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The Maxwell–Boltzmann distribution is a hallmark of statistical physics in thermodynamic
equilibrium linking the probability density of a particle’s kinetic energies to the temperature
of the system that also determines its configurational fluctuations. This unique relation is
lost for Hot Brownian Motion, e.g., when the Brownian particle is constantly heated to
create an inhomogeneous temperature in the surrounding liquid. While the fluctuations of
the particle in this case can be described with an effective temperature, it is not unique for
all degrees of freedom and suggested to be different at different timescales. In this work,
we report on our progress to measure the effective temperature of Hot Brownian Motion in
the ballistic regime. We have constructed an optical setup to measure the displacement of
a heated Brownian particle with a temporal resolution of 10 ns giving a corresponding
spatial resolution of about 23 pm for a 0.92 μm PMMA particle in water. Using a gold-
coated polystyrene (AuPS) particle of 2.15 μm diameter we determine the mean squared
displacement of the particle over more than six orders of magnitude in time. Our data
recovers the trends for the effective temperature at long timescales, yet shows also clear
effects in the region of hydrodynamic long time tails.

Keywords: Brownian motion, non-equilibrium model, frequency-dependent temperature, optical tweezers,
Maxwell-Boltzmann distribution

1 INTRODUCTION

Brownian motion provides a window to microscopic dynamics. Observing the erratic motion of a
colloid in a fluid delivers information on the strong interconnection of fluctuation and dissipation
summarized, for example, by the simple Stokes–Einstein relation for the diffusion coefficient that is
determined by temperature and viscous friction in thermal equilibrium. Breaking this equilibrium by
introducing, for example, a single laser-heated particle to the solution [1–6] also breaks the
fundamental assumption of equipartition and new physical descriptions are required. However,
Hot Brownian Motion can be still mapped onto the well known fluctuation–dissipation relation
when introducing effective quantities for temperature and viscosity [7]. Recent theoretical studies
have shown that the effective temperatures are not unique for all degrees of freedom (i.e., rotation [8]
and translation of colloids) due to their coupling to the generated hydrodynamic flow fields [9]. As
these flow fields due to the translation and rotation of colloids in liquids also depend on the timescale
of observation, the corresponding effective temperatures shall also reveal a frequency dependence as
suggested in recent theoretical work [9]. The effective configurational temperature of Hot Brownian
Motion governing the diffusion coefficient at long times shall, therefore, also differ from the effective
kinetic temperature that would enter a Maxwell–Boltzmann like description. Here we explore in a
sophisticated experiment the short time dynamics of a heated Brownian particle. We have
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constructed an optical tweezers to trap and heat colloidal
particles in water. We demonstrate on isothermal particles
the spatial resolution of about 23 pm at a time resolution of
10 ns, which allows us to approach the ballistic regime of
Brownian motion. Introducing an additional heating of the
particle we explore the capabilities of the setup to provide
information on the hot ballistic motion of particles for the
first time.

The one-dimensional Maxwell–Boltzmann distribution (Eq.
1) was originally used to describe the velocity distribution of
atoms andmolecules in an ideal gas where it is assumed that there
is no interaction or potential between any pair of arbitrary
particles except brief collisions,

f (v) �
������
M

2πkBT

√
exp(−Mv2

2kBT
) (1)

Here the mass of the particleM and the temperature of the system
T control the distribution. While this is true for gases with elastic
collisions [10], the Maxwell–Boltzmann distribution has also
been shown to hold experimentally in condensed matter with
complex intermolecular interactions [11, 12]. Yet, in liquids
additional hydrodynamic effects play an important role on
intermediate timescales. Liquid flows that are induced by the
displacement of the colloid particle lead to long living
perturbations that travel a distance of the particle radius on
timescales of several microseconds [13–15]. This
hydrodynamic memory has to be included in the Langevin
equation [16, 17] to yield the equation of motion of a colloidal
particle in an incompressible liquid,

M* €x(t) � − 6πηR _x(t) − 6R2 ����
πρf η

√ ∫t

0
(t − t′)−1/2€x(t′)dt′ + Fth(t)

− kx(t)
(2)

The effective mass M* � Mp +Ma is a result of the
incompressible-fluid assumption, which now also replaces
the particle mass in Eq. 1. Here Mp is the particle mass
and Ma � 2πR3ρf /3 the mass of the displaced fluid. η and
ρf are the viscosity and density of liquid. The first term on
the right side of the equation resembles the Stokes
friction force of a spherical particle while the second term
accounts for the vorticity memory of acceleration of the
liquid [11]. The third term is the anti-correlated thermal
force which is no longer Gaussian but colored owing to
the fact that the vorticity generated at the surface of
the particle affects the force on the sphere at a later time
[11, 15, 18]. This is now captured in Eq. 3, which shows that
the correlation of the force decays with a power law. Here γ is
the drag coefficient and τf � ρfR2/η, estimating the time
needed for the perturbed fluid to move to the backside of
the particle,

〈Fth(t)Fth(0)〉 � −ckBT
���
τf
4π

√
t−3/2 (3)

Finally, the last term in Eq. 2 contains the trapping force with the
spring constant k.

This already complex dynamics of a Brownian particle in a
dense liquid is for Hot Brownian Motion altered by a stationary
inhomogeneous temperature profile taking the shape

T(r) � T0 + Pheat

4πκr
(4)

where T0 is the ambient temperature, Pheat the heating power
supplied to the particle and κ the thermal conductivity of the
liquid and r the distance from the particle center. This long range
temperature profile is now leading to an inhomogeneous viscosity
distribution in the surrounding. Both temperature increment and
viscosity decrease lead to an effective diffusion coefficient of the
particle

DHBM � kBTHBM

6πηHBMR
(5)

in the long-time limit, which we can use to verify our experiments
on long timescales. The effective quantities THBM which
resembles a configurational temperature and ηHBM can be
calculated from the theory of Hot Brownian Motion [2, 19].
The effective temperature of Hot Brownian Motion is thereby
found to be

THBM ≈ T0 + 5ΔT/12 (6)

with T0 being the ambient temperature and ΔT the surface
temperature increment of the colloid given by the second
term on the right side of Eq. 4. Estimates for the effective
viscosity ηHBM are reported in [19] for an assumed Vogel-
Fulcher type temperature dependence of the viscosity of

FIGURE 1 | Simplified schematic of the setup.
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water. At shorter times, the effective temperature has
required corrections with a more advanced theoretical
description [9].

2 EXPERIMENTAL SETUP

Our experimental setup is shown in Figure 1 and mainly
consists of three parts. The primary part of the measurement
system is for particle trapping and tracking. Light of a
1,064 nm laser (Mephisto, Coherent) is sent through a
rotatable half-wave plate to adjust the IR power in the
sample without modifying the driving current of the laser.
A beam expander is further used to overfill the first objective
(Olympus ×100/1.3NA) lens. The beam is tightly focused by
this objective lens to generate a stable trapping potential
[20–23] for the Brownian particles in three dimensions. A
second objective is used to collect light from the trapping
region that is split by a knife-edge prism and sent to a 350 MHz
bandwidth balanced photodetector (Thorlabs) with a damage
threshold of 20 mW. Our setup, therefore, detects the particle
motion only in one dimension (e.g., the x-direction), while
other dimensions may show different trapping stiffness [24].
The analog signal is converted by a 200 MHz digitizer card and
saved on the computer. The second part of the setup comprises
the beam path for heating the gold nanoparticles on the
polymer colloid surface at 532 nm wavelength (Sapphire,
Coherent). The laser beam is passing a quarter wave plate
and a polarizing beam splitter to obtain two equal-power
beams with orthogonal polarization to avoid interference in
the sample region. Both 532 nm beams are focused to the
sample region by two lenses and two Olympus 100x/1.3NA
objective lenses (where one is also used by the IR beam). The
additional lenses ensure a homogeneous heating of the
particles. The remaining third part (yellow) including an
LED illumination and a CCD is used to check the particle
trapping and particle quality.

In our experiments we use PMMA (Poly (methyl methacrylate))
polymer particles (n � 1.48, density ρ � 1.19 g/cm3, microParticles)
or AuPS (diameter 2.15 μm, effective density ρ � 1.08 g/cm3,
microParticles) particles. The AuPS particles are polystyrene (PS)
colloids coated with gold nanoparticles that have a diameter of
about 8 nm covering around 10 percent of the surface of the PS
particle. The gold nanoparticles are used for the PS colloid surface
heating. This geometry has been used as a compromise. A larger
particle mass favors a longer period of ballistic motion due to the
large inertia. A larger mass, as predicted by the theory of Hot
Brownian Motion [9], also decreases the observable effect of the
heating on the effective kinetic temperature of ballistic motion.
The AuPS particles thereby keep the mass of the PS particle
almost unchanged, while still allowing us to heat the particle
environment. All particles are suspended in water (n � 1.33,
density ρ � 0.998 g/cm3). Our sample chamber is comprised of
two pieces of 20mm × 20mm microscopy cover slips with a
thickness of 0.13–0.16mm and sealed by 50-μm-thick tape (3M
ATG Klebstoff-Film 924) and PDMS at the boundary.

3 RESULTS AND DISCUSSION

We analyze the mean squared displacement (MSD), power
spectral density (PSD) and velocity distribution of the

FIGURE 2 | Power spectral density (PSD, green dots) of a 0.915 μm
diameter PMMA particle at an ambient temperature of T0 � 23°C. The found
trap stiffness corresponds to k � 44.6 pN/μm at a trapping power of
P � 14.5 mW. The black line displays the theoretical fitting function (see
Appendix). The blue dots display the power spectral density of the
empty trap.

FIGURE 3 | Mean squared displacement determined for the 0.915 μm
diameter PMMA particle (see Figure 2 for PSD) at ambient temperature of
T0 � 23°C. The green circles correspond to the experimental data after
binning and subtraction while the black line displays the theoretical fitting
function (see Appendix). The dotted blue line is Einstein’s prediction for
diffusive motion (∝ t) while the dashed blue line is for ballistic motion (∝ t2).
The vertical black lines denote the characteristic time constants of a Brownian
particle in the trap. The momentum relaxation time τp � M/(6πηR) � 59 ns,
τ f � 224 ns and τk � 6πηR/k � 183 μs which is the time for the particle to
move through the trap from one side to the other.
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Brownian particle trapped in the optical tweezers. To decrease the
statistical noise, we take 20 trajectories for each type of particle
with a sampling rate of 200 MHz (10 MHz for Hot Brownian
Motion) and obtain the averaged results for MSD and PSD
analyses [25–27].

We first address the general performance of the setup to detect
spatial displacements under isothermal conditions. In Figure 2,
we show the PSD curve of the diameter d � 0.915 μm PMMA
particle with a trapping power P � 14.5 mW measured at the
trapping center at a temperature of 23°C. The theoretical fitting
function of the PSD (see Appendix) including all hydrodynamic
memory effects matches the experimental data very well. We
extract a trap stiffness of about k � 44.6 pN/μm being well in the
range of published results [24]. The conversion factor reaches
5.7 mV/nm for our detection under a shot noise level of 12.0 fm/���
Hz

√
at high frequencies. Figure 2 also displays the power

spectral density for an empty trap indicating the noise
background present in the system. The PSD with the particle
reaches the noise floor of the system at a frequency of
around f � 7 · 106 Hz.

We further calculate from the data the mean squared
displacement. For the calculation of the MSD we take the
average of every two adjacent data points to bin the position
data of the balanced photodetector and subtract from the
particle’s MSD the MSD calculated for the empty trap.
Figure 3 displays the result of the MSD calculation together
with a fit using Eq. A1, which nicely represents the measured
data. The figure also displays as guides the power laws
corresponding to a diffusive (∝ t) and a ballistic motion
(∝ t)2. The extracted trap stiffness from these experiments
is determined to be k � 44 pN/μm and the conversion factor
equals 5.7 mV/nm, which correspond well to the value
obtained from the PSD. At the smallest times the MSD
displacement approaches the ballistic regime, where the
instantaneous momentum of the particle has not relaxed.
The found momentum relaxation time of the particle is
τp � 59 ns. The time resolution of 10 ns, therefore, allows us
to resolve displacements of about 23 pm, which roughly
corresponds to a fifth of an atomic diameter making the
detection of the particle velocity distribution more
accessible [28]. Note that this ballistic motion is different
from the quasi-ballistic motion of an active system as
observed in [29], which shows similar time dependence.
There the quasi-ballistic motion observed in the time
dependent MSD is likely the result of a net phoretic motion
[30] and not related to the instantaneous momentum of the
particle as in our experiments.

Based on this performance, we now explore the dynamics of a
gold-covered polystyrene particle with a diameter d � 2.15 μm
for which additional heating is not applied. Figures 4, 5 show the
PSD and the MSD for the trapped particle at a trapping power
P � 15 mW under a temperature of around 23.5 °C. We extract a
trap stiffness k � 25.7 pN/μm from the PSD and k � 27.3 pN/μm
from the MSD which implies the AuPS particle is trapped not as
strongly as the 0.915 μm PMMA particle. It is additionally
reflected by a smaller corner frequency in the PSD curve of
the AuPS particle. Moreover, the resulting conversion factors are
3.7 mV/nm and 3.9 mV/nm from PSD and MSD respectively
under the shot noise level of 20.3 fm/

���
Hz

√
. The spatial resolution

for the measurements on the AuPS particle has been determined
to yield 27 pm with a temporal resolution of 40 ns which
demonstrates the robustness of our particle detection.

FIGURE 4 | Experimental power spectral density for a 2.15 μm diameter
polystyrene particle covered with gold nanoparticles (AuPS) at an ambient
temperature of T0 � 23.5°C. The found trap stiffness corresponds to
k � 25.7 pN/μm at a trapping power of P � 15 mW. All symbols have the
same meaning as in Figure 2.

FIGURE 5 | Mean squared displacement for the 2.15 μm diameter
polystyrene particle covered with gold nanoparticles (AuPS) at an ambient
temperature of T0 � 23.5°C. The vertical black lines denote the characteristic
time constants of a Brownian particle in the trap. The momentum
relaxation time τp � M/(6πηR) � 300 ns, τ f � 1251 ns and τk � 6πηR/k �
683 μs which is the time for the particle tomove through the trap from one side
to the other.
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Since the theoretical momentum relaxation time equals
τp � 300 ns, which is several times larger than our temporal
resolution, we can use the fluctuations of the particle to
calculate the probability density distribution of velocities at
short times. To diminish the influence of shot noise blocking

on the distribution we use binning. The bin size has been adjusted
in a way such that the noise background only contributes 13% to
the total kinetic energy while the minimum sampling interval is
300 ns which is still comparable with the momentum
relaxation time. Figure 6 displays the obtained velocity
distribution in comparison with the theoretical one. The
red symbols denote the contribution of noise in the empty
trap. The found experimental and theoretical root-mean-
square velocities are 492 μm/s and 707 μm/s, respectively.
Therefore, our current results with the binning to 300 ns
intervals still underestimates the instantaneous velocity
distribution. To reduce the binning time and the influence
of noise, higher signal-to-noise ratios will be required and are
currently implemented with new photodetectors. While the
ultimate region of ballistic motion is not yet sufficiently well
accessed, our time resolution provides access to the region of
hydrodynamic long time tails, where to our knowledge no
experimental data in inhomogeneous temperature fields has
been available.

To carry out measurements with a heated Brownian
particle, we first measure the temperature increase near the
surface of the heated AuPS particle in a separate experiment.
For this purpose, we exploit the phase transition of a liquid
crystal (5CB, see [31] for more details). The inset in Figure 7
displays the results of the measured surface temperature
increases converted for when the AuPS particle is immersed
in water with an incident laser at 532 nm wavelength under
heating powers of 9.34, 12.66, 16.12 and 19.12 mW. The
temperature increase ΔT grows linearly with the heating
power P as expected [31]. Equipped with a calibration of
the surface temperature we now study the dynamics of
heated particles in the optical trap. We use a lower
sampling rate of 10 MHz with a minimal time resolution of
100 ns for the experiment to improve the stability at long time
scales.

Figure 7 shows the resulting MSD ratios for a single AuPS
particle trapped with 12 mW laser power (1,064 nm) at a
temperature of 23.8 °C. A 532 nm laser as mentioned above
with a power of 9.56 and 12.66 mW is split into two equal but
perpendicularly polarized beams that are focused to a beam waist
of ω0 � 6.5 μm. As the changes in the time dependence of the
MSD are small upon heating, we calculate the ratio of the MSD of
the particle when it is not heated to theMSDs of the particle when
it is heated by the green laser (MSD ratio � MSDcold/MSDheat).
At large times, t > 1 ms, the ratio is essentially flat and determined
by the plateau of the mean squared displacement, i.e., the
trapping potential. As the motion in this regime is related to
the effective configuration temperature [7], the decreasing ratio
suggests a higher effective temperature. This higher temperature
is predicted by the theory of Hot BrownianMotion [9].We obtain
the effective Hot Brownian temperatures THBM from fitting the
diffusive part of the MSD. Using Eq. 6 we convert the effective
temperature to the surface temperature increase of the particle
ΔT , which is displayed together with liquid crystal measurement
results in the inset of Figure 7. Reasonable agreement is found
suggesting that the observed trend is due to Hot Brownian
Motion. Below a time lag of t < 1 ms, much stronger

FIGURE 6 | Normalized velocity distribution (refer to Eq. 1 with M
replaced by M*) obtained for the 2.15 µm diameter AuPS particle without
additional heating at room temperature T0 � 23.5°C. The bin size was chosen
to be 60. Blue and red circles are experimental data points for full trap
and empty trap measurements. The black solid line shows the theoretical
expectation for Maxwell-Boltzmann distribution at room temperature for the
particle effective mass of M* � 8.2 × 10−12 g.

FIGURE 7 | Calculated ratio of the mean squared displacement for the
2.15 µm diameter AuPS particle at different heating powers with a 532 nm
laser (see legend). The inset displays the surface temperature increment of the
colloids as determined from a separate measurement in a liquid crystal
(5CB, see text) as well as from the effective temperature of Hot Brownian
Motion (THBM) at large time lags.
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changes in the MSD ratio are observed. The ratio is decreasing
down to a timescale of t ≈ 10 μs. In this regime the Brownian
motion of an isothermal particle turns from the hydrodynamic
long time tails toward a diffusive motion. We suspect that the
strong changes are due to the altered hydrodynamic memory
of the heated liquid, though no detailed analytical model to
describe the MSD in this region exists yet. At very short
timescales (t < 10 μs), the MSD ratio starts to increase,
indicating smaller modifications of the particle dynamics
toward a region of ballistic motion.

4 CONCLUSION

In summary, we have constructed an experimental setup to
explore the short time dynamics of heated Brownian particles
known as Hot Brownian Motion. With the help of isothermal
liquid environments and Poly (methyl methacrylate) (PMMA)
particles, we have demonstrated a spatial resolution of 23 pmwith
a time resolution of 10 ns with our setup. With this time
resolution we are close to resolving the ballistic motion of the
PMMA particle. We have further used gold-nanoparticle covered
polystyrene particles to allow an optical heating of the particle
surface in the trap. We observe direct indication for Hot
Brownian Motion at long timescales as well as strong effects of
the increased surface temperature on the hydrodynamic long-time-
tails in the mean squared displacement. Our experiments
demonstrate for the first time that with the help of such a
setup and particles the ballistic regime of a single heated particle

in a dense liquid could become accessible to studies exploring
new regimes of non-equilibrium physics, for example the
Maxwell–Boltzmann temperature of a heated Brownian particle.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

FC conceived the experiment. XS and AF carried out the
experiments and data analysis. FC, XS and AF wrote the manuscript.

FUNDING

The authors acknowledge financial support by the German
Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) through project number 336492136. We acknowledge
support from Leipzig University for Open Access Publishing.

ACKNOWLEDGMENTS

We thank A. Kramer for helping to revise the manuscript. We
thank M. Selmke for his help constructing the setup.

REFERENCES

1. Radünz R, Rings D, Kroy K, and Cichos F. Hot Brownian Particles and Photothermal
Correlation Spectroscopy. J Phys Chem A (2009) 113:1674–7. doi:10.1021/jp810466y

2. Rings D, Schachoff R, SelmkeM, Cichos F, and Kroy K. Hot BrownianMotion.
Phys Rev Lett (2010) 105:090604. doi:10.1103/PhysRevLett.105.090604

3. Ruijgrok PV, Verhart NR, Zijlstra P, Tchebotareva AL, and Orrit M. Brownian
Fluctuations and Heating of an Optically Aligned Gold Nanorod. Phys Rev Lett
(2011) 107:037401. doi:10.1103/PhysRevLett.107.037401

4. Català F, Marsà F, Montes-Usategui M, Farré A, and Martín-Badosa E.
Influence of Experimental Parameters on the Laser Heating of an Optical
Trap. Sci Rep (2017) 7:16052. doi:10.1038/s41598-017-15904-6

5. Sevilla PR, Arita Y, Liu X, Jaque D, and Dholakia K. The Temperature of an
Optically Trapped, Rotating Microparticle. ACS Photon (2018) 5. doi:10.1021/
acsphotonics.8b00822

6. Rodríguez-Rodríguez H, Salas G, and Arias-Gonzalez JR. Heat Generation in
Single Magnetic Nanoparticles under Near-Infrared Irradiation. J Phys Chem
Lett (2020) 11:2182–7. doi:10.1021/acs.jpclett.0c00143

7. Chakraborty D, Gnann MV, Rings D, Glaser J, Otto F, Cichos F, et al.
Generalised Einstein Relation for Hot Brownian Motion. Epl (2011) 96.
doi:10.1209/0295-5075/96/60009

8. Rings D, Chakraborty D, and Kroy K. Rotational Hot Brownian Motion. New
J Phys (2012) 14:053012. doi:10.1088/1367-2630/14/5/053012

9. Falasco G, Gnann MV, Rings D, and Kroy K. Effective Temperatures of Hot
Brownian Motion. Phys Rev E Stat Nonlin Soft Matter Phys (2014) 90:032131.
doi:10.1103/PhysRevE.90.032131

10. Li T, Kheifets S, Medellin D, and Raizen MG. Measurement of the
Instantaneous Velocity of a Brownian Particle. Science (2010) 328:1673–5.
doi:10.1126/science.1189403

11. Kheifets S, Simha A, Melin K, Li T, and Raizen MG. Observation of Brownian
Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss.
Science (2014) 343:1493–6. doi:10.1126/science.1248091

12. Mo J, Simha A, Kheifets S, and Raizen MG. Testing the Maxwell-Boltzmann
Distribution Using Brownian Particles. Opt Express (2015) 23:1888–93.
doi:10.1364/OE.23.001888

13. Henderson S, Mitchell S, and Bartlett P. Propagation of Hydrodynamic
Interactions in Colloidal Suspensions. Phys Rev Lett (2002) 88:088302.
doi:10.1103/PhysRevLett.88.088302

14. Lukic B, Jeney S, Tischer C, Kulik AJ, Forro L, and Florin EL. Direct
Observation of Nondiffusive Motion of a Brownian Particle. Phys Rev Lett
(2005) 95:160601. doi:10.1103/PhysRevLett.95.160601

15. Franosch T, Grimm M, Belushkin M, Mor FM, Foffi G, Forró L, et al.
Resonances Arising from Hydrodynamic Memory in Brownian Motion.
Nature (2011) 478:85–8. doi:10.1038/nature10498

16. Nelson E.Dynamical Theories of BrownianMotion. Princeton University Press
(1967).

17. Uhlenbeck GE, and Ornstein LS. On the Theory of the Brownian Motion. Phys
Rev (1930) 36. doi:10.1103/physrev.36.823

18. Li T, and Raizen MG. Brownian Motion at Short Time Scales. Berlin: Ann.
Phys. (2013). p. 525.

19. Rings D, Selmke M, Cichos F, and Kroy K. Theory of Hot Brownian Motion.
Soft Matter (2011) 7:3441-3452. doi:10.1039/c0sm00854k

20. Ashkin A. Forces of a Single-BeamGradient Laser Trap on a Dielectric Sphere in the
ray Optics Regime. Biophys J (1992) 61:569–82. doi:10.1016/S0006-3495(92)81860-X

21. Rohrbach A, and Stelzer EH. Trapping Forces, Force Constants, and Potential
Depths for Dielectric Spheres in the Presence of Spherical Aberrations. Appl
Opt (2002) 41:2494–507. doi:10.1364/ao.41.002494

22. Grier DG. A Revolution in Optical Manipulation. Nature (2003) 424:810–816.
doi:10.1038/nature01935

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6694596

Su et al. Heated Particle Maxwell-Boltzmann Distribution

https://doi.org/10.1021/jp810466y
https://doi.org/10.1103/PhysRevLett.105.090604
https://doi.org/10.1103/PhysRevLett.107.037401
https://doi.org/10.1038/s41598-017-15904-6
https://doi.org/10.1021/acsphotonics.8b00822
https://doi.org/10.1021/acsphotonics.8b00822
https://doi.org/10.1021/acs.jpclett.0c00143
https://doi.org/10.1209/0295-5075/96/60009
https://doi.org/10.1088/1367-2630/14/5/053012
https://doi.org/10.1103/PhysRevE.90.032131
https://doi.org/10.1126/science.1189403
https://doi.org/10.1126/science.1248091
https://doi.org/10.1364/OE.23.001888
https://doi.org/10.1103/PhysRevLett.88.088302
https://doi.org/10.1103/PhysRevLett.95.160601
https://doi.org/10.1038/nature10498
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1039/c0sm00854k
https://doi.org/10.1016/S0006-3495(92)81860-X
https://doi.org/10.1364/ao.41.002494
https://doi.org/10.1038/nature01935
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


23. Magazzu A, Spadaro D, Donato MG, Sayed R, Messina E, D’Andrea C, et al.
Optical Tweezers: a Non-destructive Tool for Soft and Biomaterial
Investigations. Rend Fis Acc Lincei (2015) 26:203–218. doi:10.1007/s12210-
015-0395-4

24. Rohrbach A. Stiffness of Optical Traps: Quantitative Agreement between
Experiment and Electromagnetic Theory. Phys Rev Lett (2005) 95:168102.
doi:10.1103/PhysRevLett.95.168102

25. Jones PH, Maragò OM, and Volpe G. Optical Tweezers - Principles and
Applications. Cambridge University Press (2015).

26. Flyvbjerg H, and Berg-Sorensen K. Power Spectrum Analysis for Optical
Tweezers. Rev Scientific Instr (2004) 75.

27. Nørrelykke SF, and Flyvbjerg H. Harmonic Oscillator in Heat bath: Exact
Simulation of Time-Lapse-Recorded Data and Exact Analytical Benchmark
Statistics. Phys Rev E (2011) 83:041103. doi:10.1103/PhysRevE.83.041103

28. Huang R, Chavez I, Taute KM, Luki B, Jeney S, Raizen MG, et al. Direct
observation of the full transition from ballistic to di_usive Brownian motion in
a liquild. Nat Phys (2011) 7:576–580. doi:10.1038/nphys1953

29. Kumar S, Kumar A, Gunaseelan M, Vaippully R, Chakraborty D, Senthilselvan J,
et al. Trapped in Out-Of-Equilibrium Stationary State: Hot Brownian Motion in

Optically Trapped Upconverting Nanoparticles. Front Phys (2020) 8:429.
doi:10.3389/fphy.2020.570842

30. Schmidt F, Magazzù A, Callegari A, Biancofiore L, Cichos F, and Volpe G.
Microscopic Engine Powered by Critical Demixing. Phys Rev Lett (2018) 120:
068004. doi:10.1103/PhysRevLett.120.068004

31. Fränzl M, Muios-Landin S, Holubec V, and Cichos F. Fully Steerable
Symmetric Thermoplasmonic Microswimmers. ACS Nano (2021) 15:
3434-3440. doi:10.1021/acsnano.0c10598

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Su, Fischer and Cichos. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6694597

Su et al. Heated Particle Maxwell-Boltzmann Distribution

https://doi.org/10.1007/s12210-015-0395-4
https://doi.org/10.1007/s12210-015-0395-4
https://doi.org/10.1103/PhysRevLett.95.168102
https://doi.org/10.1103/PhysRevE.83.041103
https://doi.org/10.1038/nphys1953
https://doi.org/10.3389/fphy.2020.570842
https://doi.org/10.1103/PhysRevLett.120.068004
https://doi.org/10.1021/acsnano.0c10598
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


APPENDIX

We use the following mean squared displacement of the particle
for fitting, where z1,z2,z3,z4 are four roots of Eq. A2.

〈[Δx(t)]2〉� 2kBT
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+ 2kBT
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(A1)
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� 0 (A2)

The power spectral density (the squared modulus of the
position signal’s Fourier transform) in Eq. A3, which is
normalized by the measurement time of one trajectory, is
fitted with the following equation

PSD(f ) � D
2π2f 2

×
1 +

��
f
2ff

√
(fk

f −
��
f
2ff

√
− f

fp
− f

9ff
)2

+ (1 + ��
f
2ff

√ )2 (A3)

Here D is the diffusion coefficient and fp,f ,k � 1/(2πτp,f ,k).
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