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Biodiversity is a key driver of ecosystem functioning, while disturbances are a key driver
of biodiversity. Consequently, disturbances crucially influence ecosystem functioning–
both directly via affecting ecosystem processes but also indirectly via altering
biodiversity. We thus need to disclose the joint relationships between disturbances,
biodiversity and functioning (DBF) to understand and predict ecosystem dynamics
under realistic conditions. However, biodiversity responses to disturbances have so
far insufficiently been studied together with biodiversity effects on functions. For
many ecosystems, such integrative exploration of DBF relationships would require too
extensive manipulations and observations over unfeasible spatial and temporal scales.
We argue that microbial systems offer a bright perspective to overcome these limitations,
and present a roadmap for doing so. Microbial systems allow us exposing different, well-
characterized communities to multiple, reproducible disturbance regimes, and precisely
measuring both biodiversity and associated functions over time. Comprehensive data
can be obtained by systematically varying and replicating representative environmental
scenarios. These data can further be explored and explained with computational
models. Microbial systems thus reveal mechanisms that underlie DBF relationships and
allow scrutinizing ecological hypotheses. This advancement of theory will be essential
for ecology as a whole. It is particularly relevant in the context of global change, which
is expected to promote disturbances as well as loss of biodiversity and functions in
many ecosystems.

Keywords: ecological theory, trait-based ecology, microcosm experiments, multifunctionality, environmental
change, computational modeling

DISTURBANCES, BIODIVERSITY AND ECOSYSTEM
FUNCTIONING ARE INHERENTLY RELATED

Relationships between biodiversity and ecosystem functioning (BEF) are prominently studied in
ecology. As biodiversity declines across various ecosystems (Pereira et al., 2010; Bellard et al., 2012),
subsequent effects on functioning strongly matter for the future provision of ecosystem services,
and human well-being (Hooper et al., 2005; Cardinale et al., 2012). Positive BEF relationships
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(e.g., Figure 1, right) arise from selection (diverse communities
more likely contain and are dominated by functionally important
species) and complementarity effects (multiple species occupy
different niches or facilitate each other; Loreau et al., 2001).

Although BEF research focused heavily on species richness,
awareness increased that additional biodiversity measures, such
as evenness or trait diversity, are needed to explain what in a
community composition is or is not relevant for functioning
(Díaz et al., 2007; Tilman et al., 2014; Gagic et al., 2015).
Furthermore, species roles, interactions and, thus, also BEF
relationships are often not fixed, but rather depend on the
(current) environmental context of an ecosystem (Wellnitz and
Poff, 2001; Fetzer et al., 2015). They also vary with the particular
function or set of functions examined (Naeem et al., 2012; Schuldt
et al., 2018). Therefore, studying multiple functions to assess
ecosystem multifunctionality (Byrnes et al., 2014) is needed for
a comprehensive analysis of BEF relationships.

In most experimental BEF studies, initial communities
are randomly assembled and their biodiversity related to
observed functions (e.g., Figure 1, right). However, changes of
initial species compositions and abundances in the course of
biodiversity experiments are extremely likely. They are typically
not random but reflect the community dynamics in the given
environmental context (Srivastava and Vellend, 2005). This
means that realized community compositions over the course
of an experiment, including their temporal changes (Hillebrand
et al., 2018), should be analyzed for insights on the actual

role of biodiversity for ecosystem functioning, particularly on
complementarity effects (Huston, 1997; Rychtecká et al., 2014).

A largely separate field of ecology is the study of disturbances–
discrete events that affect populations, resources or the physical
environment (Pickett and White, 1985). As most ecosystems
are subject to disturbances, their impacts on populations and
biodiversity were investigated for a long time (Connell, 1978;
Wootton, 1998; White and Jentsch, 2001). The particular form
of the relationship between disturbances and biodiversity (e.g.,
Figure 1, left) varies and is highly debated (Mackey and Currie,
2001; Kershaw and Mallik, 2013). Nonetheless, the considerable
influence of disturbances on biodiversity is generally established.

Global change is anticipated to alter, and often increase, the
frequency and intensity of disturbances (Miller et al., 2011;
Seidl et al., 2011; Newman, 2019). Additionally, combined
occurrence of more than one type of disturbances will become
more common (Elmqvist et al., 2003; Martínez-Ramos et al.,
2016). Hence, ecosystems are subject to combinations and
interactions of multiple disturbances with potentially very
different characteristics. Such combined disturbances are much
less studied than single disturbances and their effects, including
“ecological surprises” such as drastic shifts in community
compositions and biodiversity, are difficult to predict (Paine et al.,
1998; Newman, 2019).

It follows that (multiple) disturbances may affect (multiple)
ecosystem functions directly and indirectly. Direct effects
are, for instance, the removal of biomass, the reduction of
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FIGURE 1 | DBF relationships integrate disturbances, biodiversity, and ecosystem functioning. The relationships between disturbances and biodiversity (left) and
between biodiversity and ecosystem functions (right) have so far mostly been studied in isolation. The joint analysis will reveal the consequences of disturbances for
ecosystem functioning (middle graph). In explaining these consequences, the relationship between realized biodiversity under disturbances and associated
functioning (bottom graph) is decisive. This relationship does not show the effects of biodiversity under otherwise equal conditions, but the specific associations of
realized biodiversity and ecosystem functioning (BEF) in various disturbance contexts. It is likely to deviate from the relationship between biodiversity of different,
randomly assembled communities, and their functioning (right graph). This is because the disturbance regimes will create different, yet realistic, subsets of
theoretically possible community compositions than the random artificial assembly. In addition, the associated functioning includes direct effects of disturbances that
are not mediated by biodiversity changes. All graphs show virtual data that are consistent with each other. The chosen exemplary metrics of disturbances,
biodiversity and ecosystem functioning can be replaced by alternatives. The biodiversity metric “effective number of species” comprises the components richness
and evenness and is calculated from species abundances (Tuomisto, 2012).
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available resources or the suppression of growth and abiotic
compound turnover. Indirect effects arise from disturbances
driving community compositions and diversity with subsequent
effects on functioning. The relationships of disturbances and of
realized biodiversity to ecosystem functioning (e.g., Figure 1,
center) result from these direct and indirect influences (Loreau,
2010). However, studies addressing the effects of disturbances on
both biodiversity and functioning are underrepresented in the
current ecological research (Brose and Hillebrand, 2016). This
deficiency is even more evident when multiple disturbances and
multiple ecosystem functions are taken into account (Naeem
et al., 2012; Villnäs et al., 2013). For these reasons, a deeper
and more general understanding of DBF relationships requires
examining multiple disturbance regimes, resulting community
compositions and associated ecosystem functions together.

Additionally, trait-based analyses (McGill et al., 2006; Violle
et al., 2007) may elucidate DBF relationships. The composition of
communities is strongly influenced by the species traits related
to competition, facilitation, and other interactions in a given
environment (Tilman, 1982; Suding et al., 2008; Kunstler et al.,
2016). Moreover, the effects of disturbances on community
composition depend on species response traits, whereas the
resulting effects on functioning depend on effect traits (Lavorel
and Garnier, 2002; Norberg, 2004). Whether these traits belong
to the same or to different species can then explain particular
DBF relationships (Larsen et al., 2005; Radchuk et al., 2016).
Ultimately, characterizing the patterns and determining the
causes of different trait associations within species (e.g., trade-
offs due to physiological or energetic constraints; Stearns, 1989)
and trait distributions within communities (Garnier et al., 2015)
is necessary to generalize the trait-based mechanisms underlying
DBF relationships.

Why has ecology not yet comprehensively studied and
disentangled DBF relationships more often? For many
ecosystems, it is very difficult to manipulate disturbances in
a controlled manner without affecting other environmental
conditions, let alone combined multiple disturbances. Ample
studies of different disturbance regimes, including undisturbed
controls, and their long-term impact on biodiversity and
(multiple) associated ecosystem functions are, therefore,
hardly possible. An additional challenge is to apply the same
suite of disturbance regimes to different initial communities
and under different environmental contexts. This would be
required to investigate how common global change scenarios
will impact DBF relationships. Finally, even when such
comprehensive manipulations and observations are in principle
possible, for example in controlled grassland experiments,
their practical realization is extremely demanding due to
very high costs and requirements regarding spatial and
temporal resolutions and extents. These limitations currently
hinder our mechanistic understanding of DBF relationships,
adequate theory development (Rillig et al., 2015) and the
ability to predict biodiversity and functioning of disturbed
ecosystems under global change. Certain recent developments
have the potential to alleviate some of these limitations, such
as concerted standardized biodiversity experiments across
different environmental contexts worldwide (Fraser et al., 2013;

Borer et al., 2014) or global inventories of species traits (Jones
et al., 2009; Kattge et al., 2011). Another promising perspective
for overcoming the limitations is the extensive study of
microbial systems.

MICROBIAL SYSTEMS ENABLE
COMPREHENSIVE AND MECHANISTIC
INVESTIGATIONS OF DBF
RELATIONSHIPS

The general potential of microbial systems for testing and
improving ecological theory has been recognized (Jessup et al.,
2004; O’Malley et al., 2015; Ketola and Kristensen, 2017; Shade
et al., 2018). We argue that they also offer a great opportunity
for elucidating DBF relationships and their underlying ecological
mechanisms. Exploiting this opportunity is, however, not trivial.
It requires reducing the complexity of natural microbial systems
in which huge numbers of organisms interact with each other
and their (often highly heterogeneous) environment over many
spatial and temporal scales. Experimental approaches need to
focus on a manageable range of these scales and allow for
high reproducibility as well as control, targeted manipulation
and measurement of as many relevant factors as possible.
Adjustable factors include, for example, the selection and initial
composition of microbes studied, the environmental context in
which these microbes are kept, and in particular the disturbance
regimes applied (Figure 2). Factors to be measured are the
community structure and functions, but also traits of the
microbes used, including trait distributions, trade-offs, responses
to disturbance, and effects on functions. We present a roadmap to
comprehensively investigate DBF relationships using microbial
systems, which shall facilitate clear interpretation of the results
and detection of ecological mechanisms.

Choice and Assembly of Microbial
Communities
One approach to generate microbial communities for
controlled experiments is direct sampling from environmental
microbiomes, which reduces the risk of missing key species.
We use the term ”species” throughout this section, but the
same applies to phylotypes or operational taxonomic units,
which are common alternatives when delineating microbial
species is impossible. However, environmental sampling does
not allow for precise composition and straightforward variation
of species richness, evenness, or any compositional demand on
traits. Therefore, an alternative approach is targeted assembly
of synthetic communities from comprehensive and well-
characterized culture collections (Bell et al., 2009a; Wittebolle
et al., 2009). To obtain these “species pools” (Figure 2B), complex
sampled communities need to be disassembled (Figure 2A), for
example by species isolation on selective media, dilution series or
flow cytometry-assisted cell sorting (Bai et al., 2015). The species’
traits can then be characterized by cultivation-based or molecular
techniques, and classified into interaction, response and effect
traits (Haddad et al., 2008; Suding et al., 2008). To select relevant
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FIGURE 2 | Experimental considerations for studying DBF relationships with microbial systems. (A) Complex microbial communities obtained from environmental
samples can be used directly or further be disassembled leading to comprehensive, well-characterized culture collections (cf. section “Choice and Assembly of
Microbial Communities”). (B) Such collections enable targeted assembly of initial communities differing e.g., in species richness, evenness, or trait composition.
Random partitioning of the species pool allows for varying biodiversity and for replicates with equal biodiversity level but different species (cf. section “Choice and
Assembly of Microbial Communities”). (C) Incubated in synthetic microbial ecosystems (e.g., liquid cultures, but also more complex spatially structured systems), the
communities can be exposed to disturbance regimes varying in type, frequency and intensity of disturbances, including disturbance combinations (cf. section
“Application of Disturbance Regimes”). (D) Monitoring community compositions and (multiple) functions at several points in time reveals DBF relationships. This
includes systematic variation of disturbance characteristics (e.g., frequency or intensity) and initial communities (cf. section “Observation of biodiversity and
ecosystem functioning”). The experimental observations are a formidable starting point for computational modeling (cf. section “Computational Analysis and
Modeling of DBF Relationships”).

traits from the wealth of microbial morphological, physiological
or genetic attributes, the suggestions by Krause et al. (2014)
on subsets important for competition (e.g., growth rate, yield,
and production of antibiotics) and disturbance responses (e.g.,
cell and genome size, motility, and reserve materials) provide
a basis. Moreover, effect traits depend on the function(s) of
interest (e.g., contaminant degradation rate, metabolic and
enzymatic potential). The knowledge on species’ traits can guide
systematic composition of synthetic communities, differing in
richness, evenness or variation of trait expressions, species, or
higher taxonomic groups. This is impossible for communities
sampled from the environment. However, natural community
profiles can serve as templates to be mimicked in assembled
synthetic communities.

Both sampled and assembled communities allow studying
DBF relationships. They can be placed in controlled versions of
their natural environment (Vorholt et al., 2017) or in synthetic
microbial systems (Figure 2C) of different environmental
complexity (de Roy et al., 2014; Kurkjian, 2019; Tecon et al.,
2019). Microbial systems also offer the opportunity to combine

experiments in which different realized diversities emerge from
communities of the same initial diversity exposed to disturbance
regimes with classical BEF experiments, in which communities
of different initial diversities are randomly assembled (Figure 2B;
Bell et al., 2009b). To realize vast numbers of parallel experiments
with different communities, automated pipetting systems can
be used (Fetzer et al., 2015). Experiments with only one or
two species are recommended to assess each species’ responses
to disturbances, effects on functions and pairwise interactions
separately, and relate these observations to traits (cf. above).

Application of Disturbance Regimes
A highly controllable approach to expose microbial communities
to disturbances (Figure 2C) is to remove part of the community
biomass by dilution during serial transfers (Gibbons et al., 2016).
This resembles non-specific disturbances, meaning that the
removal does not depend on response traits in the communities,
while intense disturbances may cause random extinctions
(Karakoç et al., 2018). By contrast, specific disturbance responses
of different community members may lead to non-random
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extinctions and are at least as realistic in nature (Srivastava
and Vellend, 2005). One option to achieve this is to expose
microbes to toxic compounds or resource scarcity for a certain
period of time, for instance by cultivating them in miniature
membrane bioreactors from which compounds can be washed
out or in dialysis bags alternately placed in tanks with or
without the compounds (Langenheder et al., 2012; Johnke et al.,
2017; Karakoç et al., 2018). Additionally, temperature variation
(Jurburg et al., 2017), UV light application (Gibbons et al.,
2016) or sonication (Violle et al., 2010) can induce discrete
impacts on microbial communities. These disturbances hold
the potential to impact certain community members more than
others depending on the microbes’ response traits, respectively.
They can be applied in different intensities, in recurrent regimes
varying in frequency (Figure 2D), and they can be combined in
various orders to create multiple disturbance regimes (Jurburg
et al., 2017; Calderón et al., 2018).

Observation of Biodiversity and
Ecosystem Functioning
We advocate for observations of community compositions and
functions at several points in time. From species abundance
data various biodiversity metrics can be calculated (Tuomisto,
2012). This includes functional type and trait diversity if the
respective traits are characterized (cf. above). The simplest way
to measure abundances in microbial communities is to count
colony-forming units. Individual strains can be distinguished if
they differ in shape or color (Saleem et al., 2012; Karakoç et al.,
2018). However, growth-based methods miss bacteria that are
in viable but non-culturable states, which is a common strategy
to survive unfavorable conditions (Colwell et al., 1996; Robben
et al., 2018). Alternatively, microfluidic-based quantitative real-
time polymerase chain reaction (PCR) can be used to directly
quantify abundances in synthetic microbial communities in
high-throughput. Kleyer et al. (2017) applied this method to
communities containing up to 11 bacterial strains from various
phyla. For more complex communities, composition can be
inferred from multiplexed amplicon or metagenome sequencing
or from metaproteomics-based methods, including estimates of
the community members’ cell numbers or biomass contributions
(Delgado-Baquerizo et al., 2016; Kleiner et al., 2017). High-
resolution flow cytometry and cytometric pattern analysis are
particularly suitable to monitor and quantify the composition
of complex microbial communities over time (Koch et al.,
2013), for example under short-term disturbances induced by
pH and temperature alterations (Liu et al., 2018). Another huge
advantage of flow cytometry is that multiple microbial traits are
measurable in a short time (Müller and Nebe-von-Caron, 2010).

To measure ecosystem functioning, biomass production is
a common proxy used in many BEF studies (Balvanera et al.,
2006). For microbial systems, biomass production is a function
integrating direct and indirect metabolism to the conversion
of substrates into microbial biomass. It can be measured via
the optical density of microbial communities (Awasthi et al.,
2014; Fetzer et al., 2015). Alternatively, biomass turnover can be
assessed by measuring respiration rates (Bell et al., 2005). For a

more specific ecosystem function, one can assess the degradation
of certain compounds (e.g., contaminants) supplemented to the
growth medium (Peter et al., 2011). Feeding stable isotope labeled
compounds and analyzing their enrichment in microbial cells
can provide information on the community members’ metabolic
activity, even at single cell level (Musat et al., 2008). Additional
functions to be measured comprise overall substrate utilization,
nutrient cycling, abiotic compound production, or pathogen
suppression (Bell et al., 2009a; Langenheder et al., 2010; van
Elsas et al., 2012). Microbial systems also facilitate the strongly
needed measurement of several functions at a time (Miki et al.,
2014; Roger et al., 2016). Thus, they let us calculate ecosystem
multifunctionality metrics (Byrnes et al., 2014) and investigate
how those are influenced by disturbances.

Computational Analysis and Modeling of
DBF Relationships
The data obtained from disturbance experiments in microbial
systems will yield sets of relationships between different
disturbance regimes, biodiversity metrics, and measures of
ecosystem functioning (e.g., Figures 1, 2D). Analyzing these DBF
relationships’ similarities and disparities for several points in
time and different environmental contexts will generate insights
on temporal stability and context-dependence of biodiversity
responses to (multiple) disturbances and effects on (multiple)
ecosystem functions. The data will enable broad tests of ecological
hypotheses stating that, for instance, intermediate disturbances
may favor biodiversity (Connell, 1978; Sheil and Burslem, 2013),
recurrent and multiple disturbances may reinforce each other
(Paine et al., 1998; Jurburg et al., 2017) or biodiversity may
promote functioning and multifunctionality through species
complementarity (Barry et al., 2019) and insurance effects
(Yachi and Loreau, 1999; Petchey, 2007). If experiments include
monocultures, initial compositions of mixtures are known and
each species’ contribution to functioning can be separated
(which is common for biomass production, but less common
for other functions), partitioning selection and complementarity
effects (Loreau and Hector, 2001; Fox, 2005) is applicable
to microbial systems (Saleem et al., 2012). More generally,
coexistence of species under a certain disturbance regime will
indicate their complementarity, and associated measures of
functions disclose the role of this complementarity for ecosystem
functioning (Rychtecká et al., 2014). Further statistical methods,
such as variation partitioning (Legendre, 2007), structural
equation modeling (Grace, 2006; Shipley, 2016) or co-occurrence
analysis (Faust and Raes, 2012) allow proposing potential causal
mechanisms underlying the DBF relationships or potential
interactions between microbial community members. The new
hypotheses generated in this way should–and with microbial
systems they can–be thoroughly tested in further targeted
experiments (Berry and Widder, 2014; Eisenhauer et al., 2015;
Dormann et al., 2018).

The rich data will reveal further insights when combined
with simulation models (Kreft et al., 2013; Song et al., 2014;
Vallina et al., 2019). These models should explicitly describe
processes such as growth, decay, resource consumption and
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interactions of microbes, their responses to disturbances and
their effects on functions at the level of single populations or
even single individuals (Hellweger et al., 2016; Momeni et al.,
2017). Thereupon, community dynamics and DBF relationships
emerge in the simulations (Smith et al., 2016) not just from the
properties of modeled organisms, but also from the complex
interactions of all modeled processes. Process definitions and
parameter values can be based on measurements of microbial
population dynamics in mono- and co-culture experiments
and of their traits (cf. above). They can further be obtained
by simulating scenarios equal to experiments, and fitting the
model definitions such that multiple characteristic “patterns” of
simulated communities match those observed in experiments
(“pattern-oriented modeling”; Grimm and Railsback, 2012). For
microbial systems, multiple experimental patterns at different
organizational levels are available and, even better, additional
experiments and observations are feasible to test further model
predictions (Widder et al., 2016). This allows an iterative
interplay between modeling and experiments, whereby the
models not only describe the observed patterns, but also
reveal the processes and interactions generating them, thus
disentangling the complex system dynamics. Once a model
is defined, virtual DBF experiments are possible that by far
exceed the possibilities with real microbial systems. A huge
variety of (single and combined) disturbance regimes, initial
community compositions or (heterogeneous) environmental
conditions can systematically be simulated, and multiple metrics
of biodiversity and functioning investigated including variations
in space and time. Ecological hypotheses can be tested,

predictions can be made and, most important, DBF relationships
can be linked to causal mechanisms and to preconditions
for their validity.

CONCLUSION

We see a great perspective for microbial experiments, especially
when combined with computational models, for analyzing,
understanding and generalizing the shapes, causes and
consequences of DBF relationships. Thus, they can substantially
contribute to developing ecological theory that integrates
disturbances, biodiversity, and ecosystem functions. This
integration is needed and will ultimately improve our ability
to predict and manage the fate and functioning of ecosystems
under global change.
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