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A B S T R A C T

Ants is a nodal neutronics program developed at VTT since 2017. Ants solution method for the nodal
diffusion equation is based on the function expansion nodal method (FENM) and analytic function expansion
nodal (AFEN) method. Ants supports rectangular, hexagonal and triangular nodal geometries. The solution
methodology of Ants extended to solve time-dependent problems is presented in this work. The performance of
Ants is presented for all three geometry options in a series of established two- and three-dimensional numerical
time-dependent benchmarks for both rectangular and hexagonal lattices. The Ants results agree with other
published nodal program results, especially if the problem is not sensitive to control rod cusping effects or a
fine enough axial mesh is used.
1. Introduction

Ants is a nodal neutronics program developed at VTT Technical
Research Center of Finland Ltd (VTT) since 2017. Ants is a part of
the Kraken computational framework for coupled core physics calcu-
lations (Leppänen et al., 2022). Previously Ants has been demonstrated
together with the multi-physics driver program Cerberus to perform
steady state and burnup calculations. The steady state methodology
and performance in numerical benchmarks have been demonstrated
for rectangular (Sahlberg and Rintala, 2018), hexagonal (Rintala and
Sahlberg, 2019) and triangular (Hirvensalo et al., 2021) nodal geome-
tries. The extension from nodal solutions to pin power reconstruction
has been presented for rectangular (Valtavirta et al., 2022b) and hexag-
onal (Valtavirta et al., 2022a) geometries. Results of coupled fuel
cycle simulations have been published in e.g. Valtavirta and Tuominen
(2021) and Tuominen and Valtavirta (2023).

In order to expand the application area of Kraken to core-and
plant level transient analyses, the FENM/AFEN-based nodal diffusion
solution method of Ants has been extended to solve the time-dependent
diffusion equation. The methodologies for all three supported nodal
geometry options are presented in this work, including the three-
dimensional triangular geometry, for which no AFEN or FENM based
methods have been previously published to the best of the authors’
knowledge. The solution method is based on decomposing the time-
dependent diffusion equation solution to an analytic and a polynomial
part (Kim and Cho, 2002). The analytic part is solved with the steady
state solution methodology of Ants. A particular solution consisting
of orthogonal polynomials is used in the full equation containing an
inhomogeneous term. The final solution of the neutron flux is found as
the sum of the analytic and polynomial solutions.

∗ Corresponding author.
E-mail address: antti.rintala@vtt.fi (A. Rintala).

The purpose of this paper is to present the Ants solution method
for the time-dependent nodal diffusion equation (Section 2), and to
demonstrate its performance for all three supported nodal geometry
options in various established numerical benchmarks (Section 3).

2. Ants time-dependent neutronics model

Multiple nodal methods for solving the diffusion equation have been
developed in the past (Cho, 2005). The steady state model developed
for Ants is based on the flux expansion nodal method (FENM) (Xia
and Xie, 2006) and includes linear transverse gradient terms similar to
some analytic function expansion nodal (AFEN) method variants (Woo
et al., 2001). The multigroup problems with possible complex valued
eigenvalues are solved with the method presented in Cho et al. (1997).
The extensions of FENM and AFEN to solve time-dependent problems,
on which the Ants time-dependent methodology is based on, have been
presented in Xia et al. (2006) and Kim and Cho (2002).

2.1. Formulation of the time-dependent problem

The equations governing the time-dependent solution of the nodal
diffusion method are the time-dependent diffusion equation for a ho-
mogeneous node for group 𝑔 (𝑔 = 1,… , 𝐺)

1
𝑣𝑔

𝜕𝜙𝑔(𝐫, 𝑡)
𝜕𝑡

= 𝐷𝑔(𝑡)∇2𝜙𝑔(𝐫, 𝑡) − 𝛴r,𝑔(𝑡)𝜙𝑔(𝐫, 𝑡) +
∑

𝑔′≠𝑔
𝛴𝑔′→𝑔(𝑡)𝜙𝑔′ (𝐫, 𝑡)

+𝜒d,𝑔
𝐷
∑

𝑑=1
𝜆𝑑𝐶𝑑 (𝐫, 𝑡) + (1 − 𝛽)

𝜒p,𝑔
𝑘eff

𝐺
∑

𝑔′=1
𝜈𝛴f ,𝑔′ (𝑡)𝜙𝑔′ (𝐫, 𝑡) (1)
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and the precursor number density equation for a homogeneous node
for delayed neutron precursor group 𝑑 (𝑑 = 1,… , 𝐷)

𝜕𝐶𝑑 (𝐫, 𝑡)
𝜕𝑡

=
𝛽𝑑
𝑘eff

𝐺
∑

𝑔=1
𝜈𝛴f ,𝑔(𝑡)𝜙𝑔(𝐫, 𝑡) − 𝜆𝑑𝐶𝑑 (𝐫, 𝑡). (2)

The notation in these equations is:

• 𝑣𝑔 neutron speed of group 𝑔
• 𝜙𝑔(𝐫, 𝑡) neutron flux at 𝐫 of group 𝑔
• 𝐷𝑔(𝑡) diffusion coefficient of group 𝑔
• 𝛴r,𝑔(𝑡) removal group constant of group 𝑔
• 𝛴𝑔′→𝑔(𝑡) group-to-group transfer constant from group 𝑔′ to group
𝑔

• 𝜒d,𝑔 fraction of delayed neutrons born from precursor decay in
group 𝑔

• 𝜆𝑑 delayed neutron precursor decay constant of delayed neutron
precursor group 𝑑

• 𝐶𝑑 (𝐫, 𝑡) delayed neutron precursor density at 𝐫 of delayed neutron
precursor group 𝑑

• 𝛽 total delayed neutron fraction
(

𝛽 =
∑𝐷
𝑑=1 𝛽𝑑

)

• 𝜒p,𝑔 fraction of prompt neutrons born from fission in group 𝑔
• 𝑘eff steady state calculation effective multiplication factor
• 𝜈𝛴f ,𝑔(𝑡) fission neutron production group constant of group 𝑔
• 𝛽𝑑 delayed neutron fraction of delayed neutron precursor group
𝑑

The steady state 𝑘eff is included in the equations to pronounce the fact
that a time-dependent solution is initialized with a steady state solution
to obtain an initial equilibrium at the beginning of a time-dependent
calculation.

The time derivative of the neutron flux in Eq. (1) is discretized
by using exponential transformation (Reed and Hansen, 1970) of the
neutron flux 𝜙𝑔(𝐫, 𝑡) and using implicit Euler discretization for the
transformed flux �̃�𝑔(𝐫, 𝑡) (Kim and Cho, 2002). The exponential trans-
formation is written as

𝜙𝑔(𝐫, 𝑡) = e𝜔𝑛,𝑔 (𝑡−𝑡𝑛)�̃�𝑔(𝐫, 𝑡) (3)

for a time-interval 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]. The frequency 𝜔𝑛,𝑔 is defined for group
𝑔 as

𝜔𝑛,𝑔 =
1

𝛥𝑡𝑛−1
ln

𝜙𝑔(𝑡𝑛)
𝜙𝑔(𝑡𝑛−1)

(4)

for a time step 𝛥𝑡𝑛−1 = 𝑡𝑛 − 𝑡𝑛−1 and the node-integrated neutron flux of
roup 𝑔 𝜙𝑔(𝑡𝑛) = ∫𝑉 𝜙𝑔(𝐫, 𝑡𝑛)d𝑉 , where 𝑉 is the node volume. It is also
ossible to update the frequencies during the iteration of a time step
ith the newest group-wise fluxes of the current time step.

With the transformed flux, the time derivative of the flux can be
xpressed as

𝜕𝜙𝑔(𝐫, 𝑡)
𝜕𝑡

=
(

𝜔𝑛,𝑔e
𝜔𝑛,𝑔 (𝑡−𝑡𝑛)

)

�̃�𝑔(𝐫, 𝑡) +
(

e𝜔𝑛,𝑔 (𝑡−𝑡𝑛)
)
𝜕�̃�𝑔(𝐫, 𝑡)

𝜕𝑡
. (5)

Using the implicit Euler discretization for the time derivative of the
transformed flux
𝜕�̃�𝑔(𝐫, 𝑡)

𝜕𝑡
|

|

|

|𝑡=𝑡𝑛+1
=
�̃�𝑔(𝐫, 𝑡𝑛+1) − �̃�𝑔(𝐫, 𝑡𝑛)

𝛥𝑡𝑛
(6)

nd the transformation of Eq. (3) in the opposite direction, the time
erivative of the neutron flux (Eq. (5)) can be written as

𝜕𝜙𝑔(𝐫, 𝑡)
𝜕𝑡

|

|

|

|

|𝑡=𝑡𝑛+1

=
(

𝜔𝑛,𝑔 +
1
𝛥𝑡𝑛

)

𝜙𝑔(𝐫, 𝑡𝑛+1) −
e𝜔𝑛,𝑔𝛥𝑡𝑛
𝛥𝑡𝑛

𝜙𝑔(𝐫, 𝑡𝑛). (7)

The precursor densities are solved from Eq. (2) using the exponen-
tial transform of Eq. (3), assuming that the terms 𝜈𝛴 (𝑡)�̃� (𝐫, 𝑡) are
2

f ,𝑔 𝑔 a
linear between times 𝑡𝑛 and 𝑡𝑛+1, and integrating the resulting equations
nalytically. The result is

𝑑 (𝐫, 𝑡𝑛+1) = 𝐶𝑑 (𝐫, 𝑡𝑛)e−𝜆𝑑𝛥𝑡𝑛 +
1
𝑘eff

𝐺
∑

𝑔=1
𝐹 0,𝑛
𝑑,𝑔 𝜈𝛴f ,𝑔(𝑡𝑛)𝜙𝑔(𝐫, 𝑡𝑛)

+ 1
𝑘eff

𝐺
∑

𝑔=1
𝐹 1,𝑛
𝑑,𝑔 𝜈𝛴f ,𝑔(𝑡𝑛+1)𝜙𝑔(𝐫, 𝑡𝑛+1), (8)

where the terms 𝐹 0,𝑛
𝑑,𝑔 and 𝐹 1,𝑛

𝑑,𝑔 are

𝐹 0,𝑛
𝑑,𝑔 =

𝛽𝑑
𝜆𝑑 + 𝜔𝑛,𝑔

(

e𝜔𝑛,𝑔𝛥𝑡𝑛 − e−𝜆𝑑𝛥𝑡𝑛
𝛥𝑡𝑛(𝜆𝑑 + 𝜔𝑛,𝑔)

− e−𝜆𝑑𝛥𝑡𝑛
)

(9)

and

𝐹 1,𝑛
𝑑,𝑔 =

𝛽𝑑
𝜆𝑑 + 𝜔𝑛,𝑔

(

e𝜔𝑛,𝑔𝛥𝑡𝑛 − e𝜔𝑛,𝑔𝛥𝑡𝑛 − e−𝜆𝑑𝛥𝑡𝑛
𝛥𝑡𝑛(𝜆𝑑 + 𝜔𝑛,𝑔)

)

e−𝜔𝑛,𝑔𝛥𝑡𝑛 . (10)

This is equivalent to the result presented in Kim and Cho (2002), but
with the result presented for the flux instead of the transformed flux.

Applying Eqs. (7) and (8) in Eq. (1), the discretized time-dependent
neutron diffusion equation is obtained as

𝑉 1,𝑛
𝑔 𝜙𝑔(𝐫, 𝑡𝑛+1) − 𝑉 0,𝑛

𝑔 𝜙𝑔(𝐫, 𝑡𝑛) −𝐷𝑔(𝑡𝑛+1)∇2𝜙𝑔(𝐫, 𝑡𝑛+1) + 𝛴r,𝑔(𝑡𝑛+1)𝜙𝑔(𝐫, 𝑡𝑛+1)

=
∑

𝑔′≠𝑔
𝛴𝑔′→𝑔(𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1) + (1 − 𝛽)

𝜒p,𝑔
𝑘eff

𝐺
∑

𝑔′=1
𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1)

+𝜒d,𝑔
𝐷
∑

𝑑=1
𝜆𝑑

(

𝐶𝑑 (𝐫, 𝑡𝑛)e−𝜆𝑑𝛥𝑡𝑛 +
1
𝑘eff

𝐺
∑

𝑔′=1
𝐹 0,𝑛
𝑑,𝑔′𝜈𝛴f ,𝑔′ (𝑡𝑛)𝜙𝑔′ (𝐫, 𝑡𝑛)

+ 1
𝑘eff

𝐺
∑

𝑔′=1
𝐹 1,𝑛
𝑑,𝑔′𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1)

)

, (11)

where the terms 𝑉 0,𝑛
𝑔 and 𝑉 1,𝑛

𝑔 are

𝑉 0,𝑛
𝑔 = e𝜔𝑛,𝑔𝛥𝑡𝑛

𝑣𝑔𝛥𝑡𝑛
(12)

and

𝑉 1,𝑛
𝑔 = 1

𝑣𝑔

(

𝜔𝑛,𝑔 +
1
𝛥𝑡𝑛

)

. (13)

2.2. Solution of the time-dependent problem

Following the procedures of Kim and Cho (2002) and Xia et al.
(2006), Eq. (11) is solved as a sum of an analytic and a polynomial
parts. Gathering terms of Eq. (11), the equation can be written as

−𝐷𝑔(𝑡𝑛+1)∇2𝜙𝑔(𝐫, 𝑡𝑛+1) + 𝛴r,𝑔(𝑡𝑛+1)𝜙𝑔(𝐫, 𝑡𝑛+1) −
∑

𝑔′≠𝑔
𝛴𝑔′→𝑔(𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1)

−
𝜒p,𝑔
𝑘eff

𝐺
∑

𝑔′=1
𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1) = 𝑆eff

𝑔 (𝐫, 𝑡𝑛+1), (14)

here the effective source term 𝑆eff
𝑔 is

eff
𝑔 (𝐫, 𝑡𝑛+1) = −𝑉 1,𝑛

𝑔 𝜙𝑔(𝐫, 𝑡𝑛+1) + 𝑉 0,𝑛
𝑔 𝜙𝑔(𝐫, 𝑡𝑛)

− 𝛽
𝜒p,𝑔
𝑘eff

𝐺
∑

𝑔′=1
𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1)

+𝜒d,𝑔
𝐷
∑

𝑑=1
𝜆𝑑

(

𝐶𝑑 (𝐫, 𝑡𝑛)e−𝜆𝑑𝛥𝑡𝑛 +
1
𝑘eff

𝐺
∑

𝑔′=1
𝐹 0,𝑛
𝑑,𝑔′𝜈𝛴f ,𝑔′ (𝑡𝑛)𝜙𝑔′ (𝐫, 𝑡𝑛)

+ 1
𝑘eff

𝐺
∑

𝑔′=1
𝐹 1,𝑛
𝑑,𝑔′𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝜙𝑔′ (𝐫, 𝑡𝑛+1)

)

. (15)

Writing the previous equation in a matrix form results into

− ∇2𝝓(𝐫, 𝑡𝑛+1) + 𝐋(𝑡𝑛+1)𝝓(𝐫, 𝑡𝑛+1) = 𝐃−1(𝑡𝑛+1)𝐒eff (𝐫, 𝑡𝑛+1), (16)

here 𝝓(𝐫, 𝑡𝑛+1) is a vector of group-wise neutron fluxes, 𝐃 is a di-
gonal matrix of group-wise diffusion coefficients, 𝐒eff is a vector of
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group-wise effective source terms of Eq. (15) and

𝐋(𝑡𝑛+1) = 𝐃−1(𝑡𝑛+1)
(

𝐀(𝑡𝑛+1) −
𝝌p

𝑘eff
𝐟⊤(𝑡𝑛+1)

)

, (17)

here 𝐀(𝑡) is a matrix with elements 𝐴𝑔𝑔′ (𝑡) = 𝛿𝑔𝑔′𝛴r,𝑔(𝑡) − (1 −
𝛿𝑔𝑔′ )𝛴𝑔′→𝑔(𝑡), 𝝌p is a vector of prompt neutron fission yields and 𝐟 (𝑡𝑛+1)
is a vector of group-wise fission neutron production constants.

The homogeneous part of Eq. (16) is equivalent with the steady
state equation solved in Ants (Sahlberg and Rintala, 2018; Rintala and
Sahlberg, 2019; Hirvensalo et al., 2021), and the analytic part of the
solution 𝝓a(𝐫, 𝑡𝑛+1) is chosen to fulfill this equation, i.e.

− ∇2𝝓a(𝐫, 𝑡𝑛+1) + 𝐋(𝑡𝑛+1)𝝓a(𝐫, 𝑡𝑛+1) = 𝟎. (18)

ith this selection, the inhomogeneous term 𝐒eff (𝐫, 𝑡𝑛+1) contains also
erms depending on the current time step, and not only values depend-
ng on the previous time step, and the approximate polynomial part
p(𝐫, 𝑡𝑛+1) necessary to fully solve Eq. (14) is used also in the solution
f those terms. This selection is present also in the formulation of Kim
nd Cho (2002), and is explained with more detail in Joo et al. (1998).
he selection preserves the initial steady state solution in case of a null
ransient.

The analytic solution method of Ants for Eq. (18) is presented
n Sahlberg and Rintala (2018) for rectangular geometry, Rintala and
ahlberg (2019) for hexagonal geometry and Hirvensalo et al. (2021)
or triangular geometry. In short, an eigenvalue decomposition

= 𝐔Λ𝐔−1 (19)

s performed for matrix 𝐋, and a flux transformation

(𝐫) = 𝐔−1𝝓(𝐫) (20)

s applied to obtain 𝐺 decoupled equations

∇2𝜓𝑚(𝐫) + 𝜆𝑚𝜓𝑚(𝐫) = 0, (21)

here 𝜓𝑚 is the mode flux of mode 𝑚, and 𝜆𝑚 is the 𝑚th diagonal
alue of Λ. Analytic solutions for 𝜓𝑚 in different nodal geometries can
e found. The solutions are weighted sums of 𝐿 basis functions 𝜓 𝑙𝑚
hich are either sine and cosine functions or hyperbolic sine and cosine

unctions depending on the sign of 𝜆𝑚 so that the complete solutions are

𝑚 =
𝐿
∑

𝑙=1
𝑐𝑙𝑚𝜓

𝑙
𝑚. (22)

sing the transformation of Eq. (20) in the opposite direction, the
olutions for the flux can be presented as a sum of the mode flux
olutions. In case of complex conjugate pair eigenvalues 𝜆𝑚 and 𝜆𝑚+1,
slightly different transformation is used to obtain a loosely coupled

quation pair. The analytic basis functions for these modes are dif-
erent products of sine, cosine, hyperbolic sine and hyperbolic cosine
unctions, producing real-valued analytic solutions also for these modes
ith complex eigenvalues.

The full solution of Eq. (16) is obtained in a weighted integral sense.
he polynomial part of the flux is expanded as a polynomial of order
such that

p,𝑔(𝐫, 𝑡𝑛+1) =
𝐼
∑

𝑖=1
𝑐p,𝑛+1𝑖,𝑔 𝑤𝑖(𝐫), (23)

here 𝑐p,𝑛+1𝑖,𝑔 is the polynomial expansion coefficient at time 𝑡𝑛+1 for
asis function 𝑖 and group 𝑔. The basis functions 𝑤𝑖(𝐫) are selected to
e orthonormal in a volume-integral sense for a node as

𝑉
𝑤𝑖(𝐫)𝑤𝑗 (𝐫)d𝑉 = 𝛿𝑖𝑗 . (24)

he polynomial basis functions utilized in Ants for the different nodal
eometries are presented in Table 1. The normalization coefficients of
he functions are uniquely determined by the orthonormality require-
ent.
3

c

Table 1
The polynomial basis functions 𝑤𝑖(𝐫) for different nodal geometries. Here 𝑥ℎ and 𝑦ℎ
are the rectangular node widths in 𝑥 and 𝑦 direction, 𝑧ℎ is the node height, ℎ is the
hexagonal node flat-to-flat width, 𝑎 is the side length of the equilateral triangle of the
triangular node, and 𝑁𝑖 are normalization coefficients. The hexagonal geometry basis
functions originate from Xia et al. (2006), whereas the rectangular geometry basis
functions are based on Legendre polynomials up to the second order (Kim and Cho,
2002).
𝑖 Rectangular Hexagonal Triangular

1 1∕𝑁1 1∕𝑁1 1∕𝑁1
2 𝑥∕𝑁2 𝑥∕𝑁2 𝑥∕𝑁2
3 𝑦∕𝑁3 𝑦∕𝑁3 𝑦∕𝑁3
4 𝑧∕𝑁4 𝑧∕𝑁4 𝑧∕𝑁4

5
(

3
2
𝑥2 − 1

2
𝑥2ℎ

)

∕𝑁5

(

𝑥2 + 𝑦2 − 5
9
ℎ2

)

∕𝑁5

(

𝑥2 + 𝑦2 − 1
12
𝑎2
)

∕𝑁5

6
(

3
2
𝑦2 − 1

2
𝑦2ℎ

)

∕𝑁6

(

𝑥2 − 𝑦2
)

∕𝑁6

(

3
2
𝑧2 − 1

2
𝑧2ℎ

)

∕𝑁6

7
(

3
2
𝑧2 − 1

2
𝑧2ℎ

)

∕𝑁7 2𝑥𝑦∕𝑁7

8 𝑥𝑦∕𝑁8

(

3
2
𝑧2 − 1

2
𝑧2ℎ

)

∕𝑁8

9 𝑥𝑧∕𝑁9
10 𝑦𝑧∕𝑁10

Substituting the neutron flux vector

𝝓 = 𝝓a + 𝝓p (25)

nd Eq. (18) in Eq. (16), the result is

∇2𝝓p(𝐫, 𝑡𝑛+1) + 𝐋(𝑡𝑛+1)𝝓p(𝐫, 𝑡𝑛+1) = 𝐃−1(𝑡𝑛+1)𝐒eff (𝐫, 𝑡𝑛+1). (26)

sing Eq. (23), multiplying the resulting equation with a basis function
𝑗 (𝐫) and integrating the result over the node volume, and denoting

p,𝑛+1
𝑖,𝑔 = ∫𝑉

𝑤𝑖(𝐫)𝑆eff
𝑔 (𝐫, 𝑡𝑛+1)d𝑉 , (27)

he final equation for solving the polynomial expansion coefficients is
btained as

− ∫𝑉
𝑤𝑗 (𝐫)

𝐼
∑

𝑖=1
𝐜p,𝑛+1𝑖,𝑔 ∇2𝑤𝑖(𝐫)d𝑉 + 𝐋𝐜p,𝑛+1𝑗,𝑔 = 𝐃−1(𝑡𝑛+1)𝐬

p,𝑛+1
𝑗,𝑔 . (28)

he first sum term in the previous equation is non-zero only for 𝑗 = 1,
nd 𝑖 ∈ {5, 6, 7} in rectangular geometry, 𝑖 ∈ {5, 8} in hexagonal geom-
try and 𝑖 ∈ {5, 6} in triangular geometry. Therefore, the coefficient
ectors 𝐜p,𝑛+1𝑗,𝑔 can first be solved for 𝑗 > 1, and together with the
btained solutions for 𝑗 = 1.

Denoting

𝜙,𝑛+1
𝑖,𝑔 =∫𝑉

𝑤𝑖(𝐫)𝜙𝑔(𝐫, 𝑡𝑛+1)d𝑉 =

∫𝑉
𝑤𝑖(𝐫)𝜙a,𝑔(𝐫, 𝑡𝑛+1)d𝑉 + ∫𝑉

𝑤𝑖(𝐫)𝜙p,𝑔(𝐫, 𝑡𝑛+1)d𝑉 = 𝑐a,𝑛+1𝑖,𝑔 + 𝑐p,𝑛+1𝑖,𝑔

(29)

nd
C,𝑛+1
𝑖,𝑑 = ∫𝑉

𝑤𝑖(𝐫)𝐶𝑑 (𝐫, 𝑡𝑛+1)d𝑉 , (30)

he source expansion coefficients of Eq. (27) can be calculated analyt-
cally as

p,𝑛+1
𝑖,𝑔 = −𝑉 1,𝑛

𝑔 𝑐𝜙,𝑛+1𝑖,𝑔 + 𝑉 0,𝑛
𝑔 𝑐𝜙,𝑛𝑖,𝑔 − 𝛽

𝜒p,𝑔
𝑘eff

𝐺
∑

𝑔′=1
𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝑐

𝜙,𝑛+1
𝑖,𝑔

+𝜒d,𝑔
𝐷
∑

𝑑=1
𝜆𝑑

(

𝑐C,𝑛𝑖,𝑑 e−𝜆𝑑𝛥𝑡𝑛 + 1
𝑘eff

𝐺
∑

𝑔′=1
𝐹 0,𝑛
𝑑,𝑔′𝜈𝛴f ,𝑔′ (𝑡𝑛)𝑐

𝜙,𝑛
𝑖,𝑔

+ 1
𝑘eff

𝐺
∑

𝑔′=1
𝐹 1,𝑛
𝑑,𝑔′𝜈𝛴f ,𝑔′ (𝑡𝑛+1)𝑐

𝜙,𝑛+1
𝑖,𝑔

)

. (31)

he necessary flux expansion coefficients of Eq. (29) are analytically
alculable, and the precursor expansion coefficients can be calculated
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using them with Eqs. (8) and (30) to obtain

𝑐C,𝑛+1𝑖,𝑑 = 𝑐C,𝑛𝑖,𝑑 e−𝜆𝑑𝛥𝑡𝑛 + 1
𝑘eff

𝐺
∑

𝑔=1
𝐹 0,𝑛
𝑑,𝑔 𝜈𝛴f ,𝑔(𝑡𝑛)𝑐

𝜙,𝑛
𝑖,𝑔

+ 1
𝑘eff

𝐺
∑

𝑔=1
𝐹 1,𝑛
𝑑,𝑔 𝜈𝛴f ,𝑔(𝑡𝑛+1)𝑐

𝜙,𝑛+1
𝑖,𝑔 . (32)

Therefore, it is not necessary to track the actual flux, fission source or
precursor density distributions of the previous time step to obtain a flux
solution of the current time step. Only the weighted integrals of the said
quantities are needed.

The polynomial flux expansion coefficients can be solved uniquely
from Eq. (28) with known expansion coefficients 𝑐𝜙,𝑛+1𝑖,𝑔 . The analytic
asis function expansion coefficients 𝑐𝑙𝑚 (Eq. (22)) are solved using
odal boundary conditions as in Xia et al. (2006). The incoming and
utgoing partial currents at a node surface 𝑘 for group 𝑔 can be written
s

±
𝑔,𝑘 = 1

4
𝜙𝑔,𝑘 ∓

1
2
𝐷𝑔∇𝜙𝑔,𝑘 =

1
4
𝜙a,𝑔,𝑘 ∓

1
2
𝐷𝑔∇𝜙a,𝑔,𝑘 +

1
4
𝜙p,𝑔,𝑘 ∓

1
2
𝐷𝑔∇𝜙p,𝑔,𝑘. (33)

The partial currents of the form Eq. (33) weighted with unity or sign
functions are used as boundary conditions in Ants. The numbers of
boundary conditions are 18, 20 and 14 for rectangular, hexagonal and
triangular nodal geometries, respectively. The time-dependent solution
uses the same weighting functions as the steady state model described
in Sahlberg and Rintala (2018), Rintala and Sahlberg (2019) and
Hirvensalo et al. (2021) for the different geometries.

The result of analytic evaluation of the boundary conditions of
Eq. (33) using Eqs. (20), (22), (23) and (25) can be collected into two
matrix equations as

𝐣+(𝑡𝑛+1) = 𝐐+,𝑛+1
a 𝐜𝑛+1a +𝐐+,𝑛+1

p 𝐜𝑛+1p (34)

and

𝐣−(𝑡𝑛+1) = 𝐐−,𝑛+1
a 𝐜𝑛+1a +𝐐−,𝑛+1

p 𝐜𝑛+1p . (35)

Here 𝐜𝑛+1a is a vector of length 𝐺 × 𝐿 containing the coefficients 𝑐𝑙𝑚 of
Eq. (22), and 𝐜𝑛+1p is a vector of length 𝐺×𝐼 containing the coefficients
𝑐p,𝑛+1𝑖,𝑔 of Eq. (23). The inner iteration of calculating outgoing partial
current moments from incoming partial current moments can be solved
from Eqs. (34) and (35) as

𝐣+(𝑡𝑛+1) = 𝐐+,𝑛+1
a (𝐐−,𝑛+1

a )−1𝐣−(𝑡𝑛+1)

+
(

𝐐+,𝑛+1
p −𝐐+,𝑛+1

a (𝐐−,𝑛+1
a )−1𝐐−,𝑛+1

p
)

𝐜𝑛+1p . (36)

The coefficient vector 𝐜𝑛+1a can be solved from Eq. (35) as

𝐜𝑛+1a =
(

𝐐−,𝑛+1
a

)−1(𝐣−(𝑡𝑛+1) −𝐐−,𝑛+1
p 𝐜𝑛+1p

)

. (37)

2.3. Coarse group rebalance

The convergence of outer iterations is accelerated using coarse
group rebalance (CGR) method (Kim and Cho, 2002). With integration
of Eq. (11) over the node volume 𝑉 and summing over all groups, after
reordering the equation can be written as
𝐺
∑

𝑔=1
𝑉 1,𝑛
𝑔 𝜙𝑔(𝑡𝑛+1) +

𝐾
∑

𝑘=1

𝐺
∑

𝑔=1
(𝐽+
𝑘,𝑔(𝑡𝑛+1) − 𝐽

−
𝑘,𝑔(𝑡𝑛+1)) +

𝐺
∑

𝑔=1
𝛴a,𝑔(𝑡𝑛+1)𝜙𝑔(𝑡𝑛+1)

− (1 − 𝛽) 1
𝑘eff

𝐺
∑

𝑔=1
𝜈𝛴f ,𝑔(𝑡𝑛+1)𝜙𝑔(𝑡𝑛+1)

−
𝐷
∑

𝜆𝑑
1
𝑘

𝐺
∑

𝐹 1,𝑛
𝑑,𝑔 𝜈𝛴f ,𝑔(𝑡𝑛+1)𝜙𝑔(𝑡𝑛+1) =
4

𝑑=1 eff 𝑔=1
𝐺
∑

𝑔=1
𝑉 0,𝑛
𝑔 𝜙𝑔(𝑡𝑛) +

𝐷
∑

𝑑=1
𝜆𝑑

(

𝐶𝑑 (𝑡𝑛)e−𝜆𝑑𝛥𝑡𝑛 +
1
𝑘eff

𝐺
∑

𝑔=1
𝐹 0,𝑛
𝑑,𝑔 𝜈𝛴f ,𝑔(𝑡𝑛)𝜙𝑔(𝑡𝑛)

)

,

(38)

where all terms on the left hand side of the equation are dependent on
the solution of the current time step, and terms on the right hand side
act as a fixed source. Here 𝜙𝑔 is the node-integrated flux, 𝐽+

𝑘,𝑔 and 𝐽−
𝑘,𝑔

are the node face 𝑘 integrated outgoing and incoming partial currents,
respectively, and 𝛴a,𝑔 is the absorption group constant. Using the
neighbor node outgoing partial current as the incoming partial current
for the current node, and assuming a single rebalance coefficient 𝑓 for
the node-integrated neutron flux and the outgoing partial currents as

𝜙𝑔(𝑡𝑛+1) = 𝑓𝜙𝑔(𝑡𝑛+1) (39)

and

𝐽+
𝑘,𝑔(𝑡𝑛+1) = 𝑓𝐽+

𝑘,𝑔(𝑡𝑛+1), (40)

where the values marked with ⋅̃ are the values before the rebalance. To
perform the rebalance simultaneously for all nodes, the Eqs. (38), (39)
and (40) can be collected to a matrix equation as

𝐌𝐟 = 𝐬, (41)

where the terms on the left hand side of Eq. (38) are included in the
matrix 𝐌 and the terms on the right hand side are included in the
vector 𝐬. The solution vector 𝐟 are then used to rebalance all the flux
and outgoing partial current dependent values of the nodes.

2.4. Iteration scheme

A time-dependent Ants calculation is initialized with the steady
state multiplication factor 𝑘eff and the flux and precursor density ex-
pansion coefficients 𝑐𝜙,𝑛𝑖,𝑔 and 𝑐C,𝑛𝑖,𝑔 of Eqs. (29) and (30) for the beginning
of the first time step values. For the first outer iteration, the same
coefficients are used as the end of time step values. Afterwards, for each
time step the following iteration procedure is followed:

1. Frequencies are updated using Eq. (4)
2. The source expansion coefficients are constructed using Eq. (31)
3. The polynomial flux expansion coefficients are solved from

Eq. (28)
4. The eigenvalue decompositions of Eq. (19) are performed
5. The matrixes 𝐐+,𝑛+1

a , 𝐐−,𝑛+1
a , 𝐐+,𝑛+1

p and 𝐐−,𝑛+1
p of Eqs. (34) and

(35) are constructed
6. 𝑁 inner iterations of Eq. (36) are performed with red-black

or four-color iteration to update node partial current moments
using neighbor node outgoing partial current moments as the
incoming partial current moments of the current node

7. The coefficients of the analytic flux are solved using Eq. (37)
8. Volume-integrated fluxes are calculated using analytic expres-

sions of Eqs. (20), (22), (23) and (25)
9. Coarse group rebalance of Eq. (41) is performed

10. The flux expansion coefficients are calculated with Eq. (29)
11. If fluxes, fission sources and total power are converged, the

outer iterations are stopped, otherwise a new outer iteration is
performed beginning from step 1 or 2, depending on whether
the frequency values are updated during the iteration of the time
step

fter convergence is obtained, the precursor density expansion coef-
icients are calculated with Eqs. (29) and (30) to be used during the
teration of the next time step.

. Benchmarks and results

Five different benchmarks with a total of seven different compared
ases are solved with the Ants time-dependent neutronics model. For
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Fig. 1. TWIGL benchmark quarter core radial geometry.

Table 2
Effective multiplication factors of the initial state of the TWIGL benchmark.

Code Ants QUANDRY POLCA7 SPANDEX

Radial mesh (cm2) 8 × 8 8 × 8 8 × 8 4 × 4
𝑘eff 0.91321 0.91321 0.91321 0.91321

rectangular geometry, the two-dimensional TWIGL benchmark and the
three-dimensional LMW and LRA problems are solved, and for the
hexagonal and triangular geometries, the three-dimensional AER-DYN-
001 and AER-DYN-002 benchmarks are solved. The Ants results are
calculated using convergence criterion of the steady state multiplication
factor difference between successive outer iterations being less than
10−9 and the relative change of node-wise fission source between
successive outer iterations being less than 10−6. In the LRA and AER-
DYN-002 benchmarks the fuel temperature increase due to adiabatic
heating is solved using implicit Euler discretization. Additionally, the
Ants calculation times are presented in two example benchmarks and
the effect of the temporal mesh on the solution accuracy is studied in
one example benchmark at the end of this section.

3.1. TWIGL benchmark

The TWIGL benchmark is a two-dimensional kinetics problem with
no modeled feedbacks (Hageman and Yasinsky, 1969). The geometry
of the highly simplified model with a quarter core symmetry is shown
in Fig. 1. Two energy groups and one delayed neutron precursor group
are used in the problem. Two transient scenarios are included in the
benchmark, where the absorption group constant of the assemblies
indicated by ‘‘1’’ in the figure are either perturbed in a step-wise
manner or with a linear ramp. The transients are followed for 0.5 s.

The benchmark results for Ants and a selection of other nodal
programs are presented for the initial steady state effective multipli-
cation factors 𝑘eff in Table 2 and for the time-dependent powers in
Tables 3 and 4 for the step and ramp perturbations, respectively. The
data for programs other than Ants is collected from Smith (1979),
Sutton and Aviles (1996) and Kotchoubey (2015). The full Ants time-
dependent power solutions are plotted in Fig. 2 with a comparison
against QUANDRY results.

The 𝑘eff values are identical between the different programs in the
presented accuracy, even though the SPANDEX results are solved using
a finer mesh. The time-dependent power solutions show very little
variation between the different solutions.

3.2. LMW benchmark

The LMW benchmark problem (Langenbuch et al., 1977; Smith,
1979) consists of an operational transient in a simplified three-dimension
5

al
Table 3
TWIGL benchmark step perturbation transient results.

Code Ants QUANDRY POLCA-T SPANDEX

Radial mesh (cm2) 8 × 8 12/16 × 12/16 8 × 8 4 × 4
Time step (ms) 10 10 10 0.1

Time (s) Relative power (–)

0.0 1.000 1.000 1.000 1.000
0.1 2.060 2.064 2.061 2.062
0.2 2.078 2.076 2.080 2.079
0.3 2.096 2.095 2.097 2.096
0.4 2.113 2.112 2.114 2.114
0.5 2.131 2.130 2.132 2.131

Table 4
TWIGL benchmark ramp perturbation transient results.

Code Ants QUANDRY POLCA-T SPANDEX

Radial mesh (cm2) 8 × 8 8 × 8 8 × 8 4 × 4
Time step (ms) 5 2.5 5 0.1

Time (s) Relative power (–)

0.0 1.000 1.000 1.000 1.000
0.1 1.309 1.307 1.308 1.309
0.2 1.961 1.957 1.961 1.960
0.3 2.075 2.074 2.076 2.075
0.4 2.093 2.092 2.093 2.092
0.5 2.110 2.109 2.111 2.110

Table 5
Effective multiplication factors of the initial state of the LMW benchmark.

Code Ants Ants QUANDRY POLCA7 SPANDEX

Radial mesh (cm2) 20 × 20 20 × 20 20 × 20 20 × 20 5 × 5
Axial mesh (cm) 20 2 20 20 2.5

𝑘eff 0.99966 0.99966 0.99974 0.99970 0.99964

PWR core with quarter core symmetry. The transient includes moderate
movement of two control rod groups. The quarter core radial and axial
geometries are shown in Fig. 3. The problem is modeled with two
energy groups and six delayed neutron precursor groups. The problem
excludes all thermal hydraulic feedbacks.

The transient is initiated with the movement of the originally in-
serted control rods of group 1. The group is withdrawn at a constant
speed of 3 cm/s until it reaches the top of the active core. The insertion
of control rod group 2 starts at 7.5 s with the same speed of 3 cm/s. The
group is stopped at 60 cm elevation from the bottom of the core. The
transient is followed for 60 s.

The benchmark results for Ants and a selection of other nodal pro-
grams are presented for the initial steady state effective multiplication
factors 𝑘eff in Table 5 and for the time-dependent powers in Table 6.
The time-dependent solutions are selected among those having a fixed
time step length 250 ms. The data for programs other than Ants is
collected from Smith (1979), Sutton and Aviles (1996), Kotchoubey
(2015) and Bahadir (2022). The full Ants time-dependent power so-
lutions are plotted in Fig. 4 with a comparison against QUANDRY and
SIMULATE5-K results.

The 𝑘eff values are within 10 pcm between the presented results.
The Ants values are closest to the finer mesh results calculated with
SPANDEX.

As noted by other authors, the slow movement of control rods result
into multiple partially rodded nodes during the transient. A proper
homogenization of such nodes correctly accounting for the different
flux values inside the rodded and to unrodded parts is essential for
obtaining realistic results. Otherwise the control rod cusping effect
will be evident. Currently, Ants does not have a model for correcting
the cusping effect, which is clearly seen in the results with a coarse
axial mesh (20 cm node height). The results are rather similar to those
presented in Kotchoubey (2015) and Bahadir (2022) when the axial
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Fig. 2. Time-dependent powers in the TWIGL benchmark step perturbation (left) and ramp perturbation (right) transients. The solution parameters for the different programs are
presented in Tables 3 and 4.
Fig. 3. LMW benchmark quarter core radial (left) and axial (right) geometries. The dotted assemblies indicate control rod group 1 and the assemblies with diagonal lines indicate
control rod group 2.
Table 6
LMW benchmark transient results.

Code Ants Ants QUANDRY SIMULATE5-K

Radial mesh (cm2) 20 × 20 20 × 20 20 × 20 20 × 20
Axial mesh (cm) 20 2 10 20
Time step (ms) 250 250 250 250

Time (s) Power density (W/cm3)

0 150.0 150.0 150.0 150.0
5 168.1 169.0 169.1 169.0
10 197.4 201.0 202.0 201.8
20 249.1 256.5 262.2 257.7
30 198.5 205.6 210.8 206.6
40 118.1 121.3 123.0 121.9
50 73.7 75.4 75.7 75.7
60 56.6 57.9 57.9 57.9

homogenization methods are disabled. With the fine axial nodalization
(2 cm node height) in Ants the effect is practically not seen.

QUANDRY uses an approximate method for calculating the par-
tially rodded node group constants (Smith, 1979), whereas POLCA-
T and SIMULATE5-K solve one-dimensional diffusion equations for
each axial node stack to calculate the group constants and axial dis-
continuity factors (Kotchoubey, 2015; Bahadir, 2022). The Ants fine
axial mesh results are closer to the SIMULATE5-K results than the
QUANDRY results. The maximum relative difference between Ants
coarse and fine axial meshes and the QUANDRY results are −5.9 % and
−2.5 %, respectively, whereas SIMULATE5-K has a maximum relative
6

Table 7
Effective multiplication factors of the initial state of the LRA benchmark.

Code Ants Ants QUANDRY POLCA7

Radial mesh (cm2) 15 × 15 15 × 15 15 × 15 15 × 15
Axial mesh (cm) 15 1.5 15/30 15/30

𝑘eff 0.99641 0.99641 0.99644 0.99641

difference of −2.0 %. The Ants maximum relative differences against
SIMULATE5-K are −4.0 % and −0.5 % for the coarse and fine axial
meshes, respectively.

3.3. LRA benchmark

The LRA problem is a three-dimensional rod drop transient in
a BWR core (Argonne Code Center, 1977; Smith, 1979; Sutton and
Aviles, 1996). Two scenarios of the three-dimensional benchmark are
calculated, a single-rod ejection event and a four-rod ejection event.
The problem employs two energy groups and two delayed neutron
precursor groups. The effects of fuel temperature change are modeled
with adiabatic heatup and Doppler feedback mechanism.

The radial quarter core geometry and the axial configuration of the
core are shown in Fig. 5. Zero flux boundary conditions are applied in
the core periphery. Cruciform control rods are modeled within the four
surrounding assemblies around the rod with material 3.

The simulation is performed in two separate transient scenarios: the
single rod case, in which only the control rod shown in Fig. 5 is dropped
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Fig. 4. Time-dependent powers in the LMW benchmark transient. The solution parameters for different programs are presented in Table 6.
Fig. 5. LRA benchmark quarter core radial (left) and axial (right) geometries. The position of the dropped control rod is outlined with red.
Fig. 6. Time-dependent powers in the LRA four rod benchmark transient. The solution parameters for different programs are presented in Table 8.
from the core at a constant speed of 150 cm/s, and the four rod case,
in which all four rods symmetric to the rod indicated in the quarter
core model are dropped at the same time with the same velocity of
150 cm/s. The transients are followed for 3 s.

The benchmark results for Ants and a selection of other nodal pro-
grams are presented for the initial steady state effective multiplication
factors 𝑘eff in Table 7 and for the time-dependent powers in Tables 8
and 9 for the four rod and single rod transients, respectively. The
7

time steps used in Ants calculations are presented in Table 10. The
data for programs other than Ants is collected from Smith (1979),
Brega et al. (1981), Kotchoubey (2015) and Bahadir (2022). The full
Ants time-dependent power solutions are plotted in Figs. 6 and 7 with
comparisons against QUANDRY and SIMULATE5-K results.

The 𝑘eff values are almost equal between the presented results, with
the QUANDRY having a 3 pcm difference to the other results.
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Fig. 7. Time-dependent powers in the LRA single rod benchmark transient. The solution parameters for different programs are presented in Table 9.
Table 8
LRA four rod benchmark transient results.

Code Ants Ants QUANDRY POLCA-T SIMULATE5-K

Radial mesh (cm2) 15 × 15 15 × 15 15 × 15 15 × 15 15 × 15
Axial mesh (cm) 15 1.5 15/30 15/30 15
Number of time steps 820 820 2708 1373 820

Time at first maximum (s) 0.907 0.900 0.914 0.900 0.90

Power at first maximum
(W/cm3)

5797 5606 5532 5754 5626

Time at first minimum (s) 0.996 0.995 1.00 0.993 0.99

Power at first minimum
(W/cm3)

115.9 116.3 128.2 114.5 117

Time at second maximum
(s)

1.510 1.510 1.446 1.5 1.49

Power at second maximum
(W/cm3)

368.8 364.2 432.9 368 367

Power at 3.0 s (W/cm3) 70.9 70.4 72.2 70.6 71

Average fuel temperature at
3.0 s (K)

1010 1010 1018 1011 1016
Table 9
LRA single rod benchmark transient results.

Code Ants Ants QUANDRY POLCA-T SIMULATE5-K

Radial mesh (cm2) 15 × 15 15 × 15 15/30 × 15/30 15 × 15 15 × 15
Axial mesh (cm) 15 1.5 30/37.5 15/30 15
Number of time steps 1200 1200 820 1419 1100

Time at first maximum (s) 0.953 0.946 0.950 0.945 0.94

Power at first maximum
(W/cm3)

1458 1477 1435 1506 1482

Time at first minimum (s) 1.06 1.05 1.08 1.02 1.04

Power at first minimum
(W/cm3)

36.1 35.8 20.7 33.1 36

Time at second maximum
(s)

1.52 1.53 1.57 1.52 1.52

Power at second maximum
(W/cm3)

107 105 141 106 106

Power at 3.0 s (W/cm3) 22.0 21.9 22.6 21.9 22

Average fuel temperature at
3.0 s (K)

499 499 503 – 501
For the four rod transient, the Ants results between a coarse (15 cm
node height) and a fine (1.5 cm node height) axial meshes are rather
similar. With the finer mesh, the maximum power is obtained slightly
earlier and is 3.3 % lower than with the coarser mesh. Overall the
behavior of Ants is much closer to POLCA-T and SIMULATE5-K than
8

QUANDRY. The QUANDRY results are calculated with a double node
height in the active core region compared with the other programs,
but with a denser time stepping. The first minimum power, the sec-
ond maximum power and the power at 3.0 s are within couple of
W/cm3 between Ants, POLCA-T and SIMULATE5-K. The maximum
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Fig. 8. AER-DYN-001 benchmark half core radial geometry. Bolded assemblies indicate control rod positions. The position of the ejected control rod is outlined with red. Radial
reflector positions (material number 5) are absent in the AER-DYN-002 benchmark.
Fig. 9. AER-DYN-001 benchmark axial geometry. Radial and axial reflector regions
(material numbers 5 and 6) are absent in the AER-DYN-002 benchmark.

Table 10
LRA benchmark time steps used in the Ants calculations (Smith, 1979; Brega et al.,
1981).

Number of time steps

820 1200

Time interval (s) Time step (s) Time interval (s) Time step (s)

0.00–0.50 0.012500 0.0–0.2 0.0100
0.50–0.60 0.005000 0.2–0.4 0.0050
0.60–0.70 0.001250 0.4–0.6 0.0020
0.70–0.80 0.000625 0.6–0.7 0.0010
0.80–0.95 0.000500 0.7–1.0 0.0005
0.95–1.00 0.001250 1.0–1.2 0.0025
1.00–2.00 0.010000 1.2–2.0 0.0050
2.00–3.00 0.012500 2.0–3.0 0.0100

power density of the Ants coarse mesh results is closer to the POLCA-
T result (0.8 % higher), whereas the fine mesh result is closer to the
SIMULATE5-K result (0.4 % lower). All in all, the results between Ants,
POLCA-T and SIMULATE5-K are in a rather good agreement, as the
maximum power density ranges from 5532 W/cm3 to 6549 W/cm3

between various nodal programs using different node meshes and
time steppings (Smith, 1979; Brega et al., 1981; Kim and Cho, 2002;
Kotchoubey, 2015; Bahadir, 2022).
9

Also for the single rod transient, the Ants result between the coarse
and fine axial meshes are rather similar. With the finer mesh, the
maximum power is obtained earlier and is 1.3 % higher than with the
coarse mesh. The first minimum and the second maximum powers are
0.9 % and 1.4 % lower for the finer mesh. Overall the behavior of Ants
is again much closer to POLCA-T and SIMULATE5-K than QUANDRY.
The QUANDRY results are calculated with a much coarser mesh and
a sparser time stepping compared with the other programs. The re-
sults between Ants, POLCA-T and SIMULATE5-K are in a rather good
agreement, as the maximum power density ranges from 1435 W/cm3

to 1600 W/cm3 between various nodal programs using different node
meshes and time steppings (Smith, 1979; Sutton and Aviles, 1996; Kim
and Cho, 2002; Kotchoubey, 2015; Bahadir, 2022).

3.4. AER-DYN-001 benchmark

The AER-DYN-001 benchmark problem (Keresztúri and Telbisz,
2000) describes an asymmetric control rod ejection transient in a
three-dimensional VVER-440 core. The benchmark considers only the
neutron kinetics without feedback effects. The radial and axial geom-
etry plots of the half of the core are shown in Figs. 8 and 9. The
core consists of hexagonal fuel assemblies, and one layer of reflector
positions of equal dimensions. The boundary conditions at the outer
boundaries of the reflectors are given as extrapolation lengths. The
benchmark group constants are given for two energy groups and six
delayed neutron precursor groups.

In the initial state of the benchmark, control rod groups 21 and 26
are placed at 50 cm from the bottom of the core, and control rod groups
23 and 25 are fully withdrawn from the core. The transient is initiated
by the ejection of control rod 26 at a constant speed in 0.08 s. At 1.0 s
after the rod ejection, scram is initiated and the remaining control
rod groups are inserted at a constant velocity. The initially withdrawn
groups 23 and 25 are inserted from 275 cm to 25 cm from the bottom of
the core (top of the bottom axial reflector) in 10 s. The initially partially
inserted group 21 is inserted at the same constant velocity from 50 cm
to 25 cm from the bottom of the core. The transient is followed for 6 s.
In contrast to the benchmark specifications, the moving of the delayed
neutron precursors together with the fuel followers when the control
rods are inserted is not modeled in Ants. However, the effect of this
approximation is likely negligible (Keresztúri and Telbisz, 2000).

The slow insertion of control rods combined with the large node
height in this benchmark makes the total power evolution very sensitive
to the modeling of partially rodded nodes. Additionally, accurate spa-
tial modeling of the flux is necessary to obtain realistic results for this
benchmark. The results obtained with more recent nodal methods (Car-
reño et al., 2021; Kolev and Christoskov, 2022; Jang et al., 2022)
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Fig. 10. Time-dependent powers in the AER-DYN-001 benchmark transient. The Ants results are calculated with both hexagonal (hx) and triangular (tr) models.
.

Table 11
AER-DYN-001 benchmark steady state effective multiplication factors of the initial state
and after control rod ejection, and the static reactivity worth 𝛥𝜌𝐶𝑅 = (1∕𝑘eff ,in−1∕𝑘eff ,out )⋅
100% of the ejected control rod.

Code Radial mesh Axial mesh 𝑘eff ,in 𝑘eff ,out 𝛥𝜌𝐶𝑅
(–) (cm) (–) (–) (%)

Ants 1 hexagon 25.0 0.99942 1.00435 0.4916
Ants 1 hexagon 12.5 0.99941 1.00435 0.4921
Ants 1 hexagon 2.5 0.99940 1.00434 0.4922
Ants 6 triangles 25.0 0.99973 1.00465 0.4900
Ants 6 triangles 12.5 0.99947 1.00442 0.4927
Ants 6 triangles 2.5 0.99939 1.00435 0.4939
RAST-V 6 triangles 12.5 0.99934 1.00432 0.4962
H3CM 1 hexagon 25.0 0.99922 1.00419 0.4956
FRCZ 1536 triangles 25.0 0.99933 – –

Table 12
Maximum relative powers and their occurrence times in the AER-DYN-001 benchmark

Code Radial mesh Axial mesh 𝑡max 𝑃max
(–) (cm) (s) (–)

Ants 1 hexagon 25.0 1.02 7.53
Ants 1 hexagon 12.5 1.50 8.26
Ants 1 hexagon 2.5 1.55 8.47
Ants 6 triangles 25.0 1.02 7.36
Ants 6 triangles 12.5 1.50 8.34
Ants 6 triangles 2.5 1.51 8.66
RAST-V 6 triangles 12.5 1.50 8.74
H3CM 1 hexagon 25.0 1.6 8.73
FRCZ 1536 triangles 25.0 1.6 8.73

predict much higher relative maximum powers than those originally
published in Keresztúri and Telbisz (2000).

The benchmark results for Ants and a selection of other codes are
presented for the initial and after the rod ejection steady state effective
multiplication factors, and the static reactivity worth of the ejected
control rod in Table 11. The full Ants time-dependent power solutions
are presented in Fig. 10 together with comparisons against RAST-
V, H3CM and FRCZ. The maximum powers during the transient are
shown in Table 12. The data for programs other than Ants is collected
from Kolev and Christoskov (2022), Jang et al. (2022), Jang (2022)
and Kolev (2022). In comparison to nodal programs Ants, RAST-V
and H3CM, FRCZ uses a finite-difference model radially and transverse
integration based nodal expansion method (NEM) axially.

The Ants solutions are calculated with a 1 ms time step until 0.2 s
and 10 ms afterwards. RAST-V used 10 ms time step until 1.0 s and
500 ms afterwards, whereas H3CM and FRCZ used 5 ms time step until
10
Table 13
Effective multiplication factors of the initial state and after control rod ejection of the
AER-DYN-002 benchmark and the static reactivity worth 𝛥𝜌𝐶𝑅 = (1∕𝑘eff ,in − 1∕𝑘eff ,out ) ⋅
100% of the ejected control rod.

Code Radial mesh Axial mesh 𝑘eff ,in 𝑘eff ,out 𝛥𝜌𝐶𝑅
(–) (cm) (–) (–) (%)

Ants 1 hexagon 25.0 0.99825 1.00869 1.0361
Ants 1 hexagon 12.5 0.99823 1.00868 1.0377
Ants 1 hexagon 2.5 0.99822 1.00867 1.0382
Ants 6 triangles 25.0 0.99854 1.00893 1.0310
Ants 6 triangles 12.5 0.99810 1.00860 1.0433
Ants 6 triangles 2.5 0.99795 1.00850 1.0482
RAST-V 6 triangles 12.5 0.99830 1.00871 1.0338
H3CM 1 hexagon 25.0 0.99800 1.00855 1.0475
FRCZ 384 triangles 25.0 0.99813 – –
CRONOS extrapolated extrapolated 0.99784 1.00846 1.0554

0.08 s, 10 ms time step until 0.1 s, 50 ms time step until 1.0 s and 100 ms
afterwards.

Due to the absence of a proper partially rodded node homoge-
nization method in Ants, the results are presented for the original
benchmark nodalization (25 cm node height), a halved node height
(12.5 cm) and a fine axial nodalization (2.5 cm node height). RAST-
V uses volume weighting of the partially rodded node group con-
stants (Jang, 2022), whereas H3CM and FRCZ use fixed ratios of
unrodded and rodded node neutron flux densities obtained from steady
state calculations to perform an approximate flux-volume weighting of
the group constants (Kolev and Christoskov, 2022).

The 𝑘eff values of the Ants hexagonal model are almost constant
regardless of the axial mesh used, whereas the triangular model val-
ues change when the mesh is refined. It is known from the three-
dimensional AER-FCM-001 and AER-FCM-101 steady state benchmarks
that the triangular model requires a finer axial mesh to obtain a
similar level of accuracy as the hexagonal model (Hirvensalo et al.,
2021). However, with a finer mesh, the accuracy surpasses that of the
hexagonal model. The RAST-V solutions are calculated using the halved
axial node height, whereas H3CM and FRCZ are using the benchmark
nodalization. The 𝑘eff of RAST-V, H3CM and FRCZ are slightly smaller
than those of Ants. The reactivities predicted with RAST-V and H3CM
are slightly higher than those calculated with Ants.

From the time-dependent power values, it can be concluded that
the coarse mesh results using Ants are obviously erroneous. With the
fine axial mesh, the control rod cusping effect is practically indistin-
guishable. The fine mesh maximum power of the triangular mesh is
2.2 % higher compared with the hexagonal mesh. The presented RAST-
V results evading the control rod cusping effect with the relatively large
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Fig. 11. Time-dependent powers in the AER-DYN-002 benchmark transient (above) with a cropped part showing the maximum powers (below). The Ants results are calculated
with both hexagonal (hx) and triangular (tr) models.
time steps are rather well aligned with those of the Ants triangular
model and fine axial mesh. The overall behavior of the time-dependent
power is very similar between Ants triangular geometry fine mesh
calculations and H3CM and FRCZ. Notably, H3CM and FRCZ achieve
the maximum power a bit later than Ants. The maximum powers of
RAST-V, H3CM and FRCZ are somewhat higher than those of the
Ants fine mesh calculations, and are almost equal between the former
programs.

3.5. AER-DYN-002 benchmark

The AER-DYN-002 benchmark (Grundmann, 2000) reflects a very
similar rod ejection scenario as the AER-DYN-001. However, unlike in
the previous problem, no scram is performed and therefore the other
control rods remain in their initial positions throughout the transient.
Instead, the power increase due to the ejected rod is moderated by a
simple Doppler feedback mechanism. The fuel temperature is simulated
with a simple adiabatic heating model.

The material parameters and geometry definitions are very similar
to the AER-DYN-001 problem. Two energy groups and six delayed neu-
tron precursor groups are used also in this problem, with some minor
modifications compared with the AER-DYN-001 problem definitions.
The fission cross sections include a feedback term depending on fuel
temperature. The radial and axial reflectors are modeled via radial and
axial group-dependent albedo boundary conditions. In other words,
the reflector nodes shown in the geometry in Figs. 8 and 9 (material
numbers 5 and 6) are eliminated completely. Additionally, as scram
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is not initiated in this problem, the safety control rod groups are not
introduced at all.

The transient is initiated by the ejection of rod 26. The rod is ejected
at constant speed of 12.5 m/s. The other control rods remain stationary
throughout the transient. The transient is followed for 2 s.

Due to the fast ejection of the control rod and the absence of
slowly inserted control rods, this benchmark is not susceptible to
control rod cusping effects. However, the axial mesh will affect the
temperature feedback resolution and possibly the accuracy of the spa-
tial neutronics solution. The reactivity effect of the ejected control
rod has been shown to be underestimated in earlier nodal method
results compared with fine mesh finite element solutions (Kolev et al.,
2001) as highlighted in Makai (2002). Therefore, the results presented
in Grundmann (2000) are predicting lower maximum powers in the
transient compared with the results obtained with more recent nodal
methods (Kolev and Christoskov, 2022; Jang et al., 2022).

The benchmark results for Ants and a selection of other codes are
presented for the initial and after the rod ejection steady state effective
multiplication factors, and the static reactivity worth of the ejected
control rod in Table 13. The full Ants time-dependent power solutions
are presented in Fig. 11 together with comparisons against RAST-
V, H3CM and FRCZ. The maximum powers during the transient are
shown in Table 14. The data for programs other than Ants is collected
from Kolev et al. (2001), Kolev and Christoskov (2022), Jang et al.
(2022), Jang (2022) and Kolev (2022).

The Ants solutions are calculated with a 0.5 ms time step until
0.5 s and 5 ms afterwards. RAST-V used 1 ms time step for the whole
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Table 14
Maximum powers and their occurrence times in the AER-DYN-002 benchmark.

Code Radial mesh Axial mesh 𝑡max 𝑃max
(–) (cm) (s) (GW)

Ants 1 hexagon 25.0 0.2515 107.6
Ants 1 hexagon 12.5 0.2475 107.6
Ants 1 hexagon 2.5 0.2445 107.6
Ants 6 triangles 25.0 0.2520 104.1
Ants 6 triangles 12.5 0.2455 108.8
Ants 6 triangles 2.5 0.2425 110.7
RAST-V 6 triangles 12.5 0.240 104.7
H3CM 1 hexagon 25.0 0.241 105.4
FRCZ 384 triangles 25.0 0.243 110.1

transient, whereas H3CM and FRCZ used 5 ms time step until 0.2 s, 1 ms
time step until 0.3 s and 5 ms afterwards. The FRCZ solution is calcu-
lated only up to 0.4 s. The nodalization and partially rodded node group
constant homogenization methods are the same as in the AER-DYN-
001 benchmark. The temperature feedback of FRCZ is calculated using
the coarse mesh nodalization of H3CM. In contrast, the temperature
feedback in Ants is calculated separately for each node.

The 𝑘eff values of the Ants hexagonal model are practically constant
regardless of the axial mesh, whereas for the triangular model they
are changing. The triangular model with a finer axial mesh predicts
a higher static reactivity worth for the ejected control rod. The RAST-V
reactivity is calculated from the exact 𝑘eff values shown in Table 13,
whereas higher precision values have been used in the calculation of
the reactivities of the other programs. Therefore, its exact value might
slightly differ from the displayed value. Regardless, it is slightly lower
than that predicted with the Ants hexagonal model. The H3CM 𝑘eff
values are between the two finest axial mesh results of Ants triangular
model. The predicted reactivity is therefore also very close to those
values, and is higher than the hexagonal geometry results of Ants.
The extrapolated finite element method solution with CRONOS predict
notably higher control rod worth for the ejected control rod than the
rest of the programs.

The maximum powers with the Ants hexagonal model do not de-
pend on the axial mesh. However, with the finer mesh the maximum
is obtained slightly earlier. The triangular model maximum power
increases when the axial mesh is refined, and the time of the maximum
becomes earlier. The RAST-V maximum power is larger than the Ants
triangular model coarsest mesh power, but lower than the other results.
The Ants results are obtained with halved time step lengths compared
with RAST-K. In Ants, using the same 1 ms time step lengths as are used
with RAST-K, the maximum powers are approximately 3.8 % smaller
than those obtained with the 0.5 ms time step lengths. However, the
times of the maximums are unchanged. The 3.8 % smaller value with
the same mesh as used by RAST-V coincides rather well with the RAST-
V maximum power value. The FRCZ maximum power is rather close
to the Ants finest axial mesh triangular geometry result. The H3CM
result is lower than most of the Ants results, but slightly higher than the
RAST-V result. Overall the behavior of the programs is rather similar,
and the differences might be partly explained with the different time
steppings used in the calculations.

3.6. Calculation times

Examples of Ants calculation times are presented in this section for
the LMW benchmark for the rectangular geometry and the AER-DYN-
001 benchmark for the hexagonal and triangular geometries. The cases
were selected so that there is no overhead from the simplified thermal
hydraulics feedback calculations, although their effect is small. The cal-
culations times here are determined using the same calculation setups
as presented in Sections 3.2 and 3.4, including the numbers of axial
nodes, number of inner iterations per outer iteration, the convergence
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criteria and the time step lengths. The calculation parameters, including
the number of parallel calculation OpenMP threads and the number of
inner iterations per outer iteration, are not optimized for these example
cases. Full-core calculations are performed without utilizing any sym-
metries in the problem geometries. The calculation times include the
whole program running times, including the initialization performed
by Cerberus. The steady state calculation times are not included in the
results. All calculations are performed on similar hardware.

The results for the LMW benchmark using 1 and 10 parallel calcula-
tion OpenMP threads are presented in Table 15. With the coarser axial
mesh the number of nodes in the calculation model is rather small, and
the parallelization does not enhance the performance to a great extent.
With the finer axial mesh, a significant advantage is obtained with the
greater number of OpenMP threads. With the finer axial mesh, more
outer iterations are needed than with the coarser axial mesh model to
obtain the desired convergence, thus explaining the more than tenfold
calculation times when comparing the single-threaded results.

The results for the AER-DYN-001 benchmark using 1 and 10 parallel
calculation OpenMP threads are presented in Table 16. In this bench-
mark, the number of nodes in the calculation model is great enough also
with the coarsest axial mesh for the parallelization to have a visible
effect. The magnitude of the calculation time increment when using
the triangular model compared with the hexagonal model is in the
expected order when taking into account the different number of nodes
and analytic basis functions in the models.

3.7. Temporal mesh

The effect of the temporal mesh in the Ants solution is briefly
demonstrated using the TWIGL benchmark step perturbation as an ex-
ample case. The case was selected so that the solutions are not affected
by control rod cusping effects or differences in the thermal hydraulics
solutions. The benchmark is solved as described in Section 3.1 but
with time step lengths 100.000 ms, 50.000 ms, 25.000 ms, 16.667 ms,
12.500 ms, 10.000 ms, 5.000 ms, 2.500 ms, 1.666 ms, 1.250 ms, 1.000 ms
0.500 ms, 0.250 ms, 0.167 ms, 0.125 ms and 0.100 ms.

The time-dependent powers are compared in Fig. 12 using the finest
temporal mesh with the 0.1 ms time step length as the reference. The
presented differences are the absolute values of the relative differences
at all five common times between the different temporal meshes. In
this rather simple benchmark, the relative difference decreases almost
linearly at times between 0.2 s and 0.5 s with the time step lengths
between 25.000 ms and 0.125 ms. At 0.1 s, the difference decreases
even faster as a function of the time step length.

4. Conclusions

A time-dependent solution method of the neutron diffusion equation
implemented in the nodal neutron program Ants was described in
this paper. Its performance was shown in a series of established two
group benchmarks for rectangular, hexagonal and triangular nodal
geometries. The solutions produced by Ants agree with the results of
other nodal solvers. However, in benchmark problems susceptible to
control rod cusping errors, Ants coarse axial mesh results are unsat-
isfactory due to the lack of a flux-volume weighting routine for the
partially rodded nodes. To address this issue, development of a method-
ology to compute properly homogenized group constants for coarse
mesh nodes containing multiple homogeneous materials via solving
one-dimensional diffusion equations for axial node stacks, similar to
approaches employed in e.g. POLCA-T and SIMULATE5-K (Kotchoubey,
2015; Bahadir, 2022) is underway. In conjunction with the develop-
ment of the methodology, the moving of the delayed neutron precursors
together with the fuel in follower assemblies is planned to be modeled.
Currently, the movement is not modeled in Ants. As the benchmarks
included in this paper contain either only a simple fuel temperature
feedback models or no feedback models at all, the validation process

of Ants with coupled neutronics and thermal hydraulics calculations as
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Table 15
Ants LMW benchmark absolute and relative calculation times with different axial meshes and number of OpenMP threads. The reference cases
in both relative time comparisons are indicated by the relative time 1.00.

Axial mesh (cm) Time (s) Relative time 1 Relative time 2

Number of threads Number of threads Number of threads

1 10 1 10 1 10

20 104.1 57.7 1.00 0.55 1.80 1.00
2 1906.5 305.1 18.31 2.93 33.02 5.28
Table 16
Ants AER-DYN-001 benchmark absolute and relative calculation times with different axial and radial meshes and number of OpenMP threads.
The reference cases in both relative time comparisons are indicated by the relative time 1.00.

Radial mesh Axial mesh (cm) Time (s) Relative time 1 Relative time 2

Number of threads Number of threads Number of threads

1 10 1 10 1 10

1 hexagon 25.0 3318 528 1.00 0.16 6.28 1.00
1 hexagon 12.5 5963 936 1.80 0.28 11.29 1.77
1 hexagon 2.5 43414 5947 13.09 1.79 82.21 11.26
6 triangles 25.0 12718 2047 3.83 0.62 24.08 3.88
6 triangles 12.5 27190 4152 8.19 1.25 51.49 7.86
6 triangles 2.5 163378 23180 49.24 6.99 309.38 43.89
Fig. 12. Absolute values of the relative differences in the time-dependent powers in the TWIGL benchmark step perturbation transient with different time step lengths at the five
common times.
a part of the Kraken framework is already being carried on with more
detailed benchmarks. Additionally, as all benchmarks in this paper used
two energy groups, the evaluation of the Ants time-dependent solution
performance for multigroup problems is left for future work.
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