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Tree roots attract their associated microbial partners from the local soil community.
Accordingly, tree root-associated microbial communities are shaped by both the
host tree and local environmental variables. To rationally compare the magnitude of
environmental conditions and host tree impact, the “PhytOakmeter” project planted
clonal oak saplings (Quercus robur L., clone DF159) as phytometers into different
field sites that are within a close geographic space across the Central German
lowland region. The PhytOakmeters were produced via micro-propagation to maintain
their genetic identity. The current study analyzed the microbial communities in the
PhytOakmeter root zone vs. the tree root-free zone of soil two years after out-planting
the trees. Soil DNA was extracted, 16S and ITS2 genes were respectively amplified
for bacteria and fungi, and sequenced using Illumina MiSeq technology. The obtained
microbial communities were analyzed in relation to soil chemistry and weather data
as environmental conditions, and the host tree growth. Although microbial diversity in
soils of the tree root zone was similar among the field sites, the community structure
was site-specific. Likewise, within respective sites, the microbial diversity between
PhytOakmeter root and root-free zones was comparable. The number of microbial
species exclusive to either zone, however, was higher in the host tree root zone
than in the tree root-free zone. PhytOakmeter “core” and “site-specific” microbiomes
were identified and attributed to the host tree selection effect and/or to the ambient
conditions of the sites, respectively. The identified PhytOakmeter root zone-associated
microbiome predominantly included ectomycorrhizal fungi, yeasts and saprotrophs.
Soil pH, soil organic matter, and soil temperature were significantly correlated with
the microbial diversity and/or community structure. Although the host tree contributed
to shape the soil microbial communities, its effect was surpassed by the impact of
environmental factors. The current study helps to understand site-specific microbe
recruitment processes by young host trees.

Keywords: PhytOakmeter, microbial recruitment, microbial diversity, environmental conditions, core and site-
specific microbiomes
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INTRODUCTION

The soil microbiome, the community of soil microorganisms
and their genomes (Scher and Abramson, 2011), steers many
ecological processes in soils and determines plant health (Aislabie
et al., 2013) and productivity (Berg, 2009). Impacts of soil
microorganisms on plants include increased nutrient availability
and uptake (Lugtenberg et al., 2002; Morrissey et al., 2004),
disease suppression (Mendes et al., 2011), as well as increased
tolerance against abiotic (Zolla et al., 2013) and biotic stressors
(Zamioudis and Pieterse, 2011). Microorganisms have abilities
to rapidly adapt to changing environmental conditions (Gehring
et al., 2017; Lau et al., 2017). Therefore, the “plant root
microbiome” can be considered as “the powerhouse of plant
adjustment to local conditions” (Vandenkoornhuyse et al., 2015).

The “plant root microbiome” originates from the local soil
microbial community, and is shaped by the root exudate
composition (Bais et al., 2006; Lareen et al., 2016). On the
one hand, the composition of plant root-associated microbial
communities across various ecosystems has been reported to
highly depend on environmental parameters (Bulgarelli et al.,
2012; Lundberg et al., 2012) such as climate and weather
(Brockett et al., 2012; Lladó et al., 2018), but also on soil
chemistry, especially pH and organic matter content (Zhou et al.,
2002; Rousk et al., 2010; Lareen et al., 2016). However, in soils
with similar edaphic parameters and climatic conditions, there
can be significant local heterogeneity in the composition of soil
bacterial and fungal communities even within the same region
(Bokulich et al., 2014; Gourmelon et al., 2016). This may partly
result from variations of unmeasured environmental parameters
across the sampled field sites (Landesman et al., 2014) or from
dispersal limitation among members of the microbial community
(Bissett et al., 2010). On the other hand, the constituents of
plant root exudates (sugars, vitamins, nucleotides, flavones,
auxins, and stimulators), which differ between plant species
and even among plant genotypes within a species (Broeckling
et al., 2008), are also considered as important drivers structuring
soil microbial communities proliferating in the plant root zone
(Dotaniya and Meena, 2015). However, separating the effects of
heterogeneity in environmental conditions within a region from
those induced by variability of exudates between plant individuals
is largely unexplored.

Oak, a foundation tree species, displays among the highest
levels of below and aboveground biotic interactions in European
forests (Plomion et al., 2018). More than 20 years ago, numerous
investigations have been made on how oak trees harmonize
their own development, biotic interaction and adaptation
to the environment. These studies were through microcosm
experiments using micro-cuttings of the oak clone DF159
(Quercus robur L.) with different analytic approaches including
transcriptomics (Herrmann et al., 1998, 2015, 2016; Tarkka
et al., 2013). More recently, clonal saplings regenerated from
DF159 were planted in TERENO1 field sites as “phytometers”
(Herrmann et al., 2016; Ferlian et al., 2018), i.e., standardized
plants transplanted into different environments to serve as

1www.tereno.net

environmental measuring “instruments” (Dietrich, 2013).
The tree phytometer system using clone DF159 is called
“PhytOakmeter” (Ferlian et al., 2018). A few years after outplant
in the field, the PhytOakmeter saplings have been shown to
exert an impact on the biological activity in their surrounding
soil (Eisenhauer et al., 2018). Therefore, PhytOakmeter has the
potential to help unraveling the tree-related factors that shape
the root microbiome.

Previous investigations on soil microorganisms associated
with plant roots focused on rhizospheric soil microbial
communities (Grayston et al., 1998; Fang et al., 2001; Nunan
et al., 2005; Hartmann et al., 2009; Haldar and Sengupta,
2015). However, as a shared environment between plant roots
and microbes (Jacoby et al., 2017), the rhizosphere is most
directly controlled by the selective forces exerted by host plants
(Kowalchuk et al., 2002). Some studies reported an enhanced
microbial species richness and diversity in the rhizosphere due
to its enrichment in resources (Novello et al., 2017). However,
there is an opposite view that, due to selection property of
root exudates, the rhizosphere may comprise a strongly reduced
proportion of the soil microorganisms (Philippot et al., 2013).
In any case, rhizosphere-focused studies do not give enough
weight to the contribution of environmental factors in shaping
the microbiome of the root zone of soil. Therefore, investigating
soil of the root zone by discarding the rhizosphere soil senso
stricto enables to rationally analyze the respective impacts of plant
and environment factors in shaping the plant root microbiome
(Weißbecker et al., 2018).

Using PhytOakmeters planted in plots within the same central
German region and under comparable climate conditions, the
current study aimed to distinguish between the impacts of
tree-mediated recruitment and local environmental factors on
microbial diversity and community structure by comparing
the tree root zone vs. the tree root-free zone of the soils.
The study was performed using Illumina pair-end amplicon
sequencing targeting the small subunit (SSU) of the 16S and
the internal transcribed spacer (ITS) region of the 18S rDNA to
gain bacteria and fungi, respectively. As result of the common
genetic identity of the clonal saplings and of the homogeneity
in climate conditions, we hypothesized a high similarity in
microbial diversity and community structure within root zones of
PhytOakmeters planted in Central German TERENO grassland
field sites. Due to an extended rhizosphere mediated selection
effect of the host tree, we expected a lower microbial diversity
in the PhytOakmeter root zone than in the tree root-free zone
within respective field sites. In comparison to the tree root-free
zone, we expected to find higher abundance of some particular
soil microbial taxa, due to creation in the PhytOakmeter root
zone of a particular niche which selects specific microbial taxa.

MATERIALS AND METHODS

Field Sites and PhytOakmeter
The PhytOakmeter experiment was carried out in central
Germany at four TERENO grassland field sites: Harsleben
(51◦51′43.43′′ N, 11◦04′58.73′′ W, 138 m), Pfeiffhausen
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(51◦37′47.68′′ N, 11◦42′19.95′′ W, 137 m), Greifenhagen
(51◦37′20.80′′ N, 11◦24′59.62′′ W, 292 m) and Bad Lauchstädt
(51◦23′29.65′′ N, 11◦52′32.14′′ W, 119 m). Because of their
geographic proximity, the PhytOakmeter field sites share
comparable weather conditions (Supplementary Table S1).
Due to the continental climate, flatness and position in the
rain shadow of the Harz Mountains, this region is warm
and dry with annual precipitations usually less than 500 mm
(Wollschläger et al., 2016).

The DF159 oak tree saplings were produced via
micropropagation which warrants their common genetic
identity (Herrmann et al., 2016), and in November 2014, 2-year
PhytOakmeter trees were outplanted in grassland sites. The
distance between trees ranges from 6 to 10 m according to
individual field plots. Beside the oaks, the entire soil surface of
all field sites was covered by herbaceous plants as illustrated by
Harsleben field site in Supplementary Figure S1. In September
2016, six core trees per site were randomly selected for this
study. To determine tree performance and, later on, correlate
it with soil microbial community structure, tree height at
outplanting as well as tree percentage height increases in 2015
and 2016 were measured using a meter ruler. Moreover, number
of shoot flushes produced by main stems of the core trees
during the 2016 vegetation period were counted, and, as a
proxy reflecting biomass production in each flush, five leaves
were taken from every shoot flush of each tree. As core trees of
all the sites had grown at least one shoot flush (SF1), we only
considered the leaf biomass of the first shoot flushes during
subsequent analyses.

Soil Sampling
In total, 38 soil samples were taken in September 2016: 24
samples in the tree root zone (6 trees per site × 4 sites = 24
soil samples) and 14 samples in the tree root-free zone that were
used to analyze local soil microbial pools (4 samples per site in
Harsleben and Pfeiffhausen, 3 samples per site in Greifenhagen
and Bad Lauchstädt). At each field site, PhytOakmeter root zone
and the tree root-free zone soil samples were taken within the
same plot. Each soil sample consisted of three subsamples which
were mixed to constitute a composite sample as illustrated by
Harsleben plot sampling design in Supplementary Figure S2.
All samples were collected using a 2 cm diameter soil auger to
a 10 cm soil depth.

The soil samples were sieved using 2 mm mesh size to
remove debris and homogenize the soil sample before being
packed into sampling bags. From each sieved sample, one aliquot
(±50 g) was kept for soil chemical analyses and another aliquot
(±10 g) for molecular analyses, and both were stored at -20◦C
directly after sampling.

Soil Chemical Analysis
Sixteen soil chemical parameters were analyzed (Table 1). Soil
pH was determined with a glass electrode after 1 h in a
suspension 1:2.5 mixture of soil and 0.01 M CaCl2 as in Moche
et al. (2015) and Goldmann et al. (2015). Total soil carbon
(TC) and nitrogen (TN) were determined in triplicate by dry
combustion using a Vario EL III C/H/N analyzer (Elementar,

Hanau, Germany). Due to negligible carbonate concentration of
the soil samples (<2%), the obtained total carbon was taken to
represent soil organic carbon, SOC (Francioli et al., 2016). To
have an idea on the content of soluble soil organic matter, hot
water extractable C (HWC) was measured as in Francioli et al.
(2016) and N (HWN) as in Schulz et al. (2011). Cold water
extraction of organic matter content was performed to measure
the amount of labile and easily available organic carbon and
nitrogen, representing the nutritional pool for these elements
at the sampling time (Zsolnay, 1996). Cold water extractable
carbon (CWC) and nitrogen (CWN) were then determined as in
Schmidt et al. (2017). Mineral nitrogen contents (NH4

+-N and
NO3

−-N) were measured as in Francioli et al. (2016). Available
P and K were extracted from soil with calcium acetate lactate
(1:20 w/v, pH 4.2, 1.5 h) (Schüller, 1969). After filtration of the
suspension (filter type: Whatman Schleicher and Schuell 595 1/5
Ø 270 mm), P and K were quantified in 1:10 diluted extracts
by inductively coupled plasma optical emission at emission
lines 766.49 nm (K) and 178.287 nm (P) using a SPECTRO
ARCOS spectrometer (Spectro Analytical Instruments GmbH,
Kleve, Germany).

DNA Extraction, Amplification, and
Sequencing
Total microbial DNA was extracted from 0.4 g of each soil
composite sample using the Power Soil DNA Isolation Kit
(Qiagen, Hilden, Germany), following the manufacturer’s
instructions. The concentrations of DNA extracts were
determined with a NanoDrop-8000 spectrophotometer (Thermo
Fisher Scientific, Dreieich, Germany). DNA extracts were
stored at −20◦C, and adjusted to 10–15 ng/µl prior to PCR
amplification. PCR genomic DNA amplicon libraries of the
targeted microorganisms (bacteria and fungi) were produced
from the genomic DNA templates. The bacterial 16S and fungal
ITS2 within the rDNA region were amplified using a modified
primer mix: P5_8N_515F + P5_7N_515F (forward) together
with P7_2N_806R + P7_1N_806R (Caporaso et al., 2012; Moll
et al., 2018) for the bacteria, and P5-5N-ITS4 (Gardes and Bruns,
1993; Leonhardt et al., 2019)/P7-4N-fITS7 (Ihrmark et al., 2012;
Leonhardt et al., 2019) for the fungi, all containing the Illumina
adapter sequences (see Supplementary Table S2 for an overview
of the utilized primer sequences according to Hendgen et al.,
2018). All PCRs were conducted using the proofreading KAPA
Hifi polymerase (Kapa Biosystems, Boston, MA, United States).
Each PCR reaction was carried out in a total volume of 15 µl
containing 1 µl template DNA, 0.3 µl forward primer, 0.3 µl
reverse primer, 7.5 µl 2x KAPA HiFi HotStar ReadyMix, and
5.9 µl nuclease free water; under the following thermocycling
steps. 16S rDNA amplification: initial denaturation at 95◦C
for 3 min, followed by 25 cycles of denaturation at 98◦C for
20 sec, annealing at 55◦C for 15 sec, elongation at 72◦C for 15 s,
followed by a final extension at 72◦C for 5 min. Fungal ITS2
amplification: initial denaturation at 95◦C for 3 min, followed
by 30 cycles of denaturation at 98◦C for 20 s, annealing at
56◦C for 20 s, elongation at 72◦C for 20 s, followed by a final
extension at 72◦C for 5 min. Every sample was amplified in three
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TABLE 1 | Chemical parameters of the soil samples: pH, soil organic carbon (SOC), total soil nitrogen (TN), carbon-to-nitrogen ratio (C/N), Cold water extractable carbon
(CWC) and nitrogen (CWN), CWC-to-CWN ratio (CWC/CWN), hot water extractable carbon (HWC) and N (HWN), HWC-to-HWN ratio (HWC/HWN), soil moisture,
ammonium and nitrate-bound nitrogen (NH4

+-N and NO3
−-N), total mineral nitrogen (min.N), potassium (K), and phosphorous (P).

Parameter Harsleben Pfeiffhausen Greifenhagen Bad Lauchstädt

pH 7.6 (± 0.3)a 7.5 (± 0.4)a 7.5 (± 0.5)a 6.3 (± 0.2)b

SOC (%) 2.6 (± 0.4)a 2.9 (± 0.4)a 1.3 (± 0.2)c 2.1 (± 0.1)b

TN (%) 0.15 (± 0.03)b 0.18 (± 0.01)a 0.11 (± 0.03)c 0.14 (± 0.01)b

C/N 18.0 (± 4.5)a 15.9 (± 1.2)a 12.0 (± 4.2)b 14.9 (± 0.4)ab

CWC (mg/kg) 79.9 (± 14.8)b 96.8 (± 13.7)a 58.4 (± 10.6)c 97.7 (± 14.4)a

CWN (mg/kg) 5.3 (± 0.9)c 7.7 (± 1.1)a 5.7 (± 1.1)b 7.6 (± 1.4)a

CWC/CWN 15.4 (± 3.3)a 12.6 (± 1.2)b 10.5 (± 2.8)c 13.3 (± 3.2)abc

HWC (mg/kg) 1065.7 (± 166.6)b 1437.0 (± 164.3)a 627.8 (± 139.4)c 616.8 (± 61.3)c

HWN (mg/kg) 101.7 (± 19.9)b 142.5 (± 18.3)a 62.7 (± 14.7)c 60.8 (± 7.3)c

HWC/HWN 10.5 (± 0.6) 10.1 (± 0.6) 10.1 (± 0.4) 10.2 (± 0.8)

Soil moisture (%) 6.9 (± 1.1)a 5.5 (± 1.4)b 7.5 (0.7)a 7.6 (0.6)a

NH4
+-N (mg/kg) 3.2 (± 0.5)ab 3.7 (± 0.7)a 2.5 (± 0.9)b 2.6 (± 1.1)b

NO3
−-N (mg/kg) 1.0 (± 0.8) 1.0 (± 0.5) 0.5 (± 0.4) 0.9 (± 1.4)

min.N (mg/kg) 4.2 (± 1.2)a 4.6 (± 1.1)a 3.1 (± 1.1)b 3.1 (± 2.1)ab

K (mg/kg) 156.1 (± 87.0) 153.9 (± 39.9) 199.3 (± 82.4) 148.2 (± 52.3)

P (mg/kg) 54.5 (± 47.3)ab 51.8 (± 9.9)a 33.1 (± 21.5)b 24.0 (± 6.9)b

Values represent means (± standard deviation). Different superscript letters after standard deviations in a row mean statistically different (p < 0.05) according a one-way
ANOVA and Tukeys’ HSD test.

replicates, resulting sample PCR products were checked by gel
electrophoresis. The three replicates were pooled and cleaned-
up using the Agencourt AMPure XP kit (Beckman Coulter,
High Wycombe, United Kingdom). Subsequently, cleaned
products were used as templates in an additional PCR, where
Illumina Nextera XT indices and sequencing adaptors were
attached according to the Illumina MiSeq protocol for amplicon
preparation (Illumina Inc., San Diego, CA, United States). The
amplifications followed these conditions: initial denaturation
at 95◦C for 3 min, 8 cycles of denaturation at 98◦C for 30 s,
annealing at 55◦C for 30 s, followed by elongation at 72◦C for
30 s, and a final extension at 72◦C for 5 min. Resulting PCR
products were purified again with AMPure beads. The libraries
were then quantified by PicoGreen assays (Molecular Probes,
Eugene, OR, United States) and pooled to provide equimolar
representation. Fragment sizes and quality of DNA sequencing
libraries were checked using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States). The pool was used
for paired-end sequencing of 2 × 300 bp with a MiSeq Reagent
kit v3 on an Illumina MiSeq platform (Illumina Inc., San Diego,
CA, United States) and was carried out at the Department of Soil
Ecology of the Helmholtz-Centre for Environmental Research –
UFZ in Halle (Saale), Germany.

Bioinformatics Analysis
The raw reads were de-multiplexed by the Illumina MiSeq
Reporter software package v2.5.1.3 with default settings. Retained
fastq files without Illumina adaptors, sequencing primers and
indices were analyzed using the pipeline DeltaMP (v0.2)2 by
following the workflow presented in Schöps et al. (2018). In brief,
soil-based Illumina sequences of 16S and ITS were processed and

2https://github.com/lentendu/DeltaMP/

sequentially quality-filtered using mainly MOTHUR (v1.39.5-2,
Schloss et al., 2009). Pair-end reads were merged with a
minimum overlap of 20 bp using PandaSeq (v2.11, Masella et al.,
2012). Sequences with any ambiguous base, more than four bp
differences in the primer sequence, as well as homo-polymers
with up to 20 bp differences were removed. Simultaneously,
sequences, shorter than 50 or longer than 600 bp were discarded.
Potential chimers were removed using UCHIME (Edgar et al.,
2011) as implemented in MOTHUR (Schloss et al., 2009).
Remaining sequences were pooled, de-replicated and sorted
according to their abundance using OBITools (v1.2.11, Boyer
et al., 2016). Unique sequences were clustered into operational
taxonomic units (OTUs) with 97% sequence similarity using
VSEARCH (v2.10.4, Rognes et al., 2016). By means of the
Bayesian classifier as implemented in MOTHUR (Schloss et al.,
2009), bacteria and fungi taxonomy was initially assigned using
the SILVA reference database (v128, Quast et al., 2013) and
UNITE (v8.0, Nilsson et al., 2018), respectively. The output
was manually checked using Basic Local Alignment Search
Tool (BLAST) of the National Center for Biotechnology (NCBI)
(O’Leary et al., 2015). Plant derived 16S sequences assigned to
chloroplasts or mitochondria were removed from the bacterial
OTU table. Reads of samples were normalized at rarefaction
depth of 96,167 and 26,578 reads per sample for bacteria and
fungi, respectively, by using the function “rarefy_even_depth”
from the phyloseq package 1.19.1 (McMurdie and Holmes, 2013)
in R version 3.4.2 (R Development Core Team, 2017). The
derived OTUs were assigned to their functional groups mainly
based on FAPROTAX database (v1.1, Louca et al., 2016) and
FUNGuild tool (v1.1, Nguyen et al., 2016) for bacteria and fungi,
respectively. Raw sequences were deposited at the European
Nucleotide Archive (ENA) and can be found under accession
number PRJEB35688.
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Statistical Analyses
The statistical analyses were carried out using R, v3.4.2
(R Development Core Team, 2017). The microbial Shannon
diversity index (Shannon, 1948) was calculated using the diversity
function of the vegan package (Oksanen et al., 2017), and
results were visualized via overlaid boxplots and stripcharts
using the ggplot2 package (Wickham, 2016). We used a two-
way analysis of variance (ANOVA) to compare the microbial
diversity of PhytOakmeter root and root-free zones within
and among the field sites. We then used Tukey HSD test to
determine at which sites the tree root zone and root-free zone
revealed significant difference (p < 0.05). In the same way,
significant differences in microbial Shannon diversity among
the sites’ tree root zones were analyzed. To explore how soil
chemistry and weather parameters are correlated to the microbial
Shannon diversity, multiple linear regression was done. We
first removed auto-correlated parameters using the variance
inflation factor (VIF < 5) (Akinwande et al., 2015), and the
remaining parameters were differently combined into various
models. The obtained regression models were then evaluated
to choose the best approximating model by using Akaike’s
Information Criterion (AIC) (Johnson and Omland, 2004).
Subsequently, to determine whether the field sites contained
significantly different microbial communities, the analysis of
similarities (ANOSIM) permutation test (999 permutations)
was used together with a non-metric multidimensional scaling
(NMDS) based on the Bray-Curtis dissimilarity matrices (Clarke,
1993). We then applied the envfit function of the vegan package
(Oksanen et al., 2017) to analyze correlation between structure
of soil microbial communities and soil chemical parameters.
Goodness-of-fit statistics (R2) were calculated based on 999
permutations. NMDS was also used to compare microbial
community structure between PhytOakmeter root and root-free
zones within respective sites, and ANOSIM was as well applied
to test the statistical significance. Moreover, the overlap analysis
of bacterial and fungal OTUs among different locations was
done using the online tool venny (Oliveros, 2007/2015). Using
DEseq2 (v1.24.0) via phyloseq (McMurdie and Holmes, 2013;
Love et al., 2014), we distinguished which genera significantly
increased presence in PhytOakmeter root zone over the tree
root-free zone (p < 0.05). The results were then plotted using
the graphical library ggplot2 (Wickham, 2016). By using all
the OTUs found within the host tree root zone, we performed
variance partitioning (varpart function in vegan) to assess the
relative contribution of the environmental parameters and the
host tree performance in explaining variation of the bacterial and
fungal communities.

RESULTS

Weather Data and Soil Chemical
Parameters of the Field Sites
Details on weather data are summarized in Supplementary
Table S1. The weather variables include precipitations as well
as atmospheric and soil temperatures. There was no significant

difference in any of the analyzed weather variables among
the field sites.

The measured chemical parameters were mostly in similar
ranges among the different field sites, even though some
values differed significantly with, however, moderate difference
amplitudes (Table 1). In particular, the soil of Greifenhagen and
Bad Lauchstädt had lower values in SOC, hot and cold water
extractable C and N.

The similarities among the soil parameters allowed
repartition of the field sites into distinct groups. In this
regard, concurrent similarity in pH and SOC grouped together
Harsleben and Pfeiffhausen; C/N, HWC, and HWN put together
Greifenhagen and Bad Lauchstädt; TN and C/N linked Bad
Lauchstädt and Harsleben.

PhytOakmeter Growth Performance
Among the Field Sites
PhytOakmeter growth parameters within the respective field sites
are summarized in Table 2. The PhytOakmeters outplanted in the
four field sites had similar initial height. Also, among the field
sites, there was no difference in percentage increase of the tree
height during 2015 and 2016 vegetation periods. The number of
shoot flushes produced by the trees during 2016 was comparable
among the sites, but the first shoot flushes were significantly
longer in Bad Lauchstädt than in the other sites.

Overall Composition of Microbial
Communities Among the Field Sites
For bacterial communities, a total of 5,092,013 reads representing
18,140 OTUs were obtained from the 38 samples from all
four field sites. Removal of reads ascribed to chloroplasts and
mitochondria gave a total of 5,066,965 reads corresponding to
17,890 OTUs, with a minimum of 96,167 and a maximum of
199,411 reads. Rarefaction to 96,167 reads per sample resulted
in a total of 17,630 OTUs. For fungal community, the analysis
availed a sum of 4,033 OTUs represented in a total of 1,545,424
reads; with minimum reads of 26,580 and a maximum of 56,794.
Rarefaction to 26,578 reads per sample resulted in a sum of
3,970 OTUs. All rarefaction curves for both bacteria and fungi
tended to approach the saturation plateau, an indication that
the communities were almost exhaustively sampled and the data
volume of sequenced reads was sufficient (see rarefaction curves
in Supplementary Figure S3).

Overall, the rarefied bacterial OTUs were assigned to
42 different identifiable phyla, 126 classes, 169 orders, 319
families, and 582 genera. Bacterial communities were dominated
by 13 phyla, with an individual relative abundance of at
least 1%, all totaling up to 93% of the whole community.
The five predominant phyla Proteobacteria, Actinobacteria,
Planctomycetes, Acidobacteria and Chloroflexi covered more
than 74% of the total community (Figure 1A). Unclassified
OTUs at phylum level occupied 2.2%. All the bacteria phyla were
similarly represented among all four field sites.

The rarefied fungal OTUs were classified into six different
recognized phyla, 23 classes, 82 orders, 159 families, and
388 genera. The fungal phyla altogether were represented
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TABLE 2 | Tested growth parameters on the investigated PhytOakmeters within respective field sites.

Tree parameters Harsleben Pfeiffhausen Greifenhagen Bad Lauchstädt

Height at the outplanting time (cm) 65.8 (± 16.5) 71.7 (± 8.8) 78.8 (± 2.5) 75.3 (± 5.9)

Height percentage increase in 2015 26.5 (± 15.2) 34.7 (± 27.6) 31.9 (± 11.9) 64.4 (± 39.3)

Height percentage increase in 2016 32.6 (± 34.2) 17.8 (± 17.6) 33.2 (± 12.5) 38.1 (± 31.4)

Mean SF number in 2016 1.8 (± 0.4) 1.5 (± 0.5) 2.0 (± 0.0) 2.0 (± 0.9)

Mean first SF length in 2016 11.4 (± 10.7)b 10.0 (± 9.2)b 7.6 (± 4.4)b 27.3 (± 6.3)a

Leaf dry weight (g) 0.6 (± 0.3) 0.8 (± 0.4) 1.0 (± 0.3) 0.9 (± 0.3)

Ratio leaf dry weight to fresh weight 0.5 (± 0.1)ab 0.6 (± 0.1)a 0.5 (± 0.0)a 0.4 (± 0.0)b

Values represent means of six selected trees (± standard deviation). Fresh and dry leaf weights represent total weights for five leaves of the main stem first shoot flush
(SF1). Different superscript letters after standard deviations in a row mean statistically different (p < 0.05) according to a one-way ANOVA and Tukeys’ HSD test.

in the following order: Ascomycota (56.0%), Basidiomycota
(26.2%), Glomeromycota (10.5%), former Zygomycota (4.0%),
and Chytridiomycota (3.0%), with 14.6% unclassified. The fungal
phyla were shared and also similarly represented among all the
four field sites (Figure 1A).

Microbial Shannon Diversity Associated
With PhytOakmeter Root Zone, Field
Sites and Environmental Parameters
Species diversity of both bacteria and fungi within PhytOakmeter
root and root-free zones at each field site was determined by
using the Shannon diversity index and results presented by
boxplots (Figure 1B). The Shannon diversity values within the
host tree root zones were similar among the sites for both bacteria
and fungi. As well, species diversity of the host tree root-free
zones was similar among the sites for both bacteria and fungi,
except a significantly lower bacterial diversity value noticed at
Pfeiffhausen. At each field site, the microbial species diversity
values were also comparable between the host tree root and root-
free zones. However, the species diversity of the host tree root
zone tended to always be higher for the bacteria and, on the
contrary, lower for the fungi.

As indicated by the lowest AIC values of the tested models
(Supplementary Table S3), the best model to predict the
microbial Shannon diversity included CWC, P, soil moisture and
soil temperature for bacteria (p < 0.001 and adjusted R2 = 0.47),
while it included CWC and soil temperature for fungi (p < 0.05,
adjusted R2 = 0.12) (bold in Supplementary Table S3).

Structure of Microbial Communities
Among the Field Sites
ANOSIM showed that the structure of soil microbial
communities was significantly site-specific for both bacteria
(p < 0.001, R = 0.91) and fungi (p < 0.001, R = 0.82). This
was visually supported by NMDS plots in which samples were
ordinated in separate clusters according to the respective field
sites (Figure 2). The NMDS plot displayed that the soil microbial
communities of Harsleben and Pfeiffhausen were close to each
other especially for bacteria (Figure 2). The figure also shows
the significant impacts of soil pH, SOC, C/N, and CWC on the
microbial community structure for both bacteria and fungi, plus
soil moisture for only bacteria.

When we separately plotted samples of the respective sites, we
visually found start of separation between microbial communities
of PhytOakmeter root and root-free zones in one site (Bad
Lauchstädt) for the bacteria and in three sites (Harsleben,
Pfeiffhausen, and Bad Lauchstädt) for the fungi (Figure 3),
indicating a beginning of the host tree effect on microbial
community structure. However, ANOSIM only confirmed this
host tree effect on fungal community in the field sites of
Pfeiffhausen (p < 0.05, R = 0.37) and Bad Lauchstädt (p < 0.05,
R = 0.57).

Microbial Community Composition
Within PhytOakmeter Root Zone in
Comparison to the Tree Root-Free Zone
Composition of the soil microbial communities deduced from the
OTUs overlap analysis between PhytOakmeter root zone and the
tree root-free zone revealed significant differences (Figure 4). The
highly abundant microbial OTUs tended to be generally shared
between the two zones (55.7 and 51.2% for bacteria and fungi,
respectively) while the least abundant tended to be uniquely
detected within either zone. In this view, 29.6% bacterial OTUs
and 32.7% fungal OTUs were exclusively detected within soil
samples of the PhytOakmeter root zone, while 14.7% bacterial
OTUs and 16.1% fungal OTUs were uniquely identified within
the root free zone soil.

Further overlap analysis separated the microbial OTUs
exclusive to the tree root zone into those commonly found in all
the field sites and those exclusive to either site (Figure 5). The
common ones were considered as the putative “core microbiome”
of the rooting zone of the DF159 clone. The detected core
microbiome consisted of 37 and 25 OTUs for bacteria and
fungi, respectively (Figure 5). The number of PhytOakmeter site-
specific microbial OTUs ranged from 369 (Pfeiffhausen) to 410
(Greifenhagen) for bacteria, and from 100 (Bad Lauchstädt) to
190 (Greifenhagen) for fungi, and was always much higher than
the number of the “core” OTUs.

At the genus level, significant differences were also found
between PhytOakmeter root and the tree root-free soil zones, as
27 bacterial and 48 fungal genera (including both the identified
and unidentified) showed significant differential abundance
between the two soil compartments (Figure 6, p < 0.05).

Specifically, Figure 6 shows, for bacteria, higher abundance
of six identifiable genera and lower abundance of seven
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FIGURE 1 | (A) Distribution overview of bacterial and fungal phyla between PhytOakmeter root and root-free zones within and among the field sites, (B) Shannon
diversity index for bacteria and fungi within soils from PhytOakmeter root zone and the tree root-free zone of the respective field sites. Different letters above boxplots
indicate significant differences (p < 0.05) according to Tukey-HSD post hoc test. n.s., not significantly different.

recognizable genera in the PhytOakmeter root zone compared
to the tree root-free zone. The bacterial genera highly abundant
within PhytOakmeter root zone in comparison to the tree
root-free zone included Bryocella, Endobacter, Mucilaginibacter,
Mycobacterium, Methylotenara, and Holophaga. Always in

comparison to the tree root-free zone, we clearly noticed higher
abundance of 23 identifiable fungal genera in the PhytOakmeter
root zone. These consisted of, among others, Piriformospora,
Typhula, Claviceps, Cyathus, Tomentella, Tuber, Trichophaea,
Scleroderma, Exophiala, and Hebeloma. Eight recognizable fungal
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity displaying bacterial (stress = 0.07) and fungal (stress = 0.09)
communities’ structure within field sites, and significantly correlated soil chemical parameters (p < 0.05).

genera showed higher abundance in the tree root-free zone.
To summarize, more differentially abundant genera were in
the PhytOakmeter root zone compared to the tree root-free
zone. Furthermore, among the highly abundant microbial genera
within PhytOakmeter root zone, we noticed more fungal than
bacterial genera.

Compared Impacts of Soil Chemistry,
Weather Parameters, and Host Tree
Performance on Microbial Community
Variation
Variance partitioning (Figure 7) showed that host tree
performance traits alone could not explain any part of variation
within the bacterial community while they accounted for 6.0%
for the fungi. Similarly, the soil chemistry effect was only
detectable for the fungi and explained 8.4%. Also, weather alone
explained about 5.3% of the variance in bacteria and 9.7% in
the fungi. The three types of factors had notably higher impacts

when cumulating their single and combined effects derived from
interactions with the other factors, whereby weather remained
the strongest determinant followed by soil chemistry and, largely
behind, tree performance. Even though this observation was
similar in the two microbial groups, the explained variation was
higher for bacteria than for fungi (Figure 7).

DISCUSSION

The current study revealed similar diversity levels of the
microbiomes within PhytOakmeter root zone among the field
sites and between the soil compartments (host tree root and
root-free zones) within the individual sites. Our design was also
adequate to detect specific changes in the community structure
among the field sites. We also revealed different microbial
composition between the PhytOakmeter root and root-free zones
within respective sites. We were able to detect variations within
the PhytOakmeter root zones amongst the sites and to separate
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity displaying bacterial and fungal communities’ structure within respective
field sites, and differentiating between the samples of PhytOakmeter root and root-free zones. p and statistic R values within respective sites are given by the
analysis of similarities (ANOSIM) permutation test (999 permutations).

the change fraction explained by the host tree from the one
accounted for by the environmental parameters.

Factors Equalizing the Microbial
Diversity of PhytOakmeter Root and
Root-Free Zones Within and Among the
Field Sites
In our study, we partly confirmed our first hypothesis about
microbial diversity levels in PhytOakmeter root zones among
the field sites. However, we rejected the second hypothesis as we
found no difference between the tree root and root-free zones
within the individual sites. Despite small variations amongst
the sites, this similar microbial diversity might mainly reflect
comparable vegetation features and weather parameters among
all the sites and between soil compartments (host tree root and
root-free zones), which tended to equalize their microbiomes.

The first constant factor susceptible to homogenize the soil
microbiomes of the field sites is the common genetic identity

of the PhytOakmeters. As evidence to this PhytOakmeter clonal
effect, microbial diversity within the tree root zones was similar
among all the sites. Additionally and most importantly, bacterial
diversity of the host tree root zone at Pfeiffhausen remained
comparable to the tree root zones of the other sites in spite of
its host tree root-free zone which was significantly different from
most of its counterparts. According to previous reports, trees,
especially through root exudates, provide specific carbon and
energy sources to soil microorganisms. As a central source of
nutrients, root exudates create therefore a niche for growth of
microorganisms (Hassan et al., 2019), thus highly contributing
to shaping the soil microbiome (Wieland et al., 2001; Garbeva
et al., 2004; Nunan et al., 2005). Similar studies pointed out
that variations in plant root exudates influence the diversity
of the plant root microbiome (Grayston et al., 1998; El Zahar
Haichar et al., 2008). As quantity and composition of root
exudates are plant species-specific (Gransee and Wittenmayer,
2000; Gargallo-Garriga et al., 2018), each plant can shape its
specific soil microbiome (Berg and Smalla, 2009). We can thus
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FIGURE 4 | Overlap of bacterial and fungal OTUs between PhytOakmeter root zone and the tree root-free zone.

FIGURE 5 | Venn diagrams showing an overlap of OTUs exclusive to PhytOakmeter root zone among the field sites.

infer that genetically identical plants create within their root
zones comparable microbial niches, resulting in similar diversity
of their root-associated microbiomes.

Second, all the study sites share a similar climate with
parallel weather variations. Temperature, the most important
variable in defining the climate of a region, is one of the main
factors influencing the occurrence, richness, stability, and
activity of soil microorganisms (Borowik and Wyszkowska,
2016). Both atmospheric and soil temperatures were reported
to impact on the soil microbiome (Alkorta et al., 2017).
Atmospheric temperature has direct effect on soil temperature

and indirectly affects host plant productivity as well as availability
of carbon sources for microbial growth (Anderson, 1992;
Bardgett et al., 1999). Also, both directly and indirectly,
soil temperature significantly shapes the conditions for
growth and development of microorganisms (Borowik and
Wyszkowska, 2016). Directly, soil temperature influences
microbial metabolism while the indirect effects are noticed via its
impacts on plant productivity (Jefferies et al., 2010). Comparable
atmospheric and soil temperatures amongst the study field sites
may have also had an important contribution to the similar
microbial diversity.
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FIGURE 6 | Differential abundance test for bacterial and fungal genera using Phyloseq and DESeq2. The graphs represents log2_fold change of the microbial genera
with significantly different abundance (p < 0.05) in the PhytOakmeter root zone compared to the tree root-free zone. A positive value signifies higher abundance
while a negative value means lower abundance of the respective genera within the PhytOakmeter root zone compared to the tree root-free zone.
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FIGURE 7 | Variance partitioning analysis of the respective impacts of soil chemistry, weather, and host tree growth parameters on variations within bacterial and
fungal communities. Soil chemistry included pH and soil organic matter content (SOC, TN, C/N, CWC, CWN, CWC/CWN, HWC, and HWN). Weather data included
annual precipitations as well as monthly mean atmospheric and soil temperatures in the period of January 2014–September 2016. Tree growth-related parameters
were height at the outplanting time, height increases in 2015 and 2016, shoot flushes produced in 2016 vegetative period, height of 2016 first shoot flush (SF1) as
well as fresh and dry matter weight of SF1 leaves produced in 2016. Each circle represents the portion of variation accounted by each factor. Shared variance is
represented by the intersecting portions of the circles. Values ≤ 0 are not shown. The calculations were done by using all the OTUs found within the host tree root
zone.

Lastly, all the sites are grassland. As roots of herbaceous
plants highly impact soil microbial communities (Burke et al.,
2009), herbaceous plant cover may have contributed a lot to
the noticed similar microbial Shannon diversity between host
tree root and root-free zones within individual sites. This
assumption is supported by Christie et al. (1978) who reported
that one plant root-associated microbiome can be influenced
by neighboring plants. Therefore, herbaceous plant cover may
have extended their effect to the PhytOakmeter root zone and,
thus, contributed to homogenize microbial diversity between the
host tree root and root-free zones at the individual grassland
field sites.

Differences in Microbial Community
Structure Among the Field Sites
As indicated by NMDS plots and ANOSIM, structure of
the microbial communities was in fact revealed different
from site to site in spite of their similar microbial diversity
levels. With this, we rejected the second part of our first
hypothesis which predicts high similarity in microbial
community structure among the field sites. In general, the
noticed difference might reflect the micro-heterogeneity of
soil habitat (Buscot, 2005) among the sites in addition to
their land use history. Besides, spatial isolation among the
field sites may have also contributed to their differences
in microbial community structure. According to various
reports, spatial isolation leads to microbial species endemic
to specific field sites (Zhou et al., 2002) and, therefore, to
variations in soil microbial community, even within a single

region (Bokulich et al., 2014; Zarraonaindia et al., 2015;
Gourmelon et al., 2016).

Differences in soil pH and organic matter content can also
be used to further explain the different microbial communities
among the sites. This is supported by previous reports such
as Eiland et al. (2001), Fierer and Jackson (2006), Medeiros
et al. (2006), Zhalnina et al. (2015), and Xue et al. (2018).
From this view, repartition of the sites into distinct groups, as
shown by our NMDS plot analyses, can be explained relying on
similarities in soil pH and organic matter content. Comparable
pH, SOC, and C/N between Harsleben and Pfeiffhausen matched
with the NMDS plot results where their soil microbiomes were
found to be more similar. Comparable C/N and TN content
between Bad Lauchstädt and Harsleben are also consistent with
the similarity level of their respective microbial communities. In
the same way, similar level of C/N, HWC, and HWN between
Greifenhagen and Bad Lauchstädt relate to their comparable
microbial community structure.

On the contrary, all the sites had the same microbial phyla with
similar proportion. Proteobacteria and Ascomycota dominated
the overall bacterial and fungal communities, respectively. High
abundance of Proteobacteria was previously reported within
numerous types of ecosystems, such as in grasslands (Singh
et al., 2007), croplands (Tian and Gao, 2014), forest-grass
ecosystems (Zeng et al., 2016), and natural hardwood forest
soils (Lin et al., 2011). Ascomycota were reported dominant
in soil fungal communities of semi-arid (Porras-Alfaro et al.,
2011) and temperate (Prober et al., 2015; Chen et al., 2017)
grasslands, oppositely to forest soils dominated by Basidiomycota
(Goldmann et al., 2015; Terhonen et al., 2019).
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Differences in Microbial Community
Composition Between Soils of
PhytOakmeter Root and the Root-Free
Zones
Comparison between the PhytOakmeter root and root-free soil
compartments confirmed our third initial hypothesis about
higher abundance of some particular soil microbial taxa in
the PhytOakmeter root zone. We found more microbial OTUs
exclusive to the host tree root zone than the OTUs uniquely
detected within the tree root-free zone. This indicates that,
after two years of their field outplant, PhytOakmeter trees had
already exerted significant effect on local microbial communities
regardless of legacy effects of previously existing vegetation.
This opposes Elgersma et al. (2011) who reported soil microbial
structure to be not affected by the current vegetation two
years after transplantation, rather largely determined by the
legacy effect of the previous vegetation type. Examination of
the PhytOakmeter root-associated microbial OTUs showed a
PhytOakmeter “core” microbiome as well as a PhytOakmeter
“site-specific” microbiome. Following the definition by Shade
and Handelsman (2012), the PhytOakmeter “core” microbiome
referred to bacterial and fungal OTUs exclusively found within
the tree root zone in all the sites. Such a core microbiome has
been estimated to likely play a key role in the plant soil systems
among variable sites (Shade and Handelsman, 2012; Shakya et al.,
2013). In the current study, however, all the PhytOakmeter “core”
microbial OTUs were not identified for specific functions to the
host tree itself, neither to the whole ecosystem. We also revealed
PhytOakmeter site-specific microbial species, and this supported
the view that plants recruit root-associated microorganisms from
surrounding soil microbial reservoirs (Compant et al., 2019). The
microbial recruitment by host plant roots was reported to depend
on composition of the local microbial pool and microbial-
host plant affinities designated as microbial host fidelity and
preference (Bonito et al., 2014; Compant et al., 2019). In
herbaceous plants, this process was shown to be promoted by
nutrients and signaling molecules present in the plant exudates
(Marschner et al., 2004; Prescott and Grayston, 2013; Jacoby et al.,
2017). Similar processes were also observed for trees (Landeweert
et al., 2001; Gahan and Schmalenberger, 2014). Metabolites
exuded by the host tree serve to recruit and subsequently support
or inhibit multiplication of particular microbial taxa within the
tree root zone (Garbeva et al., 2004; Bais et al., 2006; Lareen
et al., 2016). In line with these previous findings, our current
study also revealed some highly abundant bacterial and fungal
genera in the PhytOakmeter root zone compared to the tree
root-free zone of soils.

Plant roots can attract beneficial microorganisms from
surrounding soil, and those play important roles in plant
performance especially by improving plant mineral nutrition.
Even though there is still limited knowledge on which particular
microbes are good partners for boosting plant nutrition, it has
been postulated that plants have evolved specific recognition
mechanisms to discriminate beneficial microorganisms from
those that need to be repelled (Jacoby et al., 2017). In the
current study, none of the differentially abundant bacterial

genera between PhytOakmeter root and root-free zones could be
identified for their potential function. Contrarily, we were able to
annotate ecological functions to a certain number of the highly
abundant fungal genera within the PhytOakmeter root zone.
They included Tomentella, Tuber, Trichophaea, Scleroderma,
Exophiala, and Hebeloma which are ectomycorrhizal (Tedersoo
et al., 2010). The ectomycorrhizal fungi assist their associated
plants to draw more nutrients and water from the soil as well as
to increase the plant tolerance to different environmental stresses
(Tedersoo et al., 2010). In recruiting the ectomycorrhizal fungal
genera, the PhytOakmeter trees may have been targeting such
an important contribution to the host plant health. Compared
to the tree root-free zone, PhytOakmeter root zone was also
enriched in yeast genera Phaeococcomyces (Butler et al., 2004),
Sporobolomyces (Wang et al., 2015), Cystobasidium (Ramos-
Garza et al., 2015; Yurkov et al., 2015), and Cyphellophora
(Feng et al., 2014). Yeasts are essential in ecological processes
involving mineralization of organic matter (Botha, 2011). The
tree root zone incorporated as well Marchandiomyces whose
several species are lignicolous (DePriest et al., 2005; Lawrey et al.,
2008), and saprotrophic genera such as Ochroconis (Gams, 2015)
and Typhula (Shiryaev and Kotiranta, 2007) which participate
in breaking down of complex organic molecules. Our findings
agree with the previously reported ectomycorrhizal status of oaks
(Herrmann and Buscot, 2007) and the tree ability to interact with
large microbial communities which assist in nutrients acquisition
(Jumpponen and Jones, 2009; Tarkka et al., 2013). The tree root-
associated microorganisms are well-known to serve in improving
tree health and nutrition, preventing establishment of pathogens,
and adapting to specific local environmental conditions (Uroz
et al., 2016; Gehring et al., 2017; Lau et al., 2017).

Microbial Communities in the Host Tree
Root Zone Are Shaped More by
Environmental Parameters Than by the
Host
Contribution of the environmental parameters to variations
within bacterial and fungal communities of the PhytOakmerer
root zone soil was found to be higher than contribution of the
tree growth-related parameters. This finding might be due to
two main reasons: (1) Host trees were still very young (only two
years, i.e., two vegetation periods, in the field). Even more, the
first vegetation period for trees after field release corresponds to
a transplant shock. This period consists of acclimation to local
soil environment and regeneration of the root system (Hargrave
et al., 2002). After the transplant shock period, PhytOakmeters
had practically only one single vegetation period to impact on
surroundings and, apparently, this was not enough to exert a
huge effect on local soil microbial community. The dependency
of soil microbial community on the host tree age seems to be high.
As previously proved, soil microbial communities associated
with roots of perennial plant change in both richness and
composition over the host’s lifetime. After out-planting, the
plants replace a common soil microbial community they were
exposed to as saplings with local communities of their respective
field sites. From there on, the host plants continue to shape
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their respective root-associated microbial communities. These
development dynamics were previously reported by Wagner
et al. (2016) and Goldmann et al. (2020). (2) The soil was
sampled in the tree root zone rather than rhizosphere where
high tree effect on microbial community could be expected. As
previously reported, the rhizosphere is known as a nutrient-
rich compartment in the soil influenced by the plant. In the
rhizosphere, carbon compounds, which serve as the main food
and energy source for soil microbes, are continuously introduced
via rhizodeposition and sloughed-off cells (Breidenbach et al.,
2016). Sampling the host PhytOakmeter root zone rather than
the rhizosphere led to dilute the host tree influence on the
soil inhabiting microorganisms. However, even though tiny, the
impact revealed at this young age of the trees is remarkable
especially in the context of a temperate climate that does not
promote rapid tree growth. Until now such quick effects of tree
planting on soil microbial communities had been reported in the
subtropics (Weißbecker et al., 2018).

CONCLUSION AND FUTURE
PERSPECTIVES

In conclusion, there is a high similarity in microbial biodiversity
among the field sites but their microbial community structure
is different. Even though still young, the capability of
PhytOakmeters to recruit a specific beneficial microbiome
in their root zone from surrounding microbial reservoirs
was evidenced. The study revealed concurrent impact of
environmental parameters and the host PhytOakmeter in shaping
soil microbiome of the host tree root zone, but the magnitude of
environmental parameters was higher than the impact of the host
tree. Since this finding is likely based on the age of the trees,
a similar study with older host trees is needed. For this, further
measures of soil properties, such as information on texture, might
even explain more microbial variance. Ideally, the investigation of
the root endophytic compartment and/or the rhizosphere would
be beneficial to unravel the PhytOakmeter-microbe interaction
further. Moreover, the analysis of PhytOakmeter effects on soil
microbiome at a large-scale is also required to move toward
a comprehensive understanding of the tree root microbiome
assemblage, and to have a better overview on mutual impacts
between host tree and environmental variables in shaping the
tree root zone microbiome. Nevertheless, our presented approach
is an important step toward more integrative studies using
clonal trees, and provides an opportunity to perform long-term
interaction biomonitoring.
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