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Abstract—This paper investigates the throughput of
a non-orthogonal multiple access (NOMA)-based cogni-
tive radio (CR) system with multiple unmanned aerial
vehicle (UAV)-assisted relays under system performance
and security constraints. We propose a communication
protocol that includes an energy harvesting (EH) phase
and multiple communication phases. In the EH phase,
the multiple UAV relays (URs) harvest energy from a
power beacon. In the first communication phase, a sec-
ondary transmitter (ST) uses the collected energy to
send confidential signals to the first UR using NOMA.
Simultaneously, a ground base station communicates with
a primary receiver (PR) under interference from the ST. In
the subsequent communication phases, the next URs apply
the decode-and-forward technique to transmit the signals.
In the last communication phase, the Internet of Things
destinations (IDs) receive their signals in the presence of an
eavesdropper (EAV). Accordingly, the outage probability
of the primary network, the throughput of the secondary
network, and the leakage probability at the EAV are
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analyzed. On this basis, we propose a hybrid search
method combining particle swarm optimization (PSO)
and continuous genetic algorithm (CGA) to optimize the
UR configurations and the NOMA power allocation to
maximize the throughput of the secondary network under
performance and security constraints.

Index Terms—Cognitive Radio (CR), Non-Orthogonal
Multiple Access (NOMA), Unmanned Aerial Vehicle
(UAV), Hybrid CGA-PSO, Security Constraints

I. INTRODUCTION

Cognitive radio (CR) is widely regarded as a po-
tential solution for addressing the issue of spectrum
scarcity, which has been exacerbated by the massive
growth of wireless data traffic in fifth generation
(5G) communication systems and beyond [1]. More
specifically, CR provides public access to underused
spectral bands, allowing unlicensed (cognitive) users
to exploit the licensed spectrum from an opportunis-
tic standpoint and hence economically enhancing
the overall spectral efficiency [2].

Furthermore, considering the requirements of 5G
systems, especially spectral efficiency and massive-
scale connectivity, non-orthogonal multiple access
(NOMA) can be a complementary solution to the
CR technique because it provides the capacity to
boost connectivity when restricted radio resources
are available [3]. In NOMA, the entire bandwidth
may be used simultaneously by different users at
different power levels [4]. For example, the authors
of [5] investigated a relaying scheme in a NOMA-
based CR (CR-NOMA) system with a primary
transmitter (PT), a primary receiver (PR), a sec-
ondary transmitter (ST), a relay, and two secondary
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receivers (SRs). Closed-form expressions for the
outage probability were derived to evaluate the sys-
tem performance of the two SRs over both Rayleigh
fading and Nakagami-m fading channels. As an
extension of this work, Z. Xiang et al. considered
a CR-NOMA system with a PT, an ST, multiple
PRs, and multiple SRs. The authors concluded that
the combination of NOMA and CR can reduce
the mutual interference among signals and that the
system throughput for a massive number of users is
better with NOMA than it is with orthogonal mul-
tiple access (OMA) [6]. However, these two works
focused only on fixed power allocation, which can-
not support optimization of the system performance.
To solve this issue, this work investigates dynamic
power allocation and finds the optimal values of
the power allocation factors to improve the system
performance.

Building on the previous efforts discussed above,
[3] studied the outage and throughput performance
of a CR-NOMA system. Specifically, the secondary
network used NOMA and decode-and-forward (DF)
relays to deliver information from a ground base
station (GBS) to the SRs. The authors derived
closed-form expressions for the outage probabilities
and then obtained a closed-form expression for
the optimal power allocation (OPA) factors at the
GBS to maximize the throughput of the secondary
network in the studied CR-NOMA system. They
concluded that through optimization of the OPA fac-
tors, the system performance of the secondary net-
work in CR-NOMA can be significantly improved
compared to equal and random power allocation
schemes. Nonetheless, the large-scale connectivity
and obstruction by obstacles in CR networks cause
a decrease in system throughput.

To address the above challenges, unmanned aerial
vehicle (UAV)-assisted relaying is an effective
means of improving the system performance [7],
[8]. A UAV has an enhanced likelihood of line-of-
sight (LoS) conditions because of its ability to adapt
its pose to circumvent barriers [9]. For example,
[8] investigated the achievable rates of a CR system
with a UAV-assisted relay. To analyze the system
performance, the authors derived an expression for
the power level that maximizes both the primary
and secondary rates. They concluded that UAV-
assisted relaying may be used in conjunction with
CR technology to increase both rates by exploiting
the flexibility, independence, and other qualities of

UAVs. However, a UAV’s operation is dependent on
battery power. Hence, a network aided by UAVs is
an energy-constrained network.

In an energy-constrained network, radio fre-
quency (RF) energy harvesting (EH) is an effective
and environmentally friendly method for recharging
batteries. Consequently, the concept of EH has at-
tracted considerable attention as a viable strategy for
overcoming the energy limits of UAV-assisted net-
works [10]–[13]. For example, [10] focused on a CR
network in which a UAV was used as a relay, i.e., a
UAV relay (UR), to support communication from an
ST to an SR. Then, an optimization algorithm was
proposed to achieve the optimal system performance
for the UAV CR network. The numerical results
showed that the proposed algorithm could achieve
a fast coverage rate and optimize the UAV path.
Notably, however, interference with the secondary
network from the primary network was not consid-
ered in that work.

To address this shortcoming, [13] investigated
the interference issue for a cooperative transmis-
sion mechanism in a CR network in which the
primary and secondary networks shared a dedicated
RF source with DF UAV selection. The numerical
results of a simulation verified the mechanism’s
efficiency and the correctness of the calculation.
However, the NOMA technique was not considered
in that work. Hence, the authors of [11] addressed
the case of CR-NOMA using an EH UAV relay. The
UAV harvested energy from the RF signals from
source nodes. The authors obtained closed-form
expressions for the harvested energy and throughput
and then optimized the power allocation to maxi-
mize the network throughput. They concluded that
the EH technique can minimize power consumption
and increase throughput.

However, UAVs also face security issues as a re-
sult of their radio broadcast features. Consequently,
such issues have become a prominent research
topic in recent years, with many scientists study-
ing communication secrecy and privacy protection
[13], [14]. In this context, secure physical-layer
transmission has gained widespread acceptance as
a viable solution for ensuring wireless transmission
secrecy in the future [13], [14]. For example, [13]
investigated a CR system in which an ST can sense
a dedicated DF source of a PT in order to transmit
signals to SRs with DF UAV selection and EH in
a cognitive network under monitoring by an eaves-
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dropper (EAV). The authors then derived closed-
form expressions for the secrecy outage probability
(SOP) and the probability of a nonzero secrecy
capacity by using the function analysis method to
evaluate the secrecy performance. The quantitative
results indicated that the proposed system using
physical-layer security technology can achieve im-
proved system security. However, the authors as-
sumed perfect channel state information (CSI) and
successive interference cancellation (SIC), which
is impossible to guarantee in a practical scenario.
To overcome these drawbacks, this work considers
large-scare connectivity, obstruction by obstacles,
energy constraints, security problems, and imper-
fect CSI and SIC to develop an analysis that can
generalize well to practical scenarios.

Based on the obtained closed-form expressions,
many optimization methods have been proposed
to find the best UAV positions or the best power
allocation or EH time with the aim of maximizing
throughput or security probabilities. However, there
are no previous works that have collectively opti-
mized all relevant parameters while simultaneously
considering security constraints. Moreover, the ex-
isting heuristic optimization methods for cognitive
systems are not good enough for our problem, which
is a complex problem with a high-dimensional
search space in which the number of UAVs and their
positions can be varied. Certainly, an exhaustive
brute-force search would not be applicable even
with discretization of the continuous search space
because the high dimensionality of the search space
would lead to combinatorial explosion.

Moreover, calculus-based optimization methods
such as gradient descent, the Newton–Raphson
method, and the conjugate gradient method are
suitable only for either convex or single-maximum
objective functions. For our problem, suboptimal
heuristic search methods are more suitable because
they allow both uphill search and random search
simultaneously using knowledge of multiple indi-
vidual solution candidates. This can help the search
escape from local maxima and increases the prob-
ability of finding the global maximum. There are
several popular algorithms of this kind that have
recently been applied to solve optimization prob-
lems, including simulated annealing (SA), genetic
algorithms (GAs), and particle swarm optimization
(PSO) [15]–[20]. Due to the demand for real-time
response and better results, a few updated versions

of these methods have also been developed by
combining two of them, as in [21]–[24].

In these updated methods, a GA and PSO are
usually the best candidates for combination because
PSO has the advantage of quick convergence, while
a GA can achieve efficient exploration [21], [22].
In [21], a hybrid algorithm combining PSO with a
GA was presented in which every candidate in the
population is forced to move twice with certain ve-
locities. One move is toward the current global best
candidate, and the other is toward the candidate’s
own historical best solution. These movements re-
place the GA phases of crossover and mutation. This
method achieves better objective results than PSO
because it allows more exploration in the search
process by making candidates move not only toward
the global best solution but also toward their own
best versions. However, the exploration ability of
this method is still insufficient; consequently, the
search usually becomes trapped in a local maximum
when dealing with a problem with multiple local
maxima, such as ours.

Another hybrid GA-PSO method was proposed
in [22], attempting to utilize the exploration ability
of a GA by randomly dividing the whole population
into two subpopulations at the beginning of every
generation. Then, one subpopulation is evolved with
the GA, while the other is evolved with PSO. This
algorithm also yields improved objective values
since the probability of escaping from local max-
ima is higher. Nevertheless, the trade-off between
the run time and the final objective value remains
significant.

To overcome the weaknesses of [21] (weak explo-
ration) and [22] (strong exploration but a long run
time), this work aims to develop another heuristic
algorithm that inherits the strengths of both the GA
and PSO approaches in a simpler and more clever
way, mitigating the trade-off of run time for a higher
final objective value.

As seen from the above summary, no existing
work using multihop EH URs in a CR-NOMA
network has studied system performance optimiza-
tion for the secondary network under constraints
on the outage probability of the primary network
and the leakage probability at the EAV. More gen-
erally, no previous work has considered the high-
dimensional optimization problem of optimizing all
adjustable system parameters subject to constraints.
The present work addresses this gap in the literature,
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with the following primary contributions:
• We investigate a CR-NOMA system in which

a GBS sends signals to a PR using OMA,
while with the help of multiple EH URs, an
ST transmits information to Internet of Things
(IoT) destinations (IDs) using NOMA under
monitoring by an EAV.

• We propose a communication protocol for the
considered system and analyze the system and
security performance of the primary and sec-
ondary networks.

• We propose a hybrid machine learning (ML)
algorithm to solve the constrained optimization
problem for resource allocation to determine
the number and positions of the URs such that
the PR can decode the signals from the GBS.

The rest of this paper is organized as follows.
Section II introduces the system model and com-
munication protocol. Section III presents the closed-
form expressions for the performance analysis and
the formulation of the optimization problem. In
Section IV, we present the hybrid ML algorithm
proposed to solve our optimization problem. Simu-
lation results are presented and discussed in Section
V, and conclusions are given in Section VI.

II. SYSTEM MODEL AND COMMUNICATION
PROTOCOL

A. System model and channel assumptions
Let us consider a CR-NOMA system as shown in

Fig. 1 for a scenario in which spectrum resources
are limited and obstacles (e.g., high buildings and
forests) cover large areas and block the LoS paths.
In particular, the primary users (PUs) (the GBS
and PR) license the spectrum by using the OMA
principle because OMA is superior to NOMA from
an energy perspective when applied in a one-to-
one scheme [25]. Meanwhile, the secondary users
(SUs) (the ST, URs, and IDs, i.e., IDp and IDq,
where 1 ≤ p, q ≤ Q) attempt to utilize the licensed
spectrum by using the NOMA technique for their
communication, provided that their transmit power
does not interrupt the communication of the PUs.
Here, NOMA is applied because it outperforms
OMA in terms of throughput when applied in
a one-to-many scheme. Because of the presence
of obstacles, the ST cannot communicate directly
with the IDs; therefore, UAV-assisted relays (i.e.,
the URs) are adopted to increase the transmission

distance under the influence of obstacles [9], [11].
Based on the concept of green communications, an
EH scheme is applied at the URs to save power
and minimize carbon emissions by collecting energy
from a power beacon (PB) [26]. Furthermore, due to
the broadcast nature of the communication, an EAV
near the IDs has the opportunity to steal confidential
signals from the last UR; note, however, that the
EAV has no link to any of the other URs because
of their farther distances [13], [14].

Suppose that the GBS is equipped with V an-
tennas, while the PR, PB, ST, IDs, and URs are
each equipped with a single antenna [13], [26],
[27]. For the GBS–PR, ST–PR, ST–UR1, UR1–
PR, URn–URn+1, URN–Dp, URN–Dq, GBS–URN ,
GBS–Dp, GBS–Dp, URN–E, and GBS–E links,
the channel gains are denoted by gGvP , gSP , gSU1 ,
gUnUn+1 , gUNDp , gUNDp , gGvUN , gGvDp , gGvDq , gUNE ,
and gGvE , respectively, and the distances are denoted
by dGvP , dSP , dSU1 , dUnUn+1 , dUNDp , dUNDp , dGvUN ,
dGvDp , dGvDq , dUNE , and dGvE , respectively, where
N is the number of URs, n ∈ {1, . . . , N}, and v ∈
{1, . . . , V }. This model scheme is a centralized im-
plementation, in which there is a central controller,
referred to as the CR network manager, established
at the ST. The PT obtains information from the PR,
while the ST gathers network information from the
UR and IDs, and the last UR obtains information
from the EAV. The central controller will receive
the CSI from the PT and ST and then forward some
appropriately quantized CSI to the ST and PT (and
to the IDs and PR for decoding purposes) through
a finite-rate feedback link [28], [29].

Here, all channel gains are independent and iden-
tically distributed (i.i.d.) and remain constant for the
duration of one packet. In particular, for ground-
to-ground communication, the channel gains are
modeled as the gains of Rayleigh fading channels,
i.e., random variables (RVs) distributed following an
exponential distribution [30]. Thus, the probability
density functions (PDFs) and cumulative distribu-
tion functions (CDFs) of the channel gains are
formulated as follows:

fga (x) =
1

Ωa

exp

(
− x

Ωa

)
, (1)

Fga (x) = 1− exp

(
− x

Ωa

)
, (2)

where a ∈ {SP ,GvP ,GvDp, GvDq, GE} is an RV
with a mean value of Ωa = E [a].



5

��

��

���

���

���

��		
������������

����������������

���

gGP

gSP

���

���

���

���

gU  P
1

gU  U1 2
gU  U2 3 gU     U

N-1 N

gU   UN q

gU   UN p

gGSp

gGSq

gSU
1

gU   PN

��

gBU1

gBU
2 gBUN

����������������������

Fig. 1: A CR-NOMA IoT architecture.
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Fig. 2: The time switching (TS) transmission
protocol.

For air-to-ground and ground-to-air commu-
nication, the path loss models are expressed
as absolute values Lb = βbd

ηb
b , where b ∈

{SU1, UNDp, UNDq, UNE}. According to [31], a
ground-to-air channel is more likely to be domi-
nated by either LoS conditions or non-line-of-sight
(NLoS) conditions depending on the environment
(e.g., suburban, urban, or dense urban). Here, we
assume that ηb = 2; thus, the quantity βb is for-
mulated as βb = 10B [32], in which B is defined
as

B =
10 log10 (4πf/c)2 + ωNLoS

10

+
ωLoS − ωNLoS

10 + 10ϕ exp
[
−ψ

(
180
π
θ − ϕ

)] , (3)

where θ is the elevation angle of the UR with respect
to either the GBS, ST, or IDs; ϕ and ψ are constants
that depend on the environment [33]; and ωLoS and
ωNLoS are environment- and frequency-dependent
parameters that represent the excess path losses of
LoS and NLoS links, respectively [33]. For air-to-
air communication, the path loss can be expressed

as LUnUn+1 = βUnUn+1d
ηUnUn+1

UnUn+1
, where βUnUn+1 =(

4πf
c

)2
[32].

Furthermore, the ground-to-air, air-to-ground, and
air-to-air channel gains are consistent with a
Nakagami-m distributed fading environment with
fading severity parameter m [9], i.e., RVs following
a Gamma distribution. Thus, the PDF and CDF of
the channel gain gα are formulated as follows:

fgα (x) =

(
mα

Ωα

)mα xmα−1

Γ (mα)
exp

(
−mαx

Ωα

)
, (4)

Fgα (x) = 1−
mα−1∑
j=0

(
mαx

Ωα

)j
1

j!
exp

(
−mαx

Ωα

)
,

(5)

where α ∈ {b, UnUn+1}, gα is an RV with a mean
value of Ωα = E

[
|gα|2

]
, and Γ(·) is the Gamma

function. In addition, due to the complex environ-
ment, imperfect CSI is considered for all channels,
i.e., ga = g̃a + ea and gα = g̃α + eα, where g̃a and
g̃α are the channel coefficients estimated by using
the minimum mean square errors (MMSEs) for ga
and gα, respectively, and ea, eα ∼ CN (0,Ωe), with
Ωe being the correctness of the channel estimation
and CN (0,Ωe) being a scalar complex Gaussian
distribution with zero mean and variance Ωe [30].

B. Communication protocol
The basic idea of CR-NOMA is that the GBS

sends a signal with transmit power PP to the PR
on an orthogonal frequency band in the primary
network. In the secondary network, the ST may
sense the frequency band from the GBS in order
to transmit signals to Dp and Dq with the help of
the multihop URs by applying the NOMA principle.
The TS transmission protocol shown in Fig. 2 is
used in [9] for communication in each time block
T . Specifically, there is one phase for EH, followed
by (N + 1) phases for signal transmission from the
ST to the IDs, as follows:
• In the EH phase, to improve the energy con-

sumption performance, the URs harvest energy
from the PB. The energy harvested by the URs
is formulated as

EUn =
P∑
p=1

δUnτTPB
gBUn
LBUn

, (6)

where δRv is the energy conversion efficiency
of Rv; τ is the EH time, 0 < τ < 1; and PB
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is the transmit power of the PB. Furthermore,
the expected amount of energy harvested by the
relays can be calculated by averaging over the
power fading coefficients, as follows [27]:

EUn =
P∑
p=1

δUnτTPB
ΩBUn

LBUn
. (7)

• In the first communication phase, the ST trans-
mits the superimposed signal xS to Dχ, where
χ ∈ {p, q}, xS =

√
µpxp+

√
µqxq, µp+µq = 1,

and µp < µq. Therefore, the received signal at
the first UR can be written as

yU1 =

√
PSgSU1

L̄θSU1

(√
µpxp +

√
µqxq

)
+ nU1 ,

(8)

where PS is the transmit power of the ST
and nU1 ∼ CN (0, N0). Applying the NOMA
scheme, U1 first decodes the q-th ID’s informa-
tion xq by treating xp as noise. U1 then obtains
xp from the superimposed signal by using SIC
[11]. Here, we consider imperfect SIC at the
URs and IDs because of residual interference
due to potential deployment problems (e.g., er-
ror propagation and complexity scaling). These
unwanted errors in decoding are the main rea-
son for the degradation in performance. Thus,
the NOMA network will be affected by residual
interference through the signal errors occurring
because of imperfect SIC. Specifically, the in-
terference term arising due to imperfect SIC at
the URs and IDs is IS ∼ CN (0, ξSN0) [5].
Therefore, the received signal-to-interference-
plus-noise ratios (SINRs) at the first UR for
decoding xp and xq are formulated as

γ
(p)
U1

=
µpPS g̃SU1

L̄SU1 (PSΩe + IS +N0)
, (9)

γ
(q)
U1

=
µqPS g̃SU1

L̄SU1

(
µpPS g̃SU1

L̄SU1
+ PSΩe +N0

) . (10)

Meanwhile, the GBS broadcasts the signal xP
to the PR using the OMA principle. The ST
interferes with the PR in the orthogonal fre-
quency band due to its broadcast nature. Thus,

the received signal at the PR in the first phase
can be written as

y
(1)
P =

√
PPgGvP
dθGvP

xP +

√
PSgSP
dθSP

xS + n
(1)
P ,

(11)

where PP is the transmit power of the GBS and
n

(1)
P ∼ CN (0, N0). Accordingly, the received

SINR at the PR is formulated as

γ
(1)
P =

PP g̃GvP

dθGvP

[
PS g̃SP
dθSP

+ (PS + PP ) Ωe +N0

] .
(12)

• In the second communication phase, the first
UR uses the DF technique to decode the signal
from the ST and forward it to the second UR.
Thus, the received signal at the second UR can
be written as

yU2 =

√
PU1gU1U2

L̄θU1U2

(√
µ

(1)
p xp +

√
µ

(1)
q xq

)
+ nU2 , (13)

where nU2 ∼ CN (0, N0). Similar to the first
communication phase, the received SINRs at
the second UR for decoding xp and xq are
formulated as

γ
(p)
U2

=
µ

(1)
p PU1 g̃U1U2

L̄U1U2 (PU1Ωe + IS +N0)
, (14)

γ
(q)
U2

=
µ

(1)
q PU1 g̃U1U2

L̄U1U2

(
µ

(1)
p PU1

g̃U1U2

L̄U1U2
+ PU1Ωe +N0

) .
(15)

Furthermore, due to the short distance from the
first UR to the PR, interference from the UR
affects the received signal at the PR, as follows:

y
(2)
P =

√
PPgGvP
dθGvP

xP +

√
PU1gU1P

dθU1P

xS + n
(2)
P ,

(16)

where n
(2)
P ∼ CN (0, N0). Thus, the received

SINR at the PR in the second phase is formu-
lated as

γ
(2)
P =

PP g̃GvP

dθGvP

[
PU1

g̃U1P

L̄U1P
+ (PU1 + PP ) Ωe +N0

] .
(17)
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• Similarly, in the n-th communication phase
(2 < n < N ), the (n − 1)-th UR decodes and
forwards the signal from the (n− 2)-th UR to
the n-th UR. Thus, the received signal at the
n-th UR becomes

yUn =

√
PUn−1gUn−1Un

L̄θUn−1Un

×
(√

µ
(n−1)
p xp +

√
µ

(n−1)
q xq

)
+ nUn ,

(18)

where nUn ∼ CN (0, N0). Then, the received
SINRs at the n-th UR for decoding xp and xq
are

γ
(p)
Un

=
µ

(n)
p PUn−1 g̃Un−1Un

L̄Un−1Un

(
PUn−1Ωe + IS +N0

) , (19)

γ
(q)
Un

=
µ

(n)
q PUn−1 g̃Un−1Un

L̄Un−1Un

(
µ

(n)
p PUn−1

g̃Un−1Un

L̄Un−1Un

+PUn−1Ωe +N0

) . (20)

For the primary network, the received signal at
the PR in the n-th phase is written as

y
(n)
P =

√
PPgGvP
dθGvP

xP + n
(n)
P , (21)

where n(n)
P ∼ CN (0, N0). The received SINR

at the PR in the n-th phase is

γ
(n)
P =

PP g̃GvP
dθGvP (PPΩe +N0)

. (22)

• In the N -th and (N + 1)-th communication
phases, the N -th UR and the IDs are affected
by interference from the GBS because of the
broadcast nature of the communication. Thus,
the received signals at the N -th UR, Dp, and
Dq respectively become

yUN =

√
PUN−1

gUN−1UN

L̄UN−1UN

xS +

√
PPgGvUN
dθGvUN

xP

+ nUN , (23)

yDp =

√
PUNgUNDp
L̄UNDp

xS +

√
PPgGvDp
dθGvDp

xP

+ nDp , (24)

yDq =

√
PUNgUNDq
L̄UNDq

xS +

√
PPgGvDq
dθGvDq

xP + nDq ,

(25)

where nUN , nDp , nDq ∼ CN (0, N0). Accord-
ingly, the SINRs at UN , Dp, and Dq for decod-
ing the p-th and q-th signals are

γ
(p)
UN

=
µ

(N−1)
p PUN−1

g̃UN−1UN

L̄UN−1UN

[
PP g̃GvUN
L̄GvUN

+ IS +N0

+
(
PP + PUN−1

)
Ωe

] ,

(26)

γ
(q)
UN

=
µ

(N−1)
q PUN−1

g̃UN−1UN

L̄UN−1UN


µ

(N−1)
p PUN−1

g̃UN−1UN

L̄UN−1UN

+
PP g̃GvUN
L̄GvUN

+N0

+
(
PP + PUN−1

)
Ωe


,

(27)

γ
(p)
Dp

=
µ

(N)
p PUN g̃UNDp

L̄UNDp

[
PP g̃GvDp
dθGvDp

+ IS +N0

+ (PP + PUN ) Ωe

] , (28)

γ
(q)
Dq

=
µ

(N)
q PUN g̃UNDq

L̄UNDq

[
µ

(N)
p PUN g̃UNDq

L̄UNDq
+

PP g̃GvDq
dθGvDq

+ (PP + PUN ) Ωe +N0

] .
(29)

Similar to the n-th phase, the received sig-
nals at the PR in the N -th and (N + 1)-th
phases are not affected by interference from
the GBS. Accordingly, the received SINRs at
the PR in the N -th and (N + 1)-th phases
are as γ

(N)
P = γ

(N+1)
P = γ

(n)
P . To improve

the system performance, the GBS chooses its
transmit antenna such that the SINRs at the PR
are the best in each communication phase, i.e.,

v∗ = arg max
v∈{1,...,V }

γ
(n)
P . (30)

Furthermore, there exists an EAV near the
IDs that is attempting to eavesdrop on the
confidential signals under interference from the
GBS. The received signal at the EAV is

yE =

√
PUNgUNE
L̄UNE

xS +

√
PPgGvE
dθGvE

xP + nE,

(31)
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where nE ∼ CN (0, N0). Similar to a le-
gitimate user, the EAV decodes xq by treat-
ing xp as noise and decodes xp by means
of imperfect SIC with residual interference
IE ∼ CN (0, ξEN0). Therefore, the SINRs at
the EAV for eavesdropping on the p-th and q-
th signals are

γ
(p)
E =

µ
(N)
p PUN g̃UNE

L̄UNE

[
PP g̃GvE
dθGvE

+ (PP + PUN ) Ωe

+IE +N0

] ,
(32)

γ
(q)
E =

µ
(N)
q PUN g̃UNE

L̄UNE

[
µ

(N)
p PUN g̃UNE

L̄UNE
+

PP g̃GvE
dθGvE

+ (PP + PUN ) Ωe +N0

] .
(33)

According to the definition of the DF technique,
with the note that γ(χ)

U = min
n∈{1,...,N}

γ
(χ)
Un

, the end-to-

end SINRs for decoding the signals at the χ-th ID
and the EAV are as follows [34]:

γ
(χ)
E2E,Dχ

= min
{
γ

(χ)
U , γ

(χ)
Dχ

}
. (34)

γ
(χ)
E2E,E = min

{
γ

(χ)
U , γ

(χ)
E

}
, (35)

III. PERFORMANCE ANALYSIS AND PROBLEM
FORMULATION

In this section, the system performance and se-
crecy performance of the CR-NOMA system are
analyzed. Then, a problem formulation is defined
in which the ST and the URs need to control their
power allocations to ensure that the communication
from the GBS to the PR is not degraded while max-
imizing the throughput of the secondary network.

First, the outage probability of the PR in all
phases is defined as the probability of the channel
capacity being smaller than a certain outage thresh-
old RP for the primary network, i.e.,

O(n)
P = Pr

{
C

(n)
P < RP

}
, (36)

where n ∈ {1, . . . , N + 1} and C
(n)
P is the channel

capacity of the GBS–PR link in the n-th phase with
system bandwidth W , as follows:

C
(n)
P =

W

N + 1
log
(

1 + γ
(n)
P

)
. (37)

Lemma 1. With the note that n ∈ {3, . . . , N + 1}
and ∂P = 2

(N+1)RP
W − 1, the outage probabilities

of the primary network in the first phase, second
phase, and n-th phase are

O(1)
P =

V∏
v=1


1− exp

[
−
∂P d

θ
Gv∗P

[(ρS+ρP )Ωe+1]

ρPΩGv∗P

]
× dθSP ρPΩGv∗P

∂P d
θ
Gv∗P

ρSΩSP+dθSP ρPΩGv∗P

,
(38)

O(2)
P =

V∏
v=1


1−

exp

{
−
∂P d

θ
Gv∗P [(ρU1

+ρP )Ωe+1]
ρPΩGv∗P

}
ΩSPΓ(mU1P )

×
(
mU1P

ΩU1P

)mU1P

(mU1P − 1)!(
∂P d

θ
Gv∗P

ρU1

ρPΩGv∗P L̄
θ
U1P

+
mU1P

ΩU1P

)−mU1P


,

(39)

O(n)
P =

V∏
v=1

{
1− exp

[
−
∂Pd

θ
Gv∗P

(ρPΩe + 1)

ρPΩGv∗P

]}
,

(40)

Proof: See Appendix A.
Second, similar to Lemma 1, the outage probabil-

ities of the secondary network for the p-th and q-th
IDs are defined as the probabilities that their channel
capacities are below a certain outage threshold for
the secondary network, i.e.,

O(χ)
S = Pr

{
C

(χ)
S < RS

}
, (41)

where RS is the outage threshold at the IDs and
C

(χ)
S is the channel capacity of the ST–Dχ link as

C
(χ)
S =

W

N + 1
log
(

1 + γ
(χ)
E2E,Dχ

)
. (42)

Lemma 2. The outage probability of the secondary
network at the χ-th ID is

O(χ)
S = 1− P(χ)

1 × P(χ)
2 × P(χ)

3 × P(χ)
4 , (43)

where n ∈ {2, · · · , N − 1} and P(p)
1 , P(p)

2 , P(q)
1 , P(q)

2 ,
P(p)

3 , P(p)
4 , P(q)

3 , and P(q)
4 are defined as follows:

P(p)
1 =

mSU1
−1∑

j=0

(
∆

(p)
1

)j
j!

exp
(
−∆

(p)
1

)
, (44)

P(p)
2 =

mUn−1Un
−1∑

j=0

(
∆

(p)
2

)j
j!

exp
(
−∆

(p)
2

)
, (45)
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P(q)
1 =

mSU1
−1∑

j=0

(
∆

(q)
1

)j 1

j!
exp

(
−∆

(q)
1

)
, (46)

P(q)
2 =

mUn−1Un
−1∑

j=0

(
∆

(q)
2

)j 1

j!
exp

(
−∆

(q)
2

)
, (47)

P(p)
3 = exp

(
−∆

(p)
3

)(mGv∗UN

ΩGv∗UN

)mGv∗UN
×

mUN−1UN
−1∑

j=0

1

j!

(
mUN−1UN∂SL̄UN−1UN

ΩUN−1UNµ
(N−1)
p ρUN−1

)j

×
j∑

k=0

Ck
j

[(
ρP + ρUN−1

)
Ωe + ξS + 1

]j−k
Γ (mGv∗UN )

×

(
ρP

L̄Gv∗UN

)k
(k +mGv∗UN − 1)! mUN−1UN

∂SL̄UN−1UN
ρP

ΩUN−1UN
µ

(N−1)
p ρUN−1

L̄Gv∗UN

+
mGv∗UN
ΩGv∗UN

k+mGv∗UN
,

(48)

P(p)
4 =

mUNDp−1∑
j=0

exp
(
−∆

(p)
4

)
ΩGv∗Dpj!

(
mUNDp∂SL̄UNDp

ΩUNDpµ
(N)
p ρUN

)j

×
j∑

k=0

Ck
j

(
ρP

dθGv∗Dp

)k

[(ρP + ρUN ) Ωe + ξS + 1]j−k

× k!(
mUNDp∂SL̄UNDpρP

ΩUNDpµ
(N)
p ρUN d

θ
Gv∗Dp

+ 1
ΩGv∗Dp

)k+1
, (49)

P(q)
3 = exp

(
−∆

(q)
3

[(
ρP + ρUN−1

)
Ωe + 1

])
×
(
mGv∗UN

ΩGv∗UN

)mGv∗UN mUN−1UN
−1∑

j=0

1

j!

(
∆

(q)
3

)j

×
j∑

k=0

Ck
j

[(
ρP + ρUN−1

)
Ωe + 1

]j−k( ρP
L̄Gv∗UN

)k
Γ (mGv∗UN )

×
(k +mGv∗UN − 1)!(

∆
(q)
3 ρP

L̄Gv∗UN
+

mGv∗UN
ΩGv∗UN

)k+mGv∗UN
, (50)

P(q)
4 =

exp
(
−∆

(q)
4 [(ρP + ρUN ) Ωe + 1]

)
ΩGv∗Dp

×
mUNDp−1∑

j=0

1

j!

(
∆

(q)
4 [(ρP + ρUN ) Ωe + 1]

)j
×

j∑
k=0

Ck
j

(
ρP

dθGv∗Dq

)k

[(ρP + ρUN ) Ωe + 1]j−k

× k!(
∆

(q)
4 ρP

dθGv∗Dq
+ 1

ΩGv∗Dq

)k+1
, (51)

with

∆
(p)
1 =

mSU1∂SL̄SU1 (ρSΩe + ξS + 1)

ΩSU1µpρS
, (52)

∆
(p)
2 =

mUn−1Un∂SL̄Un−1Un

(
ρUn−1Ωe + ξS + 1

)
ΩUn−1Unµ

(n)
p ρUn−1

,

(53)

∆
(p)
3 =

mUN−1UN∂SL̄UN−1UN

[ (
ρP + ρUN−1

)
Ωe

+ξS + 1

]
ΩUN−1UNµ

(N−1)
p ρUN−1

,

(54)

∆
(p)
4 =

mUNDp∂SL̄UNDp [(ρP + ρUN ) Ωe + ξS + 1]

ΩUNDpµ
(N)
p ρUN

,

(55)

∆
(q)
1 =

mSU1∂SL̄SU1 (ρSΩe + 1)

ΩSU1 (µq − µp∂S) ρS
, (56)

∆
(q)
2 =

mUn−1Un∂SL̄Un−1Un

(
ρUn−1Ωe + 1

)
ΩUn−1Un

(
µ

(n)
q − µ(n)

p ∂S

)
ρUn−1

, (57)

∆
(q)
3 =

mUN−1UN∂SL̄UN−1UN

ΩUN−1UN

(
µ

(N−1)
q − µ(N−1)

p ∂S

)
ρUN−1

,

(58)

∆
(q)
4 =

mUNDq∂SL̄UNDq

ΩUNDq

(
µ

(N)
q − µ(N)

p ∂S

)
ρUN

. (59)

Proof: See Appendix B.
The outage probability is the primary criterion for

assessing the dependability of multihop UAV CR-
NOMA. However, the throughput of the secondary
network is still needed to determine how well the
system as a whole is functioning to ensure that
transmissions are reliable. To evaluate the system
performance, the throughput for the p-th and q-th
IDs is calculated as T (χ)

S =
(

1−O(χ)
S

)
RS [35].

Third, the EAV can monitor the confidential
signals from the N -th UR due to their broadcast
nature. It should be noted that the signal-to-noise
ratio (SNR) at a legitimate user and that at the
EAV are interdependent because the URs use the
DF scheme. This complicates the effort to derive a
tractable form for the secrecy outage probability in
our considered problem and may even make such
a derivation impossible. To overcome this issue,
the information leakage probability is considered
instead to evaluate the secrecy performance. This
metric is defined as the probability that the channel
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capacity from the ST to the EAV is higher than a
certain leakage threshold RE , as follows:

L(χ)
S = Pr

{
C

(χ)
E > RE

}
, (60)

where C(χ)
E is the channel capacity of the ST–E link

for decoding the χ-th signal and is expressed as

C
(χ)
E =

W

N + 1
log
(

1 + γ
(χ)
E2E,E

)
. (61)

Lemma 3. The leakage probability of the secondary
network at the EAV for monitoring the signal xχ is

L(χ)
S = P(χ)

1,E × P(χ)
2,E × P(χ)

3,E × P(χ)
4,E, (62)

where n ∈ {2, · · · , N − 1} and P(p)
1,E , P(p)

2,E , P(p)
3,E ,

P(p)
4,E , P(q)

1,E , P(q)
2,E , P(q)

3,E , and P(q)
4,E are defined as

follows:

P(p)
1,E =

mSU1
−1∑

j=0

(
∆

(p)
1,E

)j
j!

exp
(
−∆

(p)
1,E

)
, (63)

P(p)
2,E =

mUn−1Un
−1∑

j=0

(
∆

(p)
2,E

)j
j!

exp
(
−∆

(p)
2,E

)
, (64)

P(p)
3,E = exp

(
−∆

(p)
3,E

)(mGv∗UN

ΩGv∗UN

)mGv∗UN
×

mUN−1UN
−1∑

j=0

1

j!

(
mUN−1UN∂EL̄UN−1UN

ΩUN−1UNµ
(N−1)
p ρUN−1

)j

×
j∑

k=0

Ck
j

[(
ρP + ρUN−1

)
Ωe + ξE + 1

]j−k
Γ (mGv∗UN )

×

(
ρP

L̄Gv∗UN

)k
(k +mGv∗UN − 1)! mUN−1UN

∂EL̄UN−1UN
ρP

ΩUN−1UN
µ

(N−1)
p ρUN−1

L̄Gv∗UN

+
mGv∗UN
ΩGv∗UN

k+mGv∗UN
,

(65)

P(p)
4,E =

mUNE−1∑
j=0

exp
(
−∆

(p)
4,E

)
ΩGv∗Ej!

(
mUNE∂EL̄UNE

ΩUNEµ
(N)
p ρUN

)j

×
j∑

k=0

Ck
j

(
ρP

dθGv∗E

)k

[(ρP + ρUN ) Ωe + ξE + 1]j−k

× k!(
mUNE∂EL̄UNEρP

ΩUNEµ
(N)
p ρUN d

θ
Gv∗E

+ 1
ΩGv∗E

)k+1
, (66)

P(q)
1,E =

mSU1
−1∑

j=0

(
∆

(q)
1,E

)j 1

j!
exp

(
−∆

(q)
1,E

)
, (67)

P(q)
2,E =

mUn−1Un
−1∑

j=0

(
∆

(q)
2,E

)j 1

j!
exp

(
−∆

(q)
2,E

)
, (68)

P(q)
3,E = exp

(
−∆

(q)
3,E

[(
ρP + ρUN−1

)
Ωe + 1

])
×
(
mGv∗UN

ΩGv∗UN

)mGv∗UN mUN−1UN
−1∑

j=0

1

j!

(
∆

(q)
3,E

)j

×
j∑

k=0

Ck
j

[(
ρP + ρUN−1

)
Ωe + 1

]j−k( ρP
L̄Gv∗UN

)k
Γ (mGv∗UN )

(69)

×
(k +mGv∗UN − 1)!(

∆
(q)
3,EρP

L̄Gv∗UN
+

mGv∗UN
ΩGv∗UN

)k+mGv∗UN
,

P(q)
4,E =

exp
(
−∆

(q)
4,E [(ρP + ρUN ) Ωe + 1]

)
ΩGv∗E

×
mUNE−1∑
j=0

1

j!

(
∆

(q)
4,E [(ρP + ρUN ) Ωe + 1]

)j
×

j∑
k=0

Ck
j

(
ρP

dθGv∗E

)k

[(ρP + ρUN ) Ωe + 1]j−k

× k!(
∆

(q)
4,EρP

dθGv∗E
+ 1

ΩGv∗E

)k+1
, (70)

with

∆
(p)
1,E =

mSU1∂EL̄SU1 (ρSΩe + ξE + 1)

ΩSU1µpρS
, (71)

∆
(p)
2,E =

mUn−1Un∂EL̄Un−1Un

(
ρUn−1Ωe + ξE + 1

)
ΩUn−1Unµ

(n)
p ρUn−1

,

(72)



11

∆
(p)
3,E =

mUN−1UN∂EL̄UN−1UN

[ (
ρP + ρUN−1

)
Ωe

+ξE + 1

]
ΩUN−1UNµ

(N−1)
p ρUN−1

,

(73)

∆
(p)
4,E =

mUNDp∂EL̄UNE [(ρP + ρUN ) Ωe + ξE + 1]

ΩUNEµ
(N)
p ρUN

,

(74)

∆
(q)
1,E =

mSU1∂EL̄SU1 (ρSΩe + 1)

ΩSU1 (µq − µp∂E) ρS
, (75)

∆
(q)
2,E =

mUn−1Un∂EL̄Un−1Un

(
ρUn−1Ωe + 1

)
ΩUn−1Un

(
µ

(n)
q − µ(n)

p ∂E

)
ρUn−1

, (76)

∆
(q)
3,E =

mUN−1UN∂EL̄UN−1UN

ΩUN−1UN

(
µ

(N−1)
q − µ(N−1)

p ∂E

)
ρUN−1

,

(77)

∆
(q)
4,E =

mUNE∂EL̄UNE

ΩUNE

(
µ

(N)
q − µ(N)

p ∂S

)
ρUN

. (78)

Proof: See Appendix C.
Finally, the model proposed in this paper aims

to guarantee that all legitimate IDs can receive and
decode their required signals, in other words, that
the p-th ID can decode xp and the q-th ID can
decode xq. The core of the optimization problem is
to determine not only the UR locations but also the
number of URs and many other related parameters
so as to ensure that the throughput of the IDs is
maximized. Since the IDs are all placed within an
area that can be covered by the last UR, all xp
and xq can be decoded. In short, the objective is to
maximize the throughput of the secondary network
subject to the specified requirements on the outage
probability of the primary network. In particular, we
optimize the power allocation factors at the URs,
i.e., µp and µ

(n)
p ; the transmit power levels of the

PT, PB, and GBS; the number of URs; and the 3-D
positions of the URs. Accordingly, the optimization
problem can be formulated as follows:

max
d

{
T (p)
S + T (q)

S

}
, (79)

s.t. PS ≤ Pmax, (80)

O(n)
P ≤ εP , (81)

L(p)
E ,L(q)

E ≤ εE, (82)
µp + µq = 1, (83)

µ(n)
p + µ(n)

q = 1, (84)

where n ∈ {1, . . . , N} and d is a set of optimized
parameters including µp, µ

(n)
p , N , PB, PS , PP , and

the tuples (xn, yn, hn)|n=1,..,N . Pmax is the maximum
transmit power of the ST. Note that d does not
include µq and µ(n)

q because for a given µp and µ(n)
p ,

these two parameters are known via the relations in
(83) and (84). The details of how d is constructed
are given in (85). Meanwhile, (81) and (82) guaran-
tee that the communication from the GBS to the PR
is not degraded and that the EAV cannot decode the
confidential signals from the last UR, respectively.

IV. MACHINE LEARNING DESIGN

In this subsection, we present the detailed con-
struction of the input to our proposed hybrid method
and the structure of its algorithm, which exploits
both the quick greedy convergence of PSO and the
efficient exploration ability of a GA.

First, we observe that the problem given in (79)–
(84) is a complex nonlinear optimization problem
with multiple local maxima. It is characterized by a
high-dimensional continuous search space (PB, PS ,
PP , number of URs, positions of the URs, power
allocation factors µp and µq) subject to a set of
constraints. Therefore, we combine PSO not with
a classic GA but rather with the continuous GA
(CGA), an improved variant of a GA that can handle
a large number of continuous variables. In CGA,
we construct a chromosome as a vector of real
values. Specifically, the k-th chromosome in the t-th
generation is

d(t)
k = [µp, µ

(n)
p , N, [xn, yn, hn]N×3, PB, PS, PP ],

(85)

and the input to the algorithm consists of the
objective function defined in (79) and the control
parameters of the algorithm itself.

It can be seen from (85) that the total number
of dimensions of the candidates can vary because
the number of URs, N , is considered a parameter
to be optimized, and the dimensions of the ma-
trix [xn, yn, hn]N×3 vary with N . This implies that
if a new solution candidate uses more URs than
the previous solution candidate, then the locations
of these additional URs must be added into that
candidate’s chromosome and optimized. To make
heuristic search methods applicable, we modify the
candidate chromosome d(t)

k by fixing the N dimen-
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Algorithm 1 Proposed Hybrid CGA-PSO Algo-
rithm

1: Initialize
2: λ, rc, rm, T , and t = 0;

\\T is the maximum number of genera-
tions/iterations

3: Generate the initial population d
(t)
k , k =

1, . . . , λ;
4: for (t = 1 to T ) do
5: for (k = 1 to λ) do
6: Evaluate the fitness of chromosome k:

f
(t)
k = Fitness

(
d(t)
k

)
as in (90);

7: end for
8: Reproduce chromosomes based on their fit-

nesses;
9: Apply crossover by combining two parents

and the
memorized current best individual with

rc, as
in (87) and (88);

10: Apply mutation to offspring with rm;
\\New population is formed

11: end for
12: Output the best chromosomes;

sion of the matrix [xn, yn, hn]N×3 to its upper-bound
value N = Nmax; thus, (85) becomes

d(t)
k = [µp, µ

(n)
p , N, [xn, yn, hn]Nmax×3, PB, PS, PP ],

(86)

where Nmax is the maximum number of URs.
Therefore, if N < Nmax for a certain candidate
solution, then only the 1st to N -th rows of the
matrix [xn, yn, hn]Nmax×3 matter. The proposed al-
gorithm begins with random chromosomes in the
initial population d(0)

k . Then, each chromosome in
the population is evaluated by means of the ob-
jective function, and in the selection step, good
chromosomes are chosen for reproduction so as to
maintain the population size λ. In the crossover
step, most chromosomes are recombined in pairs
with a crossover rate rc to create new pairs of
chromosomes, called offspring. Specifically, when
the proposed hybrid CGA-PSO algorithm chooses
a pair of individuals d(t)

i and d(t)
j , it produces two

new candidates d(t+1)
i and d(t+1)

j as follows:

d(t+1)
i = u1d(t)

i + u2d(t)
j + u3d(t)

best, (87)

d(t+1)
j = u2d(t)

i + u1d(t)
j + u3d(t)

best, (88)

where the ui are uniform random values satisfying

ui > 0 and
3∑
i=1

ui = 1. This is the key feature of

our method. For the creation of offspring, the pro-
posed crossover mechanism combines not merely
two parents, as in other GA variants, but rather three
parents, one of which is the current memorized best
individual over all previous generations. This allows
both a local search (exploring the search area around
each parent) and a greedy uphill search (using the
best candidate for guidance). This mechanism is
actually a hybrid of CGA and PSO, in which new
offspring individuals tend to move toward the cur-
rent memorized best individual. Note that the new
crossover procedure incurs only a few additional
multiplications to introduce the influence of d(t)

best

and thus does not significantly increase the run time
compared to CGA while leveraging both the advan-
tage of CGA in escaping from local maxima and the
advantage of PSO in achieving rapid convergence.

The final step of each generation t is mutation, in
which chromosomes are chosen at a low mutation
rate rm and a random value is added to each entry of
the chosen chromosomes. These random values are
drawn from a Gaussian distribution whose mean and
deviation are 0 and 1/20 of the upper-bound entry
length, respectively. The mutation step encourages
genetic diversity within the population, which is
necessary because chromosomes usually become
increasingly homogeneous after a sufficiently large
number of generations. Thus, the chromosomes
evolve through multiple generations following a
loop consisting of the selection, crossover, and mu-
tation steps. When this generation loop terminates,
the current memorized best chromosome is returned
as the optimization result:

d∗ = [µ∗p, µ
(n)∗
p , N∗, [xn, yn, hn]∗Nmax×3, P

∗
B, P

∗
S , P

∗
P ].
(89)

We also simplify the constrained optimization
problem to a standard form by modifying the ob-
jective function to add penalties if any constraints
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are violated. Specifically, the fitness value for an
individual solution candidate is calculated as

Fitness (dk) =
{
T (p)
S + T (q)

S

}
− w1max(0, PS − Pmax)− w2max(0,O(n)

P − εP )

− w3max(0,L(p)
E − εE)− w4max(0,L(q)

E − εE),
(90)

where wi > 0 to ensure that the penalties are valid.
To explain the results reported later, convergence

and complexity analyses are also presented in this
section. First, we analyze the convergence model of
the proposed GA. Due to the procedure of roulette
selection, the probability pt+1 (di) of choosing an
individual di for reproduction when producing gen-
eration t + 1 is proportional to its fitness fi in
generation t. Thus, the probability distribution is

pt+1 (di) =
fi∑
j fj

. (91)

Because individual di is not unique but can be
duplicated in the population, the probability of fi in
generation t+1 depends on the number of duplicates
of di, Ni,t, in generation t. This probability becomes

pt+1 (fi) = Ni,t
fi∑
j fj

=
Ni,t

N

fi∑
j fj,t

N

=
fi

fi,t
pt (fi) .

(92)

In any generation t, fi,t has a specific value; thus,
without loss of generality, (92) can be rewritten as

pt+1 (f) = at+1f pt (f) , (93)

where at+1 is the normalization factor necessary to
make pt+1 (f) a PDF, or

∫ +∞
−∞ pt+1 (f) df = 1.

From (93), it is also derived that

pt+1 (f) ∝ f pt (f) ∝ f 2pt−1 (f) ∝ ... ∝ f tp0 (f) .
(94)

The distribution of f is increasingly driven by
f t as the population is affected by the selection
procedure over generations, causing the probability
of individuals with low f to approach zero and that
of individuals with high f to increase exponentially.
We can see the convergence trend by assuming
that f is uniformly distributed in generation t =
0 and that the maximum fitness function value
is M (see Fig. 3). Then, for generation t, from
pt (f) ∝ f t p0 (f), we have pt (f) = atf

t . Using
the constraint

∫M
0
atf

tdf = 1, we obtain at = t+1
Mt+1 .

3
4

M
2

3
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4
5

M

2
M

( )1
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�

Fig. 3: Convergence characteristics under the effect
of the selection mechanism.

Given at as found in this way, the average fitness
value in generation t becomes

ft =

∫ M

0

f atf
tdf =

t+ 1

M t+1

∫ M

0

f t+1df

=
t+ 1

t+ 2
M = 1− M

t+ 2
. (95)

Specifically, f0 = M
2

, f1 = 2M
3

, f2 = 3M
4

, and
so on. This value asymptotically approaches the
maximum fitness value M at a speed of M

t+2
for gen-

eration t, as illustrated in Fig. 3. This convergence
trend of the average fitness explains the observed
behavior of the mean curves in Fig. 11.

It can be seen that the convergence tendency of a
GA is basically determined by the selection stage. In
the crossover and mutation stages, new individuals
are created to perform a local search and increase
the opportunity to find candidates that are better
than the current best candidate. In other words,
by virtue of crossover and mutation, M should
not remain fixed over the generations but should
instead be updated to higher values throughout the
execution of the algorithm. According to the above
analysis, the convergence tendency will always be
maintained with each new M . As a result, the mean
fitness value does not always smoothly increase with
successive generations t but instead exhibits spikes
due to the emergence of new Mt values by virtue
of crossover and mutation, as illustrated in Fig. 4.
Note that the convergence curve of the mean fitness
also fluctuates because of the random nature of the
search driven by mutation even when mutation does
not cause M to be updated. Our hybrid method has
a better chance of finding better M values than
other methods because the crossover mechanism
combines three parents instead of only two. This
means that our method performs its local search not
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Fig. 4: Convergence of ft with updated Mt values
over successive generations t.
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Fig. 5: Crossover analysis of the proposed hybrid
CGA-PSO method.

only along the line connecting di and di but also
within the triangle formed by di, di, and dbest (see
the gray triangle depicted in Fig. 5). In addition,
since f (dbest) ≥ f (di) and f (dbest) ≥ f (dj), our
local search has a more uphill greedy nature, and
thus, the new offspring individuals have a better
chance of achieving high fitness values, causing the
mean ft to converge faster.

Second, as seen in Algorithm 1, the computa-
tional complexity lies mainly in the for loops. The
first for loop is for producing generation t (line 4),
while the others are for processing each individual
in the population in each generation. Since our
objective function is based on a feed-forward closed

form (no feedback), each calculation of the fitness
function can be considered to be of the same com-
plexity, O(1). Therefore, the complexity of com-
puting the fitness of the whole population is O(λ).
One for loop is also needed to address crossover
and mutation, with a complexity of O (pcλ+ prλ).
However, the selection of good chromosomes for
reproduction is based on the roulette wheel selection
method (line 9). Thus, a complexity of O(λ) is
needed to form the “wheel” array, while for each
newly produced individual, the complexity of deter-
mining the section on the “wheel” to each random
“dart” belongs is O(log2(λ)). As a result, the overall
complexity of the hybrid algorithm is

O

{
T

[
O (λ) +O (pcλ+ prλ)
+O (λ) +O (λlog2λ)

]}
' O (Tλ lnλ) ,

(96)

where it should be noted that O (λ lnλ) > O (λ).

V. NUMERICAL RESULTS

In this section, numerical results are presented to
analyze the outage probability of the considered CR-
NOMA system and the convergence of Algorithm
1. Without loss of generality, we investigate the
considered system with the following system pa-
rameters [30], [32]. We set the fading parameters to
ma = mα = 2, the system bandwidth to W = 100
MHz, the number of URs to N = {3, 4, 5}, the
thresholds of the IDs and PR for successfully de-
coding their signals to RS = 10 and RP = 100, and
the leakage threshold to RE = 10. Furthermore, we
investigate URs operating in an urban environment
with the parameters ϕ = 9.6177, ψ = 0.1581,
ωLoS = 1, and ωNLoS = 20 [9].

In Fig. 6, we plot the impact of the transmit power
at the ST and the channel estimation error on the
outage probability at the PR with N = 4. It is
observed that as PS increases, the outage probability
at the PR in the first phase also increases. This is
because the high transmit power of the ST leads
to more interference at the PR. In the remaining
phases, i.e., the second phase to the fourth phase,
the outage probability at the PR is constant because
the ST is not affected by the remaining URs. Fur-
thermore, as Ωe increases, the outage probability of
the primary network increases because knowledge
of the channel information decreases as the channel
estimation error increases. Similarly, Fig. 7 depicts



15

0 2 4 6 8 10 12 14 16 18 20
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 Ana. (O(1)
P )

 Ana. (O(2)
P )

 Ana. (O(3)
P )

O
ut

ag
e 

pr
ob

ab
ilit

y 
at

 th
e 

PR

Transmit power at the ST, PS

 Sim. (We=3)
 Sim. (We=5)
 Sim. (We=7)

Fig. 6: Impact of the transmit power at the ST
and the channel estimation error on the outage
probability of the primary network.
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Fig. 7: Impact of the transmit power at the PB and
the number of antennas of the GBS on the outage
probability of the primary network.

the effects of the transmit power at the PB and
the number of antennas of the GBS on O(n)

P in the
second phase. We can see that the outage probability
at the PR improves when PB is low. This is because
a smaller PB leads to a smaller transmit power
of U1. As a result, the effect on the PR caused
by interference from U1 is not significant when
the transmit power at the PB is low. In the first,
third and fourth phases, PB remains the same as
PB increases because the URs do not interfere with
the PR. Furthermore, the outage probability at the
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Fig. 8: Impact of the altitude of the last UR and
the outage threshold γS on the throughput of the
secondary network.
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Fig. 9: Impact of the altitude of the last UR and
different values of IP on the throughput of the
secondary network.

PR decreases as the number of antennas at the
GBS increases. This is because a larger number of
antennas leads to a higher diversity gain.

Fig. 8 illustrates the throughput of the secondary
network for various values of the last UR’s altitude
and the number of URs, N . We can see that
T (p)
S and T (q)

S reach an optimal point when hN
takes a specific value, for the following reasons.
When the N -th UR is flying at a high altitude,
the probability of LoS conditions is high; however,
the path loss also becomes large when the altitude
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Fig. 10: Impact of the transmit power at the PT
and the EH time α on the leakage probability at
the EAV.
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Fig. 11: Convergence behaviors of various heuris-
tic methods, including PSO, CGA, the hybrid
methods of [21] [22], and our proposed hybrid
CGA-PSO method, over successive generations.

is very high. Furthermore, the throughput of the
secondary network is better with a large N than
with a small N when hN is low, and vice versa. This
is because when the altitude of the last UR is low,
the probability of NLoS conditions is high. Thus,
when more URs are used, the system performance
of the secondary network will improve. In contrast,
when hN is high, the probability of NLoS conditions
is decreased, leading to better throughput with a
lower N than with a higher N . Similarly, Fig. 9

shows the throughput of the secondary network for
various values of the last UR’s altitude and IP . It
can be observed that as IP increases, the throughput
of the p-th ID decreases. This is because the residual
interference signal imposes more noise on the p-th
ID and the URs for the decoding of xp. Meanwhile,
T (q)
S is always the same because the imperfect SIC

does not affect the decoding process of the q-th ID.

Fig. 10 depicts the impact of the EH time and the
transmit power at the PT on the leakage probability
at the EAV. For both the p-th and q-th IDs, we find
that the leakage probabilities decrease as the trans-
mit power at the PT increases. This is because as
PP increases, the EAV receives more interference.
Furthermore, a smaller α, i.e., a shorter EH time,
leads to lower transmit power at the URs. Thus,
the leakage probability is more strongly affected by
the transmit power at the PT. This means that as
PP increases, the leakage probability at the EAV
decreases more significantly. In contrast, both L(p)

E

and L(q)
E decrease less as PP increases. Furthermore,

as τ approaches 0, the outage probability of the
secondary network approaches 1 according to (43)
since the transmit power of the URs reaches 0,
indicating that the communication fails. In contrast,
as the EH time increases, the outage probability
decreases. This means that the system performance
of the secondary network is improved. It should also
be noted that a high τ leads to a high leakage prob-
ability at the EAV, causing the secrecy performance
to decrease. This is the trade-off between system
performance and secrecy performance. Accordingly,
we have proposed the hybrid CGA-PSO algorithm
to find the system parameters, including τ , that
maximize the throughput while guaranteeing the
secrecy performance.

Next, the results of optimization are presented
in Fig. 11 and Table I for comparison with other
population-based heuristic algorithms, i.e., CGA,
PSO, and the hybrid methods of [21] and [22].
This figure depicts the convergence behavior over
50 generations (T = 50) for all methods, including
our proposed hybrid CGA-PSO method described in
Algorithm 1. Notably, the convergence speeds and
final objective values are different. CGA converges
slowly, and no good final objective value is found
within 50 generations. In contrast, PSO converges
quickly; the objective value stops improving after
the 10th generation. Note that each curve in Fig. 11
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is the average curve of the whole population over the
generations. The results indicate that PSO achieves
the greediest search but has a high probability of
becoming trapped in a local maximum. Regarding
the hybrid methods, although the method of [21]
achieves quicker convergence than that of [22], its
ability to escape local maxima is not as much
improved as that of [22]. In comparison, it can be
seen that our proposed hybrid CGA-PSO method
has the best ability to escape local maxima so as to
reach the global maximum, while its convergence
behavior over successive generations is as good as
that of [22].

TABLE I: Run-time comparison

Number of Run time Final average
generations (s) for 50 objective value

to achieve 95% generations T (p)
S + T (q)

S

convergence
CGA 16.20 0.7813 10.8270
PSO 4.10 0.4193 10.8589

Hybrid [21] 4.72 0.8472 11.3918
Hybrid [22] 16.18 1.3034 11.8190

Proposed 15.90 0.8015 12.1744

It should be noted that the convergence speed here
is measured based only on the number of gener-
ations. However, the actual run time also matters
because different methods involve different compu-
tation procedures and thus have different compu-
tational costs. Table I shows that CGA takes 16.2
generations to reach convergence, and the actual run
time to complete 50 generations is 0.7813 seconds.
In contrast, PSO needs fewer than 5 generations to
converge and takes only 0.4193 seconds to complete
50 generations. This means that PSO is strictly
superior to CGA on our problem, with a shorter
actual run time and a higher objective value. For the
hybrid methods of [21] and [22], global convergence
is achieved with higher probability than for CGA
or PSO. However, the trade-off for this is longer
actual run times of 0.8472 and 1.3034 seconds,
respectively. When the proposed hybrid CGA-PSO
algorithm is compared with the remaining four, it is
obviously superior to the hybrid method of [21] in
terms of both the final objective value and the actual
run time. In fact, the proposed hybrid algorithm
yields the best objective value while needing only
a 2.6% longer run time than CGA. This implies
that the proposed hybrid method does face a trade-
off when attempting to improve the fitness value of

the result, but its trade-off is better than those of
the hybrid methods of both [21] and [22]. Thus,
our method clearly outperforms the previous hybrid
methods and is a good choice for any similar
complicated constrained optimization problems with
high-dimensional search spaces.

VI. CONCLUSIONS

This paper has studied the system performance
of a CR-NOMA system assisted by multiple URs.
A corresponding communication protocol with an
EH phase and multiple communication phases has
been proposed. Accordingly, expressions for the
outage probability at the PR, the throughput of the
secondary network, and the leakage probability at
the EAV have been obtained to analyze the system
performance and secrecy performance. Based on
this analysis, a new hybrid CGA-PSO algorithm
has been proposed for determining the optimal
power allocation and configuration of the URs to
achieve the best throughput under constraints on the
performance and security of the primary network.
This hybrid model combines the strengths of CGA
and PSO in terms of the ability to escape from local
optima and the speed of convergence, respectively.
Finally, numerical results show that the proposed
hybrid CGA-PSO algorithm can satisfy the desired
requirements on the system and secrecy perfor-
mances. In our future work, we will investigate
multiple-input multiple-output (MIMO) IoT systems
with a nonlinear EH UAV model.

APPENDIX A
PROOF OF LEMMA 1

By substituting (37) and (30) into (36), the outage
probability of the primary network in the first phase
can be obtained:

O(1)
P = Pr

{
max

v∈{1,...,V }

{
γ

(1)
P

}
< 2

(N+1)γP
W − 1

}
=

V∏
v=1

Pr
{
γ

(1)
P < 2

(N+1)γP
W − 1

}
︸ ︷︷ ︸

P(1)
P

. (97)
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Next, by substituting (12) into the probability P(1)
P ,

we obtain

P(1)
P = Pr


ρP g̃Gv∗P

dθGv∗P

[
ρS g̃SP
dθSP

+ 1

+ (ρS + ρP ) Ωe

] < ∂P

 ,

(98)

where ρP = PP/N0 and ρS = PS/N0. Based on the
definition of conditional probability and by using
the CDFs and PDFs of the channel gains gDP and
gSP , P(1)

P can be formulated as

P(1)
P =

∞∫
0

1

ΩSP

exp

(
− x

ΩSP

)
×

1− exp

−
∂Pd

θ
Gv∗P

[ ρSx
dθSP

+ 1

+ (ρS + ρP ) Ωe

]
ρPΩGv∗P


 dx

(99)

With some mathematical manipulations, (99) can be
rewritten as

P(1)
P = 1−

exp

[
−
∂P d

θ
Gv∗P

[(ρS+ρP )Ωe+1]

ρPΩGv∗P

]
ΩSP

×
∞∫

0

{
exp

[
−

(
∂Pd

θ
Gv∗P

ρS

dθSPρPΩGv∗P
+

1

ΩSP

)
x

]}
dx.

(100)

Then, by applying the exponential function in [36,
(3.310.11)], the closed-form expression for the out-
age probability of the PR in the first phase is
obtained as given in (38). Similarly, the outage
probability of the primary network in the second
communication phase, O(2)

P , is given as (101), where
ρU1 = PU1/N0. By applying the exponential func-
tion with more complicated arguments presented in
[36, (3.326.2)], O(2)

P is obtained as given in (39).
Similar to the approach for obtaining O(1)

P and O(2)
P ,

O(3)
P is obtained as presented in (40). This completes

the proof.

APPENDIX B
PROOF OF LEMMA 2

By substituting (34) and (42) into (41) and remark
that ∂S = 2

(N+1)γS
W − 1, we obtain

O(p)
S = Pr

{
min

{
γ

(p)
U1
, γ

(p)
Un
, γ

(p)
UN
, γ

(p)
Dp

}
< ∂S

}
.

(102)

From (102), we can formulate the outage proba-
bility of the secondary network for the p-th signal
as

O(p)
S = 1− P(p)

1 × P(p)
2 × P(p)

3 × P(p)
4 , (103)

where P(p)
1 , P(p)

2 , P(p)
3 , and P(p)

4 are presented in
(104), (105), (106), and (107), respectively.

By using some basic mathematical manipulations
and the CDF of the channel gain, the probabilities
P(p)

1 and P(p)
2 can be obtained as shown in (44)

and (45). Meanwhile, the probabilities P(p)
3 and

P(p)
4 are rewritten as presented in (108) and (109).

Then, using the binomial formula [36, (1.111)] and
combinations of exponential and rational functions
[36, (3.351)], we can derive (50) and (51). Similarly,
the outage probability of the secondary network for
the q-th signal is obtained as given in (43). This
completes the proof.

APPENDIX C
PROOF OF LEMMA 3

By substituting (61) and (35) into (60), we obtain

L(p)
S = Pr

{
min

{
γ

(p)
U1
, γ

(p)
Un
, γ

(p)
UN
, γ

(p)
E

}
> ∂E

}
,

(110)

where ∂E = 2
(N+1)RE

W − 1. Similar to Appendix B,
we can obtain the leakage probability as shown in
(62) by exchanging (28) for (32) and (29) for (33).
This completes the proof.
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O(2)
P =

V∏
v=1

1−

(
mU1P

ΩU1P

)mU1P

exp

[
−
∂P d

θ
Gv∗P

[(ρU1
+ρP )Ωe+1]

ρPΩGv∗P

]
Γ (mU1P )

×
∞∫

0

exp

[
−

(
∂Pd

θ
Gv∗P

ρU1

ρPΩGv∗P L̄
θ
U1P

+
mU1P

ΩU1P

)
x

]
xmU1P

−1dx

 . (101)

P(p)
1 = 1− Pr

{
g̃SU1 <

∂SL̄SU1 (ρSΩe + ξS + 1)

µpρS

}
, (104)

P(p)
2 = 1− Pr

{
g̃Un−1Un <

∂SL̄Un−1Un

(
ρUn−1Ωe + ξS + 1

)
µ

(n)
p ρUn−1

}
, (105)

P(p)
3 = 1− Pr

g̃UN−1UN <
∂SL̄UN−1UN

[
ρP g̃Gv∗UN
L̄Gv∗UN

+
(
ρP + ρUN−1

)
Ωe + ξS + 1

]
µ

(N−1)
p ρUN−1

 , (106)

P(p)
4 = 1− Pr

g̃UNDp <
∂SL̄UNDp

[
ρP g̃Gv∗Dp
dθGv∗Dp

+ (ρP + ρUN ) Ωe + ξS + 1

]
µ

(N)
p ρUN

 . (107)

P(p)
3 =

(
mGv∗UN

ΩGv∗UN

)mGv∗UN
exp

(
−
mUN−1UN∂SL̄UN−1UN

[(
ρP + ρUN−1

)
Ωe + ξS + 1

]
ΩUN−1UNµ

(N−1)
p ρUN−1

)

×
mUN−1UN

−1∑
j=0

1

j!

(
mUN−1UN∂SL̄UN−1UN

ΩUN−1UNµ
(N−1)
p ρUN−1

)j ∞∫
0

(
ρPx

L̄Gv∗UN
+
(
ρP + ρUN−1

)
Ωe + ξS + 1

)j

× xmGv∗UN−1

Γ (mGv∗UN )
exp

(
−

(
mUN−1UN∂SL̄UN−1UNρP

ΩUN−1UNµ
(N−1)
p ρUN−1

L̄Gv∗UN
+
mGv∗UN

ΩGv∗UN

)
x

)
dx, (108)

P(p)
4 = exp

(
−
mUNDp∂SL̄UNDp [(ρP + ρUN ) Ωe + ξS + 1]

ΩUNDpµ
(N)
p ρUN

)mUNDp−1∑
j=0

1

ΩGv∗Dpj!

(
mUNDp∂SL̄UNDp

ΩUNDpµ
(N)
p ρUN

)j

×
∞∫

0


[
ρPx

dθGv∗Dp
+ (ρP + ρUN ) Ωe + ξS + 1

]j
exp

(
−
mUNDp∂SL̄UNDpρPx

ΩUNDpµ
(N)
p ρUNd

θ
Gv∗Dp

− x

ΩGv∗Dp

)dx.
(109)
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