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Abstract

The paper studies a bounded symmetric operator Aε in L2(Rd) with

(Aεu)(x) = ε−d−2
∫
Rd

a((x − y)/ε)μ(x/ε, y/ε) (u(x) − u(y)) dy;

here ε is a small positive parameter. It is assumed that a(x) is a non-negative L1(Rd) function such that 
a(−x) = a(x) and the moments Mk = ∫Rd |x|ka(x) dx, k = 1, 2, 3, are finite. It is also assumed that μ(x, y)

is Zd -periodic both in x and y function such that μ(x, y) = μ(y, x) and 0 < μ− � μ(x, y) � μ+ < ∞. 
Our goal is to study the limit behaviour of the resolvent (Aε + I )−1, as ε → 0. We show that, as ε → 0, 
the operator (Aε + I )−1 converges in the operator norm in L2(Rd) to the resolvent (A0 + I )−1 of the 
effective operator A0 being a second order elliptic differential operator with constant coefficients of the 
form A0 = − divg0∇. We then obtain sharp in order estimates of the rate of convergence.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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0. Introduction

0.1. Motivation: contact model

Evolution processes in the models of mathematical biology and population dynamics are often 
described in terms of parabolic equation of the form ∂tu = −Au with a nonlocal convolution type 
operator A, the nonlocality of A reflects the fact that the interaction in these models is nonlocal. 
The kernel of A has a multiplier a(x − y) that specifies the intensity of interaction depending on 
the distance and determines the localization properties of A.

One of the models of this type that has been considered in the existing literature is the so-
called contact model in Rd , see [32–34]. This model relies on a continuous time Markov process 
that belongs to the class of death and birth processes and is defined on the space � of infinite 
locally finite configurations γ ⊂ Rd . The behaviour of the process is determined by the intensity 
of birth and death. On the one hand, each point x ∈ γ can produce an offspring y with the 
intensity a(x − y), independently of other points, and we assume that 

∫
Rd a(z) dz = 1. On the 

other hand, each point of γ has a random life time, and the intensity of death is m(x) > 0. In 
the general case the intensities of birth and death might depend on the position in the space. The 
infinitesimal generator of such dynamics reads

LF(γ ) =
∑
x∈γ

∫
Rd

a(x − y) (F (γ ∪ y) − F(γ )) dy +
∑
x∈γ

m(x) (F (γ \x) − F(γ )) .

The case of constant death intensity, m(x) ≡ κ , has been studied in details in [32], the so-called 
critical regime m(x) ≡ 1 being of special interest here. In this regime the process has a family of 
invariant measures.

The contact model has a remarkable property: the equation for the first correlation function 
describing the density of configuration is closed and not coupled with the equations for higher 
order correlation functions. Notice that for the second and higher order correlation functions 
the corresponding evolutions have a complicated hierarchical structure that involves lower order 
correlation functions. The evolution equation for the first correlation function reads

∂u

∂t
= −Au, u = u(t, x), x ∈Rd, t � 0, u(0, x) = u0(x) � 0, (0.1)

where

Au(x) = m(x)u(x) −
∫
Rd

a(x − y)u(y) dy.

If m(x) ≡ 1, the operator A takes the form

Au(x) = u(x) −
∫
Rd

a(x − y)u(y) dy =
∫
Rd

a(x − y)(u(x) − u(y)) dy. (0.2)

The operator A with a kernel a(x − y) that depends only on the difference x − y is a proper 
tool for describing space homogeneous media. In order to model the processes in space in-
homogeneous media it is natural to consider operators with more general kernels of the form 
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a(x − y)μ(x, y). These kernels depend both on the difference x − y and on the starting and end 
points of jumps, the function μ(x, y) representing the local characteristics of the environment. 
In particular, for the contact model in a periodic medium the operator A in evolution equation 
(0.1) for the first correlation function should be replaced with an operator

Au(x) =
∫
Rd

a(x − y)μ(x, y)(u(x) − u(y))dy (0.3)

with a periodic function μ(x, y).
The study of large time behaviour of solutions to nonlocal evolution equations can be reduced 

to proper homogenization problems for the corresponding nonlocal operators. To illustrate this 
we consider a parabolic equation ∂tu = −Au, where A can be both second order elliptic differ-
ential operator and nonlocal convolution type operator. The natural way to avoid growing time 
intervals is to multiply the temporal variable by a small positive parameter that we call ε2. Then, 
to preserve the structure of the equation, one has to multiply the spatial variable by ε, this change 
of variables being called the diffusive scaling. In a non-homogeneous medium this leads to a 
family of equations that depends on a small parameter ε, and we naturally arrive at the homoge-
nization problem.

While the homogenization problems for differential operators have been actively studied for 
quite a long period, see for instance the monographs [1], [2] and [29] and the bibliography 
therein, similar problems for nonlocal convolution type operators with intregrable kernels have 
not been considered in the existing literature till recently. For the first time the periodic ho-
mogenization problem for such operators was investigated in [44], where it was shown that, 
under natural moment and coerciveness conditions, the limit operator is a second order ellip-
tic differential operator with constant coefficients and a positive definite effective matrix. The 
homogenization procedure relied on the corrector techniques, however the justification of con-
vergence required new methods adapted to studying the nonlocal operators. It was also proved 
in [44] that the corresponding jump Markov process satisfies the invariance principle in the Sko-
rokhod topology. Similar homogenization problems in random media have been considered in 
[46]. In the case of non-symmetric convolution type operators homogenization problem has been 
addressed in [45], it was shown that for the corresponding parabolic equations homogenization 
takes place in moving coordinates. Convolution type operators in periodically and randomly per-
forated domains have been studied in [11] and [12] by the variational methods.

A number of interesting homogenization results for the Levy type nonlocal operators with 
non-integrable kernels have been obtained in the recent works [47], [48], [13]. However, the 
properties of these operators differ a lot from the properties of operators studied in this work.

0.2. Estimates for the rate of convergence in homogenization theory

Essential interest in obtaining various estimates for the rate of convergence in the mathemat-
ical homogenization theory arose shortly after emergence of this theory itself. This interest was 
stimulated by important applications of this theory in such disciplines as composite materials, 
photonic crystals, porous media, network constructions and many others. In addition, obtaining 
these estimates turned out to be an interesting mathematical challenge.

For periodic media the first results in this direction have been obtained in [30,31] and [69]. 
The works [30,31] dealt with boundary value problems for elliptic operators with oscillating 
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coefficients, for these problems L2 estimates for the rate of convergence were proved. Then in 
[69] similar estimates have been obtained for elliptic operators in periodically perforated domains 
including spectral problems with the Steklov condition on the perforation border.

Later on many authors contributed to this topic, a large number of interesting results on the 
rate of convergence for solutions to elliptic and evolution differential equations and systems of 
equations have been obtained both in periodic and locally periodic environments. Among others, 
the elasticity system and, in some particular cases, the Maxwell system have been investigated. 
We refer here only to some books [1,2,29], where these questions have been addressed.

For homogenization problems in random statistically homogeneous environments the first 
estimates for the rate of convergence were obtained in [72]. Further progress in this field was 
achieved in the recent works [22,23].

Notice however that in all the above mentioned papers the estimates for the rate of conver-
gence were obtained in the strong topology, not the operator topology, the constants in these 
estimates depended on the regularity of the right-hand sides.

In the pioneer works of M. Birman and T. Suslina [3–5] a new approach to homogenization 
problems in periodic media has been developed, it relies on a version of the spectral method. With 
the help of this method for a wide class of homogenization problems estimates in the operator 
topology were justified.

In order to clarify this method, let us consider a scalar elliptic operator of the form Aε =
− divg(x/ε)∇ , ε > 0, in L2(Rd) with a positive definite bounded Zd -periodic matrix g(·). Clas-
sical result states that for any F ∈ L2(Rd), as ε → 0, a solution uε of the equation

(Aεuε)(x) + uε(x) = F(x), x ∈ Rd,

converges in L2(Rd) to a solution u0 of the homogenized equation that reads

(A0u0)(x) + u0(x) = F(x), x ∈ Rd;

here A0 = − divghom∇ is the so-called effective operator and ghom is a constant positive definite 
matrix. Moreover, the estimate

‖uε − u0‖L2(Rd ) � C(F)ε

holds true. In [3] a stronger estimate has been obtained. Namely, it was shown that

‖uε − u0‖L2(Rd ) � Cε‖F‖L2(Rd )

with a constant C that does not depend on F . This result can be reformulated in terms of operator 
convergence: as ε → 0, the resolvent (Aε + I )−1 converges in the operator norm in L2(Rd) to 
(A0 + I )−1, and the following order-sharp estimate is fulfilled:

‖(Aε + I )−1 − (A0 + I )−1‖L2(Rd )→L2(Rd ) � Cε. (0.4)

In the homogenization theory the inequalities of this type are called operator estimates of ap-
proximation error. Then in [4] a more advanced uniform operator approximation of the resolvent 
(Aε + I )−1 in L2(Rd) has been found, the estimate derived in this work takes into account the 
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corrector and provides the precision of order O(ε2). As was shown in [5] similar approximation 
yields the precision of order O(ε) in the space of operators acting from L2(Rd) to H 1(Rd).

Analogous results for parabolic semigroups e−Aεt , t > 0, have been obtained in [55,57,70,58]. 
It should be emphasized that the above mentioned results on the estimates in operator topology 
are valid for a wide class of second order matrix elliptic operators.

The spectral method used in the cited collection of works relies on scaling transformation, 
Floquet-Bloch theory and analytic perturbation theory.

We illustrate this method by explaining the main ideas of obtaining the estimate in (0.4). 
Making the scaling transformation we conclude that estimate (0.4) is equivalent to the inequality

‖(A + ε2I )−1 − (A0 + ε2I )−1‖L2(Rd )→L2(Rd ) � Cε−1, (0.5)

where A = − divg(x)∇ = D∗g(x)D, D = −i∇ . Applying then the unitary Gelfand transform 
we represent the operator A as a direct integral with respect to the operators A(ξ) acting in L2(�)

and depending on a parameter ξ ∈ �̃ (quasi-momentum); here � = [0, 1)d is the periodicity 
cell Rd/Zd , and �̃ = [−π, π)d is the cell of the dual lattice. The operator A(ξ) is of the form 
A(ξ) = (D + ξ)∗g(x)(D + ξ) and equipped with the periodic boundary conditions. Estimate 
(0.5) is a consequence of the following one:

‖(A(ξ) + ε2I )−1 − (A0(ξ) + ε2I )−1‖L2(�)→L2(�) � Cε−1, ξ ∈ �̃.

The family of operators {A(ξ)} is analytic, and all the operators of this family have a com-
pact resolvent. Thus the methods of analytic perturbation theory apply, and the resolvent 
(A(ξ) + ε2I )−1 can be approximated in terms of the spectral characteristics of this operator 
family at the spectral edge. In particular, the effective matrix is proportional with the coefficient 
1
2 to the Hessian of the first eigenvalue λ1(ξ) of the operator A(ξ) at ξ = 0. Therefore, the ho-
mogenization can be treated as a spectral threshold effect at the edge of the spectrum of an elliptic 
operator.

Later on with the help of the spectral method various operator estimates for the rate of conver-
gence were obtained for a wide class of elliptic and evolution equations with periodic coefficients, 
among them are non-stationary Schrödinger-type and hyperbolic equations, see [6,36,61,17–19], 
stationary and non-stationary Maxwell system, see [54,56,20], and many others.

Another approach to estimating the operator norm of the discrepancy in the homogenization 
procedure, the so-called “shift method”, was developed by V. Zhikov and S. Pastukhova in [73–
75], see also the survey paper [76] and references therein. This approach is based on the analysis 
of the first approximation of the solution and on introducing an additional variable that takes 
on values in �. It allows to deal with homogenization of boundary-value problems in bounded 
domains in Rd .

The works [73,74] studied homogenization problems both for elliptic operators defined in the 
whole Rd and for boundary-value problems with the Dirichlet and Neumann boundary condi-
tions. It was shown that the discrepancy admits the estimate of order O(ε1/2) in the uniform 
operator topology in L2 and, in the presence of correctors, in the operator norm L2 → H 1. The 
estimates are not as good as in the case of the whole space due to the influence of the domain 
boundary. Similar results for the Dirichlet and Neumann problems for a scalar operator in a 
bounded domain have been obtained in [24,25] by means of the unfolding method. In [25] for 
the first time an estimate of the sharp order O(ε) was justified in the operator norm in L2.
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For elliptic systems similar estimates have been proved in [28] and [43,59,60], the case of 
initial-boundary problems for the corresponding parabolic equations has been treated in [37,21], 
and Maxwell system in a bounded domain was considered in [64,65].

In recent years further progress has been achieved in this topic. We quote here [26], where 
operator estimates were obtained for the Stokes system, [71,35,39,40,53,38,67,68] that dealt with 
elliptic operators of higher order in Rd , and [62,63,66], where the higher order elliptic operators 
in a bounded domain were considered.

The works [7,41,42,49–51] focused on operator estimates for operators with locally periodic 
coefficients, the high contrast problems were investigated in [14,16,15]. Similar questions can 
be raised when boundary homogenization problems are considered. Some of them have been 
addressed in [9,10,8].

However, it should be emphasized that in all these papers the operator estimates have been 
obtained for differential operators. To our best knowledge the case of nonlocal operators has not 
been examined in the existing literature.

0.3. Problem setup. Main result

The present work studies convolution type operators that read

Aεu(x) = 1

εd+2

∫
Rd

a
(x − y

ε

)
μ
(x

ε
,
y

ε

)(
u(x) − u(y)

)
dy, x ∈Rd , u ∈ L2(R

d), (0.6)

here ε is a small positive parameter, a(x) is an even non-negative function such that a(·) ∈
L1(Rd) and ‖a‖L1 > 0, μ(x, y) is a Zd periodic in x and y function such that μ(x, y) = μ(y, x)

and 0 < C1 � μ(x, y) � C2 for some constants C1 and C2. Under these conditions the oper-
ator Aε is bounded, self-adjoint and non-negative in L2(Rd). We assume furthermore that the 
moments Mk = ∫Rd |x|ka(x)dx are finite for k = 1, 2, 3.

As was mentioned above, the homogenization problem for operators defined in (0.6) was 
solved in [44]. It was shown that the resolvent (Aε + I )−1 converges, as ε → 0, in the strong 
operator topology to the resolvent (A0 + I )−1 of the effective operator being the second order el-
liptic operator of the form A0 = − divg0∇ . It is interesting to observe that although the operators 
Aε are bounded and nonlocal for any ε > 0, the limit operator is unbounded and local.

Although the estimates for the rate of convergence in the just mentioned homogenization 
problem seem not to be presented in the mathematical literature, for sufficiently regular right-
hand sides such estimates can be obtained with the help of asymptotic expansions constructed 
in [44].

Our goal here is to prove the convergence of the resolvent (Aε + I )−1 to the resolvent 
(A0 + I )−1 in the operator norm topology in L2(Rd) and to derive order-sharp estimates for 
the discrepancy.

In order to formulate the main result of this paper, we first recall the definition of the effec-
tive matrix g0. Consider an auxiliary cell problem that reads: find a Zd -periodic vector-valued 
solution of the equation

{ ∫
Rd a(x − y)μ(x, y)(v(x) − v(y)) dy = ∫Rd a(x − y)μ(x, y)(x − y)dy,∫

v(y)dy = 0; (0.7)

�
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here � := [0, 1)d is a periodicity cell. This problem has a unique solution. The effective matrix 
g0 = 1

2 {gij }i,j=1,...,d is defined by

gij =
∫
�

dx

∫
Rd

dy
(
(xi − yi)(xj − yj ) − vj (x)(xi − yi) − vi(x)(xj − yj )

)
a(x − y)μ(x, y),

i, j = 1, . . . , d.

It turns out that the matrix g0 is positive definite, see [44]. The domain of the homogenized 
operator coincides with the Sobolev space H 2(Rd). Our main result is Theorem 3.1 which states 
that the following estimate holds true:

‖(Aε + I )−1 − (A0 + I )−1‖L2(Rd )→L2(Rd ) � C(a,μ)ε, ε > 0. (0.8)

This estimate is sharp in order, and the constant C(a, μ) can be calculated explicitly.

0.4. The methods

To approximate the resolvent of operator (0.6) and justify the formulated above result we 
modify and adapt the spectral method discussed in Section 0.2.

The first two steps, the scaling transformation and the unitary Gelfand transform allowing 
to represent the operator in (0.3) as a direct integral with respect to the family A(ξ), remain 
unchanged. However, in contrast to the case of differential operators, the family A(ξ) depending 
on the parameter ξ ∈ �̃ need not be analytic in ξ , thus the methods of analytic perturbation theory 
do not apply to this family. Instead, our approach relies on a C3 regularity of this family which 
is granted by the existence of the first three moments of function a(z).

Let us explain some details of this approach. It is known that, in order to approximate 
the resolvent (A(ξ) + ε2I )−1 for small ε > 0, it suffices to construct the asymptotics of the 
operator-function A(ξ)F (ξ), ξ → 0, where F(ξ) is a spectral projector of the operator A(ξ) that 
corresponds to some neighbourhood of zero.

In the previous works that dealt with the differential operators the asymptotics of the operator 
A(ξ)F (ξ) for small |ξ | relied on the asymptotics of the principal eigenvalue λ1(ξ) of operator 
A(ξ). In the present paper, in addition to this classical method, we provide two alternative ways 
of computing the asymptotics of A(ξ)F (ξ) as ξ → 0 which are not based on constructing the 
asymptotics of λ1(ξ). One of them that looks promising for applications in the homogenization 
theory relies on computing the coefficients of the asymptotics of A(ξ)F (ξ), ξ → 0, by means 
of integrating the resolvent (A(0) − ζ I )−1 as well as some operator-functions of this resolvent, 
over appropriate contours, see Section 4.2.

As in the case of differential operators, the key role in the studied homogenization problem 
is played by the spectral characteristics of operator A near the lower edge of its spectrum (the 
so-called threshold characteristics). Thus, the homogenization of nonlocal operator can also be 
considered as a threshold effect at the spectrum edge.
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0.5. Plan of the paper

The paper consists of Introduction, three sections and Appendix. In Section 1 we introduce 
operator A, represent this operator as a direct integral over the family A(ξ) and obtain lower 
bounds for the quadratic form of the operator A(ξ).

In Section 2 the threshold characteristics of the operator family A(ξ) are studied in the vicinity 
of the spectrum bottom. Then we approximate the resolvent ( A(ξ) + ε2I )−1 for small ε.

Finally, in Section 3 we complete the proof of the main result of this work.
The Appendix contains a number of auxiliary statements.

0.6. Notation

The norm in a normed space X is denoted by ‖ · ‖X , the index X is dropped if this does not 
lead to an ambiguity. If X and Y are linear normed space, the norm of a linear bounded operator 
T : X → Y is denoted ‖T ‖X→Y or just ‖T ‖. The notation B(X) is used for the space of bounded 
linear operators in a normed space X. Given a collection of vectors F ⊂ X, we denote its span 
by L{F }. An open ball in a normed space centered at x0 of radius r > 0 is denoted by Br(x0).

The spectrum and the essential spectrum of a self-adjoint operator A in a Hilbert space H are 
denoted by σ(A) and σe(A), respectively.

For a Lebesgue measurable set O ⊂ Rd of positive Lebesgue measure we denote by Lp(O), 
1 � p � ∞, the standard Lp space of functions defined on O. The inner product in L2(O) is 
denoted by (·, ·)L2(O), while for the scalar product in Rd and Cd the notation 〈·, ·〉 is used. 
Symbol S(Rd) stands for the Schwartz class of functions in Rd . The characteristic function of a 
set E ⊂ Rd is denoted by 1E .

1. Nonlocal Schrödinger operator: representation as a direct integral and estimates

1.1. Operator A(a, μ)

Given real-valued functions a ∈ L1(Rd) and μ ∈ L∞(Rd × Rd) we define a nonlocal 
Schrödinger operator A =A(a, μ) in the space L2(Rd), d � 1, by

A(a,μ)u(x) :=
∫
Rd

a(x − y)μ(x, y)(u(x) − u(y)) dy, x ∈ Rd .

Rearranging the expression on the right-hand side, one has A(a, μ) = p(x; a, μ) −B(a, μ) with

p(x;a,μ) :=
∫
Rd

a(x − y)μ(x, y) dy, x ∈ Rd,

B(a,μ)u(x) :=
∫
Rd

a(x − y)μ(x, y)u(y) dy, x ∈ Rd;

here and in what follows we identify the function p(·; a, μ) and the operator of multiplica-
tion by this function. According to the Schur test, see [27, Theorem 5.2], the operator B(a, μ) :
L2(Rd) → L2(Rd) is bounded in L2(Rd) and its norm satisfies the upper bound ‖B(a, μ)‖ �
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‖μ‖L∞‖a‖L1 . For the reader convenience we prove this statement in the Appendix, see 
Lemma 4.1. The potential p(x; a, μ) is also bounded and admits the estimate ‖p(·; a, μ)‖L∞ �
‖μ‖L∞‖a‖L1 . Therefore, the operator A(a, μ) : L2(Rd) → L2(Rd) is bounded. It is conve-
nient to introduce, in addition to A(a, μ), an auxiliary operator A0(a) := A(a, μ0) with μ0 ≡ 1. 
Letting B0(a) := B(a, μ0) and p0(x; a) := p(x; a, μ0) we observe that B0(a) is a convolution 
operator with the kernel a(·), and the potential p0(x; a) is constant.

From now on we assume that the functions a and μ possess the following properties:

a ∈ L1(R
d), meas{x ∈Rd : a(x) 
= 0} > 0, a(x) � 0, a(−x) = a(x), x ∈ Rd; (1.1)

0 < μ− � μ(x, y) � μ+ < +∞, μ(x, y) = μ(y, x), x, y ∈Rd ; (1.2)

μ(x + m,y + n) = μ(x, y), x, y ∈Rd , m,n ∈Zd ; (1.3)

Mk(a) :=
∫
Rd

|x|ka(x)dx < +∞, k = 1,2,3. (1.4)

Since the coefficients a(·) and μ(·) are real-valued, the potential p(x) = p(x; a, μ) is also real. 
Moreover, under conditions (1.1) and (1.2) the potential p(x; a, μ) satisfies the estimate

μ−‖a‖L1(Rd ) � p(x) � μ+‖a‖L1(Rd ), x ∈ Rd, (1.5)

and the operator B(a, μ) is bounded and self-adjoint. Thus A(a, μ) is bounded and self-adjoint 
as well.

1.2. Quadratic form of operator A(a, μ)

Under assumptions (1.1) and (1.2) the quadratic form of operator A(a, μ) admits the follow-
ing representation (see, for instance, [33]):

(A(a,μ)u,u) = 1

2

∫
Rd

∫
Rd

dx dy a(x − y)μ(x, y)|u(x) − u(y)|2, u ∈ L2(R
d). (1.6)

Indeed, from the relations a(x − y) = a(y − x) and μ(x, y) = μ(y, x) we obtain

(A(a,μ)u,u) =
∫
Rd

dx u(x)

∫
Rd

dy a(x − y)μ(x, y)(u(x) − u(y)) =

=
∫
Rd

∫
Rd

dx dy a(x−y)μ(x, y)|u(x)−u(y)|2 +
∫
Rd

dy u(y)

∫
Rd

dx a(x−y)μ(x, y)(u(x)−u(y)) =

=
∫
Rd

∫
Rd

dx dy a(x − y)μ(x, y)|u(x) − u(y)|2 − (A(a,μ)u,u), u ∈ L2(R
d).

This yields (1.6). Considering representation (1.6) we conclude that the operator A(a, μ) is non-
negative and the estimates
161



A. Piatnitski, V. Sloushch, T. Suslina et al. Journal of Differential Equations 352 (2023) 153–188
μ−(A0(a)u,u) � (A(a,μ)u,u) � μ+(A0(a)u,u), u ∈ L2(R
d), (1.7)

hold true. Since B0(a) is a convolution operator, in the space of Fourier images of functions from 
L2(Rd) it acts as the operator of multiplication by the function ̂a(ξ), ξ ∈Rd , with

â(ξ) :=
∫
Rd

e−i〈ξ,z〉a(z) dz, ξ ∈ Rd .

Notice that due to (1.1) the function ̂a(ξ) is continuous and tends to zero at infinity. Consequently, 
the operator A0(a) is unitary equivalent to the operator of multiplication by the function ̂a(0) −
â(ξ), and λ0 = 0 belongs to the spectrum of A0(a). Since A0(a) is a non-negative operator, λ0
is its spectral edge. In view of estimates (1.7) the point λ0 = 0 is also the lower edge of the 
spectrum of operator A(a, μ).

1.3. Representation of A(a, μ) as a direct integral

Due to conditions (1.1)–(1.3) the operator of multiplication by p(x; a, μ) and the operator 
B(a, μ) commute with the operators Sn defined by

Snu(x) = u(x + n), x ∈ Rd, n ∈Zd .

So does A(a, μ). Thus A(a, μ) and B(a, μ) are periodic operators with a periodicity lattice Zd . 
Denote by � := [0, 1)d the corresponding periodicity cell and by �̃ := [−π, π)d the periodicity 
cell of the dual lattice (2πZ)d .

Let us recall the definition of the Gelfand transform, see, for example, [52] or [3, Chapter 2]. 
We call it G. For functions u from the Schwartz class S(Rd) it is defined as follows:

Gu(ξ, x) := (2π)−d/2
∑
n∈Zd

u(x + n)e−i〈ξ,x+n〉, ξ ∈ �̃, x ∈ �, u ∈ S(Rd).

Since ‖Gu‖L2(�̃×�) = ‖u‖L2(Rd ), then G can be extended by continuity to a unitary mapping 
from L2(Rd) to 

∫
�̃

⊕
L2(�)dξ = L2(�̃ × �).

In what follows we assume that for any v ∈ ∫
�̃

⊕
L2(�)dξ and any ξ ∈ �̃ the function 

v(ξ, ·) is extended periodically from the cell � to the whole Rd . Since the operators A(a, μ)

and B(a, μ) are periodic, the Gelfand transform partially diagonalizes them. More precisely, the 
operators GA(a, μ)G∗ and GB(a, μ)G∗ take the form

GA(a,μ)G∗u(ξ, x) = A(ξ, a,μ)u(ξ, x),

GB(a,μ)G∗u(ξ, x) = B(ξ, a,μ)u(ξ, x), ξ ∈ �̃, x ∈ �; (1.8)

here the operators A(ξ, a, μ) and B(ξ, a, μ) are bounded self-adjoint operators in L2(�) that are 
defined by

A(ξ, a,μ) = p(x;a,μ) −B(ξ, a,μ),

B(ξ, a,μ)u(x) =
∫

ã(ξ, x − y)μ(x, y)u(y) dy, u ∈ L2(�);

�
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ã(ξ, z) :=
∑
n∈Zd

a(z + n)e−i〈ξ,z+n〉, ξ ∈ �̃, z ∈ Rd .

We emphasize that p(x; a, μ) does not depend on ξ and satisfies the relation

p(x;a,μ) =
∫
�

ã(0, x − y)μ(x, y) dy. (1.9)

In view of Zd -periodicity of function ã(ξ, ·) the estimate 
∫
�

|̃a(ξ, z)| dz � ‖a‖L1 implies that 
ã(ξ, ·) ∈ L1,loc(Rd) and

‖̃a(ξ, ·)‖L1([−1,1]d ) � 2d‖a‖L1(Rd ), ξ ∈ �̃.

Therefore, by Corollary 4.2, the operator B(ξ, a, μ) is compact, and the following estimate holds

‖B(ξ, a,μ)‖ � μ+
∫

[−1,1]d
|̃a(ξ, z)|dz � 2dμ+‖a‖L1(Rd ), ξ ∈ �̃.

We conclude that the essential spectrum of the operator A(ξ, a, μ) coincides with ess-Ranp(·; a,

μ) and, due to the lower bound in (1.5), for any ξ ∈ �̃ the spectrum of A(ξ, a, μ) in the interval 
(−∞, μ−‖a‖L1) is discrete. The goal of this section is to estimate the lower edge of the spectrum 
of operator A(ξ, a, μ) for all ξ .

The next statement provides a representation of the quadratic form of the operator A(ξ, a, μ)

that will be convenient for the further analysis.

Lemma 1.1. Under conditions (1.1)–(1.3) for any ξ ∈ �̃ the following relation holds:

(A(ξ, a,μ)u,u) = 1

2

∫
�

dx

∫
Rd

dy a(x − y)μ(x, y)|ei〈ξ,x〉u(x) − ei〈ξ,y〉u(y)|2, u ∈ L2(�);

(1.10)
it is assumed here that the function u ∈ L2(�) is extended periodically to the whole Rd .

Proof. By (1.9) for any x ∈ � we have

A(ξ, a,μ)u(x) =
∫
�

(̃a(0, x − y)u(x) − ã(ξ, x − y)u(y))μ(x, y) dy, u ∈ L2(�). (1.11)

Identifying a function u ∈ L2(�) with its Zd -periodic extension to the whole Rd , one can rear-
range (1.11) as follows:

A(ξ, a,μ)u(x) =
∑

d

∫ (
a(x − y + n)u(x) − a(x − y + n)e−i〈ξ,x−y+n〉u(y)

)
μ(x, y) dy =
n∈Z �
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=
∫
Rd

a(x − y)μ(x, y)
(
u(x) − e−i〈ξ,x−y〉u(y)

)
dy =

=
∫
Rd

a(x − y)μ(x, y)e−i〈ξ,x〉(ei〈ξ,x〉u(x) − ei〈ξ,y〉u(y)
)
dy, x ∈ �, u ∈ L2(�). (1.12)

Then the quadratic form of the operator A(ξ, a, μ) takes the form

(A(ξ, a,μ)u,u) =
∫
�

dx

∫
Rd

dy a(x − y)μ(x, y)e−i〈ξ,x〉u(x)
(
ei〈ξ,x〉u(x) − ei〈ξ,y〉u(y)

)=
=
∫
�

dx

∫
Rd

dy a(x − y)μ(x, y)
∣∣ei〈ξ,x〉u(x) − ei〈ξ,y〉u(y)

∣∣2 + J [u], u ∈ L2(�), (1.13)

where the functional J [u] is given by

J [u] :=
∫
�

dx

∫
Rd

dy a(x − y)μ(x, y)e−i〈ξ,y〉u(y)
(
ei〈ξ,x〉u(x) − ei〈ξ,y〉u(y)

)
, u ∈ L2(�).

(1.14)
Exchanging the variables x and y and considering conditions (1.1), (1.2) we conclude that

J [u] = −
∫
Rd

dx

∫
�

dy a(x − y)μ(x, y)e−i〈ξ,x〉u(x)
(
ei〈ξ,x〉u(x) − ei〈ξ,y〉u(y)

)=
= −

∑
n∈Zd

∫
�

dx

∫
�

dy a(x − y + n)μ(x, y)e−i〈ξ,x+n〉u(x)
(
ei〈ξ,x+n〉u(x) − ei〈ξ,y〉u(y)

)=
= −

∑
n∈Zd

∫
�

dx

∫
�

dy a(x − y + n)μ(x, y)e−i〈ξ,x〉u(x)
(
ei〈ξ,x〉u(x) − ei〈ξ,y−n〉u(y)

)=
= −

∫
�

dx u(x)

∫
�

dy μ(x, y)
(̃
a(0, x − y)u(x) − ã(ξ, x − y)u(y)

)=
= −(A(ξ, a,μ)u,u), u ∈ L2(�). (1.15)

Now (1.10) follows from (1.13) and (1.15). �
1.4. Estimates of the quadratic form of operator A(ξ, a, μ)

As above it is convenient to consider the case μ = μ0 ≡ 1 separately. Recalling the notation 
A0(ξ, a) := A(ξ, a, μ0), B0(ξ, a) := B(ξ, a, μ0), from the relations in (1.2) and (1.10) we derive 
the estimates

μ−(A0(ξ, a)u,u) � (A(ξ, a,μ)u,u) � μ+(A0(ξ, a)u,u), u ∈ L2(�), ξ ∈ �̃. (1.16)
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The operators A0(ξ, a), ξ ∈ �̃, are diagonalized by means of the unitary discrete Fourier trans-
form F : L2(�) → 
2(Zd) defined as follows:

Fu(n) =
∫
�

u(x)e−2πi〈n,x〉dx, n ∈ Zd, u ∈ L2(�);

F ∗v(x) =
∑
n∈Zd

vne
2πi〈n,x〉, x ∈ �, v = {vn}n∈Zd ∈ 
2(Z

d).

We have

A0(ξ, a) = F ∗[â(0) − â(2πn + ξ)
]
F, â(k) :=

∫
Rd

a(x)e−i〈k,x〉dx, k ∈Rd ; (1.17)

here [f (n)], f (n) = â(0) − â(2πn + ξ), stands for the operator of multiplication by the function 
f (n) in the space l2(Zd). Thus, the symbol of the operator A0(ξ, a) is a sequence {Ân(ξ)}n∈Zd

with

Ân(ξ) = Â(ξ +2πn) = â(0)− â(2πn+ξ) =
∫
Rd

(
1−cos(〈z, ξ +2πn〉))a(z) dz, n ∈ Zd, ξ ∈ �̃.

Here we have used the fact that a(z) is an even function and therefore the integral 
∫
Rd sin(〈z, ξ +

2πn〉)a(z) dz is equal to zero.

Lemma 1.2. Under conditions (1.1)–(1.3) the point λ0 = 0 is a simple eigenvalue of the operator 
A(0, a, μ). Moreover, KerA(0, a, μ) = L{1�}.

Proof. Since the set of z ∈ Rd such that a(z) > 0 has a positive Lebesgue measure, the quantities 
Â(2πn) = ∫Rd 2 sin2(〈z, πn〉)a(z) dz are not equal to zero for n ∈ Zd \ {0}; on the other hand, 
Â(0) = 0. Therefore, KerA0(0, a) = L{1�}, and, by (1.16), KerA(0, a, μ) = L{1�}. �

In order to estimate the quadratic form of the operator A0(ξ, a) for all ξ ∈ �̃, we carry out 
the detailed analysis of the symbol of the operator A0(ξ, a), ξ ∈ �̃. Under condition (1.1) the 
function

Â(y) =
∫
Rd

(
1 − cos(〈z, y〉))a(z) dz = 2

∫
Rd

sin2
( 〈z, y〉

2

)
a(z) dz, y ∈ Rd, (1.18)

depends continuously on y ∈Rd and, by the Riemann–Lebesgue lemma, converges to ‖a‖L1 > 0
as |y| → ∞. Furthermore, it is easy to check that Â(y) 
= 0 if y 
= 0. Consequently, the estimate

min|y|�r
Â(y) =: Ar (a) > 0, r > 0, (1.19)

holds. Under condition (1.4) the function
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∫
Rd

a(z)〈z, y〉2 dz =: Ma(y) (1.20)

is continuous in y ∈Rd and not equal to zero if y 
= 0. This yields the following inequality:

min|θ |=1
Ma(θ) =:M(a) > 0. (1.21)

Below, in Section 4.3, under conditions (1.1)–(1.4) and an additional assumption a ∈ L2(Rd), 
we will obtain explicit expressions for Ar(a), r > 0, and M(a) in terms of ‖a‖L1 , ‖a‖L2 and 
Mk(a) with k = 1, 2, 3.

Lemma 1.3. Let conditions (1.1)–(1.4) be fulfilled. Then

Â(ξ + 2πn) � C(a)|ξ |2, ξ ∈ �̃, n ∈Zd ; (1.22)

Â(ξ + 2πn) � Aπ (a), ξ ∈ �̃, n ∈Zd \ {0}, (1.23)

where

C(a) := min
{1

4
M(a),Ar(a)(a)π−2d−1,Aπ (a)π−2d−1

}
> 0, (1.24)

the quantities Ar (a), r > 0, and M(a) are defined in (1.19) and (1.21), respectively, and r(a) :=
3
2M(a)M−1

3 (a).

Proof. If conditions (1.1), (1.4) hold, then the function Â(y), y ∈Rd , is three times continuously 
differentiable, and

Â(0) = 0, ∇Â(0) = 0, 〈(HÂ)(0)y, y〉 :=
d∑

i,j=1

∂i∂j Â(0)yiyj =
∫
Rd

〈z, y〉2a(z) dz, y ∈Rd;

(1.25)

∂i∂j ∂kÂ(y) = −
∫
Rd

zizj zk sin(〈z, y〉)a(z) dz, y ∈Rd . (1.26)

Combining condition (1.4) with relations (1.21) and (1.25) we obtain the estimates

M(a)|y|2 � 〈(HÂ)(0)y, y〉 � M2(a)|y|2, y ∈Rd . (1.27)

The following inequality is a consequence of (1.4) and (1.26):∣∣∣∣∣∣
d∑ d∑ d∑

yiyj yk∂i∂j ∂kÂ(y0)

∣∣∣∣∣∣� M3(a)|y|3, y, y0 ∈Rd . (1.28)

i=1 j=1 k=1
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By the Hadamard lemma (see Lemma 4.3 below) and due to relations (1.25) and (1.28), we 
have

Â(y) = 1

2
〈(HÂ)(0)y, y〉 + R(y), |R(y)| � 1

6
M3(a)|y|3, y ∈Rd . (1.29)

The second relation in (1.29) implies that |R(y)| � 1
4M(a)|y|2 for |y| � r(a) := 3

2M(a)M−1
3 (a). 

Therefore, considering (1.27) and (1.29) we obtain the following lower bound:

Â(y) � 1

4
M(a)|y|2, |y| � r(a). (1.30)

Observe that

ξ ∈ �̃ =⇒ |ξ | � π
√

d;
ξ ∈ �̃, n ∈ Zd =⇒ |ξ + 2πn| � |ξ |;

ξ ∈ �̃, n ∈ Zd \ {0} =⇒ |ξ + 2πn| � π.

(1.31)

Combining these relations with (1.19) and (1.30) yields

Â(ξ + 2πn) � 1
4M(a)|ξ |2, n = 0, ξ ∈ �̃, |ξ | � r(a);

Â(ξ + 2πn) � Ar(a)(a) � Ar(a)(a)π−2d−1|ξ |2, n = 0, ξ ∈ �̃, |ξ | � r(a);
Â(ξ + 2πn) � Aπ (a) � Aπ (a)π−2d−1|ξ |2, n ∈ Zd \ {0}, ξ ∈ �̃.

Finally, we conclude that inequalities (1.22) and (1.23) hold true. �
The following statement is a consequence of relations (1.16)–(1.17) and Lemmata 1.2, 1.3:

Proposition 1.4. Assume that conditions (1.1)–(1.4) hold. Then we have

(A(ξ, a,μ)u,u) � μ−C(a)|ξ |2‖u‖2
L2(�), u ∈ L2(�), ξ ∈ �̃; (1.32)

(A(ξ, a,μ)u,u) � μ−Aπ (a)‖u‖2
L2(�), u ∈ L2(�) �L{1�}, ξ ∈ �̃. (1.33)

We will also need

Proposition 1.5. Let conditions (1.1)–(1.4) be fulfilled. Then the following estimate holds:

‖A(ξ, a,μ) −A(η, a,μ)‖ � μ+2dM1(a)|ξ − η|, ξ, η ∈ �̃. (1.34)

Proof. Since A(ξ, a, μ) −A(η, a, μ) is an integral operator in L2(�) with the kernel 
(̃
a(η, x −

y) − ã(ξ, x − y)
)
μ(x, y), x, y ∈ �, then, by the Schur test (see Lemma 4.1), we obtain
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�

‖A(ξ, a,μ) −A(η, a,μ)‖ � μ+
∫

[−1,1]d

∣∣̃a(η, z) − ã(ξ, z)
∣∣dz = μ+2d

∫
�

∣∣̃a(η, z) − ã(ξ, z)
∣∣dz �

� μ+2d

∫
Rd

a(z)
∣∣e−i〈η,z〉 − e−i〈ξ,z〉∣∣dz = μ+2d

∫
Rd

a(z)
∣∣ei〈ξ−η,z〉 − 1

∣∣dz �

� μ+2d |ξ − η|
∫
Rd

a(z)|z|dz = μ+2dM1(a)|ξ − η|, ξ, η ∈ �̃.

2. Threshold characteristics of nonlocal Schrödinger operator in the vicinity of the 
spectrum bottom

2.1. The spectral edge of the operator A(ξ, a, μ)

According to Lemma 1.2, under conditions (1.1)–(1.3) the lower edge of the spectrum of 
operator A(0, a, μ) which is defined as min {λ ∈ R : λ ∈ σ(A(0, a, μ))}, is a simple eigen-
value λ0 = 0. Letting d0(a, μ) = dist(λ0 , σ(A(0, a, μ)) \ {λ0}) and assuming that conditions 
(1.1)–(1.4) are fulfilled, we derive from estimate (1.33) the following inequality:

d0(a,μ) � μ−Aπ (a). (2.1)

For brevity we use the short notation d0 := d0(a, μ). By the perturbation theory arguments, we 
deduce from estimate (1.34) that for all ξ ∈ �̃ such that |ξ | � 3−12−dM1(a)−1μ−1+ μ−Aπ (a) the 
relations

rankEA(ξ,a,μ)[0, d0/3] = 1, σ (A(ξ, a,μ)) ∩ (d0/3;2d0/3) = ∅

hold. Denote δ0(a, μ) = min{1, 3−12−dM1(a)−1μ−1+ μ−Aπ (a)}. Observe that δ0(a, μ) > 0. 
Combining the above statements we arrive at

Proposition 2.1. Let conditions (1.1)–(1.4) be satisfied. Then for all |ξ | with |ξ | � δ0(a, μ) the 
spectrum of the operator A(ξ) = A(ξ, a, μ) in the interval [0, d0/3] consists of just one simple 
eigenvalue, while the interval (d0/3, 2d0/3) belongs to the resolvent set of A(ξ, a, μ).

Under conditions (1.1)–(1.4) the operator-function A(ξ, a, μ) is three times continuously 
differentiable in the variable ξ with respect to the operator norm of B(L2(�)), moreover, the 
following relations hold

∂αA(ξ, a,μ)u(x) =
∫
�

ãα(ξ, x − y)μ(x, y)u(y) dy, x ∈ �, u ∈ L2(�);

ãα(ξ, z) = (−1)(−i)|α| ∑
n∈Zd

(z + n)αa(z + n)e−i〈ξ,z+n〉, α ∈Zd+, |α| � 3. (2.2)

By the Hadamard lemma (see Lemma 4.3 below), the operator-function A(·, a, μ) admits an 
expansion
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A(ξ, a,μ) = A(0, a,μ) +
d∑

i=1

∂iA(0, a,μ)ξi+

+ 1

2

d∑
i,j=1

∂i∂jA(0, a,μ)ξiξj +K(ξ, a,μ), |ξ | � δ0(a,μ), (2.3)

with

K(ξ, a,μ) =
d∑

i=1

d∑
j=1

d∑
k=1

ξiξj ξk

1∫
0

ds1s
2
1

1∫
0

ds2 s2

1∫
0

ds3 ∂i∂j ∂kA(s1s2s3ξ).

Applying the Schur test one can easily show that

∥∥∥ d∑
i=1

∂iA(0, a,μ)ξi

∥∥∥� |ξ |μ+M1(a), |ξ | � δ0(a,μ); (2.4)

∥∥∥1

2

d∑
i,j=1

∂i∂jA(0, a,μ)ξiξj

∥∥∥� |ξ |2 1

2
μ+M2(a), |ξ | � δ0(a,μ); (2.5)

‖K(ξ, a,μ)‖ � |ξ |3 1

6
μ+M3(a), |ξ | � δ0(a,μ). (2.6)

We introduce some more notation: F(ξ) denotes the spectral projector of the operator A(ξ, a, μ)

that corresponds to the interval [0, d0/3], the symbol N stands for the kernel KerA(0, a, μ) =
L{1�}. We then denote by P the orthogonal projector on N and set P ⊥ := I − P . Let � be a 
contour on the complex plane that is equidistant to the interval [0, d0/3] and passes through the 
middle point of the interval (d0/3, 2d0/3). By the Riesz formula that reads

F(ξ) = −1

2πi

∮
�

(A(ξ, a,μ) − ζ I )−1dζ, |ξ | � δ0(a,μ), (2.7)

the operator-functions F(ξ) and A(ξ, a, μ)F(ξ), |ξ | � δ0(a, μ), are three times continuously 
differentiable. Therefore, we have

F(ξ) = P +
d∑

i=1

Fiξi + 1

2

d∑
i,j=1

Fij ξiξj + O(|ξ |3), |ξ | → 0; (2.8)

A(ξ, a,μ)F (ξ) = G0 +
d∑

i=1

Giξi + 1

2

d∑
i,j=1

Gij ξiξj + O(|ξ |3), |ξ | → 0. (2.9)

The main goal of this section is to determine the coefficients of expansions (2.8)–(2.9) and to 
estimate the remainders.
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2.2. Computing the coefficients of the expansions of F(ξ) and A(ξ)F (ξ)

From (2.3), (2.6) and (2.8) we derive the relations

G0 = A(0, a,μ)P = 0; (2.10)

Gi = ∂iA(0, a,μ)P +A(0, a,μ)Fi, i = 1, . . . , d; (2.11)

Gij = ∂i∂jA(0, a,μ)P + ∂iA(0, a,μ)Fj + ∂jA(0, a,μ)Fi +A(0, a,μ)Fij , i, j = 1, . . . , d.

(2.12)
Since the operators A(ξ, a, μ)F(ξ) are self-adjoint, the second relation implies that the oper-
ators Gi , i = 1, . . . , d , are also self-adjoint. Consequently, taking into account the inequality 
(A(ξ, a, μ)F(ξ)u, u) � 0, u ∈ L2(�), |ξ | � δ0(a, μ), the equality A(0, a, μ)F(0) = 0 and the 
definition of Gi in (2.11), we conclude that

Gi = ∂iA(0, a,μ)P +A(0, a,μ)Fi = 0, i = 1, . . . , d. (2.13)

Combining (2.9), (2.10) and (2.13) yields the following asymptotic representation:

A(ξ, a,μ)F (ξ) = 1

2

d∑
i,j=1

Gij ξiξj + O(|ξ |3), |ξ | → 0. (2.14)

Since F(ξ) is a spectral projector, we have F 2(ξ) = F(ξ) and thus, recalling that P is the or-
thogonal projection on L{1�}, we obtain

FiP + PFi = Fi, i = 1, . . . , d. (2.15)

The latter relation implies that P ⊥FiP
⊥ = 0 and PFiP = 2PFiP . Therefore, PFiP = 0 and, 

by (2.15),

Fi = P ⊥FiP + PFiP
⊥, i = 1, . . . , d. (2.16)

From the latter inequality and (2.13) we deduce that

∂iA(0, a,μ)P = −A(0, a,μ)Fi = −P ⊥A(0, a,μ)P ⊥Fi = −P ⊥A(0, a,μ)P ⊥FiP,

i = 1, . . . , d.

Finally, we arrive at the following relations:

∂iA(0, a,μ)P = P ⊥∂iA(0, a,μ)P, (2.17)

P ⊥FiP = −P ⊥A(0, a,μ)−1P ⊥∂iA(0, a,μ)P, i = 1, . . . , d; (2.18)

here the notation A(0, a, μ)−1 is used for the operator that is inverse to the operator A(0, a,

μ)|N⊥ : N⊥ �→N⊥. Notice that this operator is well defined.
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Next, considering (2.14), the asymptotic formula F(ξ) = P + O(|ξ |) and the properties of 
the operator A(ξ)F (ξ) = (A(ξ)F (ξ))F (ξ) = F(ξ)(A(ξ)F (ξ)) one has Gij = PGijP , i, j =
1, . . . , d . Consequently, in view of (2.16), relation (2.12) can be rearranged as follows:

Gij = P∂i∂jA(0, a,μ)P + P∂iA(0, a,μ)P ⊥FjP + P∂jA(0, a,μ)P ⊥FiP, i, j = 1, . . . , d.

(2.19)
Substituting the right-hand side of (2.18) for P ⊥FjP in (2.19) yields

Gij = P∂i∂jA(0, a,μ)P − P∂iA(0, a,μ)P ⊥A(0, a,μ)−1P ⊥∂jA(0, a,μ)P−
− P∂jA(0, a,μ)P ⊥A(0, a,μ)−1P ⊥∂iA(0, a,μ)P, i, j = 1, . . . , d. (2.20)

Since P = (·, 1�)1� is a first rank operator, Gij admits a representation Gij = gijP with the co-
efficients gij ∈ C, i, j = 1, . . . , d , that can be computed with the help of formula (2.20). Indeed, 
from the relation P = (·, 1�)1� we obtain

∂jA(0, a,μ)P = i(·,1�)wj with iwj = ∂jA(0, a,μ)1�, j = 1, . . . , d. (2.21)

Due to (2.2) the following equality holds:

wj(x) = wj(x) =
∫
�

∑
n∈Zd

(xj − yj + nj )a(x − y + n)μ(x, y) dy =

=
∫
Rd

(xj − yj )a(x − y)μ(x, y) dy, x ∈ �, j = 1, . . . , d. (2.22)

From (2.17) and (2.21) it follows that, for all j = 1, . . . , d ,

P ⊥A(0, a,μ)−1P ⊥∂jA(0, a,μ)P = i(·,1�)vj , vj = P ⊥A(0, a,μ)−1P ⊥wj . (2.23)

Notice that the functions vj = vj ∈ L2(�), j = 1, . . . , d , satisfy cell problems on � that read⎧⎪⎨⎪⎩
∫
�

ã(0, x − y)μ(x, y)(vj (x) − vj (y)) dy = wj(x), x ∈ �,∫
�

vj (x) dx = 0,
j = 1, . . . , d.

Identifying the functions vj ∈ L2(�), j = 1, . . . , d , with their periodic extensions one can rewrite 
these cell problems as follows:

⎧⎪⎨⎪⎩
∫
Rd

a(x − y)μ(x, y)(vj (x) − vj (y)) dy = ∫
Rd

a(x − y)μ(x, y)(xj − yj ) dy, x ∈ �,∫
�

vj (x) dx = 0.
(2.24)

Making the rearrangements similar to those in (1.6) we conclude that the problems in (2.24) have 
a unique solution. Then, by (2.21) and (2.23), we have
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P∂iA(0, a,μ)P ⊥A(0, a,μ)−1P ⊥∂jA(0, a,μ)P = (vj ,wi)P, i, j = 1, . . . , d, (2.25)

where the functions wj ∈ L2(�), j = 1, . . . , d are defined in (2.22), and the functions vj ∈
L2(�), j = 1, . . . , d , satisfy auxiliary problems (2.24) on the periodicity cell �. In the same way 
one can derive the relations

P∂i∂jA(0, a,μ)P = (wij ,1�)P, i, j = 1, . . . , d. (2.26)

Here wij = wij = ∂i∂jA(0, a, μ)1� ∈ L2(�), that is

wij (x) =
∫
�

∑
n∈Zd

(xi − yi + ni)(xj − yj + nj )a(x − y + n)μ(x, y) dy =

=
∫
Rd

(xi − yi)(xj − yj )a(x − y)μ(x, y) dy, x ∈ �, i, j = 1, . . . , d. (2.27)

Finally, combining the above relations (2.20), (2.22) and (2.25)–(2.27) we conclude that

gij = (wij ,1�) − (vj ,wi) − (vi,wj ) =

=
∫
�

dx

∫
Rd

dy((xi − yi)(xj − yj ) − vj (x)(xi − yi) − vi(x)(xj − yj ))a(x − y)μ(x, y),

i, j = 1, . . . , d. (2.28)

Here the functions vj (x), x ∈ �, j = 1, . . . , d , are defined as solutions of problems (2.24).
It should be noted that there are other methods of computing the coefficients of Taylor expan-

sions for the functions F(ξ) and A(ξ)F (ξ). Two of them are described in Section 4.2.

2.3. Approximation of the operators F(ξ) and A(ξ)F (ξ)

The precision of the above constructed approximations of the operator-functions F(ξ) and 
A(ξ, a, μ)F(ξ) for |ξ | � δ0(a, μ) is estimated in the next statement.

Theorem 2.2. Let conditions (1.1)–(1.4) be fulfilled. Then the following estimates hold:

‖F(ξ) − P ‖ � C1(a,μ)|ξ |, |ξ | � δ0(a,μ); (2.29)

∥∥∥A(ξ, a,μ)F (ξ) − 1

2

d∑
i,j=1

gij ξiξjP

∥∥∥� C2(a,μ)|ξ |3, |ξ | � δ0(a,μ). (2.30)

The constants C1(a, μ) and C2(a, μ) defined in (2.34) and (2.42), respectively, depend only on 
d , μ−, μ+, M1(a), M2(a), M3(a), Aπ (a).
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Proof. By the Riesz formula (2.7), the difference F(ξ) − P admits the representation

F(ξ)−P = −1

2πi

∮
�

(
(A(ξ, a,μ) − ζ I )−1 − (A(0, a,μ) − ζ I )−1

)
dζ, |ξ | � δ0(a,μ). (2.31)

The term 
(
(A(ξ, a,μ) − ζ I )−1 − (A(0, a,μ) − ζ I )−1

)
satisfies the resolvent identity that reads

(A(ξ, a,μ) − ζ I )−1 − (A(0, a,μ) − ζ I )−1 =
= (A(ξ, a,μ) − ζ I )−1 (A(0, a,μ) −A(ξ, a,μ)) (A(0, a,μ) − ζ I )−1,

|ξ | � δ0(a,μ), ζ ∈ �. (2.32)

It remains to notice that the length of the contour � is equal to π+2
3 d0 and that for all ζ ∈ � both 

resolvents satisfy the estimates

‖(A(ξ, a,μ) − ζ I )−1‖ � 6d−1
0 , ‖(A(0, a,μ) − ζ I )−1‖ � 6d−1

0 . (2.33)

Now, as a consequence of (1.34) and (2.31)–(2.33), we obtain (2.29) with

C1(a,μ) := 6(π + 2)π−12dd−1
0 μ+M1(a). (2.34)

Denote

R(ξ, ζ ) := (A(ξ, a,μ) − ζ I )−1, |ξ | � δ0(a,μ), ζ ∈ �;
R0(ζ ) := R(0, ζ ), ζ ∈ �;

�A(ξ) := A(ξ, a,μ) −A(0, a,μ), |ξ | � δ0(a,μ).

Iterating (2.32) we derive the relation

R(ξ, ζ ) = R0(ζ ) − R0(ζ )�A(ξ)R0(ζ )+
+ R0(ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ )−

− R(ξ, ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ ), |ξ | � δ0(a,μ), ζ ∈ �. (2.35)

From (2.3) and (2.35) it follows that

R(ξ, ζ ) = R0(ζ ) − R0(ζ )

d∑
i=1

∂iA(0, a,μ)ξiR0(ζ ) − R0(ζ )
1

2

d∑
i,j=1

∂i∂jA(0, a,μ)ξiξjR0(ζ )+

+ R0(ζ )

d∑
∂iA(0, a,μ)ξiR0(ζ )

d∑
∂jA(0, a,μ)ξjR0(ζ ) − R0(ζ )K(ξ, a,μ)R0(ζ )+
i=1 j=1

173



A. Piatnitski, V. Sloushch, T. Suslina et al. Journal of Differential Equations 352 (2023) 153–188
+ R0(ζ )

d∑
i=1

∂iA(0, a,μ)ξiR0(ζ )�2A(ξ)R0(ζ ) + R0(ζ )�2A(ξ)R0(ζ )�A(ξ)R0(ζ )−

− R(ξ, ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ ), |ξ | � δ0(a,μ), ζ ∈ �. (2.36)

Here

�2A(ξ) := 1

2

d∑
i,j=1

∂i∂jA(0, a,μ)ξiξj +K(ξ, a,μ).

Taking into account (2.36) and the relation

A(ξ, a,μ)F (ξ) = −1

2πi

∮
�

(A(ξ, a,μ) − ζ I )−1ζ dζ, |ξ | � δ0(a,μ), (2.37)

we obtain the following representations for the coefficients of the expansion in (2.9):

G0 = −1

2πi

∮
�

R0(ζ )ζ dζ ; (2.38)

Gi = 1

2πi

∮
�

R0(ζ )∂iA(0, a,μ)R0(ζ )ζ dζ, i = 1, . . . , d; (2.39)

Gij = 1

2πi

∮
�

R0(ζ )∂i∂jA(0, a,μ)R0(ζ )ζ dζ−

− 1

2πi

∮
�

R0(ζ )
(
∂iA(0, a,μ)R0(ζ )∂jA(0, a,μ) + ∂jA(0, a,μ)R0(ζ )∂iA(0, a,μ)

)
R0(ζ )ζ dζ,

i, j = 1, . . . , d. (2.40)

Due to (2.10) and (2.13) we have G0 = 0, Gi = 0, i = 1, . . . , d ; then the representation (2.9)
takes the form (2.14) with Gij = gijP and gij ∈ C introduced in (2.28). In view of (2.36) and 
(2.37) the discrepancy in the expansion (2.14) admits the following representation:

A(ξ, a,μ)F (ξ) − 1

2

d∑
i,j=1

Gij ξiξj = 1

2πi

∮
�

R0(ζ )K(ξ, a,μ)R0(ζ )ζ dζ−

− 1

2πi

∮
�

R0(ζ )

d∑
i=1

∂iA(0, a,μ)ξiR0(ζ )�2A(ξ)R0(ζ )ζ dζ−

− 1

2πi

∮
R0(ζ )�2A(ξ)R0(ζ )�A(ξ)R0(ζ )ζ dζ+
�
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+ 1

2πi

∮
�

R(ξ, ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ )�A(ξ)R0(ζ )ζ dζ, |ξ | � δ0(a,μ). (2.41)

Since |ζ | � d0/2 for ζ ∈ �, the relations in (2.41) and estimates (2.4)–(2.6), (2.33) imply (2.30)
with C2(a, μ) given by the formula

C2(a,μ) := π + 2

2π

(
μ+M3(a) + μ2+

d0

(
3M2(a) + M3(a)

)(
12M1(a) + 3M2(a) + M3(a)

)
+

+ μ3+
d2

0

(6M1(a) + 3M2(a) + M3(a))3

)
. � (2.42)

2.4. Approximation of the resolvent of operator A(ξ)

In this section our goal is to approximate the resolvent of the operator A(ξ, a, μ) in the vicinity 
of the lower edge of its spectrum. By (1.32) we have

(A(ξ, a,μ)F (ξ)u,u) � μ−C(a)|ξ |2(F (ξ)u,u), u ∈ L2(�), |ξ | � δ0(a,μ). (2.43)

Substituting P + O(|ξ |) for F(ξ) in (2.43) and considering (2.14) we derive the relation

1

2

d∑
i,j=1

gij ξiξj‖Pu‖2 � μ−C(a)|ξ |2‖Pu‖2 + O(|ξ |3), |ξ | → 0.

We then divide this relation by |ξ |2, set u = 1� and send ξ to zero in order to obtain the following 
inequality:

1

2

d∑
i,j=1

gij θiθj � μ−C(a), θ ∈ Sd−1,

which finally yields

1

2

d∑
i,j=1

gij ξiξj � μ−C(a)|ξ |2, ξ ∈Rd . (2.44)

Theorem 2.3. Assume that conditions (1.1)–(1.4) hold. Then the following estimate is valid:

∥∥∥(A(ξ, a,μ) + ε2I )−1 −
(1

2

d∑
i,j=1

gij ξiξj + ε2
)−1

P

∥∥∥� S(a,μ)ε−1, ε > 0, |ξ | � δ0(a,μ).

(2.45)
Here the constant S(a, μ) is given by the formula

S(a,μ) := 2C1(a,μ)

1/2 + C2(a,μ)

3/2 + (2d0/3)−1/2
(μ−C(a)) (μ−C(a))
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and, in view of (1.24), (2.1), (2.34) and (2.42), this constant depends only on d , μ−, μ+, M1(a), 
M2(a), M3(a), M(a), Aπ (a) and Ar(a)(a).

Proof. Combining an evident inequality

‖(A(ξ, a,μ) + ε2I )−1(I − F(ξ))‖ � (2d0/3)−1, |ξ | � δ0(a,μ), (2.46)

with (1.32) and (2.44) results in the following estimates:

‖(A(ξ, a,μ)F (ξ) + ε2I )−1F(ξ)‖ � (μ−C(a)|ξ |2 + ε2)−1, ε > 0, |ξ | � δ0(a,μ); (2.47)∥∥∥(1

2

d∑
i,j=1

gij ξiξj + ε2
)−1

P

∥∥∥� (μ−C(a)|ξ |2 + ε2)−1, ε > 0, |ξ | � δ0(a,μ). (2.48)

Since (A(ξ, a, μ) + ε2I )−1F(ξ) = F(ξ)(A(ξ, a, μ) + ε2I )−1F(ξ), after straightforward rear-
rangements we obtain

(A(ξ, a,μ) + ε2I )−1F(ξ) −
(1

2

d∑
i,j=1

gij ξiξj + ε2
)−1

P =

= F(ξ)(A(ξ, a,μ) + ε2I )−1(F (ξ) − P) + (F (ξ) − P)
(1

2

d∑
i,j=1

gij ξiξj + ε2
)−1

P+

+F(ξ)(A(ξ, a,μ)+ ε2I )−1

⎛⎝1

2

d∑
i,j=1

gij ξiξjP −A(ξ, a,μ)F (ξ)

⎞⎠(1

2

d∑
i,j=1

gij ξiξj + ε2
)−1

P,

ε > 0, |ξ | � δ0(a,μ). (2.49)

Now (2.45) follows from (2.29), (2.30) and (2.46)–(2.49). �
3. Homogenization of convolution type operators

We assume that conditions (1.1)–(1.4) hold and consider a family of nonlocal operators in 
L2(Rd) which are defined as follows:

Aεu(x) := ε−d−2
∫
Rd

a((x − y)/ε)μ(x/ε, y/ε)(u(x) − u(y))dy, x ∈ Rd, u ∈ L2(R
d), ε > 0.

Recalling the definition of the coefficients gij in (2.28) we introduce the so called effective op-
erator which is a symmetric second order elliptic operator with constant coefficients in Rd that 
reads

A0 := 1

2

d∑
gijDiDj = −divg0∇.
i,j=1
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A (d × d)-matrix g0 with the entries 1
2gij , i, j = 1, . . . , d , is called the effective matrix. Due to 

estimate (2.44) this matrix is positive definite. Our main result is given by

Theorem 3.1. Let conditions (1.1)–(1.4) be satisfied. Then the following estimate holds:

‖(Aε + I )−1 − (A0 + I )−1‖ � C(a,μ)ε, ε > 0, (3.1)

with the constant C(a, μ) defined by the formula

C(a,μ) := 2√
μ−C(a) δ0(a,μ)

+ S(a,μ),

where C(a) is introduced in (1.24), while δ0(a, μ) and S(a, μ) are defined in Section 2.1 and 
in Theorem 2.3, respectively. The constant C(a, μ) depends only on μ−, μ+, d , M1(a), M2(a), 
M3(a), M(a), Aπ (a) and Ar(a)(a).

Proof. Consider a family of scaling transformations of the form

Tεu(x) := εd/2u(εx), x ∈ Rd, u ∈ L2(R
d), ε > 0.

Notice that Tε are unitary operators and that TεAεT
∗
ε = ε−2A(a, μ). Consequently, by (1.8) we 

have

(Aε + I )−1 = T ∗
ε ε2(A+ ε2I )−1Tε = T ∗

ε G∗[ε2(A(ξ, a,μ) + ε2I )−1]GTε =
= T ∗

ε G∗[ε21|ξ |�δ0(a,μ)(A(ξ, a,μ) + ε2I )−1]GTε+
+ T ∗

ε G∗[ε21|ξ |>δ0(a,μ)(A(ξ, a,μ) + ε2I )−1]GTε, ε > 0. (3.2)

Estimate (1.32) and the relations in (3.2) imply the inequality∥∥∥(Aε + I )−1 − T ∗
ε G∗[ε21|ξ |�δ0(a,μ)(A(ξ, a,μ) + ε2I )−1]GTε

∥∥∥� ε√
μ−C(a) δ0(a,μ)

, ε > 0.

(3.3)
It also follows from estimates (2.45) and (3.3) that

∥∥∥(Aε + I )−1 − T ∗
ε G∗[ε21|ξ |�δ0(a,μ)

(1

2

d∑
i,j=1

gij ξiξj + ε2
)−1

P ]GTε

∥∥∥�

� ε√
μ−C(a) δ0(a,μ)

+ S(a,μ)ε, ε > 0. (3.4)

As was shown for example in [52] or [3], for any H ∈ L∞(�̃) the relation G∗[H(ξ)P ]G =
�∗[1�̃(ξ)H(ξ)]� holds, where the symbol � stands for the Fourier transform. It remains to 
note that estimate (3.1) is a direct consequence of (2.44) and (3.4). �

We conclude this section with two almost obvious remarks.
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Remark 3.2. Theorem 3.1 remains valid if, in condition (1.3), the cubic lattice Zd is replaced 
with an arbitrary periodic lattice � in Rd . Under such replacement, the constant C in estimate 
(3.1) depends not only on the functions a and μ, but also on the lattice parameters. The coeffi-
cients of the homogenized operator A0 are still determined by relations (2.24) and (2.28), where 
� is the cell of the lattice �.

Remark 3.3. Suppose that, in Theorem 3.1, condition (1.4) is modified as follows:

Mk(a) :=
∫
Rd

|x|ka(x) dx < ∞, for k = 1,2, k0

with k0 that satisfies the inequalities 2 < k0 < 3. Then instead of (3.1) we have

‖(Aε + I )−1 − (A0 + I )−1‖ � Cεk0−2, ε > 0.

Here the constant C depends on a, μ and k0.

4. Appendix

4.1. Schur test and Hadamard lemma

In this section for the reader convenience we recall the statements of two classical results. We 
begin with a simple version of the Schur test.

Lemma 4.1 (Schur test). Let (X , dρ) and (Y, dτ) be separable measurable spaces with σ -finite 
measures, and assume that B : L2(Y, dτ) → L2(X , dρ) is a linear integral operator with a 
kernel b(x, y), x ∈X , y ∈ Y . Assume furthermore that the following conditions hold:

α := ρ-ess sup
x∈X

∫
Y

|b(x, y)|dτ(y) < +∞,

β := τ -ess sup
y∈Y

∫
X

|b(x, y)|dρ(x) < +∞.

Then the operator B is bounded and satisfies the estimate ‖B‖ � (αβ)1/2.

Recalling the notation � := [0, 1)d and letting � := [−1, 1]d we derive from the latter theo-
rem the following result:

Corollary 4.2. For any functions ϕ ∈ L1(�) and ψ ∈ L∞(� × �) the operator B : L2(�) →
L2(�) given by

Bu(x) :=
∫
�

ϕ(x − y)ψ(x, y)u(y)dy, x ∈ �, u ∈ L2(�),

is compact and satisfies the estimate
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‖B‖ � ‖ϕ‖L1(�)‖ψ‖L∞(�×�). (4.1)

Proof. By Lemma 4.1 the operator B is bounded, and estimate (4.1) holds. To show that B is 
compact we choose a sequence of functions {ϕn}∞n=1 ⊂ C∞

0 (�) such that ‖ϕn − ϕ‖L1(�) → 0 as 
n → ∞. Denote by Bn the operators with the kernels ϕn(x − y)ψ(x, y), x, y ∈ �. By (4.1) we 
have

‖Bn −B‖ � ‖ϕn − ϕ‖L1(�)‖ψ‖L∞(�×�) → 0, n → ∞.

Since for each n ∈N the kernel ϕn(x − y)ψ(x, y), x, y ∈ �, is bounded and � is a compact set, 
then Bn are Hilbert-Schmidt operators. Therefore, B is compact. �

Next, we formulate a version of the Hadamard lemma which is used in this work.

Lemma 4.3 (Hadamard lemma). Let a function f (x), x ∈ Rd , be three times continuously dif-
ferentiable. Then it admits the following representation:

f (y) = f (0) +
d∑

i=1

yi∂if (0) + 1

2

d∑
i=1

d∑
j=1

yiyj ∂i∂jf (0)+

+
d∑

i=1

d∑
j=1

d∑
k=1

yiyj yk

1∫
0

ds1s
2
1

1∫
0

ds2 s2

1∫
0

ds3 ∂i∂j ∂kf (s1s2s3y), y ∈ Rd .

4.2. Other methods of determining the coefficients in (2.9)

We call the method of computing the coefficients in (2.9) that was used in Section 2.2 the first 
method. In this section we describe two other methods.

Second method. For sufficiently small ξ ∈ Rd we define

ϕ(ξ) := F(ξ)1�, e(ξ) := ϕ(ξ)/‖ϕ(ξ)‖, λ(ξ) := (A(ξ, a,μ)e(ξ), e(ξ)).

Then λ(ξ) is the lowest eigenvalue of the operator A(ξ, a, μ), and e(ξ) is the corresponding 
normalized eigenfunction. The eigenvalue λ(ξ) is simple. Therefore, by the Riesz formula, see 
(2.7), the functions ϕ(ξ), e(ξ) and λ(ξ) are C3 smooth functions of ξ in some neighbourhood of 
zero, and the Taylor formula yields

λ(ξ) = λ0 +
d∑

i=1

λiξi + 1

2

d∑
i,j=1

λij ξiξj + O(|ξ |3), ξ → 0; (4.2)

e(ξ) = e0 +
d∑

i=1

eiξi + 1

2

d∑
i,j=1

eij ξiξj + O(|ξ |3), ξ → 0. (4.3)

Since λ(0) = 0 and λ(ξ) � 0 in the vicinity of zero, then λi = 0, i = 1, . . . , d . We also have 
e0 = e(0) = 1�. Combining (4.2), (4.3) and the equality
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A(ξ, a,μ)F (ξ) = λ(ξ)(·, e(ξ))e(ξ),

we obtain the following formulas for the coefficients in (2.9):

G0 = 0, Gi = 0, i = 1, . . . , d, Gij = λij (·,1�)1� = λijP, i, j = 1 . . . , d. (4.4)

It remains to compute λij . Inserting the expansions (2.3), (4.2) and (4.3) in the relation

A(ξ, a,μ)e(ξ) = λ(ξ)e(ξ),

and comparing the coefficients of the first and the second order terms in the resulting relation we 
conclude that

A(0, a,μ)ei + ∂iA(0, a,μ)1� = 0, i = 1, . . . , d; (4.5)

A(0, a,μ)eij + ∂iA(0, a,μ)ej + ∂jA(0, a,μ)ei + ∂i∂jA(0, a,μ)1� = λij 1�, i, j = 1, . . . , d.

(4.6)
From (4.5) we deduce that

∂iA(0, a,μ)1� = P ⊥∂iA(0, a,μ)1�, i = 1, . . . , d; (4.7)

P ⊥ei = −P ⊥A(0, a,μ)−1P ⊥∂iA(0, a,μ)1�, (4.8)

and (4.6) yields the relation

λij = (λij 1�,1�) = (A(0, a,μ)eij ,1�) + (∂iA(0, a,μ)ej ,1�) + (∂jA(0, a,μ)ei,1�)+
+ (∂i∂jA(0, a,μ)1�,1�), i, j = 1, . . . , d. (4.9)

Considering (4.7) and the equality (A(0, a, μ)eij , 1�) = (eij , A(0, a, μ)1�) = 0 we obtain

(∂iA(0, a,μ)ej ,1�) = (ej , ∂iA(0, a,μ)1�) = (P ⊥ej , ∂iA(0, a,μ)1�) =
= (∂iA(0, a,μ)P ⊥ej ,1�), i, j = 1, . . . , d.

Finally, this relation combined with (4.8) and (4.9) implies that

λij = ((∂i∂jA(0, a,μ) − ∂iA(0, a,μ)P ⊥A(0, a,μ)−1P ⊥∂jA(0, a,μ))1�,1�)−
− (∂jA(0, a,μ)P ⊥A(0, a,μ)−1P ⊥∂iA(0, a,μ))1�,1�), i, j = 1, . . . , d, (4.10)

and (2.20) follows from (4.10) and (2.20).
Third method. The first method described above is not efficient for obtaining the higher order 

terms of the asymptotics of the operator A(ξ, a, μ)F(ξ) and thus for obtaining a more precise 
approximation of the resolvent (Aε + I )−1. The second method fails to work in the case of a 
system of equations if the lowest eigenvalue of the operator A(0, a, μ) is not simple.

Here we consider the third method of computing the coefficients in (2.9) that does not have 
the mentioned demerits. The coefficients of expansion (2.9) are given by the contour integrals 
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(2.38)–(2.40). The computation is based on the following representation of the resolvent of op-
erator A(0, a, μ):

R0(ζ ) = R0(ζ )P + R0(ζ )P ⊥ = − 1

ζ
P + R0(ζ )P ⊥, ζ ∈ �. (4.11)

We substitute the right-hand side of (4.11) for R0(ζ ) in the contour integrals in (2.38) and (2.39)
and use the fact that the operator-function R⊥

0 (ζ ) := R0(ζ )P ⊥ is holomorphic inside the contour 
�. This yields the relations G0 = 0 and

Gi = −1

2πi

∮
�

(
− 1

ζ
P + R⊥

0 (ζ )
)
∂iA(0, a,μ)

(
− 1

ζ
P + R⊥

0 (ζ )
)
ζ dζ =

= −1

2πi

∮
�

(
− 1

ζ
P
)
∂iA(0, a,μ)

(
− 1

ζ
P
)
ζ dζ = −P∂iA(0, a,μ)P, i = 1, . . . , d.

As an immediate consequence of (2.13) we have

P∂iA(0, a,μ)P = 0, i = 1, . . . , d. (4.12)

We insert expansion (4.11) in (2.40), take into account the fact that the operator-function R⊥
0 (ζ )

is holomorphic inside the contour �, and use the equality

1

2πi

∮
�

1

ζ
R⊥

0 (ζ ) dζ = P ⊥A(0, a,μ)−1P ⊥

and (4.12). This leads to the desired representation (2.20).

4.3. Estimates of the constants Ar (a) and M(a)

This section focuses on estimates of the constants Ar (a), r > 0, and M(a) defined in 
(1.18)–(1.21) in terms of ‖a‖L1 , ‖a‖L2 and Mk(a), k = 1, 2, 3. Here we assume that condi-
tions (1.1)–(1.4) are fulfilled and that in addition a ∈ L2(Rd). The following upper bounds are 
trivial:

Ar (a) � 2‖a‖L1, r > 0; (4.13)

M(a) � M2(a). (4.14)

We turn to the lower bounds.

Lemma 4.4. Let conditions (1.1) and (1.4) hold. Then the following lower bound is valid:∫
a(z) dz � 7

8
‖a‖L1, ρ � ρ0(a) := 2M

1/3
3 (a)‖a‖−1/3

L1
. (4.15)
|z|�ρ
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Proof. The desired estimate (4.15) follows from the inequalities∫
|z|>ρ

a(z) dz � ρ−3
∫

|z|>ρ

|z|3a(z) dz � ρ−3M3(a), ρ > 0. �

Define a set �θ
r (a) := {z ∈ Rd : |z| � ρ0(a), |〈z, θ〉| � r}, r > 0, θ ∈ Sd−1. It is straight-

forward to check that

meas�θ
r (a) � 2r�d−1ρ

d−1
0 (a), (4.16)

where �d−1 is the volume of a unit ball in Rd−1.

Lemma 4.5. Let conditions (1.1) and (1.4) be satisfied, and assume that a ∈ L2(Rd). Then the 
following lower bound holds:

∫
Bρ0(a)(0)\�θ

r (a)

a(z)dz � 1

2
‖a‖L1, |θ | = 1, r ∈ (0, r0(a)],

r0(a) :=
(3

8
‖a‖L1

)2(
2�d−1ρ

d−1
0 (a)‖a‖2

L2

)−1
. (4.17)

Here the constant ρ0(a) has been defined in (4.15).

Proof. By (4.16) and the Cauchy-Schwartz inequality, we obtain the estimates∫
�θ

r (a)

a(z)dz � ‖a‖L2

(
meas�θ

r (a)
)1/2

�
(

2r�d−1ρ
d−1
0 (a)

)1/2‖a‖L2, r > 0, |θ | = 1. (4.18)

Now (4.17) is a consequence of (4.15) and (4.18). �
The next statement gives a lower bound for the constant M(a).

Lemma 4.6. Under the conditions of Lemma 4.5 we have

M(a) � 1

2
‖a‖L1r0(a)2, (4.19)

where r0(a) has been defined in (4.17).

Proof. By (4.17) for any θ ∈ Sd−1 the following estimates hold:

Ma(θ) =
∫
Rd

a(z)〈z, θ〉2dz �
∫

Bρ0(a)(0)\�θ
r0(a)

(a)

a(z)〈z, θ〉2dz � 1

2
‖a‖L1r

2
0 (a).

Combining these estimates with (1.21) yields (4.19). �
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�

Lemma 4.7. Let the conditions of Lemma 4.5 hold. Then the function Â(y) defined in (1.18)
admits the estimate

Â(y) � 1

8
‖a‖L1r

2
0 (a)|y|2, |y| � (2ρ0(a))−1;

here ρ0(a) and r0(a) have been introduced in (4.15) and (4.17), respectively.

Proof. Consider the set of y ∈ Rd such that 0 < |y| � (2ρ0(a))−1, and denote by θ the vector 
y/|y|. Taking into account an elementary estimate 1 − cos t � 1

4 t2, |t | � 1/2, by Lemma 4.5, we 
obtain

Â(y) =
∫
Rd

(1 − cos〈z, y〉)a(z) dz �
∫

Bρ0(a)

(1 − cos〈z, y〉)a(z) dz � 1

4

∫
Bρ0(a)

〈z, y〉2a(z) dz �

� 1

4
|y|2

∫
Bρ0(a)\�θ

r0(a)
(a)

〈z, θ〉2a(z) dz � 1

8
|y|2‖a‖L1r

2
0 (a).

Introducing the notation

Qy
τ (a) := {z ∈ Bρ0(a)(0) : 1 − cos〈z, y〉 � τ }, |y| � (2ρ0(a))−1, τ ∈ (0,1/2],

one can easily check that the following relation is valid:

Qy
τ (a) =

⋃
n∈Z

Q
y
τ,n(a),

Q
y
τ,n(a) := {z ∈ Bρ0(a)(0) : 2πn − arccos(1 − τ) � 〈z, y〉 � 2πn + arccos(1 − τ)},

|y| � (2ρ0(a))−1, τ ∈ (0,1/2]. (4.20)

Lemma 4.8. Assume that conditions (1.1) and (1.4) are fulfilled. Then the following estimates 
take place:

#{n ∈Z : Q
y
τ,n(a) 
= ∅} � π−1|y|ρ0(a) + 2, |y| � (2ρ0(a))−1, τ ∈ (0,1/2]; (4.21)

measQ
y
τ,n(a) � 2|y|−1 arccos(1 − τ)�d−1ρ

d−1
0 (a), |y| � (2ρ0(a))−1, τ ∈ (0,1/2]. (4.22)

Proof. By the definition of Qy
τ,n(a), for any vector z ∈ Q

y
τ,n(a) we have{

(2n − 1)π � 〈z, y〉 � (2n + 1)π,

−|y|ρ0(a) � 〈z, y〉 � |y|ρ0(a).

Consequently, if the set Qy
τ,n(a) is not empty, then the following inequalities hold:{−|y|ρ0(a) � (2n + 1)π,

(2n − 1)π � |y|ρ (a).
0
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Thus for such sets Qy
τ,n(a) we obtain the estimate |n| � (2π)−1|y|ρ0(a) + 1/2, which in turn 

implies (4.21).
In order to estimate the measure of Qy

τ,n(a), one can choose an orthonormal basis in Rd in 
such a way that the first coordinate vector is directed along the vector y. Under this choice, for 
any z ∈ Q

y
τ,n(a), we obtain the inequalities

2πn − arccos (1 − τ) � z1|y| � 2πn + arccos (1 − τ), z2
2 + · · · + z2

d � ρ2
0(a).

This yields (4.22). �
From (4.20)–(4.22) we deduce

Lemma 4.9. Under conditions (1.1) and (1.4) the following estimate is satisfied:

measQy
τ (a) � arccos(1 − τ)N(a),

with N(a) :=
( 2

π
+ 8
)
�d−1ρ

d
0 (a), |y| � (2ρ0(a))−1, τ ∈ (0,1/2]; (4.23)

here the quantity ρ0(a) is defined in (4.15).

Using the Cauchy-Schwartz inequality we derive from (4.23) that∫
Q

y
τ (a)

a(z) dz � ‖a‖L2

(
arccos(1 − τ)N(a)

)1/2
, |y| � (2ρ0(a))−1, τ ∈ (0,1/2]. (4.24)

Now our aim is to construct a semi-open interval (0, τ0(a)] ⊂ (0, 1/2] such that for all τ ∈
(0, τ0(a)] the right-hand side in (4.24) does not exceed 3

8‖a‖L1 . To this end we can choose

τ0(a) :=

⎧⎪⎨⎪⎩
1/2, if

(
3
8‖a‖L1‖a‖−1

L2

)2
> πN(a);

min
{

1/2,1 − cos
(
N(a)−1

(
3
8‖a‖L1‖a‖−1

L2

)2)}
, otherwise.

(4.25)

Considering (4.15), (4.24) and (4.25) we obtain

Lemma 4.10. Under the assumptions of Lemma 4.5 the following estimate holds:∫
Bρ0(a)(0)\Qy

τ (a)

a(z)dz � 1

2
‖a‖L1, |y| � (2ρ0(a))−1, 0 < τ � τ0(a); (4.26)

here ρ0(a) and N(a) are defined in (4.15) and (4.23), respectively.

As a consequence of the latter statement we have
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Lemma 4.11. Under the conditions of Lemma 4.5 the following estimate is satisfied:

Â(y) � 1

2
‖a‖L1τ0(a), |y| � (2ρ0(a))−1;

here the constants ρ0(a) and τ0(a) are introduced in (4.15) and (4.25), respectively.

Finally, recalling the definition of r0(a) in (4.17) and that of τ0(a) in (4.25), and taking into 
account (4.13) and (4.14), by Lemmas 4.6, 4.7 and 4.11, we obtain

Proposition 4.12. Let conditions (1.1) and (1.4) be fulfilled, and assume that a ∈ L2(Rd). Then 
the following estimates hold:

1

2
‖a‖L1r0(a)2 �M(a) � M2(a);

min{1

8
‖a‖L1r0(a)2r2,

1

2
‖a‖L1τ0(a)} � Ar (a) � 2‖a‖L1, r > 0.

Remark 4.13. If the assumptions of Proposition 4.12 hold, then M(a) can be estimated from be-
low by a positive constant that depends only on d , ‖a‖L1 , ‖a‖L2 and M3(a), while Ar (a) admits 
a lower bound by a positive constant that depends on the same parameters and r . Furthermore, un-
der the same assumptions, the constant C(a, μ) introduced in Theorem 3.1 satisfies the estimate 
C(a, μ) � C̃ > 0, where C̃ depends only on μ−, μ+, d, ‖a‖L1, ‖a‖L2 and Mj(a), j = 1, 2, 3.
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