2001). Each of these metrics are available in the BCL as molecular
properties and can be employed to characterize the solubility of
candidate compound libraries.

Finally, we display predicted activity at 100 nM as a function of
synthetic accessibility score (SAScore) (Ertl and Schuffenhauer, 2009)
(Figure 10F). Encouragingly, the molecules predicted most likely to
be active at 100 nM (local PPV ≥0.80) have SAScores below 2.0, well-
within an acceptable range (Ertl and Schuffenhauer, 2009). Overall,
the SAScores of the library are low, reflective of the reaction type and
selected reagents (Figure 10F). We selected six random molecules
with local PPV greater than 0.80 at the 100 nM activity cutoff for
display (Figure 10G). These molecules are topologically similar to
known antagonists of DRs, specifically DRD4; however, it is possible
that this reaction produces a scaffold with an activity cliff (loss of
protonation of the piperazine ring) (Berry et al., 2010; Lindsley and
Hopkins, 2017).

DISCUSSION

The BCL is an academic research project made available for
public use. As an academic research project, the BCL is under
continuous development. Ongoing improvements are anticipated
for many of the applications described here, including small
molecule conformer sampling, small molecule flexible
alignment, descriptor/feature generation, and additional
machine learning architectures (e.g., random forest, gradient
boosting, and convolutional neural networks), strategies, and
pre-generated models. In addition, several new tools are
currently under active development for tasks such as library
design, de novo drug design, pharmacophore mapping, and more.

This manuscript has focused extensively on LB in silico
drug discovery tools; however, we have also begun
incorporating SB tools, such as deep learning-based
protein-ligand interaction scoring (Brown et al., 2021).
Two primary goals moving forward are 1) continuing to
increase the accessibility of the BCL to other scientists, and
2) integrating the BCL with other state-of-the-art software
packages to allow for more complex protocol design. To
accomplish these goals in tandem, we are completing

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309927

Brown et al. The BCL Cheminformatics Toolkit

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

scientific advances and software changes required to
functionally integrate and compile the BCL in the Rosetta
macromolecular modeling suite (Leman et al., 2020), enabling
access to protocol development at the C++ (Rosetta
applications), Python (PyRosetta), and XML
(RosettaScripts) levels, in addition to the API described in
this manuscript. We are also developing a graphical user
interface (GUI) for the BCL LB drug discovery. The GUI
will enable on-the-fly QSAR/QSPR calculations and
druglikeness evaluation while the user is drawing molecules.

Our hope is that this manuscript will serve as a resource for
those interested in utilizing the BCL for cheminformatics
research. Several high level BCL applications can also be
accessed via webserver for non-expert users. The webserver is
available through the BCL Commons website at http://www.
meilerlab.org/bclcommons. Example files mentioned
throughout the manuscript are freely available on the Meiler
Lab GitHub page.

The BCL can be downloaded freely from http://www.
meilerlab.org/bclcommons and requires a supporting license
from http://meilerlab.org/servers/bcl-academic-license that is
free for academic and non-profit users, with commercial
licenses available for a fee.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and

accession number(s) can be found below: https://github.com/
Meilerlab.

AUTHOR CONTRIBUTIONS

Original code conceptualization and code development: JMei
Conceptualization (manuscript): BB, JMen, and JMei Code
contributions: All authors Code review: All authors
Manuscript writing: BB, OV.

FUNDING

Work in the JMei laboratory is supported through the NIH (R01
DA046138, R01 GM099842) and Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation,
through SFB1423, project number 421152132). BB is supported
through the NIH by a Ruth L. Kirschstein NRSA fellowship
(F30DK118774). The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/
full#supplementary-material

REFERENCES

Acharya, C., Coop, A., Polli, J. E., and Mackerell, A. D. (2011). Recent Advances in
Ligand-Based Drug Design: Relevance and Utility of the Conformationally
Sampled Pharmacophore Approach. Curr. Comput. Aided Drug Des. 7, 10–22.
doi:10.2174/157340911793743547

Bemis, G. W., and Murcko, M. A. (1996). The Properties of Known Drugs. 1.
Molecular Frameworks. J. Med. Chem. 39, 2887–2893. doi:10.1021/
jm9602928

Berry, C. B., Locuson, C. W., Daniels, J. S., Lindsley, C. W., and Hopkins, C. R.
(2010). “Discovery and Characterization of ML398, a Potent and Selective
Chiral Morpholine Based Antagonist of the Dopamine 4 (D4) Receptor,”
in Probe Reports from the NIH Molecular Libraries Program (Bethesda
(MD): National Center for Biotechnology Information (US)).

Bharath, R., Steven, K., Patrick, R., Dale Webster, D. K., and Vijay, P. (2015).
Massively Multitask Networks for Drug Discovery. Ithaca, NY: arXiv:
1502.02072v1.

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., and Hopkins, A. L. (2012).
Quantifying the Chemical beauty of Drugs. Nat. Chem. 4, 90–98. doi:10.1038/
nchem.1243

Boström, J., Norrby, P. O., and Liljefors, T. (1998). Conformational Energy
Penalties of Protein-Bound Ligands. J. Comput. Aided Mol. Des. 12, 383–396.

Bozhanova, N. G., Calcutt, M. W., Beavers, W. N., Brown, B. P., Skaar, E. P., and
Meiler, J. (2021). Lipocalin Blc Is a Potential Heme-Binding Protein. FEBS Lett.
595, 206–219. doi:10.1002/1873-3468.14001

Brown, B. P., Mendenhall, J., Geanes, A. R., and Meiler, J. (2021). General Purpose
Structure-Based Drug Discovery Neural Network Score Functions with
Human-Interpretable Pharmacophore Maps. J. Chem. Inf. Model. 61,
603–620. doi:10.1021/acs.jcim.0c01001

Brown, B. P., Mendenhall, J., and Meiler, J. (2019). BCL:MolAlign: Three-
Dimensional Small Molecule Alignment for Pharmacophore Mapping.
J. Chem. Inf. Model. 59, 689–701. doi:10.1021/acs.jcim.9b00020

Brylinski, M., and Skolnick, J. (2008). Q-dock: Low-Resolution Flexible Ligand
Docking with Pocket-specific Threading Restraints. J. Comput. Chem. 29,
1574–1588. doi:10.1002/jcc.20917

Butkiewicz, M., Lowe, E. W., Mueller, R., Mendenhall, J. L., Teixeira, P. L., Weaver,
C. D., et al. (2013). Benchmarking Ligand-Based Virtual High-Throughput
Screening with the PubChem Database. Molecules 18, 735–756. doi:10.3390/
molecules18010735

Cappel, D., Dixon, S. L., Sherman, W., and Duan, J. (2015). Exploring
Conformational Search Protocols for Ligand-Based Virtual Screening and 3-
D QSAR Modeling. J. Comput. Aided Mol. Des. 29, 165–182. doi:10.1007/
s10822-014-9813-4

Chan, S. L. (2017). MolAlign: an Algorithm for Aligning Multiple Small
Molecules. J. Comput. Aided Mol. Des. 31, 523–546. doi:10.1007/s10822-
017-0023-8

Combs, S. A., Deluca, S. L., Deluca, S. H., Lemmon, G. H., Nannemann, D. P.,
Nguyen, E. D., et al. (2013). Small-molecule Ligand Docking into
Comparative Models with Rosetta. Nat. Protoc. 8, 1277–1298. doi:10.
1038/nprot.2013.074

Dahl, G. E. (2014). Multi-task Neural Networks for QSAR Predictions. Ithaca, NY:
arXiv preprint arXiv:1406.1231.

Davis, I. W., and Baker, D. (2009). RosettaLigand Docking with Full Ligand
and Receptor Flexibility. J. Mol. Biol. 385, 381–392. doi:10.1016/j.jmb.
2008.11.010

DeGoey, D. A., Chen, H. J., Cox, P. B., and Wendt, M. D. (2018). Beyond the
Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound
Collection. J. Med. Chem. 61, 2636–2651. doi:10.1021/acs.jmedchem.
7b00717

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309928

Brown et al. The BCL Cheminformatics Toolkit

http://www.meilerlab.org/bclcommons
http://www.meilerlab.org/bclcommons
http://www.meilerlab.org/bclcommons
http://www.meilerlab.org/bclcommons
http://meilerlab.org/servers/bcl-academic-license
https://github.com/Meilerlab
https://github.com/Meilerlab
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2022.833099/full#supplementary-material
https://doi.org/10.2174/157340911793743547
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/jm9602928
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1002/1873-3468.14001
https://doi.org/10.1021/acs.jcim.0c01001
https://doi.org/10.1021/acs.jcim.9b00020
https://doi.org/10.1002/jcc.20917
https://doi.org/10.3390/molecules18010735
https://doi.org/10.3390/molecules18010735
https://doi.org/10.1007/s10822-014-9813-4
https://doi.org/10.1007/s10822-014-9813-4
https://doi.org/10.1007/s10822-017-0023-8
https://doi.org/10.1007/s10822-017-0023-8
https://doi.org/10.1038/nprot.2013.074
https://doi.org/10.1038/nprot.2013.074
https://doi.org/10.1016/j.jmb.2008.11.010
https://doi.org/10.1016/j.jmb.2008.11.010
https://doi.org/10.1021/acs.jmedchem.7b00717
https://doi.org/10.1021/acs.jmedchem.7b00717
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

DeLuca, S., Khar, K., and Meiler, J. (2015). Fully Flexible Docking of Medium Sized
Ligand Libraries with RosettaLigand. PLoS One 10, e0132508. doi:10.1371/
journal.pone.0132508

Ertl, P., and Schuffenhauer, A. (2009). Estimation of Synthetic Accessibility Score
of Drug-like Molecules Based on Molecular Complexity and Fragment
Contributions. J. Cheminform 1, 8. doi:10.1186/1758-2946-1-8

Ferri, C., Flach, P., and Hernandez-Orallo, J. (2002). “Learning Decision Trees
Using the Area under the ROC Curve,” inMachine Learning, Proceedings of the
Nineteenth International Conference (ICML 2002) (Sydney, Australia:
University of New South Wales).

Friedrich, N. O., de Bruyn Kops, C., Flachsenberg, F., Sommer, K., Rarey, M.,
and Kirchmair, J. (2017a). Benchmarking Commercial Conformer
Ensemble Generators. J. Chem. Inf. Model. 57, 2719–2728. doi:10.1021/
acs.jcim.7b00505

Friedrich, N. O., Flachsenberg, F., Meyder, A., Sommer, K., Kirchmair, J., and
Rarey, M. (2019). Conformator: A Novel Method for the Generation of
Conformer Ensembles. J. Chem. Inf. Model. 59, 731–742. doi:10.1021/acs.
jcim.8b00704

Friedrich, N. O., Meyder, A., de Bruyn Kops, C., Sommer, K., Flachsenberg,
F., Rarey, M., et al. (2017b). High-Quality Dataset of Protein-Bound
Ligand Conformations and its Application to Benchmarking
Conformer Ensemble Generators. J. Chem. Inf. Model. 57, 529–539.
doi:10.1021/acs.jcim.6b00613

Friedrich, N. O., Simsir, M., and Kirchmair, J. (2018). How Diverse Are the
Protein-Bound Conformations of Small-Molecule Drugs and Cofactors? Front.
Chem. 6, 68. doi:10.3389/fchem.2018.00068

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T.,
et al. (2004). Glide: a New Approach for Rapid, Accurate Docking and Scoring.
1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749.
doi:10.1021/jm0306430

Hanker, A. B., Brown, B. P., Meiler, J., MarÃn, A., Jayanthan, H. S., Ye, D.,
et al. (2021). Co-occurring Gain-Of-Function Mutations in HER2 and
HER3 Modulate HER2/HER3 Activation, Oncogenesis, and HER2
Inhibitor Sensitivity. Cancer Cell 39, 1099–e8. e8. doi:10.1016/j.ccell.
2021.06.001

Hartmann, C., Antes, I., and Lengauer, T. (2009). Docking and Scoring with
Alternative Side-Chain Conformations. Proteins 74, 712–726. doi:10.1002/prot.
22189

Hassan, M., Brown, R. D., Varma-O’brien, S., and Rogers, D. (2006).
Cheminformatics Analysis and Learning in a Data Pipelining
Environment. Mol. Divers. 10, 283–299. doi:10.1007/s11030-006-9041-5

Hecker, E. A., Duraiswami, C., Andrea, T. A., and Diller, D. J. (2002). Use of
Catalyst Pharmacophore Models for Screening of Large Combinatorial
Libraries. J. Chem. Inf. Comput. Sci. 42, 1204–1211. doi:10.1021/ci020368a

Jain, A. N. (2004). Ligand-based Structural Hypotheses for Virtual Screening.
J. Med. Chem. 47, 947–961. doi:10.1021/jm030520f

Kaufmann, K. W., Lemmon, G. H., Deluca, S. L., Sheehan, J. H., and Meiler, J.
(2010). Practically Useful: what the Rosetta Protein Modeling Suite Can
Do for You. Biochemistry 49, 2987–2998. doi:10.1021/bi902153g

Kaufmann, K. W., and Meiler, J. (2012). Using RosettaLigand for Small Molecule
Docking into Comparative Models. PLoS One 7, e50769. doi:10.1371/journal.
pone.0050769

Kawai, K., Fujishima, S., and Takahashi, Y. (2008). Predictive Activity Profiling of
Drugs by Topological-Fragment-Spectra-Based Support Vector Machines.
J. Chem. Inf. Model. 48, 1152–1160. doi:10.1021/ci7004753

Kohonen, T. (1990). The Self-Organizing Map. Proc. IEEE 78, 1464–1480. doi:10.
1109/5.58325

Korolev, D., Balakin, K. V., Nikolsky, Y., Kirillov, E., Ivanenkov, Y. A.,
Savchuk, N. P., et al. (2003). Modeling of Human Cytochrome P450-
Mediated Drug Metabolism Using Unsupervised Machine Learning
Approach. J. Med. Chem. 46, 3631–3643. doi:10.1021/jm030102a

Kothiwale, S., Mendenhall, J. L., and Meiler, J. (2015). BCL:Conf: Small Molecule
Conformational Sampling Using a Knowledge Based Rotamer Library.
J. Cheminform. 7, 47. doi:10.1186/s13321-015-0095-1

Labute, P., Williams, C., Feher, M., Sourial, E., and Schmidt, J. M. (2001). Flexible
Alignment of Small Molecules. J. Med. Chem. 44, 1483–1490. doi:10.1021/
jm0002634

Le Roux, N., and Bengio, Y. (2008). Representational Power of Restricted
Boltzmann Machines and Deep Belief Networks. Neural Comput. 20,
1631–1649. doi:10.1162/neco.2008.04-07-510

Leman, J. K.,Weitzner, B. D., Lewis, S.M., Adolf-Bryfogle, J., Alam,N., Alford, R. F., et al.
(2020). Macromolecular Modeling and Design in Rosetta: Recent Methods and
Frameworks. Nat. Methods 17, 665–680. doi:10.1038/s41592-020-0848-2

Lemmon, G., Kaufmann, K., and Meiler, J. (2012). Prediction of HIV-1 Protease/
inhibitor Affinity Using RosettaLigand. Chem. Biol. Drug Des. 79, 888–896.
doi:10.1111/j.1747-0285.2012.01356.x

Lemmon, G., and Meiler, J. (2012). Rosetta Ligand Docking with Flexible XML
Protocols. Methods Mol. Biol. 819, 143–155. doi:10.1007/978-1-61779-
465-0_10

Lindsley, C. W., and Hopkins, C. R. (2017). Return of D4 Dopamine Receptor
Antagonists in Drug Discovery. J. Med. Chem. 60, 7233–7243. doi:10.1021/acs.
jmedchem.7b00151

Lo, Y. C., Rensi, S. E., Torng, W., and Altman, R. B. (2018). Machine Learning in
Chemoinformatics and Drug Discovery. Drug Discov. Today 23, 1538–1546.
doi:10.1016/j.drudis.2018.05.010

Lowe, E. W., Butkiewicz, M., Spellings, M., Albert, O., and Meiler, J. (2011).
Comparative Analysis of Machine Learning Techniques for the Prediction of
LogP. IEEE.

Ma, X. H., Wang, R., Yang, S. Y., Li, Z. R., Xue, Y., Wei, Y. C., et al. (2008).
Evaluation of Virtual Screening Performance of Support Vector Machines
Trained by Sparsely Distributed Active Compounds. J. Chem. Inf. Model. 48,
1227–1237. doi:10.1021/ci800022e

Macalino, S. J., Gosu, V., Hong, S., and Choi, S. (2015). Role of Computer-Aided
Drug Design in Modern Drug Discovery. Arch. Pharm. Res. 38, 1686–1701.
doi:10.1007/s12272-015-0640-5

Mannhold, R., and Van de Waterbeemd, H. (2001). Substructure and Whole
Molecule Approaches for Calculating Log P. J. Comput. Aided Mol. Des. 15,
337–354. doi:10.1023/a:1011107422318

Mariusz, B., Ralf, M., Danilo, S., Eric, D., Jens, M., and Kai, C. (2009).Application of
Machine Learning Approaches on Quantitative Structure Activity Relationships.
best student paper in IEEE symposium in CIBCB.

Meiler, J., and Baker, D. (2006). ROSETTALIGAND: Protein-Small Molecule
Docking with Full Side-Chain Flexibility. Proteins 65, 538–548. doi:10.1002/
prot.21086

Mendenhall, J., and Meiler, J. (2016). Improving Quantitative Structure-
Activity Relationship Models Using Artificial Neural Networks Trained
with Dropout. J. Comput. Aided Mol. Des. 30, 177–189. doi:10.1007/
s10822-016-9895-2

Mendenhall, J., Brown, B. P., Kothiwale, S., and Meiler, J. (2020). BCL:Conf:
Improved Open-Source Knowledge-Based Conformation Sampling Using the
Crystallography Open Database. J. Chem. Inf. Model. 61, 189–201. doi:10.1021/
acs.jcim.0c01140

Mobley, D. L., and Guthrie, J. P. (2014). FreeSolv: a Database of
Experimental and Calculated Hydration Free Energies, with Input
Files. J. Comput. Aided Mol. Des. 28, 711–720. doi:10.1007/s10822-
014-9747-x

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S.,
et al. (2009). AutoDock4 and AutoDockTools4: Automated Docking with
Selective Receptor Flexibility. J. Comput. Chem. 30, 2785–2791. doi:10.1002/
jcc.21256

Munshi, A. (2008). OpenCL: Parallel Computing on the GPU and CPU. Tutorial:
SIGGRAPH.

Nicklaus, M. C., Wang, S., Driscoll, J. S., and Milne, G. W. (1995). Conformational
Changes of Small Molecules Binding to Proteins. Bioorg. Med. Chem. 3,
411–428. doi:10.1016/0968-0896(95)00031-b

Nitish, S., Geoffrey, H., Alex, K., Ilya, S., and Ruslan, S. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. J. Machine Learn. Res. 15,
1929–1958.

Perola, E., and Charifson, P. S. (2004). Conformational Analysis of Drug-like
Molecules Bound to Proteins: an Extensive Study of Ligand
Reorganization upon Binding. J. Med. Chem. 47, 2499–2510. doi:10.
1021/jm030563w

Ramalingam, S. S., Yang, J. C.-H., Lee, C. K., Kurata, T., Kim, D.-W., John, T., et al.
(2018). Osimertinib as First-Line Treatment of EGFR Mutation-Positive

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309929

Brown et al. The BCL Cheminformatics Toolkit

https://doi.org/10.1371/journal.pone.0132508
https://doi.org/10.1371/journal.pone.0132508
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1021/acs.jcim.7b00505
https://doi.org/10.1021/acs.jcim.7b00505
https://doi.org/10.1021/acs.jcim.8b00704
https://doi.org/10.1021/acs.jcim.8b00704
https://doi.org/10.1021/acs.jcim.6b00613
https://doi.org/10.3389/fchem.2018.00068
https://doi.org/10.1021/jm0306430
https://doi.org/10.1016/j.ccell.2021.06.001
https://doi.org/10.1016/j.ccell.2021.06.001
https://doi.org/10.1002/prot.22189
https://doi.org/10.1002/prot.22189
https://doi.org/10.1007/s11030-006-9041-5
https://doi.org/10.1021/ci020368a
https://doi.org/10.1021/jm030520f
https://doi.org/10.1021/bi902153g
https://doi.org/10.1371/journal.pone.0050769
https://doi.org/10.1371/journal.pone.0050769
https://doi.org/10.1021/ci7004753
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.58325
https://doi.org/10.1021/jm030102a
https://doi.org/10.1186/s13321-015-0095-1
https://doi.org/10.1021/jm0002634
https://doi.org/10.1021/jm0002634
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.1038/s41592-020-0848-2
https://doi.org/10.1111/j.1747-0285.2012.01356.x
https://doi.org/10.1007/978-1-61779-465-0_10
https://doi.org/10.1007/978-1-61779-465-0_10
https://doi.org/10.1021/acs.jmedchem.7b00151
https://doi.org/10.1021/acs.jmedchem.7b00151
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1021/ci800022e
https://doi.org/10.1007/s12272-015-0640-5
https://doi.org/10.1023/a:1011107422318
https://doi.org/10.1002/prot.21086
https://doi.org/10.1002/prot.21086
https://doi.org/10.1007/s10822-016-9895-2
https://doi.org/10.1007/s10822-016-9895-2
https://doi.org/10.1021/acs.jcim.0c01140
https://doi.org/10.1021/acs.jcim.0c01140
https://doi.org/10.1007/s10822-014-9747-x
https://doi.org/10.1007/s10822-014-9747-x
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1016/0968-0896(95)00031-b
https://doi.org/10.1021/jm030563w
https://doi.org/10.1021/jm030563w
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Advanced Non-small-cell Lung Cancer. Jco 36, 841–849. doi:10.1200/JCO.2017.
74.7576

Rogers, D., and Hahn, M. (2010). Extended-Connectivity Fingerprints. J. Chem.
Inf. Model. 50, 742–754. doi:10.1021/ci100050t

SciTegic (2007). Pipeline Pilot - Streamlines the Integration and Analysis of
Vast Quantities of Data Flooding the Research Informatics World.
Springer.

Sheridan, R. P. (2012). Three Useful Dimensions for Domain Applicability in
QSAR Models Using Random forest. J. Chem. Inf. Model. 52, 814–823. doi:10.
1021/ci300004n

Sitzmann, M., Weidlich, I. E., Filippov, I. V., Liao, C., Peach, M. L., Ihlenfeldt,
W. D., et al. (2012). PDB Ligand Conformational Energies Calculated
Quantum-Mechanically. J. Chem. Inf. Model. 52, 739–756. doi:10.1021/
ci200595n

Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E. W. (2014). Computational
Methods in Drug Discovery. Pharmacol. Rev. 66, 334–395. doi:10.1124/pr.112.
007336

Sliwoski, G., Mendenhall, J., and Meiler, J. (2015). Autocorrelation Descriptor
Improvements for QSAR: 2DA_Sign and 3DA_Sign. J. Comput. Aided Mol.
Des. 30, 209–217. doi:10.1007/s10822-015-9893-9

Syracuse Research Corporation (1994). Physical/Chemical Property Database.
Syracuse, NY: PHYSPROP.

Tetko, I. V., Sushko, I., Pandey, A. K., Zhu, H., Tropsha, A., Papa, E., et al. (2008).
Critical Assessment of QSAR Models of Environmental Toxicity against
tetrahymena Pyriformis: Focusing on Applicability Domain and Overfitting
by Variable Selection. J. Chem. Inf. Model. 48, 1733–1746. doi:10.1021/
ci800151m

Tijmen Tieleman (2008). “Training Restricted Boltzmann Machines Using
Approximations to the Likelihood Gradient,” in Machine Learning,
Proceedings of the Twenty-Fifth International Conference (ICML 2008)
(Helsinki, Finland: DBLP).

Usha, T., Shanmugarajan, D., Goyal, A. K., Kumar, C. S., and Middha, S. K. (2017).
Recent Updates on Computer-Aided Drug Discovery: Time for a Paradigm Shift.
Curr. Top. Med. Chem. 17, 3296–3307. doi:10.2174/1568026618666180101163651

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al. (2019).
Applications of Machine Learning in Drug Discovery and Development. Nat. Rev.
Drug Discov. 18, 463–477. doi:10.1038/s41573-019-0024-5

Vlachakis, D., Fakourelis, P., Megalooikonomou, V., Makris, C., and
Kossida, S. (2015). DrugOn: a Fully Integrated Pharmacophore

Modeling and Structure Optimization Toolkit. PeerJ 3, e725. doi:10.
7717/peerj.725

Wang, Y. H., Li, Y., Yang, S. L., and Yang, L. (2005). Classification of
Substrates and Inhibitors of P-Glycoprotein Using Unsupervised
Machine Learning Approach. J. Chem. Inf. Model. 45, 750–757. doi:10.
1021/ci050041k

Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R.,
et al. (2018). DrugBank 5.0: a Major Update to the DrugBank Database for
2018. Nucleic Acids Res. 46, D1074–D1082. doi:10.1093/nar/gkx1037

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., et al.
(2018). MoleculeNet: a Benchmark for Molecular Machine Learning. Chem. Sci.
9, 513–530. doi:10.1039/c7sc02664a

Xing, L., and Glen, R. C. (2002). Novel Methods for the Prediction of logP, pK(a),
and logD. J. Chem. Inf. Comput. Sci. 42, 796–805. doi:10.1021/ci010315d

Xu, Y., Ma, J., Liaw, A., Sheridan, R. P., and Svetnik, V. (2017). Demystifying Multitask
DeepNeuralNetworks forQuantitative Structure-Activity Relationships. J. Chem. Inf.
Model. 57, 2490–2504. doi:10.1021/acs.jcim.7b00087

Yosaatmadja, Y., Silva, S., Dickson, J. M., Patterson, A. V., Smaill, J. B., Flanagan,
J. U., et al. (2015). Binding Mode of the Breakthrough Inhibitor AZD9291 to
Epidermal Growth Factor Receptor Revealed. J. Struct. Biol. 192, 539–544.
doi:10.1016/j.jsb.2015.10.018

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Brown, Vu, Geanes, Kothiwale, Butkiewicz, Lowe, Mueller, Pape,
Mendenhall and Meiler. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 83309930

Brown et al. The BCL Cheminformatics Toolkit

https://doi.org/10.1200/JCO.2017.74.7576
https://doi.org/10.1200/JCO.2017.74.7576
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci300004n
https://doi.org/10.1021/ci300004n
https://doi.org/10.1021/ci200595n
https://doi.org/10.1021/ci200595n
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1007/s10822-015-9893-9
https://doi.org/10.1021/ci800151m
https://doi.org/10.1021/ci800151m
https://doi.org/10.2174/1568026618666180101163651
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.7717/peerj.725
https://doi.org/10.7717/peerj.725
https://doi.org/10.1021/ci050041k
https://doi.org/10.1021/ci050041k
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1039/c7sc02664a
https://doi.org/10.1021/ci010315d
https://doi.org/10.1021/acs.jcim.7b00087
https://doi.org/10.1016/j.jsb.2015.10.018
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Introduction to the BioChemical Library (BCL): An Application-Based Open-Source Toolkit for Integrated Cheminformatics and ...
	Introduction
	Molecule Preparation and Processing
	Fundamentals of BioChemical Library Command-Line Syntax
	Filtering
	Removing Redundancy
	Sorting and Reordering
	Making Fragments
	Coordinate Information

	Computing Molecular Properties
	Computing Whole Molecule Properties
	Computing Atomic Properties
	Performing Operations on Descriptors
	Combining Properties to Evaluate Druglikeness

	Small Molecule Conformer Generation
	Generating Global Conformational Ensembles
	Generating Local Conformational Ensembles
	Conformational Sampling of Substructures

	Molecule Property- and Substructure-based Comparisons
	Defining Molecular Structures
	Similarity Scoring Between Constitutionally Unique Molecules
	Distance-Based Scoring Between Constitutionally Identical Molecules
	Largest Common Substructure Alignment
	Property-Based Flexible Alignment

	Feature Generation
	Generating Simple Datasets From Molecules
	Modifying Datasets
	Small Molecule Autocorrelation Descriptors

	Machine Learning Architectures and Applications
	Overview of BioChemical Library Model Training and Validation
	Simplifying the Model Training and Validation Framework in Practice
	Applying Models to Independent Test Sets for Virtual High-Throughput Screening
	Supervised Learning
	Training a Standard Artificial Neural Network to Classify Kir2.1 Positive Allosteric Modulators
	Training a Deep, Multitasking Neural Network to Predict Solubility
	Training a Decision Tree

	Unsupervised Learning
	Adjusting Tunable Parameters in a Self-Organizing Map
	Training a Self-Organizing Map Druglikeness Applicability Domain

	Drug Design
	Defining Reaction Files for Drug Design
	Executing Reaction Design
	Analyzing Designs

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

