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Microglia are the brain’s immunocompetent macrophages with a unique feature that
allows surveillance of the surrounding microenvironment and subsequent reactions to
tissue damage, infection, or homeostatic perturbations. Thereby, microglia’s striking
morphological plasticity is one of their prominent characteristics and the categorization of
microglial cell function based on morphology is well established. Frequently, automated
classification of microglial morphological phenotypes is performed by using quantitative
parameters. As this process is typically limited to a few and especially manually chosen
criteria, a relevant selection bias may compromise the resulting classifications. In our
study, we describe a novel microglial classification method by morphological evaluation
using a convolutional neuronal network on the basis of manually selected cells in addition
to classical morphological parameters. We focused on four microglial morphologies,
ramified, rod-like, activated and amoeboid microglia within the murine hippocampus
and cortex. The developed method for the classification was confirmed in a mouse
model of ischemic stroke which is already known to result in microglial activation
within affected brain regions. In conclusion, our classification of microglial morphological
phenotypes using machine learning can serve as a time-saving and objective method
for post-mortem characterization of microglial changes in healthy and disease mouse
models, and might also represent a useful tool for human brain autopsy samples.
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INTRODUCTION

Microglia serve as the central nervous system (CNS)’s immunocompetent macrophages, which
crucially contribute to homeostasis, plasticity, and learning by taking up pathogens, apoptotic
cells, synaptic remnants, toxins, and myelin debris (Bradl and Lassmann, 2010; Sofroniew
and Vinters, 2010; Goldmann and Prinz, 2013; Parkhurst et al., 2013; Nutma et al., 2020;
Traiffort, 2020). Our current understanding is that these highly specialized brain-resident
immune cells constantly monitor the brain’s microenvironment enabling them to detect

Abbreviations: CNS, central nervous system; CNN, convolutional neural network; DAPI, 4′,6-diamidino-2-phenylindole;
PFA, paraformaldehyde; PBS, phosphate buffered saline; SRI, Schoenen ramification index; BBB, blood-brain barrier;
DAMP, damage-associated molecular patterns; NF-L, neurofilament light; MAP2, microtubule-associated-protein-2; Coll
IV, collagen IV; Iba1, ionized calcium-binding adapter molecule 1; ROI, Regions of interest; CLAHE, contrast limited
adaptive histogram equalization; MCA, middle cerebral artery.
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and respond to tissue damage, infection, or homeostatic
perturbations (Nimmerjahn et al., 2005). In the scanning state
and under physiological conditions, microglial morphology is
characterized by a small cell body and very fine, highly ramified
processes, which allow these cells to screen their local brain
parenchyma for signs of pathogens or cellular damage. In
this steady-state condition, highly branched microglia were
previously described as ‘‘resting’’, but recent studies revealed
them to be greatly dynamic and microglia should rather
be described as ‘‘surveilling’’ cells (Tremblay et al., 2011;
Nimmerjahn, 2012). So-called damage-associated molecular
patterns (DAMPs), which are warning mechanisms in the
form of secreted or released molecules from pathogens and
injured cells, initiate microglial immune responses triggering
process retraction, cell soma size increase and thickening,
and morphological transformation from a ramified toward an
activated morphology and finally to an amoeboid cell form
(Huang et al., 2015; Colonna and Butovsky, 2017). Amoeboid
microglia are characterized by completely retracted processes
and a swollen cell soma (Doorn et al., 2014). The rapid
morphological transformation of microglia enables these cells to
migrate to the site of injury or to phagocytose harmful debris and
invaders (Davalos et al., 2005; Nimmerjahn et al., 2005; Tremblay
et al., 2011). Remarkably, between the two classes at the ends
of the microglial morphology spectrum, of either ramified or
amoeboid cell shape, microglia exhibit a variety of morphological
transition states, which may reflect disease-specific functional
cell states, but their spatial organization and precise role in the
damaged or diseased brain is still unclear (Stence et al., 2001;
Fumagalli et al., 2013; Salamanca et al., 2019). Recent studies
described a fourth morphology of microglia in mice, so-called
rod-like microglial cells, which were already reported by Franz
Nissl in 1899 (Nissl, 1899; Ziebell et al., 2012; Rojas et al., 2014;
Bachstetter et al., 2017; Holloway et al., 2019). Rod-like microglia
do not exhibit planar processes and show a decreased number of
secondary branches as well as narrowing of cell and soma (Ziebell
et al., 2012; Taylor et al., 2014).

Microglial cells are active participants in various pathological
conditions such as neurodegenerative disorders, traumatic brain
injury, and stroke. Ischemic stroke due to obstruction of
blood vessels is a leading cause of morbidity and mortality
worldwide and not only affects neurons, but also the glial
network including microglia (del Zoppo, 2009; Deb et al., 2010;
Campbell et al., 2019). Along with cerebral ischemia a rapid
deramification of microglial cells occurs, while severe ischemic
stroke is accompanied by an intense microgliosis followed by the
production of both neuroprotective and detrimental mediators
(Masuda et al., 2011; Zhao et al., 2017; Zhang, 2019). Activated
microglia may be involved in the progression of the ischemic
lesion, but their precise function during ischemia evolution
remains unclear. While single-cell RNA sequencing recently
highlighted the whole range of microglial functions reflected by
their phenotypic diversity and comprehensively characterized
these cells at the molecular level, it does not provide the spatial
information for a full understanding of brain homeostasis and
disease progression mechanisms. Physiological and pathological
conditions including regional distribution, species specificity,

neurological disorders, and CNS tissue injuries can affect
microglial heterogeneity (Grabert et al., 2016; Galatro et al., 2017;
Gosselin et al., 2017; Soreq et al., 2017; Sousa et al., 2017; Heindl
et al., 2018; Masuda et al., 2020).

There are numerous studies on automated detection and
quantification of Iba1 or CD11b-positive cells in healthy or
injured brain in rodents (Kozlowski and Weimer, 2012; Valous
et al., 2013; Kongsui et al., 2014; Rey-Villamizar et al., 2014;
Johnson and Walker, 2015; Zanier et al., 2015; Ding et al.,
2017; Morrison et al., 2017; York et al., 2018; Kyriazis,
2019). Automated classification of microglial morphological
phenotypes is performed by using quantitative parameters like
convex hull area, soma perimeter, process length, number of
processes, process branching process volume, circularity, solidity,
fractal dimension and, lacunarity (Kongsui et al., 2014; Zanier
et al., 2015; Fernández-Arjona et al., 2017, 2019; Morrison
et al., 2017; York et al., 2018; Kyriazis, 2019). However, as
these approaches hold the risk for a selection bias due to
the naturally limited number of criteria and their manual
selection during a single experiment, more elaborated concepts
are needed to achieve the best possible accuracy inmorphological
classifications.

We here describe a novel classification method for analysis
of microglial phenotypes by morphological evaluation using
machine learning within the murine hippocampus and cortex
with a focus on four microglial morphologies (ramified, rod-
like, activated, amoeboid). In addition to classical morphological
parameters, we used a convolutional neuronal network (CNN)
for the classification of microglial phenotypes on the basis of
manually selected cells. CNNs were already used for phenotype
classification, for example for images of intracellular actin
networks (Oei et al., 2019), multichannel single-cell images (Dürr
and Sick, 2016), and Iba1-immunopositive microglia (Kyriazis,
2019). To confirm a reliable classification of different microglial
morphological phenotypes, we finally applied our developed
method in a mouse model of ischemic stroke which is already
known to result in microglial activation.

MATERIALS AND METHODS

Animals and Diets
The experiments were performed using male wild-type C57BL/6J
mice (n = 36) and leptin receptor-deficient db/db (n = 37)
and Leprdb/+ (db/+) (n = 36) mice as well as male wild-type
C57BL/6J mice which underwent 24 h of transient focal cerebral
ischemia (n = 6) by occlusion of the middle cerebral artery
(MCA) as described in Mages et al. (2021). In our study, the
filament occluding the MCA was retracted after 1 h of ischemia,
and reperfusion was allowed until animals were sacrificed 24 h
after ischemia induction. All animals were kept in the local
animal facility under standard conditions: 12 h dark/light cycle,
group-housed with free access to water and food. We performed
this study in accordance with the guidelines of the Animal
Experimental Committee following the German Animal Welfare
Act as well as the European guidelines (Directive 2010/63/EU)
concerning the protection of laboratory animals. The study was
carried out in compliance with the ARRIVE guidelines. All
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experimental procedures and protocols were authorized by the
local ethics committee of the state of Saxony (Landesdirektion
Sachsen, Leipzig, approval nos. TVV 65/15, TVV 02/17, and TVV
41/17).

Tissue Preparation
Mice were anesthetized with isoflurane (Baxter GmbH,
Unterschleißheim, Germany) and transcardially perfused
with ice-cold phosphate buffered saline (PBS, pH 7.4) and 4%
paraformaldehyde (PFA) in 0.2 M PBS. Brains were carefully
removed from the skull and post-fixed for 24 h in 4% PFA in
0.2 M PBS. Perfused and fixed brains of male wild-type C57BL/6J
mice as well as db/db and db/+ mice were sliced into 20 µm
thick coronal or horizontal floating sections using a vibratome
(Leica VT 1200, Leica Biosystems, Wetzlar, Germany) before
their storage in PBS, containing 0.2% sodium azide, until further
processing. Tissue preparation of C57BL/6J mice subjected to
experimental cerebral ischemia was performed as described in
Mages et al. (2021).

Staining
For staining with rabbit anti-Iba1 (Synaptic Systems, Göttingen,
Germany) to label microglia, floating brain sections were
mounted onto microscopic slides followed by three wash steps
with 0.3% Triton X-100 in 0.02M PBS for 10 min each time.
Then, slices were incubated for 20 min in PBS containing 1.5%
hydrogen peroxide at room temperature in order to quench
the endogenous peroxidase activity. Afterward, brain sections
were washed again three times with 0.3% Triton X-100 in PBS
for 10 min each time, and slices were subsequently pretreated
with 0.5% sodium borohydride in PBS for 30 min to reduce
background staining. Thereafter, slices were thoroughly rinsed
in 0.3% Triton X-100 in PBS and were blocked for 1 h in
PBS blocking buffer containing 5% normal goat serum and
0.3% Triton X-100 at room temperature. Then, brain sections
were incubated with the primary antibody Iba1 (1:500) diluted
in PBS with 5% of normal goat serum. Incubation was done
overnight at 4◦C. The next day, brain sections were rinsed
three times with 0.3% Triton X-100 in PBS and incubated
with the biotinylated goat anti-rabbit IgG secondary antibody
(1:100; Vector Laboratories, Burlingame, CA, USA) for 1 h at
room temperature. After three wash steps with 0.3% Triton
X-100 in PBS for 10 min each time, slices were incubated
with VECTASTAIN Elite ABC HRP Kit (Vector Laboratories,
Burlingame, CA, USA) for 30 min at room temperature.
Thereafter, sections were washed with PBS and 0.05 M Tris,
stained 5 min with the Vector SG HRP substrate (Vector
Laboratories, Burlingame, CA, USA) producing a blue-gray
reaction product, and were thoroughly rinsed in Tris and
distilled water. Finally, brain sections were dried and covered
with Entellan (Toluene; Merck KGaA, Darmstadt, Germany)
and coverslips. For negative controls, the omission of primary
antibodies, under otherwise identical conditions, resulted in the
absence of any labeling (data not shown). A critical step for
successful cell detection and classification was the reduction
of background staining, which we overcame by performing a
pre-treatment with 0.5% sodium borohydride in PBS. Prior

to this, other microglia-specific markers (P2RY12, TMEM119)
were also explored but did not result in desired image quality
regarding the resolution of cell processes and subsequent cell
detection.

To define the ischemic area, which was subsequently used
for microglial classification, the proteins MAP2 (microtubule-
associated protein 2), NF-L (neurofilaments-light chain), and
collagen IV (Coll IV) were used as ischemia-sensitive markers
(Popp et al., 2009; Härtig et al., 2016, 2017; Mages et al.,
2018) in animals which underwent transient MCA occlusion.
In general, fluorescence staining was performed as described in
Mages et al. (2018), whereas following antibodies and dilutions
were used (Mages et al., 2018). Primary antibodies: Rabbit-
anti-neurofilament L (1:200, Synaptic Systems, Göttingen,
Germany); mouse-anti-MAP2 (clone HM-2; 1:500, Sigma,
Taufkirchen, Germany); rabbit-anti-collagen IV (1:100, Merck
Millipore, MD, USA). Secondary antibodies: AlexaFluor488-
donkey-anti-mouse IgG, AlexaFluor586-donkey-anti-rabbit IgG,
AlexaFluor647-donkey-anti-goat IgG, each 1:250, each Thermo
Fisher, Waltham, MA, USA. Brain sections were scanned with
an Axio Scan.Z1 slide scanner (Carl Zeiss Microscopy GmbH,
Jena, Germany) and files were exported using the NetScope
Viewer Pro Software (Net-Base Software GmbH, Freiburg i.
Br., Germany). In line with earlier reports (Härtig et al., 2017;
Mages et al., 2018) the ischemic area was characterized by a
loss of MAP2 (Supplementary Figure 1A), whereas the NF-L-
and Coll IV-related immunofluorescence intensities increased
in these regions compared to the non-ischemic contralateral
hemisphere (Supplementary Figures 1B,C). Supplementary
Figure 1D shows the selected neocortical and hippocampal areas
within the ipsilateral and contralateral hemispheres.

Image Acquisition and Processing
Iba1-stained brain sections were fully digitalized using a digital
slide scanner (Pannoramic Scan II, 3D HISTECH Ltd., Budapest,
Hungary) at 40× magnification and automatically stitched
(Figures 1A–C). The scanner software (Pannoramic Scanner,
version 1.23, 3D HISTECH Ltd., Budapest, Hungary) was
operated in extended focus mode (eight levels with 1 µm
axial distance) to combine images from several adjacent focal
planes into one image with maximum depth of sharpness.
This procedure enables coherent imaging of freely aligned cell
processes within a shallow tissue volume instead of producing
images with interrupted processes from a single focal plane.

Regions of interest (ROIs) were manually selected and
corresponding images were exported from slide scanner data
sets (Case Viewer, version 2.3, 3D HISTECH Ltd., Budapest,
Hungary) with a pixel dimension of 0.122 µm (Figures 1D–F).
Exported images were converted to grayscale and submitted
to contrast limited adaptive histogram equalization (CLAHE;
Heckbert, 1994) using Icy (version 2.0.31, de Chaumont et al.,
2012). The resulting images were imported in Mathematica
(version 11.2, Wolfram Research, Inc., Champaign, IL, USA),
grayscale colors were inverted and tissue area was computed.
Soma detection was performed in two steps. First, a series

1http://icy.bioimageanalysis.org
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FIGURE 1 | Representative overview photomicrographs showing Iba1 staining in coronal (A,C) and horizontal (B) brain sections of male C57BL/6J mice (A) db/+
mice (B) and C57BL/6J mice with ischemia (C). Exemplary regions of interest (ROIs) were manually selected in corresponding images (D–F). Scale bars represent
2,000 µm (A–C) and 1,000 µm (D,E).

of top hat (Gonzalez and Woods, 2016) and Gaussian filter
operations was applied to the inverted images to suppress cell
processes and enhance cell somata. Processed grayscale images
were then binarized using Otsu’s (cluster variance maximization)
thresholding method (Otsu, 1979). The binarized images were
cleared of smaller segments that did not match somata (artifacts
or clumped cell processes) by using an empirically determined
size threshold of 1,500 pixels and the remaining somata were
reconstructed by morphological closing (Gonzalez and Woods,
2016) within a 7.5-pixel radius.

Process detection was performed in a hybrid fashion to
preserve connections between cell somata and cell processes.
In the first step, the inverted images were submitted to local
adaptive segmentation (5-pixel radius) to detect all stained
cells. In the second step, all processes within the inverted
images were amplified by using a ridge-detecting image filter
(‘‘RidgeFilter’’, σ = 5) to enhance local structural coherence
and the resulting images were also submitted to local adaptive
segmentation (5-pixel radius). Both segmented images were
subsequently added and merged with the respective somata
image. Since some processes may appear separated from somata
due to the imaging procedure, an additional reconstruction step
was performed by connecting endpoints of processes to the
respective somata within a 50-pixel radius. In the last step all
images were cleared of processes without connections to any
somata and all cells intersected by the border of the image area
were removed.

The resulting images contained many connected cells which
had to be separated from each other. Centroid coordinates of
all somata were calculated and used as seed pixels for a parallel
flood fill operation. Starting from the seeds this operation fills all
pixels of the detected cells with a unique label, either to the cell
borders or to the filling fronts of connected cells. After this step,
all individual cells of an image were uniquely labeled. All final cell

segmentations along with results of relevant intermediate steps
were examined to ensure proper processing and detection.

For subsequent cell classification, the cells of all images were
cropped from the original image area and exported as binary
masks containing their complete shape (as well as in separate
shapes for soma and processes, respectively) along with their
original grayscale representation from the equalized grayscale
images. Additionally, for visual inspection cell shapes were
submitted to morphological thinning to compute the medial
axes, the so-called skeleton, of all processes which was combined
with the respective somata. Figure 2A shows a schematic
overview of the applied methods.

Cell Classification of Microglial Cells in
Wild-Type C57BL/6J, db/db, and db/+ Mice
Microglial cells express a considerable phenotypic diversity
(Figure 2B). After thorough inspection of all exported cell
images, 1,000 cells per class were manually selected as the
basis for cell classification and the corresponding cell images
were cropped and rescaled to 128 × 128 pixels (Figure 2C).
Images were split into training (70%), validation (15%), and
test (15%) set. The test set was only used for the evaluation of
the trained network. Images belonging to the training set were
submitted to image augmentation (Shorten and Khoshgoftaar,
2019) to expand data diversity and make the classification more
robust (Gao et al., 2017). A series of rotation and reflection
image transforms was applied to each image, and after image
augmentation, 3-fold cross-validation was performed.

A convolutional neural network (CNN) based on the VGG-16
architecture was selected for cell classification (Simonyan and
Zisserman, 2015). The network consisted of 13 convolutional
layers, five max-pooling layers, two fully connected layers,
and a softmax layer of four nodes for the classes amoeboid,
activated, rod-like, and ramified (Figure 2D). ReLU was
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FIGURE 2 | Flow chart of all steps involving the segmentation of microglial cells (A). The spectrum of the phenotypic diversity of microglial cells after segmentation
(B). Random samples from cells that were manually selected as the basis for cell classification (C). The convolutional neural network (CNN) based on the VGG-16
architecture that was used for cell classification (D), along with the performance parameters (log-loss and accuracy) during the training (E) and the confusion matrix
for the test set (F) with an overall accuracy of 95.56%.
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used as an activation function and after each activation,
BatchNormalization was applied for regularization. ‘‘Adam’’
optimizer was used for optimization, the initial learning rate was
set to 0.001, batch size was set to 64, and a dropout rate of 0.5 was
applied to constrain the fully connected layers and to reduce
overfitting. The CNN was trained on an off-the-shelf NVIDIA
GeForce GTX 1080 with 8 GB GPU memory for 250 epochs,
training time took about 5.8 h. The performance parameters
(log-loss and accuracy) are shown in Figure 2E. Averaged values
of the last 50 training rounds were as follows: training loss
0.0497, validation loss 0.2887, and validation accuracy 0.9726.
Subsequently, the test set was submitted to the trained CNN.
Overall accuracy was 95.56%, the confusion matrix is shown in
Figure 2F. While 97.78% of the amoeboid and 97.22% of the
ramified cells were correctly classified, the percentage dropped to
95.56% and 91.67% for activated and rod-like cells, respectively.
The matrix shows that 3.89% of activated cells were misclassified
as rod-like cells, while 8.33% were misclassified vice-versa,
indicating the more prominent phenotype overlap between these
two classes.

Classification and Quantitative Analysis of
Microglial Cells in Ischemia Affected
Regions
Stroke sections were submitted to the same image acquisition
and cell extraction procedure mentioned above. Brain sections
and ROIs were selected based on the ischemia-induced decrease
of MAP2-related and increase of NFL- and Coll IV-related
immunofluorescence intensities within cortical and hippocampal
regions (Supplementary Figure 1). These regions were mirrored
to the contralateral control hemisphere, thus capturing four ROIs
per animal (Mages et al., 2021). The selection was performed
and verified by experienced investigators. Exported cell masks
(soma white, processes gray) were also scaled to 128× 128 pixels
and submitted to classification. In total 15,786 single cells from
24 stroke ROIs were classified. Individual cells were coded as
labeled regions within the original image area. Labels were
subsequently color-coded according to classification results.
Final images were used for visualization and classification
verification. Subsequently, cells were submitted to quantification
and all calculated parameters are presented in Figure 3.
Parameters include areas (µm2) and perimeters (µm) of whole
cells (Figures 3A,B), their convex hulls (the smallest convex
set of pixels that encloses a cell; Figures 3C,D) and their
somata (Figures 3H,I); cell solidity (the degree to which the
area of a cell fills the area of its convex hull; Figure 3E) and
convexity (the ratio of a cell’s convex hull perimeter to the cell’s
actual perimeter; Figure 3F); circularity of cells and somata
(the roundness, where 1 equals a perfect circle and values
smaller than 1 indicate shapes that increasingly deviate from
the shape of a circle; Figures 3G,J); length (µm) as well as the
number of branch and endpoints (n) of the skeletonized processes
(Figures 3K–M); and the number of cell processes (n; Figure 3N).
The number of cell processes was calculated by subtracting
the dilated soma (3-pixel dilation) from the respective cell and
counting the number of all isolated processes. Furthermore,

all cells were submitted to Sholl analysis (Sholl, 1953) and the
cell’s branching index (Garcia-Segura and Perez-Marquez, 2014;
a measure to distinguish between cells of different ramification
types; Figure 3O), critical radius (µm; the radius with the
maximum number of process crossings; Figure 3P), dendritic
maximum (n; the number of process crossings at the critical
radius; Figure 3Q) and the Schoenen ramification index (SRI,
Schoenen, 1982; a measure of the branching of a cell; Figure 3R)
were calculated. Additionally, for whole images the segmented
image area (%), representing the ratio of segmented pixels within
the total image area (before cell detection), and the cell density
(cells per mm2) were computed.

NC (Nearest Centroid) Classification
To demonstrate the differences between CNN classification and
conventional parameter-based classification, we applied an NC
classification method to various parameter combinations
(Figure 4). Morphological parameters of all manually
selected cells that were used for the training of the CNN
were calculated.

Initially—and to demonstrate the approach—we considered
combinations consisting of only two parameters. Figure 4 shows
results for the following combinations: cell area/skeleton length
(A–E), cell perimeter/soma perimeter (F–J), cell circularity/soma
circularity (K–O). In the first step, scatter plots for parameter
values of all manually selected cells were generated using a color
scheme for the indication of the four classes (Figures 4A,F,K;
ramified microglia: blue, rod-like microglia: orange, activated
microglia: red, amoeboid microglia: gray). Class centroids
(median values of the current parameters) were calculated
for all four classes and added to the scatter plots (black
dots). Subsequently, scatter plots were also generated for
the same parameter combinations of all CNN classified cells
(Figures 4B,G,L). NC classification was performed for all
already CNN classified cells by calculating the distance of
their parameter combinations to all four class centroids and
assigning the class of the nearest centroid. The resulting NC
clusters were also presented as scatter plots (Figures 4D,I,N)
along with the four class centroids. Classification results were
compared (Figures 4E,J,O) and the degree of conformity
of both methods was determined by calculating the portion
of consistently (sum of diagonal matrix values) to all
(sum of all matrix values) classified cells. Additionally, the
generated matrices were tested regarding their symmetry
using the exact symmetry test for paired contingency tables
(‘‘nominalSymmetryTest’’) from the ‘‘rcompanion’’ package
for R. Classification differences between the two methods were
also illustrated using an exemplary image section with the
color coding from CNN classification (Figure 4R) and color
codings from NC classifications (Figures 4C,H,M). Correlation
analysis was performed for all two-parameter combinations
using Spearman’s rank correlation coefficient to characterize
the distribution of parameter points of all CNN classified cells.
Scatter plots and respective regression lines of selected parameter
combinations are shown in Supplementary Figure 3. The
degree of conformity (upper triangular matrix) and correlation
coefficients (lower triangular matrix) of all two-parameter
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FIGURE 3 | Illustrations and formulas of all morphological parameters used for quantification of microglial cells (inspired by Fernández-Arjona et al., 2017).
Parameters based on area (A,C,H), perimeter (B,D,I), combinations of area and perimeter (E,F,G,J), skeleton (K,L,M), processes (N), and Sholl analysis (O,P,Q,R).

combinations are shown in Figure 5A. Another correlation
analysis was performed to investigate a potential association
between the degree of conformity (CNN vs. NC classification)
and the absolute correlation coefficient, or more precisely to
answer the question whether NC classification accuracy can be
correlated to the distribution of parameter points within the
parameter space (Figure 5B).

Similar analyses (NC classification, degree of conformity, and
test for matrix symmetry) were performed for combinations
ranging from three up to 17 parameters (131,054 combinations
in total; Figure 5C). The parameter SRI was omitted from all
analyses since it could not be calculated for each cell (division
by zero for cells with no processes). Furthermore, a number
of parameter combinations, as well as singular parameters
whose presence resulted in highest degrees of conformity, were
identified.

Statistical Analysis
Statistical analysis was performed with IBM SPSS Statistics
(version 22, IBMCorp., Armonk, NY, USA) and R (version 3.6.1;
R Core Team2). Images were separated into analysis groups. For
each group, the number of cells per class were counted, relative
class proportions were calculated and respective stacked bar
charts were generated. Group comparisons of class percentages
were performed using the non-parametric density equality test
(Li et al., 2009; ‘‘ndpdenq’’, 999 bootstrap replications) from
the ‘‘np’’ package for R. Descriptive statistics were calculated
and box plots were generated. Data were tested for normal
distribution using the Shapiro-Wilk Test (segmented image
area and cell density) and Kolmogorov-Smirnov Test (grouped
parameter data), and group comparisons were performed using
KruskalWallis andMann-Whitney-U tests. To adjust the p-value

2http://www.R-project.org

for multiple comparisons, post hoc Bonferroni correction was
performed. The number of analyzed animals is indicated as
‘‘n’’ in the figure legend. Data are presented as the median
and interquartile range (IQR). Significance was set as follows:
p < 0.05 ∗, p < 0.01 ∗∗, p < 0.001 ∗∗∗, p < 0.0001 ∗∗∗∗.

RESULTS

Class Percentage of Microglial
Morphological Phenotypes
We trained the CNN with microglial cells of different mouse
strains, male wild-type C57BL/6J mice, db/db, and db/+ mice,
to obtain and cover a wide variety of microglial morphological
phenotypes. Subsequently, we examined our microglial
classification method in a mouse model of experimental cerebral
ischemia (24 h after ischemia induction) known for microglial
activation in the area of ischemic tissue damage (Härtig et al.,
2017; Zhang, 2019). Figure 6 shows representative images of
Iba1 staining within the control neocortex (Figure 6A), ischemic
neocortex (Figure 6B), control hippocampus (Figure 6C),
and ischemic hippocampus (Figure 6D). Ischemia-affected
regions in the hippocampus and neocortex presented more
activated and rod-like Iba1-positive cells (which most probably
correspond to microglia rather than infiltrated cells such
as monocytes/macrophages at day one after experimental
stroke; Jian et al., 2019; Rajan et al., 2019; Han et al., 2020)
compared to the relevant brain areas within the contralateral
hemisphere (Figures 6A′–D′). Classification of microglial
morphological phenotypes using our neural network machine
learning method confirmed the qualitative analysis of microglial
phenotypes by morphological evaluation after staining with
Iba1. Total class percentages within the ischemic neocortex
and hippocampus were significantly different compared to
the control neocortex or hippocampus (Figure 7A; control
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FIGURE 4 | Differences between CNN classification and NC (nearest centroid) classification for various parameter combinations. Scatter plots with respective class
centroids (black points) of all manually selected cells (A,F,K). Scatter plots of all cells after CNN classification (B,G,L) with regression line. Scatter plots of all cells with
initial class centroids (black points) after NC classification (D,I,N). Comparison of CNN and NC classification results with degree of conformity and p-value from exact
symmetry test for paired contingency tables (E,J,O,P,T). Example image section with color-codings for CNN classification (R) and NC classifications (C,H,M,Q,S).
Ramified microglia are depicted in blue, rod-like cells in orange, activated microglial cells in red, and amoeboid cells in gray.

neocortex vs. ischemic neocortex ∗, control hippocampus
vs. ischemic hippocampus ∗). Individual class percentages in
the neocortex revealed significant increases of activated and
rod-like microglial cells and a simultaneous decrease of ramified
microglia within the ischemia-affected hemisphere compared to
the control hemisphere. Amoeboid Iba1-positive cells did not
differ between the ischemic and non-ischemic neocortex, as they
were virtually absent (Figure 7B; activated microglia control vs.
ischemic neocortex ∗∗, rod-like microglia control vs. ischemic
neocortex ∗∗, ramified microglia control vs. ischemic ∗∗).
Similarly, the percentages of activated and rod-like microglial
cells within the ischemic hippocampus were significantly
enhanced, whereas the amount of ramified microglia was
lower compared to the control hippocampal area (Figure 7C;
activated microglia control vs. ischemic hippocampus ∗∗,
rod-like microglia control vs. ischemic hippocampus ∗, ramified

microglia control vs. ischemic hippocampus ∗∗). In contrast to
the neocortex, we also detected a significant increase in amoeboid
microglial cells within the ischemic hippocampus compared
to the control hippocampus (Figure 7C, amoeboid microglia
control vs. ischemic hippocampus ∗). The segmented image
area did not reveal any differences within the neocortical and
hippocampal regions (Supplementary Figure 2). Normalized
microglial cell density (cells per mm2) was significantly
enhanced within the ischemic hippocampus compared to the
control hippocampal area and a slight trend was observed in the
neocortex (Figure 7D).

Quantification of Morphological
Parameters
Eighteen morphological parameters (cell area, cell perimeter,
convex hull area, convex hull perimeter, cell solidity, cell convexity,
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FIGURE 5 | Degree of conformity (CNN vs. NC classification; upper triangular matrix) and correlation coefficients (correlation for the distribution of all cell’s parameter
points within the parameter space; lower triangular matrix) of all two-parameter combinations (A). Linear regression analysis between the degree of conformity (CNN
vs. NC classification) and the absolute correlation coefficient (distribution of all cell’s parameter points within the parameter space) for all two-parameter combinations
(B). Ranges of conformity values for 2–17 parameter combinations (C). Circles represent outliers and asterisks represent extreme values.

FIGURE 6 | Representative images of Iba1 staining within the control neocortex (A), ischemic neocortex (B), control hippocampus (C), and ischemic hippocampus
(D) on the left side, and the appropriate microglial cell segmentation on the right side (A′–D′). Ramified microglia are depicted in blue, rod-like cells in orange, and
activated microglial cells in red. Amoeboid microglial cells are not present in the depicted sections due to their low occurrence (n = 80; see Supplementary Table 2).

cell circularity, soma area, soma perimeter, soma circularity,
skeleton length, skeleton branch points and endpoints, cell
processes, branching index, critical radius, dendritic maximum,
SRI) were measured for each detected Iba1-positive cell
(n = 15786).

Firstly, we looked at all Iba1-positive cells within control
and ischemic areas of the neocortex and hippocampus
(Supplementary Table 1). Microglia within control and
ischemic-affected hemispheres differed significantly regarding
the morphological parameters. We found lower values for cell
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FIGURE 7 | Total class percentage of microglial morphological phenotypes in control and ischemia-affected regions. Class percentage of ramified, rod-like,
activated, and amoeboid microglia within the control neocortex, ischemic neocortex, control hippocampus, and ischemic hippocampus (A). Individual class
percentage of the four microglial morphological phenotype classes in the neocortex (B) and in the hippocampus (C). Normalized microglial cell density in control and
ischemia-affected regions (D). n = 6 animals and about 16,000 analyzed cells. ***p < 0.001; **p < 0.01; *p < 0.05.

area, perimeter, convex hull area, soma area, skeleton length,
branch and endpoints, branching index, dendritic maximum
as well as SRI within the control and ischemic hippocampus
compared to control and ischemic neocortex. Microglial cell
convexity and circularity were greater in the hippocampus than
in the neocortex. Control and ischemic areas in both brain
regions showed differences in the morphology of microglial
cells. Microglia had larger cell perimeters, convex hull areas, soma
circularities, skeleton lengths, skeleton branch and endpoints,
higher branching indices, and SRI within the control hemisphere
compared to the ischemic-affected hemisphere (Supplementary
Table 1).

To test whether our neural network machine learning method
adequately classifies microglial cells into the four morphological
phenotype groups, we merged all microglial cells of each
morphological class within both control and ischemic brain
regions. Supplementary Table 2 summarizes the 18 selected
morphological parameters for amoeboid, activated, rod-like and
ramified microglial cells. As expected, amoeboid microglia were
characterized by the smallest values for cell area, perimeter,
convex hull area, soma area, skeleton length, branch and
endpoints, branching index, and SRI compared to the other
morphological phenotypes. Amoeboid microglia’s cell solidity
and circularity showed high values. The classified activated
phenotype of microglia had a smaller cell area, perimeter, and
convex hull area and also fewer skeleton branches and endpoints

than ramified and rod-like microglial cells. Ramified microglia
typically exhibit small somata and fine ramifications, which was
demonstrated by a small soma area, big cell convex hull area,
long skeleton length as well as a high branching index. Rod-like
microglial cells projected similar skeleton lengths, branch and
endpoints than ramified microglia, but exhibited a higher cell
and soma area (Supplementary Table 2). All four morphological
classes of microglia were significantly different among each other
regarding the selected parameters.

After Fernández-Arjona et al. (2019) had recently categorized
activated microglial cells according to their morphometric
parameters, we further looked at the activated morphotype in
more detail (Fernández-Arjona et al., 2019). Ischemic-affected
regions displayed more activated microglial cells, which showed
smaller cell and soma area, cell perimeter, convex hull area,
skeleton length, and branching index in the control area compared
to the ischemic-affected corresponding area (Figures 8A–E,
Supplementary Tables 3, 4). Activated microglial cells within
the ischemic neocortex showed larger cell and soma areas,
cell perimeters and convex hull areas, skeleton lengths, and
higher branching indices compared to the ischemic hippocampus
(Figures 8A–E, Supplementary Tables 3, 4).

Cell area of all microglial cells positively correlated with
soma area, cell perimeter, convex hull area, skeleton length,
but not with cell solidity (Supplementary Figures 3A–E). Cell
perimeter positively correlated with convex hull area, skeleton
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length, and slightly negatively with cell solidity (Supplementary
Figures 3F–H). Convex hull area positively correlated with
skeleton length and is negatively associated with cell solidity
(Supplementary Figures 3I,J). Control areas of both brain
regions did not differ among each other concerning the above-
mentioned six morphological parameters with the exception of
cell area, cell perimeter, convex hull area, and skeleton length
for ramified and rod-like cells (Figures 8A,C–E). Amoeboid
microglia did not show any differences at all. We observed that
rod-like microglia’s cell and soma area as wells as cell solidity
are enhanced within the ischemic hemisphere compared to the
control hemisphere (Figures 8A,B,F). In general, ramified cells
exhibited small soma areas, big cell perimeters, and long skeleton
lengths (Figures 8A,C,E).

Microglial cell area is expected to increase due to
activation and soma enlargement yielding higher values of this
morphological parameter for rod-like and activated microglia.
The cell perimeter is estimated to be higher in ramified and
rod-like cells. A decrease is characteristic of fewer ramifications.
The more ramified is the microglial cell, the bigger is the convex
hull area, thus leading to a smaller cell solidity. An increase of
this parameter reveals the tendency of microglial cells to be more
compact. Cell circularity is expected to be higher for amoeboid
microglia. Typically, highly ramified microglia have a greater
skeleton length, many branches and endpoints. The branching
index is an additional measurement of microglial branching
complexity. For instance, a small ramified microglial cell and
an activated microglial cell may have a similar cell volume,
but the activated microglia occupy more of its surrounding,
therefore the branching index measure will be smaller. SRI
constantly increases from an amoeboid toward an activated and
rod-like morphology and to a ramified cell type (Figure 8 and
Supplementary Table 2).

Since microglial cells are three-dimensional objects, the main
limitation of our study is the two-dimensional way of image
acquisition and subsequent image processing that does not
properly allow to include all fine ramifications of different focal
planes and can lead to underestimated cell parameters such
as area, perimeter, or skeleton length for instance. Further, the
thickness of brain slices is important to enable the analysis
of entire microglial cells, each of which has its own territory
of about 15–30 µm. Thin sections limit the accuracy of
describing three-dimensional microglial morphology (Heindl
et al., 2018). In line with Zanier et al. (2015), we used 20 µm
and additionally 30 µm thick slices to ensure the detection
of many no overlapping microglial cells (Zanier et al., 2015).
Another just recently published study used even thinner brain
sections of 7 µm thickness (Ding et al., 2017). We had problems
to properly separate Iba1-positive cells from each other using
thicker sections.

Comparison of CNN and NC Classification
The comparison of CNN and NC classification revealed detailed
information regarding the relationship between individual
morphological parameters. Figure 4 and Supplementary
Figure 3 show some selected scatter plots and Figure 5A
(lower triangular matrix) provides correlation coefficients for

all two-parameter combinations. Some parameters are closely
related to each other (darker colored matrix cells; positively
correlated: cell perimeter and skeleton length, negatively
correlated: cell perimeter and cell circularity), while others
show very weak correlation (lighter colored matrix cells; cell
area and cell solidity). Parameters with close relationships
and therefore strong absolute correlation coefficients express
narrow spatial distributions near the regression line (Figure 4B).
Parameters with weak to negligible absolute correlation
coefficients tend to express broad and (but not always) less
overlapping distributions (Figures 4G,L). NC classification is
based on predefined centroids and cannot generate overlapping
classes by design, which is a major pitfall for this approach.
Therefore, NC classification results strongly depend on the
shape and location of their respective point distributions in
parameter space. This is also reflected in the comparison of CNN
and NC classification in terms of their actual results: strongly
correlating parameters show lower degrees of conformity
(Figure 4E: 44.97%), while weakly correlating parameters
show higher degrees of conformity (Figure 4O: 76.44%).
Figure 5A (upper triangular matrix) provides values for the
degree of conformity for all two-parameter combinations. As
for correlation coefficients, these values are also emphasized
with a color scheme and a certain pattern in relation to the
matrix diagonal can be perceived. Correlation analysis of the
degree of conformity (CNN vs. NC classification) and the
absolute correlation coefficients revealed a moderate negative
correlation (Figure 5B; r = −0.512, p ≤ 0.001). In addition to
the numerical comparison of both approaches, color-coded cell
images were also generated. Figure 4R shows a section with color
coding according to CNN classification. Color codings after NC
classification are also presented for the following combinations:
cell area and skeleton length (Figure 4C), cell perimeter and
soma perimeter (Figure 4H) as well as cell circularity and
soma circularity (Figure 4M). Lower degrees of conformity
result in greater deviations from the CNN color-coding and
classification differences are distributed across all four classes
with one recognizable accumulation: NC classification tends to
classify a larger proportion of activated cells as rod-like cells
(Figures 4E–O).

A clear limitation of the CNN classification approach
presented in this study was the number of cells that were
selected for the training of the neural network. Although
image augmentation was performed to dramatically increase
the number of images for the training and validation set, this
procedure may not fully replace the addition of cells with
a completely different morphology. To counteract subjective
influences during the manual selection of training images, this
procedure was performed by four experienced investigators
resulting in a more diverse set of cells belonging to the four
classes—although this approach might have introduced too
much morphological variability and overlap. These two factors
may have attributed to misclassification and might be addressed
to increase overall classification accuracy.

All possible combinations with more than three and up
to 17 parameters (131,054 combinations in total, SRI was
omitted from all analyses) were also investigated (Figure 5C).
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FIGURE 8 | Quantitative analysis of six morphological parameters of classified microglial cells within control and ischemic neocortex and hippocampus. Cell area
(A), soma area (B), cell perimeter (C), cell convex hull area (D), skeleton length (E), and cell solidity (F). cNCX, control neocortex; iNCX, ischemic neocortex; cHC,
control hippocampus; iHC, ischemic hippocampus. Circles represent outliers and asterisks represent extreme values.

Analyses revealed a peak degree of conformity at 77.21% with
remaining NC overclassification of activated cells as rod-like cells
(Figure 4P). However, the respective color-coding (Figure 4Q)
largely resembles the CNN color-coding (Figure 4R). NC
classification of all 17 parameters showed only a medium degree
of conformity at 55.68% (Figure 4T), the respective color-coding
is shown in Figure 4S. Certain parameters and combinations
thereof are involved in NC classifications with higher—or
even highest—degrees of conformity: cell solidity, cell convexity,
cell circularity, soma perimeter, soma circularity, and critical
value. Combinations of up to eight parameters could result in
conformities of more than 75% (always with the participation of
the parameters listed in the previous sentence), peak conformities
of combinations with more parameters rapidly declined to less
than 60%. The lowest conformities ranged down to 35.81% with
parameters such as skeleton branch points, skeleton endpoints or
dendritic maximum.

DISCUSSION

We can successfully confirm that our developed classification
method of microglial morphological phenotypes works well by
using a mouse model of transient MCA occlusion, which is
one of the models that most closely simulate human ischemic
stroke and is probably the most frequently used model in
experimental stroke research (Engel et al., 2011; Fluri et al.,
2015). Since microglial activation within the ischemia-affected
brain regions has been well established (del Zoppo, 2009;
Härtig et al., 2017; Zhang, 2019), this model was used as a

positive control to confirm a reliable detection of activated
microglia by using the established machine learning method.
In our study, we did not analyze neurons, but we assumed
that neuronal damage or neuronal death is likely in ischemia-
affected regions where microglia show activation processes to
engulf cellular debris. Here, we showed that ischemia-affected
regions in the hippocampus and neocortex presented more
activated and rod-like microglial cells and consequently less
ramified microglia compared to the relevant brain areas within
the contralateral hemisphere. Michalski et al. (2017) recently
demonstrated that Iba1-staining density and intensity were
strongly increased in the ischemic core and ischemic border
zone compared to the control area located at the contralateral,
non-affected hemisphere (Michalski et al., 2017). This is in
line with our data, which exhibit an increased microglial cell
density in ischemia-affected brain regions. After an ischemic
stroke, the blood-brain-barrier (BBB) is compromised (Latour
et al., 2004; Sandoval and Witt, 2008; Krueger et al., 2015,
2017) and a BBB leakage coincides with an increased number
of activated glial cells (Kuntz et al., 2014). Thus, a failing of
the BBB integrity is followed by an infiltration of peripheral
immune cells including neutrophils, lymphocytes, dendritic
cells, and macrophages (microglia-derived and monocytes-
derived macrophages) into the ischemic brain tissue (Kim
and Cho, 2016; Jian et al., 2019). According to Rayasam
et al. (2018), microglia in the CNS and peripheral immune
cells are recruited to the ischemic hemisphere inducing an
inflammatory response after stroke (Rayasam et al., 2018). Upon
an ischemic event, microglial cells are the first responders and
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become activated within 30 min after cerebral ischemia (Rupalla
et al., 1998), peak at 2–3 days post-stroke, and persist for
several weeks (Denes et al., 2007; Gelderblom et al., 2009).
Activated microglia and monocytes/macrophages are similar in
morphology and function, but recent studies in rodent models
of transient cerebral ischemia reported that microglia dominate
the ischemic brain at day 1 and 2 after ischemia. For instance,
on day 1, only a small fraction of monocytes/macrophages
was determined (<3%; Jian et al., 2019; Rajan et al., 2019;
Han et al., 2020). Thus, the here detected higher microglial
cell density within ischemia-affected brain regions after 1 day
of transient ischemia is predominantly provoked by resident
microglial cells of the activated and rod-like morphotypes.
However, at this point, the given data cannot provide any
conclusion on the temporal evolution of microglia phenotypes
post-stroke and the time course of the alterations will have
to be investigated (Mages et al., 2021). Furthermore, it cannot
be ruled out that activated Iba1-positive cells might also
include monocytes/macrophages.

Our findings show that the segmented image area did not
reveal any differences within the neocortical and hippocampal
regions. This parameter reflects the proportion of segmented
pixels—or the raw count of all stained structures—within the
image area before cell detection. The values are comparable
since the tissue volume is evenly permeated by cells and their
processes as the task of microglial cells is to evenly monitor
the tissue. But their number and distribution depend on the
activation state of the microglial cells. In slides with high
cell density, the cell territories are smaller. There we found
a larger proportion of somata with connected processes as
well as fewer processes belonging to somata located outside
the imaged tissue slice. These images are characterized by a
larger share of activated and rod-like cells with comparatively
larger somata and shorter processes. In slides with low cell
density, the cell territories are larger. There we found a
smaller proportion of somata with connected processes as well
as more processes belonging to somata located outside the
imaged tissue slice. These images are characterized by a larger
share of ramified cells with comparatively smaller somata and
longer processes.

For verification of our classification method of microglial
morphological phenotypes, we analyzed several morphological
parameters of about 16,000 Iba1-positive cells in accordance
with recently published studies (Kongsui et al., 2014; Zanier
et al., 2015; Fernández-Arjona et al., 2017, 2019). Comparing
studies of Zanier et al. (2015) and Fernández-Arjona et al.
(2017, 2019) with our work showed that the cell area of our
classified group of activated microglial cells is highly distributed
in different brain regions and is not bigger than ramified cell’s
area on average (Zanier et al., 2015; Fernández-Arjona et al.,
2017, 2019). Here, we also examined rod-like microglial cells
showing bigger cell areas. Activated and rod-like microglia in
sum have bigger cell areas than ramified cells. In line with
all studies including analysis of morphological parameters for
microglial cells, we confirmed for instance larger cell perimeters
and convex hull areas as well as smaller cell soma areas for
ramified microglia.

Microglial cells are sensitive to fluctuations in blood flow and
its reduction leads to a significant decrease in process activity and
results in noticeable deramification and increased cell soma size
(Masuda et al., 2011). Indeed, after ischemia, microglia tend to
retract their fine, highly ramified processes leading to a reduced
skeleton length what we have shown for all microglial cells within
the ischemic neocortex and hippocampus as well as for activated
compared to ramified cells. Reduced branching indices and SRI
in ischemic compared to control regions confirmed this issue.

In contrast to Zanier et al. (2015), we distinguish between four
different morphological classes of Iba1-stained cells in addition
to an observation of all microglial cells after ischemia in control
and ischemic-affected brain regions. The authors showed higher
measurements for cell area and cell perimeter of CD11b-positive
cells after transient MCA occlusion compared to naive mice. In
line, we also used 20 µm thick brain slices for the analysis of
microglial morphology (Zanier et al., 2015).

It has been recently shown by Fernández-Arjona et al.
(2019) that, after injection of the enzyme neuraminidase
within the lateral ventricle, activated microglial cells within the
hypothalamus can be clustered in four different morphotypes
characterized by various morphological parameters and IL-1β
expression levels. Here, we were unable to cluster activated
microglia due to strong overlapping between different value
ranges of morphological parameters, which can be an argument
for morphological classification and against pure quantification.
Moreover, the authors analyzed 150 activated cells, whereas we
examined thousands of Iba1-positive cells. Clustering with fewer
microglial cells showing extreme morphological characteristics
of the activated morphotype is more efficient than with
numerous microglia classified by their probability. We should
also take into account the heterogeneity of microglial cell density
and morphology across different brain regions. Microglial
cell morphology is affected by the cellular architecture of
specific brain areas. Fernández-Arjona et al. (2017) suggested
the consideration of the brain location for future microglial
morphological classification (Fernández-Arjona et al., 2017,
2019).

While the classification of microglial cells solely based on
parameters from quantitative analysis has been proven to be a
successful approach (Kongsui et al., 2014; Zanier et al., 2015;
Fernández-Arjona et al., 2017, 2019; Morrison et al., 2017; York
et al., 2018; Kyriazis, 2019), our results show that parameter
values may differ considerably within individual classes. There
partially is a wide spread in parameter values caused by the
biological variance and it needs to be considered that the highest
probability is pivotal for the final morphological classification of
microglial cells.

Small morphological differences can indicate an incipient
change in the activation state of microglial cells. Such changes
are detectable by a CNN and could give an indication of
pathological processes in the brain. While our CNN covers
four morphological states, it is not yet known if different
activation states are physiologically relevant. Furthermore,
transitions between different phenotypes are fluent and
subtle. While classification based on four discrete classes
provides a good distinction of these phenotypes, there
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is some latitude with regard to the morphology within
these individual classes. There are differences in parameter
expressions between different brain regions (activated
microglia in the cortex differ from activated microglia in
the hippocampus). Application of continuous scoring models
like embedding visualization such as t-Distributed Stochastic
Neighbor Embedding could be much more sensitive to even
smaller morphological changes which should be explored in
further studies.

CNN-based cell classification offers a powerful and
interesting alternative to parameter-based cell classification.
There are a number of morphological and topological parameters
that are widely used to characterize microglial cells—some of
them are basic properties (cell area, skeleton length, etc.), while
others are combinations of multiple parameters (circularity,
branching index, etc.). While we have presented 18 parameters
in our study, there are many more that can be computed—and
some parameters might be more significant for classification in a
specific context than others.

Although the focus of this study is CNN-based cell
classification, we also applied NC classification—a conventional
parameter-based approach. While CNN classification is purely
based on the shape of the cells, NC classification requires a
set of morphological parameters that have to be computed
prior to classification. As we have shown, it is not easy to
determine a parameter set that is best suited for this task, since
stronger parameter correlations may result in lower degrees of
classification conformity. Without a thorough examination of all
parameters for their interrelationships, it is not possible to make
accurate predictions regarding their discriminatory power—but
this would reach far beyond the scope of this study. While
we have found potential parameter combinations and could
compile a superficial ranking at best, the resulting classification
quality is still inferior to results from CNN classification. Since
NC classification is based on predefined centroids and class
membership is assigned due to minimum centroid distances,
different cluster shapes or sizes are not taken into account.
Furthermore, this approach cannot generate overlapping classes
by design, which—considering the high interpenetration of class
point clusters—is a major strength of CNN classification. The
NC approach also classifies a larger proportion of activated
cells as rod-like cells, indicating a lower discriminatory power
between these two classes. Due to the broad distribution of
amoeboid cell parameters (cell circularity and soma circularity)
or the strong overlap with clusters of the other three classes (cell
area and skeleton length), amoeboid cells consistently show the
highest number of NC misclassification in terms of their relative
count. This is especially precarious regarding the low number of
amoeboid cells within the images of our study.

Since it might be difficult to find suitable parameter
combinations and specify thresholds for the assignment of cells
to classes, we advocate for cell classification based on cell
phenotype followed by quantitative analysis for morphological
characterization. Cell classification based on CNNs does not
require any parameters or combinations thereof, it is solely
based on the cell’s shape represented as an image matrix. Deep
learning-based approaches are becoming more accessible to

researchers due to rapid technical progress and training CNNs on
current graphics hardware with powerful GPUs gets increasingly
time- and cost-efficient.

For the calculation of morphological parameters, a fully
automatic approach was implemented and adapted to the
characteristics of segmented cells. Manual analyses might be
slightly better suited in cases of heterogeneous image quality or
during interactive detection and reconstruction of interrupted
cell processes, but they also greatly depend on the experience
and endurance of the investigator. While automatic approaches
require extensive testing and might introduce systematic errors,
they are much faster than manual analyses and provide objective
repeatability.

The proposed classification approach can be also applied
to other staining and image acquisition setups as long as four
key criteria are met: (1) staining quality and contrast must be
sufficiently good to ensure reliable cell segmentation; (2) image
resolution must be high enough to allow separation of cell
processes during segmentation procedure; (3) tissue thickness
must be chosen adequately to acquire (a) enough volume with
a sufficient number of microglia showing an adequate amount
of processes, while (b) avoiding overpopulated volumes with
excessively interconnected network of ambiguously assignable
cell processes; and (4) all segmented cells have to be adapted to
match the input criteria for the CNN if an already trained CNN
exists.

In the next step, we want to analyzemicroglia in scanned serial
sections for 3D reconstruction and additionally in human brain
tissue. Moreover, the morphological classification using machine
learning can be transferred to other cell types like astrocytes and
neurons.

In conclusion, our newly established classification method
of microglial morphological phenotypes using machine learning
represents an objective, unbiased and time-saving procedure that
can serve as a powerful tool for post-mortem characterization
of microglial changes in disease mouse models, and probably
human brain autopsy samples.
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