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Abstract
Ectoenzymes are a family of cell surfacemolecules whose catalytic domain lies in the extracellular region. A subset of this

family, nucleotide-metabolizing ectoenzymes, are key components in the regulation of the extracellular balance between

nucleotides (e.g. NADC or ATP) and nucleosides (e.g. adenosine). Their substrates and products are signalling

molecules that act by binding to specific receptors, triggering signals that regulate a variety of functions, ranging from the

migration of immune cells, to synaptic transmission in the brain, to hormone/receptor interactions in the glands. Almost

two decades of accumulated data indicate that these regulatory processes significantly affect the endocrine system, a

tightly controlled information signal complex with clear evidence of fine regulation. Functional models discussed in this

review include insulin secretion, bone modelling and the association between hormones and behaviour. The emerging

pattern is one of a system operating as a scale-free network that hinges around hubs of key molecules, such as NADC or

ATP. The underlying natural link between nucleotides, ectoenzymes and the endocrine system is far from being clearly

demonstrated. However, the body of evidence supporting the existence of such connection is growing exponentially. This

review will try to read the available evidence in a hypothesis-oriented perspective, starting from the description of NADC

and of ecto- and endoenzymes involved in its metabolism.
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Introduction

Nucleotides are the building blocks of RNA and DNA.
Within the cell, they play a central role in metabolism by
serving as sources of chemical energy and by function-
ing as cofactors of enzymatic reactions. A relatively
recent observation is that they are also deeply involved
in cell signalling.

Nucleotides can be released or leaked into the
extracellular milieu by virtually every cell in the body.
Once outside the cell, they either serve as signalling
molecules by binding specific type 2 purinergic
receptors (P2X or P2Y) or are degraded to the related
nucleoside. Nucleosides, mainly adenosine, can then
bind different types of P1 purinergic receptors
(Abbracchio & Burnstock 1994, Burnstock & Knight
2004). Nucleotide/nucleoside conversion is performed
by special molecules located on the outer surface of the
cell membrane and characterized by the presence of an
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enzymatic domain in the extracellular region. For this
reason, they are called ectoenzymes (Goding & Howard
1998). Recent evidence indicates that the different
ectoenzymes work in concert to dismantle extracellular
nucleotides. The balance between nucleotides and
nucleosides is conditional upon the expression and
function of such enzymes.

Nucleotide-metabolizing ectoenzymes may thus rep-
resent a scavenging system for recycling nucleotides
released from the cells in response to different events or
stresses. This schematic view is augmented by strong
evidence indicating that i) nucleotides and nucleosides
can act on their own as signalling molecules, and
that ii) the network of extracellular nucleotides/
nucleosides, enzymes involved in their metabolism
and purinergic receptors serves multiple functions in
a balanced and finely tuned fashion (North 2002, Salmi
& Jalkanen 2005, Malavasi et al. 2008, Burnstock 2009).
The biological relevance of the ectoenzyme connection
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is also sustained by the fact that most ectoenzymes share
common evolutionary steps: indeed, their ancestors
were soluble enzymes, which later reached the
surface cell membrane. Therefore, they acquired new
abilities and became adhesion molecules/receptors
with role(s) in the social life of a cell (Deaglio &
Malavasi 2006; Fig. 1).

It is tempting to speculate that this complex
network represents a universal model selected during
phylogeny with the final outcome of finely tuning
different extracellular signals (Burnstock & Verkhratsky
2009). These signals could be involved in a variety of
functions from migration of immune cells (Trautmann
2009) to synaptic transmission in the brain (Burnstock
2008), or to hormone/receptor interactions in the
glands (Petit et al. 2009, Stojilkovic 2009).

Like the nervous and the immune systems, the
endocrine system is an information signal complex,
tightly controlled at various levels and with clear
evidence of fine regulation. The hypothesis of a
functional link among nucleotides ubiquitously present
in biological fluids in enzymatic structures involved in
their extracellular metabolism and in the endocrine
system may appear difficult to demonstrate. A reason-
able assumption is that the endocrine system makes use
of compounds and signals that have been tested and
conserved over millions of years to sustain redox
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reactions and generate energy. The scenario is thus
quite simple and fits the requisites for being an ancient
and delicately calibrated design of nature.

Nature’s underlying design-linking nucleotides,
ectoenzymes and endocrine system are far from being
clearly demonstrated. However, the body of evidence
supporting the existence of such connection is growing
exponentially. This review will try to read the available
evidence in a hypothesis-oriented perspective, starting
from the description of NADC and of ecto- and
endoenzymes involved in its metabolism.
NADC

NADC, identified a century ago as a cofactor and
coenzyme, has attracted attention for its versatile
function in relation to energy metabolism. The
biosynthesis of NADC occurs through a de novo pathway
starting from tryptophan, and from three distinct
salvage pathways originating from nicotinic acid,
nicotinamide and nicotinamide riboside (Grahnert
et al. 2010, Houtkooper et al. 2010).

Extracellular levels of NADC result from the balance
between active release/secretion and the chained
actions of NADC-consuming proteins operating outside
the cells (i.e. CD38 and ADP-ribosyl transferase (ART)).
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NADC also acts outside the cell, where the molecule
can signal directly by binding specific purinergic
receptors (Moreschi et al. 2006) or – indirectly – by
serving as the substrate for selected enzymes. For
these reasons, NADC is considered a signalling
molecule that guides a series of events linked to cell
life and death.
NADC-consuming enzymes

NADC-consuming ectoenzymes are primarily rep-
resented by the CD38/CD157 system (Malavasi et al.
2008) and by the mono-ARTs (Koch-Nolte et al. 2008).
On the contrary, poly-ADP-ribose-polymerases (PARPs;
Kim et al. 2005) and sirtuins (NADC-dependent protein
deacetylases; Michan & Sinclair 2007) operate within
the cell.
CD38/CD157 gene family

The CD38 gene codes for a type II transmembrane
molecule with a widespread cell distribution. The other
member of the family is CD157, which differs in
structure and tissue distribution (Malavasi et al. 2008).

The identification of a sequence similarity between
the human lymphocyte antigen CD38 (and later
CD157) and the Aplysia ADP-ribosyl cyclase (States
et al. 1992) was the starting point of ongoing inves-
tigations into their enzymatic properties and their role
in human physiology and pathology. The catabolism of
NADC and NAD(P) mediated by CD38 leads to the
generation of potent intracellular Ca2C-mobilizing
compounds, including cADPR, NAADP and ADP-ribose
(Lee 2004). In addition to binding the TRPM2
membrane Ca2C channels (Perraud et al. 2001),
ADPR, the main product of the reaction, can be
covalently attached to proteins by ARTs. This post-
translational modification of target proteins can have
dramatic effects on their functions. The relevance of
these enzymatic products and pathways was tested
initially in the immune system (Howard et al. 1993,
Malavasi et al. 1994), and then extended to different
organs and tissues, e.g. pancreas, uterus, bronchi and
kidney. Several conceptual and technical issues remain
unsolved. The most intriguing novel observation
concerns the relation(s) between the molecule’s
enzymatic and receptorial functions. Evolutionary
studies confirm that the enzymatic function precedes
the receptorial one and that the dual behaviour of the
molecule is likely a reflection of environmental
pressure (Deaglio & Malavasi 2006). If one accepts
that evolution has played such a role in CD38, then the
results obtained in animal models can be transferred to
the human system only with specific caveats. Another
intrinsic limit of the evidence collected to date is that
www.endocrinology-journals.org
the receptorial functions are limited to surface CD38,
which in turn is prevalently found in immune cells. New
clues have been provided by the recent demonstration
that the molecule is also present in exosomes
(Zumaquero et al. 2010).
Mono-ADP-ribosyl transferases

The process of ADP-ribosylation was originally ident-
ified by studying the pathogenic effects of bacterial
toxins (including diphtheria, cholera, pertussis and
clostridial toxins). Once inside the cell, these toxins act
by modifying specific host cell proteins, such as small
GTPases and monomeric actin (Koch-Nolte et al. 2008).

Mono-ADP-ribosylation of proteins is a covalent post-
translational modification, and causes the transfer of a
single ADP-ribose moiety of NADC to a specific amino
acid residue of an acceptor protein, with the creation of
an N- or S-glycosidic linkage and the release of
nicotinamide. The results are generally paralleled by
functional modifications of the acceptor protein
(Koch-Nolte et al. 2008). The most intriguing action
of ART is ADP-ribosylation of the P2X7 purinergic
receptor. P2X7 activation by micromolar concentrations
of ATP induces T-cell death. The same effects are
triggered by NADC at micromolar concentrations
through the ADP-ribosylation of P2X7, known as
NADC-induced cell death. These events contribute to
a dynamic regulation of T-cell homoeostasis (Seman
et al. 2003).

Although the ecto-ARTs are the only well-
characterized family, mono-ADP-ribosylation has also
been demonstrated for intracellular proteins involved
in cell signalling and metabolism. These endo-ARTs
ADP-ribosylate a set of intracellular proteins, which
includes the endoplasmic reticulum-resident chaper-
one GRP78/BiP, the b-subunit of heterotrimeric
G-proteins and the mitochondrial glutamate dehydro-
genase (reviewed in Grahnert et al. (2010)).
Poly-ADP-ribose polymerases

Poly-ADP-ribosylation is the covalent addition of
multiple ADP-ribose groups to proteins. This post-
translational modification plays a role in a wide range of
biological processes, including DNA repair, transcrip-
tional regulation, trafficking of endosomal vesicles,
apoptosis and necrosis (Rouleau et al. 2010).

Poly-ADP-ribosylation is catalysed by the family of
PARPs, which in humans includes at least 18 different
genes. The most widely studied member is PARP1, a
116 kDa protein. Further members of the family are
PARP5 (tankyrase-1) and PARP6 (tankyrase-2). Their
enzymatic activities regulate telomere length.
Journal of Molecular Endocrinology (2010) 45, 183–191
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Genes similar to PARPs have also been identified in
low eukaryotes, eubacteria and archaebacteria
(reviewed in Grahnert et al. (2010)).
Sirtuins

Sirtuins encompass a family of NADC-dependent
deacetylases, which operate prevalently in the nucleus.
This reaction leads to the transfer of acetyl groups from
lysine residues of the target protein to the ADPR moiety
of NADC, generating nicotinamide and O-acetyl-ADP-
ribose. The latter compound induces the activation of
the cytoplasmic domain of the TRPM2 channel, a non-
selective cation channel whose prolonged activation
leads to cell death (Perraud et al. 2001).

At least, seven sirtuins are described in mammalian
cells. SIRT1, the most widely studied, deacetylates
different histone and non-histone proteins, among
which FOXO, p53 and NF-kB are some of them.
Deacetylation of the target proteins modulates their
function, influencing apoptosis, senescence and tumour
transformation. A common trait shared with the
other ecto- and endoenzymes consuming NADC is that
the sirtuins are a phylogenetically old family, conserved
from archaea to humans (Haigis & Sinclair 2010).
An integrated view: how the network
operates in the endocrine system

The potential link between NADC-consuming ectoen-
zymes and the endocrine system has been tested in
selected models.
Pancreas

CD38

The effects induced by signals set off by NADC were
initially addressed by H Okamoto (Osaka, Japan), who
proposed a model of insulin release and pancreaticb-cell
damage based on a complex interplay between NADC,
PARP, CD38 and cADPR (Okamoto & Takasawa 2002).
Mice overexpressing CD38 showed higher insulin levels
than controls in glucose-tolerance tests, suggesting
enhanced release (Kato et al. 1995). The inference was
that Ca2C release from intracellular cADPR-sensitive
stores and Ca2C influx from extracellular sources play
important roles in insulin secretion (Kato et al. 1995).
Later experiments performed in CD38 knockout (KO)
mice showed impaired glucose tolerance, with lower
serum insulin levels than wild-type controls. The
pathological phenotype was rescued by b-cell-specific
expression of CD38 cDNA (Kato et al. 1999).

Further interest was sparked by the observation that
CD38 KO islets are significantly more susceptible to
Journal of Molecular Endocrinology (2010) 45, 183–191
apoptosis than islets isolated from littermate controls,
suggesting a role in novel anti-apoptotic signalling
pathways (Johnson et al. 2006).

The observations inferred from animal models were
assessed in spontaneous autoimmune type 1 diabetes in
the NOD strain. The onset of diabetes is significantly
anticipated in the CD38 KO NOD mice due to an
impairment of the regulatory T-cell compartment and
the invariant NKT cells. The molecular mechanisms
remain partially unknown, although an interplay
between CD38 and ART2 has been hypothesized
(Chen et al. 2006a,b).
SIRT1

SIRT1 regulates glucose or lipid metabolism through its
deacetylase activity on over 20 substrates and is involved
– directly or indirectly – in insulin signalling. For these
reasons, it regulates lifespan under calorie restriction
(Cohen et al. 2004). SIRT1 stimulates glucose-depend-
ent insulin secretion from pancreatic b-cells with a
direct action on insulin signalling pathways. SIRT1 also
influences adiponectin secretion, inflammatory
responses and gluconeogenesis, as well as the levels of
reactive oxygen species, all of which contribute to the
development of insulin resistance. Indirect confirm-
ation comes from the observation that overexpression
of SIRT1 (as well as several SIRT1 activators) has
beneficial effects on glucose homoeostasis and insulin
sensitivity in obese mouse models (Liang et al. 2009).
PARP

The role of these enzymes in diabetes has not been fully
addressed as yet.
Brain and behaviour

CD38

A role for the CD38/cADPR system in regulating
hormone secretions was recently proposed by H
Higashida (Kanazawa, Japan). Careful observation of
adult male and female CD38 KO mice led to the
identification of marked defects in maternal nurturing
and social behaviour. Detailed examination of the mice
revealed that oxytocin (OXT), synthesized and detect-
able in the neurohypophysis, was not released in
biological fluids. Vasopressin was surprisingly unaf-
fected in the model. The impaired release of OXT
could be reverted by re-establishing CD38 expression in
neurohypophysis (Jin et al. 2007), clearly linking CD38
to OXT secretion (Fig. 2).

The work concluded that CD38 KO mice are
characterized by a deficit in short-term social memory.
OXT levels and clinical phenotype could be rescued by
www.endocrinology-journals.org
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correcting the genetic defect of the mice. In light of
these findings, CD38 stands to become an important
element in the diagnosis and study of neurodevelop-
mental disorders also in human pathology (Munesue
et al. 2010, Salmina et al. 2010).
SIRT1

The link between SIRT1 and brain function derives
from the observation that the enzyme plays a neuro-
protective role, accentuated during calorie restriction.
Furthermore, it has been demonstrated that Alzhei-
mer’s and Huntington’s disease neurons are rescued by
overexpression of SIRT1, induced by either calorie
restriction or administration of resveratrol, a potential
activator of this enzyme (Pallas et al. 2008).
PARP

Owing to its role in DNA repair and regulation of
inflammatory transcription, PARP activation has been
detected in acute and chronic neurodegenerative
www.endocrinology-journals.org
disorders (Kauppinen 2007, Kauppinen & Swanson
2007). PARP1 activation as well as accumulation of poly-
ADP-ribose has been shown to be a constitutive element
marking brain damage in Alzheimer patients. Notwith-
standing the availability of at least eight different PARP
inhibitors, no clinical trial has as yet tested their activity
(Peralta-Leal et al. 2009).
Bone tissue

CD38

M Zaidi (New York, NY, USA) conducted extensive studies
on the bone considered as a closed environment where
endocrine factors and NADC-consuming ectoenzymes
may interact. The first finding was that CD38 is expressed
by osteoblasts and osteoclasts. CD38 activation in the
osteoclasts triggers Ca2C release and interleukin 6
production while inhibiting bone resorption (Adebanjo
et al. 1999, Sun et al. 1999). These observations were
confirmed in CD38 KO mice. Haematopoietic stem
cells isolated ex vivo from the same animals showed a
Journal of Molecular Endocrinology (2010) 45, 183–191
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significant increase in osteoclast formation (Sun et al.
2003). Furthermore, cADPR or exogenous addition of
ADP-ribosyl cyclase stimulated osteoclast formation,
which was in turn inhibited after blocking cADPR actions.
These effects were predominantly attributed to the
NADase activity of CD38 (Iqbal & Zaidi 2006).

Further clues were provided by A Zallone (Bari, Italy),
who reported that OXT is indeed a direct regulator
of bone mass. Deletion of OXT or the OXT receptor
(OXTR) in male or female mice causes osteoporosis
resulting from reduced bone formation. The proposed
role of CD38 as a regulator of OXT secretion opens
possibilities – yet to be explored in full – linking the
two pathways (Imam et al. 2009, Tamma et al. 2009).
SIRT and PARP

The role of these enzymes in bone metabolism has not
been fully addressed as yet.
The authors’ perspective

Endocrinology was recently proposed as a model to be
read as a whole complex network system (Koshiyama
et al. 2010). According to this view, the endocrine system
operates as a scale-free protein network hinging around
hubs of key molecules (such as NADC, ATP, adenosine,
cADP-ribose or acetyl CoA) that change as a function of
the power of their metabolic degree of interaction or
protein mass concentration (Clauset & Redner 2009).
The system might easily support simple mutations, while
it would be more sensitive to complex diseases targeting
the hubs. Network systems with similar characteristics
Signals

Modulatory effects on O

CD38

Substrate ligand
NAD+ Non-substrate ligand

CD31

Ca2+

Interaction betw
Membrane late
Membrane loca

Sensitivity to shared re

Nucleus

Lipid microdo

Figure 3 Hypothetical model linking CD38/OXT
According to this hypothesis, plasma cells wou
CD38), which would function as an autocrine g
CD38/OXT/OXTR and bone remodelling is dis

Journal of Molecular Endocrinology (2010) 45, 183–191
are present in cells and proteins or in transcription
factors. Similar connections may also be retrieved at
supracellular levels in social networks as well as in disease
(Barabasi & Oltvai 2004, Barabasi 2007).

Shifting the focus from the complexity of the general
picture to clues revealed by closer inspection of CD38,
perhaps the most intriguing novel observation con-
cerns the role of the enzyme in OXT secretion. We
extended this information to our home field, trying to
answer whether i) OXT has a role in the lymphoid
system, and whether ii) the OXT/OXTR axis might be
influenced by nucleotides and their receptors. Atten-
tion was addressed to OXTR in B lymphocytes using
CD38 as a reference ectoenzyme in which to test the
influence of NADC and of non-substrate ligands.

Analysed during a discrete step of B lymphocyte
differentiation, OXTR was detected on the surface of
human plasma cells, which also host CD38 at high
epitope density. Considering that plasma cells live most
of their life in bone and bone niches, this observation
may be instrumental in the definition of an unexplored
circuit in which to analyse the influence of OXT. In that
microenvironment, plasma cells and bone tissue
interact dynamically through adhesion receptors and
soluble factors.

Owing to the limited accessibility of human plasma
cells, we stabilized a line from a patient with plasma cell
leukaemia. The line obtained (referred to as DL06)
maintains a phenotype and IgA secretion identical to
that of the patient, even after 1 year.

Out of the panel of molecules characterizing plasma
cell phenotype, the DL06 line expresses CD38 (as
expected), transferrin receptor 2 (TfR2) and OXTR:
the latter findings are original observations, confirmed
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also in normal and tumoral plasma cells. The OXTR
molecule was identified by means of a monoclonal
antibody produced ad hoc in the laboratory (Cassoni
et al. 2000). In functional terms, TfR2 remains an
elusive molecule (Deaglio et al. 2002).

The limited number of surface molecules conserved
is evidence of the functional priorities set by the plasma
cells and is related to survival and Ig synthesis. Some are
adhesion molecules, which drive plasma cells to bone
niches favourable to their generally ephemeral life.

The expression of OXTR suggests a regulatory role
for this receptor/ligand system in plasma cells. OXTR is
a G-protein-coupled receptor, whose engagement by
the ligand leads to positive or negative signals. The
outcome depends on several variables, such as the
presence of divalent ions, cholesterol and other
components in the environment and in the plasma
membrane. Also critical is the location of OXTR inside
or outside the lipid microdomains, leading to opposing
outcomes (Zingg & Laporte 2003; Fig. 2).

In light of these considerations, plasma cells and
bone niches appear to be good testing grounds for the
working hypothesis of a connection between ectoen-
zymes and neuropeptides. The system is closed, and
nucleosides may represent additional signals to those
provided by cytokines, chemokines and other conven-
tional regulators. The multifunctional nucleotides ATP
and NADC operating in situ may complement the
physiological regulatory system of the plasma cells.

The initial results obtained indicate that OXT
at physiological concentrations influences the distri-
bution of surface CD38 and increases the growth
rate of plasma cells, at least in the DL06 model. As a
consequence, it seems reasonable to propose the
existence of a CD38/OXT/OXTR axis in plasma
cells and potentially in other components of the
lymphoid tissue.

In conclusion, these early findings support the view
that CD38 is the master coordinator of a process that
leads plasma cell to secrete OXT, which in turn is
uptaken by the OXTR. This circuit has all the
characteristics of an autocrine pathway. Furthermore,
the link between brain, NADC-consuming ectoenzymes
and OXT may also explain some deficits observed in the
immune response of patients with disorders of the
autistic spectrum (Munesue et al. 2010; Fig. 3).
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