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ABSTRACT The ability to concentrate well is an important determinant of students’ learning outcomes but
remains poorly understood. In this work we investigated whether there exists a mapping between students’
biosignals and perceived concentration levels. If we succeed in this mapping, a wearable can function
as a Concentration Tracker, a novel feature that is missing from current wearables. For this, a wearable
wristband was used to record students’ heart rate, heart rate variability, skin temperature, skin conductivity
and acceleration from body changes. Additionally, students self-assessed their concentration levels using a
smartphone application. We improved the accuracy by utilizing a big amount of unlabelled biodata from
outside the study sessions. Our best boosted regression tree model predicted students’ concentration level
with only 1.7% NMAE error. The predictions for a user not in the training set were much weaker; the best
model, a convolutional neural network, achieved a prediction NMAE error of 30.7%. This implies that
the users generated biosignals highly individually. Thus, models are not well transferable from one user
to another without rooting them in user-specific data. Contrary to stress research, our results showed that
skin conductivity had mostly a negative correlation with students’ concentration levels. Also diverging from
stress reactions, skin temperature had mainly a positive correlation. Conductivity and temperature were the
two dominant predictors. Further, the results suggest that an element of deep, effortless concentration was
present in the learning experience of the subjects. Altogether, our work demonstrates that a concentration
tracking wearable for improving learning is technically achievable.

INDEX TERMS Affective computing, affective learning, artificial intelligence, biosignals, convolutional
neural networks, educational technology, machine learning, mental concentration, semi-supervised learning,
wearable sensors.

I. INTRODUCTION
Mental concentration is defined by the American Psychology
Association as ‘‘the act of bringing together or focusing,
as, for example, bringing one’s thought processes to bear
on a central problem or subject’’ [1]. A similar definition

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

is in [2]. The ability to concentrate during studies has a
well-documented positive impact on learning outcomes [3]
and plays a central role in helping students develop other
important life-skills such as critical thinking [4]. Students
themselves recognize the value of being able to focus, yet
many feel that they lack in this quality. For instance, a recent
study showed that 80% - 90% of students procrastinate con-
sistently and 50% problematically; 95% of them wish to
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reduce it [5]. Despite the importance of the topic, methods
to predict how concentrated a person feels him or herself in
various situations, are to a large extent lacking. This paper
aims to fill this gap. The focus of this paper is to develop a
model to estimate how well a student is concentrating based
on his or her biosignals. This model could be used in vari-
ous applications to help students improve their concentration
levels. For example, the model could enable a software to
track students’ biosignals and learn to give them personalised
advice on study habits, such as when and where to study for
optimal concentration.

So far, researchers have investigated the relationship
between physiological signals and concentration mainly
within strictly controlled experimental settings [6], and often
with equipment that are impractical to use in daily life, such
as the electrocardiograph [7]. Our aim, in turn, was to create a
framework that could be used to track students’ concentration
levels in realistic settings. Therefore, we decided to use a
multi-sensor wristband to collect the biosignal data even
though other equipment may have been more accurate. It fol-
lows that our central research question is whether biosignal
data collected from a wristband during students’ daily life has
sufficient predictive power for inferring concentration levels.

In order to investigate the relationship between biosignals
and concentration levels, we had to define what exactly is
meant by good concentration. Since the aimwas to investigate
this in a realistic daily life setting, it was not possible to
focus on any precise theoretical definition of concentration.
Instead, it was left up to the students themselves to define
what a good concentration meant to them; that is, we asked
them to provide self-assessed ratings of their concentra-
tion levels whenever they were studying. Another reason
why we decided to investigate self-assessed concentration
levels is due to its positive correlation with students’ moti-
vation [8] and thus learning outcomes. Furthermore, self-
assessed levels of attention have been shown to correlate with
objective assessments of attention gathered from the d2 test
under pressure [9]. The correlation factor in that study was
r = 0.31. As attention and concentration are closely related,
it can be assumed that subjective and objective concentration
levels also correlate. Further, self-assessment of intelligence
has in multiple studies been found to correlate moderately
with measured intelligence with r varying between 0.25 and
0.46 [10]. This is supporting evidence, as intelligence has
been found to moderately correlate with attention [11].

Our data set therefore consisted of students’ self-assessed
concentration ratings, and the following biosignals mea-
sured with a wristband: heart rate, heart rate variability, skin
temperature, skin conductivity, and acceleration data. Both
Boosted Regression Tree and Convolutional Neural Network
based machine learning models were trained on the biosig-
nal data to predict students’ concentration during the study
sessions. Feature importance analysis and partial dependence
plots were used to explore the relationship between the
biosignals and students’ concentration levels in more detail.
10-fold and user-based cross-validation on fully unseen new

user’s data were applied to evaluate the performance and
generalization ability of the model. The main contributions
of this work are:

• We have shown that it is possible to infer students’
concentration levels from their biosignals in a realistic
daily life setting in which we did not control for when,
what and where they studied.

• We found evidence that students’ self-assessed con-
centration levels in real-life settings cannot be fully
explained by cognitive stress [12] as they had different
biosignal patterns. Good concentration likely reflects a
deep effortless state of mind maintained over the study
time.

• By examining the relative importance of the different
biosignals, we found that students’ concentration levels
were best predicted by their skin conductivity and skin
temperature, and, to a small degree, by heart-rate vari-
ability. These results will help to design future studies
and technical implementations.

• All the results were achieved using a single multi-sensor
wristband to collect the biosignal data rather than a
combination of more accurate and expensive medical
equipment. This data-gathering set-up can thus hope-
fully inspire future studies and applications to use simi-
lar methodology and is scalable to large user groups.

Remainder of this paper is organized as follows. After
summing up related research in Section II, we describe
our method in Section III. The performance of the Boosted
Regression Tree models, CNN models and other results are
covered together with a critical analysis and a validating
comparision to current literature in Section IV. Conclusion
and ideas for future research are presented in Section V.

II. RELATED RESEARCH AND RESEARCH GAP
Commercial smartwatches and rings now have stress trackers
as standard features, see [13]. They estimate stress mostly
from heart rate variation, but recently increasingly using
electrodermal (EDA) signals. Several wearables have skin
temperature sensors, but none of these wearables claim to use
temperature for stress evaluation. Empatica [14], which we
use in this paper, has all of these sensors, but is not meant for
the ordinary consumer.

Building on these sensors, there are numerous applications
for relieving stress and anxiety [15] as well as depression [16]
through various methods like relaxation, light therapy, and
exercise. However, to the best of our knowledge, no wear-
able yet features mental concentration tracking. There is a
clear reason for this; mental concentration is a very complex
phenomenon and there are no clear metrics yet developed
as we will notice in our review below on concentration in
educational settings. Such studies demand tracking concen-
tration in highly varying ‘‘in-the-wild’’ conditions, which
requires dealing with large variances in input signals, and
multiple sources of noise as well as challenging ground truth
acquisition.
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Our research lies at the intersection of two related areas:
affective learning and affective computing. Affective learning
focuses on the notion that emotions play a vital role in the
learning process [8], [17], [18]. The aim of affective com-
puting, on the other hand, is to utilize computational power to
detect and analyse different emotional states in humans. It is
imperative to note that in this context our usage of the word
emotion differs from its everyday use; it does not only refer
to classic emotions such as happiness or sadness but rather is
used to capture the entire mental state of a person, also known
as affect. In fact, research in affective computing and learning
has identified that more abstract emotions such as curiosity,
focus, flow, anxiety, and boredom are much more relevant to
learning than the six basic emotions of Ekman (anger, fear,
disgust, joy, surprise and sadness) [19].

Despite recent developments in affective computing,
detecting affect during learning remains a tricky task. One
major reason is that the construct of different emotions
remains unclear. For the most part, affect detection has relied
on classic emotional theories from psychology [20]. The two
most important ones in the context of learning have been to
detect emotions through physical expressions and behaviours
(e.g., facial expressions), and through embodiments [20] such
as changes in physiology (e.g., biosignals such as heart rate).
Based on these two approaches, numerous systems have been
developed to detect when a learner is, for instance, concen-
trated, bored, or confused.

A. THEORIES AND TESTS OF CONCENTRATION IN
EDUCATION
In most previous concentration studies, the subjects have
been studied in attention tests, where the subject solve spe-
cific tasks in laboratory settings. These tests are common
in sports sciences, e.g. golf [21] and basketball [22]. The
subjects are typically monitored both regarding test perfor-
mance and biophysical reactions, like heart rate and brain
waves. The tests are well documented, e.g., the Attentional
Capacity Test (ACT) [23], Continuous Performance Tests
(CPTs) [24], Conjunction search [25], and the Letter Can-
cellation Task [26]. Also, simple tasks, like typing speed [27]
or reading and writing certain texts, have been used in test-
ing [28]. However, these task-related tests are only applicable
to a defined learning environment and not to the many vari-
eties of everyday learning, which are studied in this paper.
In addition, they resemble IQ tests in that they mainly mea-
sure focused effortful attention, i.e. cognitive load, which
however is only one form of concentration.

Psychologists have developed several theories of how con-
centration arises. For example, Salomon [29] introduced the
amount of invested mental effort (AIME) that reflects a vol-
untary allocation of effort, whereby people will invest greater
effort in processing complex stimuli that cannot easily be
accounted for by their existing mental schema. This concept
is closely related to cognitive engagement, which depicts the
motivation to acquire new ideas and skills [7]. A high degree

of concentration is also reminiscent of the concept of flow,
a state of positive and full immersion in an activity [30], [31],
[32] that results from an appropriate balance between the
challenge of a task and the skills of the practitioner. This deep
effortless concentration on the activity one is engaged in is
essential in everyday learning. Opposite to effortful attention,
which typically is measured through objective performance
tests described above, flow is best estimated using subjective
self-reporting. However, the subjective and objective mea-
surements are related [32]. Achieving a flow state is desir-
able as it correlates positively with performance measures
in various pursuits such as writing and sports [33]. The
physiology of flow has been investigated to some degree.
Manzano et al. [34] studied piano players and assessed flow in
three dimensions: challenge-skill balance, concentration, and
autotelic. The authors found a positive correlation between
the flow factors and the following variables: increased hr,
reduced hrv, decreased respiratory depth and increased activ-
ity of the facial muscles. Keller et al. [35] arrived at similar
results by observing test subjects in answering quiz questions
on a computer as well as playing the game of Tetris. The
difficulty of the tasks ranged between ‘boredom’, ‘appro-
priately challenging’ and ‘overload’. Their results indicate
that flow experiences combine subjectively positive expe-
riences resulting from an appropriate skill-demand balance
of the task, as well as physiological elements that reflect
the tension and mental load (higher cortisol levels, lower
hrv). On the other hand, Zheng and Spires [36] found that
game-based learning introduced a flow experience, but it did
not predict learning gains. Mansfield et al. [37] researched
the relationship between flow and a similar concept called
coherence. Coherence is defined physiologically by a smooth
sine-wave hrv pattern and qualitatively as a harmonious state
between emotional, cognitive and physical systems, which
has been linked to improved performance [37]. In their study,
the authors induced flow and coherence through different
types of questionnaires and video games. However, their
finding suggests that flow and coherence are independent of
each other. These results underline the complex nature of
flow; more research is needed before we can fully understand
this concept and how it could be measured and applied to
maximize performance and learning gains.

Lee et al. [38] and Son et al. [27] use video input
(i.e., webcams) in the concentration evaluation. Video
analysing can estimate, e.g., the effects of body movement
on concentration. The benefits of pure video-based concen-
tration estimation include that it is easy to use in the online
evaluation. However, the evaluation ignores several signif-
icant factors that can be detected by biosignals, e.g. skin
temperature and electrodermal signals.

A few studies have combined self-reporting concentra-
tion with measuring biosignals. One is Lokare and Netak’s
study [39], which uses four self-scored concentration lev-
els from various predefined tasks (e.g., reading, listening,
performing calculations, browsing, relaxing) and measures
corresponding EEG signals. The prediction accuracy from
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the best Machine Learning model is, however, rather modest
(71%). In addition, the use of EEG is not possible in current
consumer wearables like smartwatches and rings. A further
limitation is that the data in the study comes from only
one subject. Another example is Basterrech and Krömer’s
study [28], where the subjects distinguished between the
mental states of high concentration and relaxation. However,
there were only four subjects and the activities were specified
to reading and writing a certain text in a laboratory setting.

B. DETECTING AFFECT FROM BEHAVIOURS DURING
LEARNING
In recent years, log files from interactive learning envi-
ronments (ILE) and tutorial systems (ITS) have provided
researchers with useful data on how students behave dur-
ing the learning process. Mavrikis [40], for instance, used
machine-learning algorithms to predict how well students
answer questions in an ILE, based on characteristics such
as effort and confidence. Similarly, Baker et al. [41] used
several machine-learning algorithms, such as decision trees,
to detect students’ affect, including concentration, confu-
sion, frustration and boredom, based on how they inter-
acted with an ITS. ITSs have also proven useful for
detecting personal learning styles in self-regulated study
environments [42], [43].

Most studies based on ILEs and ITSs characterize the
learning process with variables such as the time it took to read
a text and its difficulty. For instance, Mills and D’Mello [44]
used this type of variables, along with students’ answers to
the question of whether their mind was wondering, as inputs
into a supervised machine learning model. This model learnt
to detect lapses in students’ concentration while they were
reading with 20 percentage points above chance. Hershkovitz
and Nachmias [45] on the other hand used a hierarchical
clustering algorithm to track the motivation of online learners
and found that engagement was best predicted by the amount
of time a student spent on a task and the average session
length.

A weakness of the ITS and ILE based studies discussed
above is that they try to infer student emotion from a dis-
crete and pre-defined set of variables and are only applica-
ble in the defined learning environment. To overcome this,
many studies have focused on more holistic, observable,
behavioural patterns such as students’ facial expressions.
Grafsgaard et al. [46], for instance, showed how com-
puter software can analyse students’ level of engagement,
frustration, and how well they learned, from their facial
movements. Similarly, Lewis et al. [47] showed that stu-
dents’ self-reported engagement and frustration after tuto-
rial sessions could be predicted from their facial reactions
in response to different types of questions asked by tutors
during the sessions. In addition to facial expressions, affective
information can also be extracted from students’ postural
changes [8]. As an example, D’Mello and Graesser [18]
collected data from a pressure-sensing chair and fed this into

a machine learning algorithm. The final model was able to
identify boredom, engagement, flow, confusion, frustration
and delight from students’ body movements with accuracy
ranging between 70% and 80%.

A limitation of the above works is that they require spe-
cial equipment. Their applicability to measuring biosignals
throughout students’ daily life is hence limited. Typically,
investigations that attempt to capture students’ affect in an
authentic study environment use the experience sampling
method [30], in which data gathering occurs during the
respondents’ daily activities, for instance, regulated by a
beeper alert [48]. However, this setup only allows the tracking
of students’ self-reported emotions but provides no way to
track any related behaviours, such as physiological signals.
To improve on this limitation, we conjecture that recent
advancements in smartphones and wearables, and particu-
larly their ability to collect biosignals, make them an attrac-
tive alternative in collecting data on students in realistic
environments.

C. BRIDGING THE RESEARCH GAP
A concentration tracking wearable suited for students
requires an understanding of concentration sensing that is
currently lacking. As noted in the literature review above,
most current measurements of performance and cognitive
load from biosignals do not cover the totality of daily studies,
which include many learning modes – attending lectures,
doing group work, reading, writing, doing calculations etc. –
in varying environments like at school, in the library and at
home. In addition, these learning sessions last significantly
longer - 0.5–2 hours – than in the typical attention tests.
Therefore, in daily life studies, we need to measure sustained
concentration, which is long enough to complete a task.
In addition, effortless concentration - flow - is an essential
part of studying as discussed above. As said, flow is better
caught through subjective reporting than through classical
attention tests. Another shortcoming in current approaches,
as well noted above, is that they use special laboratory equip-
ment, like EEG sensors or electrographs [7] for gathering
biosignals. This is impractical in everyday life and not suiting
for our aim of designing a wearable Concentration Tracker.
To bridge this research gap, we selected to investigate through
probing, how the students themselves perceive their con-
centration in various conditions. Their biosignals were at
the same time measured with a multisensor wristband. Con-
trary to controlled laboratory conditions, the subjects were
allowed to perform whatever form of study they wanted.
In addition, we had a more representative set of subjects
with 16 students of both genders than in many studies in
the literature. Our method, based on signals from a wrist-
worn wearable, allowed us to determine from the model what
are the most important biophysical constituents in concen-
tration as perceived by the subjects as well as how these
constituents co-variate with levels of concentration. To our
knowledge, this has not been done before. The results have
an important bearing on enhancing education because they
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enable a real-time concentration sensor to show under which
conditions a student is expected to experience optimal con-
centration. In addition, e-learning systems can be made more
adaptable, by presenting learning content according to the
concentration level of the student.

D. RESEARCH AIMS
Based on bridging the research gap above, we formulate the
following research aims:

1) To accurately predict how the students themselves per-
ceive their concentration in various daily life learning
conditions using biosignals from commonly available
wearables. This aims to show that it is feasible to
integrate concentration tracking to future wearables.

2) Determine which biosignals are most influencing the
prediction accuracy. This result can guide the prioriti-
zation of signals to include in the implementation of the
concentration tracker products.

3) Show that prediction accuracy increases significantly
when non-labelled biosignals outside of study sessions
are utilized. These are gathered in enormous amounts
in the wearables.

4) To provide insights, whether deep, effortless concentra-
tion is present in the learning experience of the subjects.

III. METHOD
16 students (10 male, 6 female) from Haaga-Helia University
of Applied Sciences in Helsinki took part in our experi-
ment over a two-week period. The median age was 24 years
ranging between 21 and 34 years. All participants signed an
agreement whereby they gave their consent for us to collect
personal data during the experiment in accordance with the
Finnish Personal Data Act (1999/523). Over a two-week
period, we collected data on their biosignals as well as their
self-assessed concentration levels from study sessions.

Fig. 1 outlines the overall framework developed to eval-
uate the relationship between students’ biosignals and their
self-assessed concentration levels and to online predict con-
centration based on the input biosignal measurements. It also
provides references to the respective sections of this paper.

A. MEASURING STUDY CONCENTRATION
The students used Android smartphones to manually record
their self-assessed concentration levels during study sessions.
These study sessions took place throughout the students’
normal daily lives. We did not impose any constraints on
when, how or what material the students studied. The only
requirement was that the students were studying towards an
upcoming exam in their typical study environment. In order
to help them do this effectively, we developed the Concen-
tration Sampler Application, which allows one to rate their
concentration level on a scale from 1, very low, to 5, very
high.

The user interface of the Concentration Sampler is shown
in Fig. 2. The student launches the application on the

FIGURE 1. The layout of the technical work performed in our study. The
blue boxes refer to Sections in this paper. The arrows depict the data flow
from the measurements to training data for machine learning, models
and evaluations ending up in concentration predictions. The training data
originates both from the student’s self-assessed concentration levels
(Measuring Study Concentration) and from biosignals from multi-sensor
wristbands (Biophysical Measurements). Trained machine learning
models are used to online predict (Prediction Results) a student’s
concentration (based on the input measurement data) or to evaluate the
accuracy or biosignal/feature importances of the models.

FIGURE 2. The student rates with a smartphone application the felt
concentration on a Likert Scale (1. . . 5), when studying.

smartphone at the beginning of the study session, and selects
from the touch screen one of the 5 concentration levels on a
Likert scale once or several times during the study session.
The session id as well as user- and time-labelled ratings are
then automatically uploaded from the application to our cloud
database as shown in Fig. 5.
Students were asked to use the application to update their

concentration rating whenever they felt it changed during a
study session. Each study session could therefore potentially
consist of several sub-sessions of different concentration lev-
els. Any continuous period with a constant concentration
rating was considered a single observation in our data set.
We did however require all the study sessions to be at least
two minutes long as this eliminated instances in which a stu-
dent had accidentally launched the concentration rating appli-
cation on their phone for a short amount of time. An average
study session, with a continuous concentration rating, lasted
44 minutes. In total, we ended up with concentration ratings
for 130 study sessions. The concentration levels (1 to 5) given
by the users in the sessions were distributed as in Fig 3. The
total number of study sessions and biodata samples are given
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FIGURE 3. The rating of concentration of the 130 sessions of 16 students.
The total number of study sessions and biodata samples are given for
each rating level. Notice that we have biodata for all users including
User 3.

TABLE 1. Biosignal measurement with Empatica E3; acc stands for
acceleration, hr for heart rate, eda for electrodermal activity and
st for skin temperature.

for each rating level. The diagram shows that all the 5 rating
levels are fairly well represented both in the sessions and
the biodata, however with a clear emphasis on levels 2-4.
We can see that the rating data is scarce for several users,
even missing completely for user 3. This scarcity of ground
truth data underlines the need to analyze all users as a group
and avoid user-specific prediction models.

B. MEASURING BIOSIGNALS
We collected four raw biosignals using an Empatica E3 [14]
wristband: 3-axis-acceleration, heart rate (hr), electrodermal
activity (eda), and skin temperature (st) (see Table 1 for more
detail and [14] for full description). The students wore the
wristband on the less dominant hand on the ventral area
of the wrist (Fig. 4). The biosignals for each person were
recorded over the entire experimental period, rather than only
during study sessions. This was done so that all the signals
could later be standardized and modelled with a maximum of
each individual user’s own biodata. The longest continuous
measurement session for one user lasted 36 h 45 minutes,
which fits into the 38 h battery time of E3 [14].

In Fig. 6, the raw median skin conductivity and tempera-
ture biosignals of the 16 students are shown. For eda, most
students show significant signal variations above the median,
whereas the temperature has smaller variations, however with
clear errors towards lower temperatures. Altogether, we col-
lected 76 MB of biodata from the 16 users.

Fig. 5 shows the experimental setup of the entire data-
gathering system. The user has a smartphone for concentra-
tion ratings and a wristband for biosignals measurements.

FIGURE 4. Empatica E3 wristband and biosignals. These photos depict
the multiple sensors of the E3 wristband and a screenshot of raw
biosignals for one student. EDA stands for Electrodermal Activity, HR for
Heart Rate and ST for Skin Temperature. The graph was created by
uploading the raw data to Empatica web portal.

FIGURE 5. We collected students’ self-assessed concentration ratings and
biosignals and transferred the combined raw data to our internal
database for machine learning and data analysis.

Both the ratings and measurement data form the input for
further processing, combining, and storing in the VTT cloud
(which provides raw input data for machine learning). A few
times during the experiment, students attached the wrist-
bands to their PCs to charge them and upload the collected
data to the Empatica Connect cloud server. From there it
was transferred to our research institution, VTT’s, cloud in
a time-stamped format. We built our data gathering sys-
tem around the Open Shift cloud platform from Redhat
and the open-source database Postgres. After data gathering,
we formed 5-second samples of all biosignals by averaging
the measurements within this time window. This resulted in
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FIGURE 6. Skin conductivity (eda) (a) and skin temperature (st)
(b) measurements for the 16 students. Medians, quartiles, and whiskers
are shown and in addition outliers for low temperatures. The numbers of
the 5-second samples are in red. The average measurement time for eda
is 122,5 h and for st 120 h. For skin temperature, User 11 is clipped,
because of clear misreadings. These are raw data before data cleaning
and standardization.

an array, where each row expressed the biosignal values and
ratings at that instant.

C. DATA CLEANING AND PREPARATION
Even if the measurement data contained plenty of outliers,
as can be seen from Fig. 6, we only filtered away obser-
vations, where the skin temperature was measured to over
40 degrees Celsius and where the user clearly is moving, not
lose information. This clipping of high-temperature artifacts
reduced the amount of data by 4.3%. We sought to eliminate
situations, where the student was moving and therefore most
probably not studying, by inspecting the variance acc_var of
the resultant three-axis acceleration vector during and outside
of study sessions. We concluded that the test person is lying
down or sitting when the acc_var is under the threshold of
1.5ms2 (see Fig. 7). This reduced the amount of data by 1.5%.
From the measurement data, we computed a set of addi-

tional features. The raw hr biosignals were used to derive
heart rate variability. It was calculated as a time series of
the Root Mean Square of Successive Normal to Normal
Interval Differences (rmssd) over 30 s sliding windows of hr ,
as proposed by Nussinovitch et al. [49]:

rmssdt =

(
1

N − 2

N∑
n=2

[I (n) − I (n− 1)]2
) 1

2

(1)

where I (n) is the n-th normal-to-normal interval, and N is the
total number of normal-to-normal intervals in the current 30 s
window at time t . To avoid problems caused by missing
hr data, we required that each 30 seconds interval contained

FIGURE 7. Example of acceleration variance (acc_var ) data. This image
shows a snapshot of acceleration variance for one test subject. The
horizontal dotted line depicts the threshold above which the person was
moving too much to be studying. The snapshot used here purposefully
depicts a period during which the person was moving a lot at times, and
stayed still at other times.

at least 10 secondsworth of hr samples, otherwise we skipped
the interval. We calculated the sdnn (Standard Deviation
of Normal-to-Normal Intervals) similarly. We also derived
another feature - Body movement frequency (bm) - as the
centroid position on the frequency axis. A higher bm number
corresponds to higher frequency body movements, or more
precisely, hand movements.

Ft (u) = DCT(acc_var(t)) ; u = 0, 1, . . .N − 1

=

(
2
N

)1
2
N−1∑
i=0

[3(t)cos(
πu
2N

(2i+ 1))]acc_var(t − i)

3(i) =


1

√
2

for i = 0

1 otherwise

bm = k/N for k such that
k−1∑
u=0

Ft (u) = 0.5
N−1∑
u=0

Ft (u) (2)

where acc_var(t) is the variance of the three-dimensional
xyz-acceleration vector calculated at time t , Ft (u) is fre-
quency component u at time t and DCT stands for discrete
cosine transformation. We computed Ft (u) and bm over a
sliding window ofN = 32 samples of 5 seconds each= 160 s.
In addition, we computed a frequency measure eda_freq from
eda similarly as we calculated bm from acc_var .

Previous works have shown that standardized biosignals
offer higher predictive power than non-standardized ones [7].
This makes sense as the relative range and behavior of biosig-
nals is unique to everyone. Each biosignal time seriesX (t)

i,j was
therefore standardized, separately for every student, by sub-
tracting the median and dividing by the median absolute
deviation:

Z (t)
i,j =

X (t)
i,j − median(Xi,j)

MAD(Xi,j)
(3)

(3) is calculated for all biosignals i of each student j. This is
a common robust standardization method and is appropriate
here as we had some very large outliers in the raw data due
to occasional problems with the measuring instrument.
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The process above resulted in a time-series dataset of
within-subject standardized biosignal variables. In particu-
lar, the above standardization was calculated using all the
recorded data, rather than just data from study sessions. This
was done to make the standardization more robust and also
was intuitively appealing as we could then interpret the stan-
dardized biosignals as deviations from the students’ typical
baselines. The final step in our pre-processing was to match
concentration ratings to the biosignals; for each study session,
we had a time series of standardized biosignals.

We consider a session as a continuous measurement period
of biosignals of a user. We sample the biosignals over a
5-second period by using the average value. These data make
up the Baseline set with over 1,4 million rows (see Table 2).
Note that all biosignals nor ratings need not be always avail-
able or recorded during the session. During a session, the user
could rate their concentration several times.

Because of the requirement of a 5-second continuous mea-
surement and misreadings by the wristband, not all rows in
the dataset contain complete measurements of a specific time.

IV. MACHINE LEARNING ALGORITHMS AND DATA
SETS USED
In this study, we used Boosted Regression Trees (BRT)
and Convolutional Neural Network (CNN) methods to clas-
sify students’ study-session concentration based on their
biosignals.

A. BOOSTED REGRESSION TREES
BRT is a popular machine learning model [50], [51], [52],
[53]. The algorithm falls under the category of ensemble
models since the final model is a combination of several indi-
vidual regression trees. Each individual regression tree tries
to classify the dependent variable using binary splits based
on chosen independent variables. The algorithm determines
the split points and variables so that the difference between
real and predicted outcomes is minimized [54]. Using just
a single decision tree is, however, very unstable; a small
change in data could result in a completely new tree. Hence,
rather than just using a single tree, BRT joins several trees
together using boosting. This is a stage-wise process in which
at each step a new tree is added so that the model’s error is
reduced. The very first tree is thus the one that best describes
the entire data set, the second tree is the one that best esti-
mates the residual that remains after fitting the first tree, and
so on [52].

We chose to use BRT as it has several advantages over
traditional regression techniques. First, subsequent splits in
the trees implicitly take account of variable interactions, and
as we are fitting many such trees, the model can handle
complex nonlinearities [54]. Second, since only split points
matter, the model is insensitive to outliers. Third, compared
to other machine learning classifiers such as artificial neural
networks, BRT results are easier to interpret. In the imple-
mentation, we used the XGBoost library [55].

FIGURE 8. CNN network architecture (visualized with the help of [64])
including model layers, and their input and output dimensions.

B. CONVOLUTIONAL NEURAL NETWORKS
A significant property of deep neural networks is the learn-
ing of high-level features in the hidden layers. This reduces
the demand of feature engineering and input data handling.
A convolutional neural network (CNN) [56] is a deep neural
network with one or more convolutional layers. CNNs have
shown very successful results in different kinds of applica-
tions [57], [58], [59], [60], [61], [62]; most commonly, CNNs
are used in image processing where input image data is given
as a 2D grid of pixels.

In our case, the input data is given as time-series data,
which can be represented as a 1D grid of samples at regular
time intervals [58]. For training the CNNmodel, the data were
reshaped into samples, each of which consisted of 24 consec-
utive 5-second time-steps (i.e., twominutes) ofmeasurements
within user sessions.

We used the following architecture for the CNNmodel (see
Fig 8). First, in the network, there is an input layer, which
takes samples with the dimension 24 × 9 (24 time-steps and
9 features) and provides input to the first 1D convolution
layer (having kernel size 6) followed by a 1D pooling layer
(pooling size 6). After this, there is the second 1D convolution
(kernel size 2) and pooling (size 2) layers. Finally, we have
two dense layers, of which the last layer outputs the predic-
tion. The activation function ReLU (Rectified Linear Unit)
was used with the convolution layers and the first dense layer.
To compile the network, we used an RMSprop (Root Mean
Square Propagation) optimizer, which maintains a moving
average of the square of gradients and uses momentum. The
prediction output is then a floating point number (i.e., con-
centration value). In the implementation, we used Tensorflow
with Keras [63].

C. EVALUATION OF THE MODELS
We used 10-fold cross-validation (10-CV) for evaluation. The
data samples were first picked randomly from the various
users in order to evaluate all users equally. The dataset was
then split into 10 equal folds, of which 9 were used to train
themodel and the one remaining fold was used as a test fold to
evaluate howwell themodel was able to predict concentration
level. Each model’s performance was judged as its average
over the 10 test folds.

As a check of how well the models can be generalized to a
totally unseen user, we also applied a measure that we called
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User-based cross-validation (U-CV). Here, we evaluated the
models for each user separately. The models are trained
purely with other users data, i.e. cross-validation with fully
unseen data. For each user, we take the current user’s data
for testing and the data from other users for training. Finally,
the average is computed from the obtained metrics values.
Our method is similar to the leave-one-subject-out (LOSO)
method [65], [66], where each subject in turn is left out for
testing. However, we further restrict the testing set to be fully
complete data (the Ref Set in our case, cf. Table 2) and require
that the testing data in the evaluation is not used for filling in
incomplete training data. These restrictions ensure that data
of the test and training sets are not derived from each other.
This is because we applied several methods to complete the
missing data values.

D. METRICS USED IN THE EVALUATIONS
We used the following metrics to compare and evaluate the
results obtained with different models and data sets:

• RMSE (Root Mean Squared Error).
• MAE (Mean Absolute Error).
• NMAE% (Normalized Mean Absolute Error %).
• Accuracy.

In computing the above metrics, the self-assessed rat-
ings (=targets) and predicted concentration values are
floating-point numbers in the range 1-5. NMAE% gives an
error estimate complementing the MAE metric; it is defined
as MAE divided by the average target value, in percentage.
If our task is cast not as a regression problem, but as a
classification problem, accuracy is the ratio of the correct
and the total number of predictions. Since the predicted
values are floating-point numbers, we interpret a predicted
value to be correct if it differs from the target less than 0.5.
Figure 2 shows that a ‘‘naive’’ classification policy of always
predicting concentration level 3 gives the baseline accuracy
of 0.37 if based on the number of samples with ratings. The
random choice accuracy for the baseline set is 0.24. However,
NMAE is a more informative measure than accuracy, because
the concentration prediction of, say 3.2, tells more than its
rounding to class 3.

E. DATA SETS
The preprocessed original, so-called, baseline data set (here-
afterBaseline set) contained the columns timestamp, user_id ,
session_id , acc_var , hr , rmssd , sdnn, st , eda, eda_freq, bm,
location, and the target ground truth column concentration.
There were several issues to be considered with the Base-

line set:

• Plenty of biosignal measurement samples (15 - 197
Ksamples per user), but massively missing bio-signal
data values in the samples; only 0.27% of the samples
were complete with all biodata and labels (=concentra-
tion ratings) present.

• Only 4.8% of the complete biosignal samples had user
concentration ratings (=labelled data).

• Some users had much more biosignal measurement data
than others, and distributions of rating values (1-5) were
heavily unbalanced as seen in Fig. 3.

• Data originated from quite a low number of test users
(16 users).

In order to cope with the above issues, we created several
data sets. First, we constructed a reference data set (‘‘Ref set’’)
from the Baseline set by filtering out the rows containing
empty values. In addition, we built a larger Labelled set
holding all rows that have concentration ratings ie. labels, but
that might have missing biosignal values.
Then, we created additional data sets by filling and aug-

menting incomplete data samples and ratings within the
Labelled and Baseline sets. We also applied resampling to
create more balanced data sets. All these sets were used in
10-CV evaluations, and in training the models for U-CV
validation. In U-CV validation Ref set was used as a basis for
testing data. Note that all sets can be automatically generated
from the Baseline set.

1) FILLING MISSING VALUES
We used two alternative methods to fill the missing data
values in the Labelled set: a) interpolation and b) machine-
learning based augmentations.
a) By using linear interpolation the missing (= NaN val-

ued) biosignals in the data set are filled column by column
within user session time series data. Further, NaN values from
session start and end are assigned with the nearest non-NaN
value. The resulting data set: ‘‘Filled set 1’’.
b) By using the trained BRT model to fill missing values in

two steps. First, we filled missing hr values as a function of
acc_var , st , and eda. The model is trained by the rows includ-
ing complete acc_var , st , eda and hr values. Then, missing
hr values are predicted by the model. Second, we filled the
missing rmssd , sdnn and bm values each separately as a func-
tion of acc_var , st , eda and hr . Eachmodel hyper-parameters
were optimized using grid search and 10-CV. The resulting
data set: ‘‘Filled set 2’’.

In addition, the missing location values were marked as
‘‘other’’ (the location value was one of the following: ‘‘at
home’’, ‘‘in school’’, ‘‘other’’).

2) PSEUDO-LABELING DATA WITH SEMI-SUPERVISED
LEARNING
Semi-supervised learning [67], [68], [69], [70] utilizes the
large amount of unlabeled data to improve the model training
that otherwise is limited by the small amount of labelled data.
Since our Baseline set contained only 4.8% labelled data
(of which only 0.27% were complete rows), we used semi-
supervised learning to complement concentration values.

We adapted pseudo-labelling [62], [68], [71] considering
one user’s data at a time. First, we trained a model using
Ref set. In this phase, we used the hyper-parameters of the
BRTmodels [72] for 10-CV. Then, we used the created model
to label the unlabelled, but otherwise complete measurement
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TABLE 2. Data sets.

data samples of the Baseline set. In addition, we generated
labelled training sets for each user for U-CV evaluation to
ensure that labelling was done purely with the other users’
data. The resulting data: ‘‘Pseudo-Labelled set’’.

3) BALANCING DATA SETS BUILDING ON THE LABELED
DATA
When balancing data sets [73], we took the biosignal data and
concentration ratings of each user equally into account. There
are several alternative ways to handle unbalanced datasets
with re-sampling. You can make a dataset balanced by
either removing samples from over-presented classes (under-
sampling) or adding more samples to under-represented
classes (over-sampling).

We applied over-sampling to take each user’s data equally
into account in training the model by using Ref set as the
basis and the Pseudo-Labelled and Filled sets as auxiliary
sets in combining the result into the balanced sets. We used
30 minutes of measurement data of each user. The balancing
proceeded as follows: The aim is to keep user sessions data
together and, first, pick only complete data samples from
Ref set. If not available, then use a) Pseudo-Labelled or b)
Filled set 1 to provide additional samples to the resulting set.
The resulting data sets: a) ‘‘Resampled set 1’’ b) ‘‘Resampled
set 2’’, respectively.

In addition, we applied sample weighting on the data sets:
pseudo-labelled sample rows and filled sample rows were
indicated with ‘‘labelled’’ and ‘‘filled’’ flags. This informa-
tion was used in the training phase to give less weight to
the labelled and filled samples than to the original ground
truth data (Ref set). When training the BRT or CNN mod-
els, we used the sample weight 0.5 for weighting the loss
function.

Table 2 summarizes the data sets size, row counts per user,
the number of user sessions and concentration rating mean
and standard deviation values.

V. RESULTS
We trained the models and predicted the concentrations by
combining input data over 2 minutes (i.e. 24 time-steps)
sample periods. The prediction is fast; it takes only 1 ms for
BRT and 37 ms for CNN on a standard quad-core laptop with
a CPU clock rate of 1.90 GHz for the sample.

Table 3 reports the validation results for the best-performing
BRT and CNN models by using the 10-CV evaluations.
As noted above in Section IV-D, the baseline accuracy to
compare with is the random accuracy 0.24 and ‘‘naive’’
accuracy 0.37.

The models were optimized separately for 10-CV and
U-CV with different hyper-parameters using grid search. For
the BRT model, the parameters ‘‘number of iterations’’ (i.e.,
boosting stages) and ‘‘maximum depth’’ were set to values
1000 and 6 in 10-CV, and 100 and 1 in U-CV evaluations,
respectively, while the learning rate was set to 0.1. For CNN,
we used the number of epochs 100 and the batch size 64 (i.e.,
the number of samples per iteration) in the evaluations. In all
optimizations, the Ref set was used.
Table 3 shows very good accuracies using the standard

10-fold Cross Validation (10-CV) measure. BRT achieves an
almost perfect score (NMAE=1.7 ± 0.014%) for the Pseudo-
Labelled set. This corresponds to the following confusion
matrix giving the accuracy of 0.999:( 6796 32 0 0 0

9 38180 15 0 0
0 67 182771 4 0
0 0 16 27416 0
0 0 0 4 14711

)
Thus, semi-supervised learning decreased the estimation
error from 3.7 to 1.7%. CNN performs here clearly worse
with an NMAE=9.9%, (accuracy 0.83) using Pseudo-
Labelled set. As a comparison, we tried BRT on a dataset,
where the concentration ratings were binarised into only two
classes (Good/No Good). However, the 10-CV accuracy was
then clearly lower: 0.8, with a baseline ‘‘naive’’ accuracy
of 0.66.

User-based cross-validation (U-CV) in Table 4 shows,
as expected, that the models are highly user-dependent and
therefore not adaptable on users of which there are no training
data. It shows further, that CNN outperforms BRT for this
totally unseen dataset. There, CNN has an NMAE 30.7%
(with standard deviation ± 38.5%) for Resampled set 1,
and corresponds to the following confusion matrix and an
accuracy of 0.47:( 0 88 76 1 0

3 24 28 0 0
17 83 211 24 0
0 5 22 14 4
1 0 9 3 72

)
BRT has NMAE of 35,7% for the Ref set and corresponding
accuracy 0.26 (±0.28). Even if these accuracies are low with
a huge variation, it must be noted, that they refer to the
case with a new user that the system has not seen before.
An approach to handle the high user dependency of the mod-
els is to cluster the training data into several clusters based on
similarity [74], [75]. We tested clustering so that we clustered
the 16 users data into three clusters, and aimed to find the
optimal combination of users data by U-CV evaluation. Then,
we evaluated new users data with the model trained with best-
fitted cluster. In this test, the clustering was shown to decrease
the NMAE error using the BRT model about 0.3%, whereas
the CNN results were not improved. One reason for the small
improvement is likely to be, that BRT by itself efficiently
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TABLE 3. Evaluation of BRT and CNN models and various datasets with the 10-CV method. Ref set is used in hyperparameter optimizations.

TABLE 4. U-CV validation of BRT and CNN models. Ref set is used both in hyperparameter optimization and - opposite to as in 10 CV - also as a test set.

FIGURE 9. Relative feature importance of the different biosignals in the
best performing BRT models. The model optimized for 10-CV is shown in
blue, and for U-CV evaluations in orange bars.

separates the users from each other and, thus, implicitly builds
user-specific sub-models. Therefore, we decided not to do
further tests with clustering.

We also assessed the relative importance of the different
biosignal variables in the final models. For this, we used the
permutation ‘‘feature importance’’ [76] in the Scikit-learn
library [77]. Feature importance is defined as the decrease in
a model score when values of a single feature are randomly
shuffled [76], [77]. Hence, it breaks the relationship between
the feature and the target; the score decrease indicates how
much the model depends on the feature. Fig. 9 shows feature
importance of st, eda, rmssd, sdnn, location, acc_var , bm,

eda_freq and hr using twoBRTmodels, the hyper-parameters
of which were optimized for 10-CV and U-CV, and the
models were trained with Ref set. For these models, the
relative importance st, eda, rmssd and sdnn were (51.6%,
35.3%), (31.2%, 48.3%), (7.7%, 3.2%), and (3.9%, 8.1%),
respectively. location, acc_var , bm, eda_freq and hr made up
the small remainder.When considering a practical implemen-
tation of a concentration measuring system, the importance
of features derived in this work helps to decide if it is worth
including certain sensors in the measuring device. It might be
motivated to leave out features having only a minor effect on
the prediction accuracy. Likewise, you could train alternative
models based on what measurement data are available, but at
least include the most important features.

In order to investigate the exact shape of the relation-
ship between the different biosignals and the concentration
variable, we calculated variable partial dependence plots
(PDP) [51]. A PDP depicts how changes in the value of a
biosignal contribute to the target concentration value, whilst
holding all the other biosignals constant at their mean values.
PDPs for the different biosignals are displayed in Fig. 10
using the best performing BRT model, according to the
10-CV evaluation usingRef set. Starting from themost impor-
tant features, skin temperature st clearly rises with concentra-
tion indicating that higher concentration, contrary to stress,
is associated with a more relaxed state. Skin conductivity eda
behavesmuch in the sameway as st with higher concentration
going together with lower eda (=more relaxation), even if
there is a dip in the concentration at 50% eda. Interestingly,
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FIGURE 10. Partial dependence plots of the different biosignals using
BRT model. The ticks on the X-axis represent data deciles (data shown
between percentiles [0.2,0.8]). The Y-axis shows the expected relative
contribution on the predicted concentration value.

rmssd and slightly sdnn react contrary to st and eda showing
lower values (=less relaxation) at higher concentration. Thus,
it seems that heart rate variation measures different aspects
of concentration than st and eda, but as it is contributing
much less to the prediction, this does not change the overall
pattern of higher concentration implying higher relaxation.
For the least important features, location values show that
at home (middle of the x-axis) the concentration is higher
than at school (x-axis left) or other places (x-axis right). bm
rises clearly with concentration, which can be interpreted so
that as studying often means writing on a keyboard, higher
concentration means more intense typing. acc_var , eda_freq
and hr do not show any clear positive or negative correlation
with the concentration.

A. CRITICAL ANALYSIS AND DISCUSSION
In comparison to other research, the most relevant stick-
yards are the results in [39] and [28], which are reviewed in
Section II of this paper. Reference [39] achieved an accu-
racy of 71% in predicting the concentration with their ML
algorithm using four self-scored concentration levels (low,
medium-low, medium-high, and high), whereas [28] reached
between 71%-83% accuracy in determining if the four sub-
jects are concentrated or not. Both based their predictions of
concentration on EEG signals, which we did not use in our
work. As mentioned in Section II, using a pressure-sensing
chair allowed to identify mental states with accuracies also
between 70% and 80% [18]. Tervonen et al. [66] reviewed
14 publications in detecting mental state, stress and emotions
and the accuracies varied between 51% and 97%, the average
being 80%. They reached themselves 67% accuracy. Thus,

our best models (cf. Table 3) achieved better accuracy than
any of these. However, the accuracies are not directly com-
parable in the different studies above since the training data,
classification (concentration levels), and evaluations vary
a lot.

In addition to high prediction accuracies, our results show
which biosignals are most influential in predicting concen-
tration during learning sessions. This allows the system to
be further adapted on a case-by-case basis to utilize the most
significant biosignal measurements available. We used both
10-CV and U-CV optimized models to predict the biosignal
feature importances. Importantly, bothmethods show that eda
and skin temperature st are the most important biosignals,
and in general the feature importances are rather similar in
both models (cf. Fig. 9). Furthermore, since the accuracy of
the 10-CV optimized model is high, the feature importance
prediction based on this model is also highly reliable.

A third advantage is that the trained models can be used for
fast online prediction of the user’s concentration. The length
of the sample period can be adjusted according to the actual
study session. With a minimum of 2 minutes sample period
of recorded biosignal data, the prediction completes on a
standard laptop in 1-37 ms in our example case, cf. Section V.

As noted above (cf. Section II-C ‘‘Bridging the research
gap’’), most previous research does not cover daily studies,
which have many learning modes and significantly longer
learning sessions than in the typical attention tests. Another
shortcoming in current approaches to gathering biosignals,
as well noted above, is that they use special laboratory equip-
ment (like EEG sensors or electrographs) that are impractical
in everyday life.We approached these shortcomings by inves-
tigating the relationship between the students’ biosignals and
self-assessed concentration levels within complete study ses-
sions. Using 10-CV evaluation, our best BRTmodel predicted
students’ concentration level with only 1.7% NMAE error.
The results show that the method can accurately predict
how the students themselves perceive their concentration in
various daily life learning conditions using commonly avail-
able wearables. That is the major strength of this paper and
distinguishes it from comparable work in the literature as
elaborated below.

There are several limitations. Although we had a large
baseline data set, with plenty of biosignal measurements
(over 1 million sample rows), there were lots of incomplete
data with missing biosignal values, non-labelled samples and
unbalanced distributions (‘‘Data sets’’ in Section IV). Other
limitations included a fairly small number of trial users (16).
However, we managed to enhance the results significantly
by semi-supervised learning and balancing and preprocessing
the data sets for machine learning. Using U-CV evaluation,
the prediction results were much weaker and the best CNN
model achieved a prediction NMAE error of 30.7%. The
results imply that the users generated biosignals highly indi-
vidually. Thus, models are not well transferable from one
user to another without rooting them in user-specific data.
It remains a future work to elaborate if 10-CV and U-CV
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results would converge if more training data from more users
are available. When scaling up this kind of system to mass
use, there are currently evident limitations that mostly relate
to the use of wearables in general:

1) Wearable devices still have challenges in the con-
venience of use 24 hours a day, especially for
non-technical people. One such bottleneck is still a
relatively short battery duration. However, the fast tech-
nical development and the current wide and growing
adoption of smartwatches and sports trackers continu-
ously improve usability.

2) Wearables are heterogeneous and do not always mea-
sure the biosignals accurately enough. E.g., too loose
contact between the sensors and the skin may introduce
noise or even lead to missing data, as seen in this study.
Movement and other physical conditions of the user
may impact the accuracy. Partially, this can be over-
come by signal filtering as exemplified in this study.
Online user alerts and guidance are also needed.

3) There is a constant need for expanding the set of biosig-
nals measured to improve the descriptive power. For
measuring concentration, EEG is expected to improve
prediction accuracy, but there is currently no solution
available that is suitable for mass-adoption.

4) There is a risk that the externally stored data from the
wearables are leaked. Therefore, privacy has to be cared
for. Even if we do not address this limitation in this
paper, it has to be handled professionally in a commer-
cial system. The same goes for the rights of the user to
his/her own biodata, where the protocols proposed e.g.
by the MyData movement [78] are relevant. E.g. the
school authorities should typically have access only to
the anonymized student data.

The impact of this work in real-life scenarios are signifi-
cant. A Concentration Tracker wearable based on the meth-
ods and model laid out in this paper helps the student to
develop the ability to concentrate and thereby improve the
learning outcomes. As one example, the student is able to
more consciously select the places and times when he/she
is most concentrated based on feedback from the Concen-
tration Tracker. The organisations providing education can
likewise benefit, by getting information about which curricu-
lum, teaching methods, environments, time schedules and
other factors have a positive impact on the concentration
of the students. Naturally, the privacy of the student data
must be cared for. Finally, education research will gain as
they get valuable insight into the mechanisms affecting study
concentration.

VI. CONCLUSION
We examined through probing, how the students themselves
perceive their concentration in various conditions. Their
biosignals were at the same time measured with a multi-
sensor wristband. Contrary to controlled laboratory condi-
tions in literature, the subjects were allowed to perform

whatever form of study they wanted. In addition, we had a
more representative set of subjects with 16 students of both
genders than in many studies in the literature. Our method
predicted perceived concentration very accurately based on
signals from a wrist-worn wearable. It allowed us to deter-
mine from the model what are the most important biophysical
constituents in concentration as perceived by the subjects
as well as how these constituents co-variate with levels of
concentration. To our knowledge, this has not been done
before. The results have an important bearing on enhancing
education, because they enable a novel real-time concen-
tration sensor showing under which conditions a student is
expected to experience optimal concentration.

We used the collected data to train BRT and CNN models
to predict how well a student had concentrated. We applied
semi-supervised learning to complement the largely missing
concentration and biosignal values. The best model reached a
10-CV NMAE prediction error of only 1.7 ± 0.016%, where
semi-supervised learning more than halved the error. We also
evaluated the models with our U-CV method, where the
testing data comes from a user contributing with no training
data. This depicts the case, where the system handles a new
user. The prediction error for the best model was then much
bigger - NMAE was 31 ± 38%, which shows the high user
dependency of our predictions. When the test set contains
even a minor part of data from a user that has contributed
to the training set, our best models were able to utilize the
user-dependent data almost perfectly, but for totally unseen
user data, the models failed to show practical value. Future
studies could clarify, how this fruitful mix of general and
user-specific data will change with a much higher number of
users than in this study.

The results for known users are promising, considering
that the study was conducted in an entirely realistic daily life
setting, without any constraints on where, how, and what the
students studied. The results were achieved using a state-of-
the-art wristband rather than more accurate laboratory equip-
ment that are impractical to use in daily life. As wearable
technology improves further, it will be possible to reach sim-
ilar results with consumer-grade devices. Once the prediction
models are trained on the data from the various users, the
execution of the prediction is fast and can be performed in
real-time either in the device or on the server/cloud side. One
application is to utilize a wristband to regulate the type and
difficulty of material given to a student. It would also be
intriguing to examine how employees’ concentration levels
correlate with biosignals in an office setting.

Our results showed that for the examined subjects mental
concentration behaves predominantly contrary to cognitive
stress, i.e., good concentration goes together with a relaxed
state of mind. Skin conductivity went down when students’
concentration levels raised, while skin temperature went up
together with the concentration levels. Even if heart rate
variability dropped with better concentration, i.e., behaved
similarly as in stressful situations, this did not change
the overall pattern of higher concentration implying higher
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relaxation. This is because skin temperature and conductivity
affect the concentration predictionsmuchmore than heart rate
variability.

Hence, students’ concentration levels in this study are not
fully described by cognitive stress, which has been the focus
of most previous research. This likely reflects that good
concentration can also arise during non-stressful tasks such
as reading. Furthermore, it is possible that students gave
themselves better concentration ratings whenever they felt
happy after a study session. If this were to be the case, it could
mean that factors such as the difficulty of the material studied
played a major role. Better self-assessed concentration might
hence be much closer to the affective concept of flow than
to cognitive stress. In future work, we need to improve our
understanding of how students’ self-assessed concentration
links to their school performance.

Naturally, the students’ biosignals were also affected by
factors unrelated to studying, such as what was happening
in their surroundings, which made it harder to extract clean
patterns.

A. FUTURE DIRECTIONS
One major future direction is to implement the method into
a wearable that works online in real-time or near-to-realtime
using local and cloud back-end computation. This Concen-
tration Tracker would display to the user the current concen-
tration value preferably in a graphical form in the same way
that current smartwatches display your stress level. In addi-
tion, you could get the variation over the day, week a.s.o.
on the wearable or mobile phone or other terminal connected
to the cloud. To be viable, the application software should
be downloadable on commercial wearables using their de-
facto platforms. It would also be interesting to investigate
other applications than learning, for example, alertness while
driving cars or operating other technical systems.
Semisupervised learning has already shown promising

results in this work. We aim to further research semisuper-
vised learning methods with more training data. It would
also be essential to evaluate the effects of missing biosig-
nal data on the accuracy of the overall results, based on
partial data, where only some of the required biosignals are
present. Another methodological development is to use trans-
fer learning leveraging pre-trained psycho-physical models
and datasets of emotions like stress. This is motivated because
emotions have many similarities with mental concentration.
EEG registration would increase the accuracy of concen-

tration estimation. As pointed out several times in this work,
EEG cannot bemeasured with current commercial wearables.
However, recent research has shown that it is possible to
construct EEG wearables, e.g. attached to the ear [79]. When
these devices are available, they would complete the sensor
set used in this work.

Finally, this technology could be developed to offer
insights to the student and others about the importance of
lifestyle for achieving good concentration. In particular, the

impact of sleep quality, exercise and nutrition is central.
As sleep quality and amount of exercise are straightforward to
measure from the wearable, the influence of healthy choices
on good concentrations can clearly be illustrated from the
gathered data.

APPENDIX A SUPPLEMENTARY DATA
The Baseline dataset can be accessed from IEEE Dataport
doi: https://dx.doi.org/10.21227/as25-6r07.
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