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Abstract 

The decision to invest in building an ethanol plant that uses a particular feedstock 

is a dynamic decision that may be affected by economic factors and government 

policies.  Owing to competition effects and agglomeration effects, a potential 

investor’s investment decision may also depend on the investment decisions of 

other investors.  This paper analyzes how economic factors, strategic factors, and 

government policies affect the decision to invest in building new ethanol plants in 

Europe.  We distinguish among investments in ethanol plants of different 

feedstocks.  Our empirical methodology is to estimate a structural econometric 

model of the dynamic ethanol investment timing game.  According to our results, 

competition between plants deters local investments and has a large negative effect 

on the payoffs from investment.  We also find that government policies have a large 

positive effect on payoffs from investment.  Ethanol investment decisions in Europe 

are affected more by government policies and strategic interactions than by 

economic factors. 
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1. Introduction 

The development and use of ethanol has been the subject of international attention and 

support.  The motivating factors for this attention and support include high oil prices, security 

concerns from relying on foreign energy sources, support for economic growth in the agricultural 

community, the desire to use surplus grains, environmental goals related to criteria pollutants, and 

climate change emissions (Si et al., 2018).   

The ethanol industry has been growing rapidly around the world, not only in the U.S. and 

Brazil, the top two ethanol producing countries, but also in countries in Europe and Asia as well.  

Of the ethanol plants located in countries other than the U.S. and Brazil, over 80% were built after 

2005 and more than 40% are located in Europe (RFA, 2009). Ethanol is produced from a variety 

of feedstocks worldwide, including wheat, sugar beet, rice, sugarcane, and corn. In some countries, 

including Canada, France and Germany, multiple feedstocks are used.   

Several countries have implemented policies to actively promote ethanol production, and 

these policies are blamed for rising food prices (Mitchell, 2008).  In particular, because the 

feedstocks used for the production of ethanol, specifically first generation ethanol, can also be used 

for food, there is a concern that ethanol policies might affect the relationship between food and 

fuel markets, and, in particular, have potential adverse effects on the price of basic food prices for 

the world's poor (Runge and Senauer, 2007; Rajagopal et al., 2007; Wright, 2014; Poudel et al., 

2012; Abbott, Hurt and Tyner, 2008, 2009, 2011; de Gorter, Drabik and Just, 2013; de Gorter et 

al., 2013).  It is therefore important to understand the factors that affect the decision to invest in 

building an ethanol plant that uses a particular feedstock, and, in particular, the effects of 

government policy on this decision. 

Previous empirical studies have shown that government policies have a positive effect on 

ethanol production and investment in the U.S. (Lambert et al., 2008; Sarmiento Wilson, and Dahl, 
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2012; Thome and Lin Lawell, 2018), but less research has been done on the effects of government 

policies on the ethanol industry in Europe. 

This paper examines what factors affect the decision to invest in ethanol plants in Europe, 

including when the investors start to construct the plants, how they make their location decisions, 

and what feedstock they choose to use to produce ethanol.  In particular, we analyze the effects of 

economic factors, government policies, and strategic factors on the ethanol plant investment 

decision.   

The decision to invest in building an ethanol plant that uses a particular feedstock is a 

dynamic decision that may be affected by economic factors and government policies.  For example, 

commodity markets occasionally exhibit broadly based massive booms and busts; at the core of 

these cycles is a set of contemporaneous supply and demand surprises that coincide with low 

inventories and that are magnified by macroeconomic shocks and policy responses (Carter, 

Rausser and Smith, 2011).  Market volatility can induce periods of boom and bust in the ethanol 

industry, causing episodes of bankruptcy and reduced capital investment (Hochman, Sexton and 

Zilberman, 2008).      

Because the profits from investing in building a new ethanol plant depend on market 

conditions such as the feedstock price that vary stochastically over time, a potential entrant that 

hopes to make a dynamically optimal decision would need to account for the option value to 

waiting before making this irreversible investment (Dixit and Pindyck, 1994). 

A potential investor’s investment decision may also depend on the investment decisions of 

other investors.  When the decision of a potential investor is affected by the decisions of other 

investors, the decision-making problem is no longer a single-agent dynamic optimization problem, 

but instead becomes a multi-agent investment timing game.  

There are two sources of strategic interactions that add a strategic (or non-cooperative) 
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dimension to the potential entrants’ investment timing decisions. The first source of strategic 

interaction is a competition effect: if there is more than one ethanol plant located in the same region, 

these plants may compete in the local feedstock input supply market when they choose the same 

feedstock or they may compete in the local ethanol output market.  The competition effect, 

whereby nearby plants may compete in local feedstock markets and/or local ethanol markets, 

deters ethanol plants from entering in regions where there are other ethanol plants already present.  

High transportation costs are a reason why there may be local competition in both the 

feedstock input market and the ethanol output market.  On the input side, approximately 70% of 

the cost of producing ethanol is the feedstock cost, of which the transportation costs for bulky 

grains or sugar beets constitute a significant share (Whittington, 2006). As a consequence, the 

distance from a plant to the feedstock production area is extremely important, and local 

competition for feedstock matters.  On the output side, ethanol transportation is harder and more 

expensive than gasoline transportation due to the fact that ethanol can easily absorb water during 

the transportation process, and thus is normally transported using tank trucks for dehydrated 

ethanol. The higher transportation cost makes it costly for ethanol to be sold far away.  Owing to 

high transportation costs for both inputs and outputs, the competition effect may be a source of 

strategic interaction between nearby plants.   

The second source of strategic interaction is an agglomeration effect: if there are several 

ethanol plants located in the same region, the existing plants may have developed transportation 

and marketing infrastructure and/or an educated work force that new plants can benefit from 

(Goetz, 1997; Ellison and Glaeser, 1999; Lambert et al., 2008).  The agglomeration effect induces 

an ethanol plant to locate near other plants, since an ethanol plant benefits from the existence of 

other plants.   

Owing to both competition and agglomeration effects, the dynamic decision-making 
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problem faced by the potential ethanol plants is not merely a single-agent problem, but rather can 

be viewed as a non-cooperative game in which plants behave strategically and base decisions on 

other investors’ strategies.  Since the investment decisions of others affect future values of state 

variables which affect the future payoffs from investing, potential investors must anticipate the 

investment strategies of others in order to make a dynamically optimal decision.  Uncertainty over 

whether a plant might be constructed and start production nearby is therefore another reason there 

is an option value to waiting before investing (Dixit and Pindyck, 1994).   

In this paper, we develop and estimate a structural econometric model of the ethanol 

investment timing game that incorporates both the strategic and dynamic aspects of the ethanol 

investment decision, and apply the model to data on ethanol plants from 20 European countries.  

Our structural model has several advantages over a reduced-form discrete response model 

of investment. First, our structural model explicitly models the dynamic investment decision, 

including the continuation value to waiting.  Because the profits from investing in building a new 

ethanol plant depend on market conditions such as feedstock prices that vary stochastically over 

time, a potential entrant that hopes to make a dynamically optimal decision would need to account 

for the option value to waiting before making this irreversible investment (Dixit and Pindyck, 

1994). In contrast, a reduced-form discrete response model of the investment decision only 

estimates the per-period probability of investment. 

A second advantage of our structural model is that with the structural model we are able to 

estimate the effect of each state variable on the expected payoff from investing in an ethanol plant 

that uses a particular feedstock.  A potential investor invests if the payoff from investment exceeds 

the continuation value from waiting.  The parameters in a reduced-form model of the probability 

of investment would represent parameters in the relative difference between the payoff from 

investment and the continuation value from waiting, and therefore are not the structural parameters 
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of interest, since there is a structural relationship between the continuation value from waiting and 

the payoff from investment.  In particular, the continuation value from waiting is the expected 

value of the value function next period, where the value function is the maximum of the payoff 

from investment and continuation value from waiting.  As a consequence, the parameters in 

reduced-form models are confounded by continuation values.  In contrast, with a structural model 

we are able to estimate parameters in the payoff from investing in the ethanol plant, since we are 

able to structurally model how the continuation value from waiting relates to the payoff from 

investing.  

A third advantage of our structural model is that with the structural model we are able to 

analyze the strategic interaction between investors and estimate the net effect of other investors’ 

decisions on a potential investor’s payoff from investing in an ethanol plant of a particular 

feedstock.  Since we identify the effects of state variables of the payoffs from investment, and 

since other investors’ investment decisions affect future values of these state variables, we are able 

to identify the effects of other investors’ investment decisions on a potential investor’s decision 

and payoffs. 

According to our results, competition between plants dominates the agglomeration effect 

and has a large negative effect on the payoffs from investment.  We also find that government 

policies have a large positive effect on payoffs from investment.   Ethanol support policies play an 

important role in the development of the ethanol industry in Europe.   Ethanol investment decisions 

in Europe are affected more by government policies and strategic interactions than by economic 

factors.  Our results have important implications for renewable fuel policy. 

The balance of our paper proceeds as follows.  We provide background information on 

ethanol production and policy in Europe in Section 2.  We review the previous literature in Section 

3.  Section 4 presents our model of the ethanol investment timing game.  We describe the 
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econometric estimation in Section 5 and the data in Section 6.  Section 7 presents the results.  We 

conclude in Section 8.  

 

2. Ethanol Production and Policy in Europe 

The ethanol industry has been growing rapidly in Europe.  Of the ethanol plants located in 

countries other than the U.S. and Brazil, more than 40% are located in Europe (RFA, 2009). 

Ethanol is produced from a variety of feedstocks worldwide, including wheat, sugar beet, rice, 

sugarcane, and corn. In some countries, including Canada, France and Germany, multiple 

feedstocks are used.   

By 2007, 20 countries in Europe produced ethanol and most of their ethanol plants were 

built after 2000.   As seen in Figure 1, both ethanol production and ethanol consumption in Europe 

have been increasing at least since 2001.  

The feedstocks used for ethanol production in Europe vary by country. A few countries, 

including the Czech Republic, the Netherlands and Spain, use wheat. Several countries use corn, 

including Hungary. Some countries use several feedstocks: for instance, France and Germany use 

both wheat and sugar beet as their main feedstocks.   In contrast, the primary feedstock used in the 

U.S. is corn (Thome and Lin Lawell, 2018). 

The development of the European ethanol industry has been guided by two European 

Union (EU) Directives: the Renewable Energy Directive (RED) of 2003/30/EC, which sets targets 

of 2% renewable fuels in transport by 2005 and 5.75% by 2010 but is not legally binding; and the 

RED of 2009/28/EC, which is mandatory and therefore legally binding.  

Individual EU countries have implemented their own ethanol policies as well.  Table 1 lists 

the ethanol policies implemented in each country in Europe by 2007 and the dates they were 

implemented. The main policies include financial support policies; blending mandates; and 
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research and development (R&D) support policies. Financial support policies include tax credits 

and direct funding support from the local government. Blending mandates are mandates that 

gasoline should contain a certain percentage of ethanol.  R&D support policies provide support for 

research and development.  Most of the policies were implemented after 2003.  

From the perspective of potential investors in the ethanol industry, the evolution of 

financial support policies, blending mandates, and research and development (R&D) support 

policies over time was uncertain at the beginning of the study period, due to the democratic nature 

of lawmaking and uncertainty about the evolution of the ethanol industry, energy prices, and 

feedstock prices. Although the basic strategy of supporting the ethanol industry over time was 

likely known by potential investors, the exact timing and values of any of the support policies 

could not have been perfectly anticipated.  We therefore model future values of these policies as 

uncertain from the point of view of the potential investors in any given year of our period of study 

in our dynamic structural model.  In particular, we assume that financial support policies, blending 

mandates, and research and development (R&D) support policies evolve as a finite state first-order 

Markov process, and that a potential investor's expectations of future values of these government 

policies depended on current values of these policies and on current values of other state variables, 

including energy prices and feedstock prices.   

We use empirical probabilities over the entire time period of our data set to estimate a 

potential investor's expectation of future values of these policies conditional on current values of 

these policies and on current values of other state variables.  We therefore assume potential 

investors have rational expectations and that the distribution of possible future policies conditional  

on  current  policies and current state variables incorporates the possibility of changes in policies 

due to a variety of factors, including changes in market conditions and changes in technology. 
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3.  Literature Review 

3.1. Ethanol investment and government policy 

One strand of previous literature upon which we build is that on ethanol investment and 

government policy.  Previous papers have analyzed the decision to invest in an ethanol plant using 

a static framework. Lambert et al. (2008) use a probit regression model along with spatial 

clustering methods to analyze investment activity of ethanol plants at the county level for the lower 

U.S. 48 states from 2000 to 2007. They find that five categories of factors determine the location 

of ethanol plant: infrastructure, product and input markets, fiscal attributes of local communities, 

and state and federal incentives. However, Lambert et al. (2008) do not model the effect of existing 

ethanol plants on potential entrants.  

Sarmiento, Wilson and Dahl (2012) use a logistic regression to analyze the impacts from 

the agricultural characteristics of a county, competition, and state-level subsidies. The competition 

between existing ethanol plants and entrants are expressed by the distance.  Their results conclude 

that existence of a competing ethanol plant reduces the likelihood of making a positive location 

decision and this impact decreases with distance.  

Herath Mudiyanselage, Lin and Yi (2013) analyze the effects of economic factors, strategic 

factors, and government policy on ethanol investment using discrete response and fixed effects 

regression models.  Results show that the main factor that affects the decision to invest in building 

an ethanol plant in a particular changwat (province) is the number of ethanol plants already in the 

changwat.  The number of ethanol plants already in the changwat has a significant negative effect 

on the decision to invest in building an ethanol plant in a particular changwat, which suggests that 

potential investors are deterred by local competition in input and output markets. 

Previous empirical literature using static models, including those mentioned above, miss 

an important dimension of the investment decision: time. Investors not only choose whether to 
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invest in ethanol plants but also choose when to enter the ethanol industry. Their goal is to 

maximize the present discounted value of the entire stream of profits. Expectations about 

exogenous conditions such as factors affecting the input market and government policies affect 

whether, when and where ethanol plants will be built.  A dynamic model is therefore a more 

realistic model of ethanol investors’ behavior and there may be patterns in the data that are simply 

not captured by a static model. Hence, ignoring the dynamics could potentially generate misleading 

conclusions about behavior (Dubé al., 2005).  

Schmit, Luo and Conrad (2011) consider the influence of policies on the U.S. corn-based 

ethanol investment decisions using a dynamic model. A potential ethanol investor’s decision is 

determined by revenue and cost, two factors which are evolving over time with other covariates. 

According to the results, the current ethanol industry expansion was induced by the revenue-

enhancing effects of policy and, in the absence of these policies, much of the recent expansionary 

periods would have not existed. Due to limitations of their model, however, their study does not 

analyze the strategic interactions between ethanol plants.  

Thome and Lin Lawell (2018) use U.S. data to analyze how economic factors, government 

policy and strategic interactions affect decisions about when and where to invest in building new 

corn-ethanol plants in the Midwestern United States using both reduced-form discrete response 

models and a structural model of a dynamic game.  Their research indicates that availability of 

inputs is important in determining expected profits from investment in an ethanol plant and that 

competition between plants is enough to deter local investment.   

We build upon the work of Thome and Lin Lawell (2018) in several ways.  First, as the 

primary feedstock used in the U.S. is corn, Thome and Lin Lawell (2018) do not model the 

feedstock choice decision, but instead focus on the decision to invest in building new corn-ethanol 

plants.  In contrast, since several different feedstocks are used in Europe, we build on Thome and 
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Lin Lawell’s (2018) work by also modeling feedstock choice, thereby allowing potential investors 

to choose the type ethanol plant to invest in.  Second, the econometric model Thome and Lin 

Lawell (2018) use requires them to discretize all the continuous state variables so that some 

important information may have been lost when the variables were binned.   In contrast, we use 

continuous state variables in our econometric model.  A third way in which we build upon the 

work of Thome and Lin Lawell (2018) is that we analyze the ethanol industry in Europe instead 

of the United States. 

While there have been several studies on the effects of government policies on the ethanol 

industry the U.S. (see e.g., Lambert et al., 2008; Sarmiento, Wilson and Dahl, 2012; Thome and 

Lin Lawell, 2018), less research has been done on the effects of government policies on the ethanol 

industry in Europe.  Padella, Finco and Tyner (2012) use a general equilibrium model to analyze 

the combined impacts of the US and EU biofuels programs, considering in particular the socio-

economic effects on prices, employment and welfare in the European Union in 2015. 

Our paper improves upon the previous literature by developing and estimating a structural 

econometric model of a dynamic game using panel data from 20 European countries in order to 

directly estimate the effect of covariates on the investment profit itself. In contrast to previous 

cross-sectional studies, this paper uses a dynamic framework in which investors choose their 

ethanol investment strategies in order to maximize the present discounted value of the entire stream 

of payoffs. Unlike Thome and Lin Lawell (2018), this paper allows investors to choose from 

multiple feedstocks and does not discretize the continuous variables.  

 

3.2. Structural econometric models of dynamic games 

In addition to the previous literature on ethanol investment, another strand of literature 

upon which we build is the literature on structural econometric models of dynamic games.  As 
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explained by Reiss and Wolak (2007), a structural econometric model is one that combines 

economic theory with a statistical model, enabling us to estimate structural parameters. 

Incorporating firm dynamics into structural econometric models enhances our understanding of 

behavior and also enables us to estimate structural parameters which have a transparent 

interpretation within the theoretical model that frames the empirical investigation (Aguirregabiria 

and Mira, 2010).  

Dynamic discrete choice structural models are useful tools in the analysis of economic and 

social phenomena whenever strategic interactions are an important aspect of individual behavior. 

This type of model assumes agents are forward-looking and maximize the expected discounted 

value of the entire stream of payoffs. Agents are assumed to make decisions based only on current 

values of state variables and the past influences current play only through its effect on these state 

variables. 

Dynamic discrete choice structural models are estimated under the principle of revealed 

preference using individual’s choices (Aguirregabiria and Mira, 2010). Recently, methods have 

been developed to estimate structural parameters semiparametrically (Pesendorfer and Schmidt-

Dengler, 2008; Pakes, Ostrovsky and Berry, 2007; Aguirregabiria and Mira, 2007) and to use 

simulation estimators (Hotz et al., 1994; Bajari, Benkard and Levin, 2007).  Bajari and Hong 

(2006), Bajari, Benkard and Levin (2007), Srisuma and Linton (2012), and Bajari et al. (2015) 

innovate upon this literature by proposing methods to estimate parameters in a dynamic game with 

continuous state variables.  

Most of these econometric methods involve a two-step estimation procedure. The common 

logic is to use a specific equilibrium solution concept to work backward from the observed 

equilibrium action(s) to statements about unobserved profits (Reiss and Wolak, 2007).   

Pesendorfer and Schmidt-Dengler (2008) show that a number of recently proposed estimators for 
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dynamic models are two-step asymptotic least squares estimators defined by the set of equilibrium 

conditions. 

Research on dynamic competition has shown that computing an equilibrium for even 

relatively simple industry models is all but prohibitive (Bajari, Benkard and Levin, 2007). The 

econometric method employed in this paper is based on the introduction of the Hotz-Miller 

inversion (Hotz and Miller, 1993), and the estimation of the equilibrium is simplified to two steps 

without having to analytically solve the equilibrium of a dynamic game, which reduces the high 

computational burden. In this two-step estimator, the economist first flexibly estimates the agent’s 

policy functions, choice probabilities that are conditional on state variables and the other agents’ 

actions, and the transition probabilities for state variables.  Second, structural parameters from the 

period profit function are estimated.  

In some models the first step is estimated using a nonparametric method based on discrete 

state variables.  However, some state variables are naturally continuous, and thus must be 

discretized into bins in order to use such methods. When using dynamic structural econometric 

models requiring one to discretize state variables into a finite number of bins, one could increase 

the number of bins to minimize the loss of information, but at a cost of increasing the 

dimensionality of the state space.  Instead of discretizing continuous variables, Bajari and Hong 

(2006), Bajari, Benkard and Levin (2007), and Bajari et al. (2015) suggest that policy and value 

functions can be approximated parametrically using a combination of basis functions in which the 

nonparametric first step estimation can be implemented using continuous state variables.2   

                                                        
2 Whether or not prices and other state variables are continuous or discrete may be in part a philosophical issue.  For 

example, it may be argued that prices are in cents and thus must be discrete.  Similarly, one may argue that observed 

data are finite and thus discrete by definition.  In our paper, a “continuous” variable is one whose support is large 

enough that it must be discretized into coarser bins before dynamic structural econometric models based on discrete 

state variables can be used. 
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Previous papers have applied structural econometric models of dynamic games to analyze 

offshore petroleum production (Lin, 2013), the cement industry (Ryan, 2012; Fowlie, Reguant and 

Ryan, 2016), fisheries (Huang and Smith, 2014), dynamic natural monopoly regulation (Lim and 

Yurukoglu, 2018), the U.S. ethanol industry (Thome and Lin Lawell, 2018), the effects of 

government subsidies on firm investment (Yi, Lin Lawell and Thome, 2018), the decision to wear 

and use glasses (Ma, Lin Lawell and Rozelle, 2018), migration decisions (Rojas Valdes, Lin 

Lawell and Taylor, 2018a; Rojas Valdes, Lin Lawell and Taylor, 2018b), the world petroleum 

market (Kheiravar, Lin Lawell and Jaffe, 2018), climate change policy (Zakerinia and Lin Lawell, 

2018), Chinese shipbuilding (Kalouptsidi, forthcoming), and the global market for solar panels 

(Gerarden, 2017).   

The econometric model we use in this paper is based on one developed by Bajari et al. 

(2015).  This paper is the first to our knowledge to apply the econometric model developed by 

Bajari et al. (2015) to actual data. 

 

4. A Model of the Ethanol Investment Timing Game 

In our model of the ethanol investment timing game, each “market” 𝑚 has 𝐼  potential 

investors i. There are 𝑡 = 1, ⋯ , ∞  time periods. 

We focus on the decision to invest in building an ethanol plant that uses a particular 

feedstock.  We assume that all the potential investors move simultaneously in each time period 𝑡 

and that each potential investor i chooses strategy 𝑎  from the same choice set 𝐴 = {0,1, ⋯ , 𝐾}.  

Action 𝑘 = 0 represents the outside option, which is to wait outside of the ethanol market and not 

produce ethanol, and the remaining actions represent investments in building ethanol plants that 

use different feedstocks for ethanol production.  

Ethanol plants in Europe consist of both first generation and second generation ethanol 
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plants.  Second generation ethanol plants produce ethanol using cellulosic biomass such as straw 

from wheat and barley, and their capacities make up 10% of EU ethanol production. The remaining 

plants are first generation plants which are using starch- or sugar-based feedstocks such as corn, 

wheat, and sugar beet.  In 2009, 60% of the ethanol produced in the EU was produced from grains, 

primarily wheat, corn, and barley, and 30% was produced from sugar beet.  Our model therefore 

focuses on ethanol plants that use barley, corn, sugar beet, or wheat as their feedstock.  

An investor’s time-𝑡 investment timing decision depends on the state of the market 𝛺 =

(𝑥 , 𝑔 , 𝑛 , 𝑐 , 𝑦 ) for market 𝑚 at time 𝑡, which can be separated into economic factors 𝑥 , 

government policies 𝑔 , strategic factors 𝑛 , country fixed effects 𝑐 , and year effects 𝑦 . 

These state variables affect the payoffs from investing in ethanol plants of each particular feedstock.   

The economic state variables 𝑥  include economic factors that affect the payoffs from 

investing in building an ethanol plant.  On the revenue side, we include ethanol price; gasoline 

price; and proximity to cattle and hogs.  Gasoline price could have either a positive or negative 

effect on the payoffs from investment depending on whether ethanol is viewed as an energy 

substitute for gasoline or as an additive to gasoline, respectively.  We use proximity to cattle and 

hogs is a proxy for the sales price of distillers’ grains (DDGS, or distillers’ dried grains with 

solubles), which is a co-product of ethanol production used for animal feed. 

The economic state variables 𝑥  also include economic factors that affect the costs of 

ethanol production.  Approximately 70% of the cost of producing ethanol is the feedstock cost, of 

which the transportation costs for bulky grains or sugar beets constitute a significant share 

(Whittington, 2006). As the availability and cost of feedstocks are important factors affecting 

production costs, we include feedstock prices and feedstock availability.  We also include natural 

gas price, as natural gas is an important energy source in ethanol plants.   

The policy state variables 𝑔  include government policies that may affect the payoffs 
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from investing in building an ethanol plant.   In particular, we include dummy variables for the 

financial support policies, blending mandates, and R&D support policies described in Table 1.   

The strategic state variables  𝑛  include strategic variables that track, for each feedstock, 

the number of existing plants in the market that use that particular feedstock.  

The state variables 𝛺  also include country fixed effects 𝑐  to control for unobserved 

industry policies and market conditions that can affect the investment decisions of potential 

investors.  In one of our specifications we also include year effects 𝑦  to control for unobserved 

common shocks. 

We assume that the market-level state variables 𝛺  are common knowledge to all players 

in the market and are observable to the econometrician.  The state variables summarize the direct 

effect of the past on the current environment, and the past only influences current decisions insofar 

as it affects current values of the state variables.  All state variables except the strategic variables 

 𝑛  are assumed to evolve according to a first-order Markov process �̅�(𝛺 |𝛺, 𝑎 , 𝑎 ), where 𝛺′ 

are the values of the state variables next period, and where state variables and actions this period 

affect the distribution of state variables next period.   

We use empirical probabilities over the entire time period of our data set to estimate a 

potential investor's expectation of future values of all state variables except the strategic variables 

 𝑛 , conditional on current values of these policies and on current values of other state variables.  

We therefore assume potential investors have rational expectations and that the distribution of 

possible future state variables conditional  on  current state variables incorporates the possibility 

of changes in state variables due to a variety of factors, including changes in market conditions, 

changes in policy, and changes in technology.  The strategic variables  𝑛   evolve 

deterministically as a function of the strategic variables and the actions of all players this period. 

Other investors impact a potential investor’s payoffs from investing through their effect on 
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the strategic variables 𝑛  , which depend on others’ decisions. These strategic state variables 

track, for each feedstock, the number of existing plants in the market that use that particular 

feedstock.  The number of existing plants in the market that use each feedstock at time 𝑡 + 1 

depends on the number of existing plants that use each feedstock at time 𝑡 as well as the investment 

decisions made by potential investors at time 𝑡 . A potential investor’s expectation about the 

strategies of other investors therefore impacts his expectation of future values of these strategic 

state variables 𝑛  .  

Owing to competition effects and agglomeration effects, the presence of other ethanol 

plants may affect the payoffs from investing in an ethanol plant.  As a consequence, a potential 

investor’s investment decision depends on its conjecture about competitors’ behavior.   The effects 

of the strategic variables 𝑛   on the payoffs from investment measure the net effects of the 

competition and agglomeration effects.   

In addition to the publicly observed state variables 𝛺 , the expected profit from investing 

an ethanol plant depends on shocks that are private information to the ethanol plant but not 

observed by either other plants or by the econometrician. Let 𝜖 = (𝜖 (0), ⋯ , 𝜖 (𝐾)) 

denote a vector of 𝑖. 𝑖. 𝑑 shocks to potential plant 𝑖’s payoffs to investing at time 𝑡, one for each of 

the possible actions 𝑎 .  We assume the error terms are distributed type I extreme value.  

The payoff from investing in time 𝑡 in an ethanol plant that uses a particular feedstock 𝑎  

depends on the state variables and random preference shocks, and has the additively separable 

representation: 

𝑢(𝑎 , 𝛺 , , 𝜖 ) = 𝑢 (𝑎 , 𝛺  ) + 𝜖 (𝑎 ),                                (1) 

where the stochastic component is the privately observed shock 𝜖  and the deterministic 

component 𝑢 (𝑎 , 𝛺 ) is linear in the publicly observable state variables when an investment 
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is made (𝑎 > 0):3 

𝑢 (𝑎 , 𝛺 ) = 𝛺 𝛾         if 𝑎 > 0,                                              (2) 

where 𝛾  denotes the vector of coefficients in the payoff function for investing in an ethanol plant 

that uses feedstock 𝑎, and are the parameters that we estimate.  

We assume that this payoff represents the expected present discounted value of the entire 

stream of profits (revenue minus costs) from operating and producing ethanol from this plant over 

the plant’s lifetime.  The payoff to investing in building an ethanol plant of a particular feedstock 

is independent of time except through the state variables 𝛺   and the shock 𝜖 .   

The sources of economic structure in our structural econometric model of the ethanol 

investment timing game are dynamic programming and game theory.  Since our focus is on the 

decision to invest in building an ethanol plant, we do not model the subsequent annual ethanol 

production decisions explicitly, and therefore use a reduced-form specification for the payoff to 

investing in building an ethanol plant of a particular feedstock.  We account for the important 

factors in a potential investor’s ethanol plant investment decisions by including in the investment 

payoff function economic factors 𝑥  that affect revenue and/or costs, government policies 𝑔 , 

strategic factors 𝑛 , country fixed effects 𝑐 , and year effects 𝑦 .  We also include shocks to the 

investment payoff function that may reflect shocks to ethanol production, revenue, and/or costs.   

Although we use a reduced-form specification of the payoff from investing in time 𝑡 in an 

ethanol plant that uses a particular feedstock 𝑎 , this payoff from investment is embedded in a 

structural model of a dynamic game where the structure arises from dynamic programming and 

game theory.  Our structural model therefore has several advantages over a reduced-form discrete 

response model of investment. First, our structural model explicitly models the dynamic 

                                                        
3 Linearity is also assumed and studied in detail in the dynamic game model of Sanches, Silva and Srisuma (2016). 
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investment decision, including the continuation value to waiting.  Second, with the structural 

model we are able to estimate the effect of each state variable on the expected payoff from 

investing in an ethanol plant that uses a particular feedstock.  Third, with the structural model we 

are able to analyze the strategic interaction between investors and estimate the net effect of other 

investors’ decisions on a potential investor’s payoff from investing in an ethanol plant of a 

particular feedstock.  Since we identify the effects of state variables of the payoffs from 

investment, and since other investors’ investment decisions affect future values of these state 

variables, we are able to identify the effects of other investors’ investment decisions on a potential 

investor’s decision and payoffs. 

We normalize the deterministic payoff from the outside option of not investing (𝑎 = 0) to 

be zero: 

𝑢 (𝑎 = 0, 𝛺 ) = 0.                                                           (3) 

The coefficients 𝛾  are the coefficients on the state variables in the payoff for investing in 

an ethanol plant that uses feedstock 𝑎. We expect that ethanol price, local feedstock availability, 

and government policies supporting ethanol would have positive effects on the ethanol plant 

investment payoff. Natural gas is an important bio-refinery energy source, so we expect natural 

gas price to have a negative effect on the payoff.  Similarly, we expect feedstock price to have 

negative impacts on the payoff. Gasoline price could have either a positive or negative effect on 

the payoffs from investment depending on whether ethanol is viewed as an energy substitute for 

gasoline or as an additive to gasoline, respectively. 

The coefficients on the strategic state variables measure the net effects of the agglomeration 

and competition effects on the payoff for investing in an ethanol plant that uses feedstock 𝑎, and 

therefore indicate whether ethanol plants interact strategically on net.  The strategic state variables 

track, for each feedstock, the number of existing plants in the market that use that particular 
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feedstock. Positive coefficients on the strategic state variables would indicate that the 

agglomeration and competition effects were positive on net, and therefore that the agglomeration 

effect is dominant. Negative values would indicate that the effects were negative on net, and 

therefore the competition effect is dominant.  By estimating the effect of the strategic state 

variables 𝑛  on the payoffs from investing in ethanol plants that use particular feedstocks, we can 

identify the net effects of other investor’s decisions on a potential investor’s payoffs. 

In the following sections, to reduce the notational complexity we drop the market and time 

subscripts.  Let 𝜎 (𝑎 |𝛺) denote the probability that potential investor 𝑖 chooses action 𝑎  given 

state variables 𝛺. We assume that potential investors optimize their behavior conditional only on 

the current state variables and their private shocks, which results in a Markov perfect equilibrium.  

In a Markov perfect equilibrium, the potential investor’s strategy and corresponding conditional 

choice probabilities 𝜎 (𝑎 |𝛺) solve the following dynamic optimization problem: 

𝑊(𝛺, 𝜖 ; 𝜎 ) =

𝑚𝑎𝑥
𝑢 (𝑎 = 0, 𝛺) + 𝜖 (𝑎 = 0) + 𝛽𝐸[𝑊(𝛺 , 𝜖 ; 𝜎 )|𝑎 = 0, 𝛺]  if 𝑎 = 0,

𝑢 (𝑎 , 𝛺) + 𝜖 (𝑎 )  if 𝑎 > 0
 ,                (4) 

where 𝑊(𝛺, 𝜖 ; 𝜎 ) is investor 𝑖’s value function given state 𝛺 and private information 𝜖  , and 

conditional on the strategies 𝜎  of the other investors.  If the investor chooses to invest in an 

ethanol plant (𝑎 > 0), then the investor receives the payoff 𝑢 (𝑎 , 𝛺) + 𝜖 (𝑎 )  from investing in 

an ethanol plant that uses feedstock 𝑎 .  If the investor chooses not to invest this period (𝑎 = 0), 

he receives the payoff 𝑢 (𝑎 = 0, 𝛺) + 𝜖 (𝑎 = 0)  plus the discount factor 𝛽  times the 

continuation value 𝐸[𝑊(𝛺 , 𝜖 ; 𝜎 )|𝑎 = 0, 𝛺] to waiting instead of investing this period.  The 

continuation value to waiting instead of investing this period is the expected value of the value 

function this period conditional on the state variables this period and on not investing this period: 

𝐸[𝑊(𝛺 , 𝜖 ; 𝜎 )|𝑎 = 0, 𝛺] =
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∫ ∑ 𝑊(𝛺 , 𝜖 ; 𝜎 ) �̅�(𝛺 |𝛺, 𝑎 = 0, 𝑎 )𝜎 (𝑎 |𝛺)𝑓(𝜖 )𝑑𝜖 𝑑𝛺    .                  (5) 

 

We define the choice-specific value function 𝑉(𝑎 , 𝑠) as: 

𝑉(𝑎 , 𝛺) =
𝑢 (𝑎 = 0, 𝛺) + 𝛽𝐸[𝑊(𝛺 , 𝜖 ; 𝜎 )|𝑎 = 0, 𝛺]  if 𝑎 = 0,

𝑢 (𝑎 , 𝛺)  if 𝑎 > 0
,                   (6) 

which is interpreted as the returns excluding 𝜖 (𝑎 ) when the investor chooses action 𝑎  this period 

and then reverts to the solution of the dynamic programming problem in all future periods. Then, 

we can define the ex ante value function as: 

𝑉(𝛺) = ∫ 𝑊(𝛺, 𝜖 ; 𝜎 )𝑓(𝜖 )𝑑𝜖 .                                                (7) 

The ex ante value function is the expected value of the value function 𝑊(. ) where the expectation 

is taken over the shocks 𝜖 . We can then rewrite the choice-specific value function as a function 

of the ex ante value function as follows: 

𝑉(𝑎 , 𝛺) =
𝑢 (𝑎 = 0, 𝛺) + 𝛽𝐸[𝑉(𝛺 )|𝑎 = 0, 𝛺]  if 𝑎 = 0,

𝑢 (𝑎 , 𝛺)  if 𝑎 > 0
.                    (8) 

Finally, using the assumption that the shocks 𝜖  are distributed type I extreme value, we 

can derive the equilibrium probabilities using the choice-specific value function as follows: 

                        𝜎 (𝑎 |𝛺) =  
 ( ( , ))

∑  ( ( , ))
.                                                      (9) 

 

 

5. Econometric Estimation  

In the econometric estimation, we first estimate the policy functions, transition densities, 

and choice-specific value functions; and then estimate the parameters in the payoff functions. 

Bajari et al. (2015) show that given the knowledge of policy function 𝜎 (𝑎 |𝛺) from the observed 

actions, one can uniquely recover the deterministic component 𝑢 (𝑎 , 𝛺) of the payoffs after 

making an assumption that agents have correct beliefs about their environment and the behavior 
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of other agents. We thus first estimate the policy functions 𝝈(𝒂|𝛺) for the agents, the transition 

densities 𝑔(𝛺 |𝛺,  𝑎 = 0, 𝑎 ) for the state variables, and the choice-specific value functions 

𝑉(𝑎 , 𝛺); and then estimate the parameters  𝛾 in the deterministic payoff function 𝑢 (𝑎 , 𝛺).  

In the first step, we estimate the policy functions (or choice probabilities) and the transition 

densities.  We estimate the choice probabilities  𝜎 (𝑎 |𝛺) flexibly using a sieve logit, where the 

sieve logit estimator is simply the standard multinomial logit where the covariates are selected 

basis functions, and a sieve of polynomial spaces are selected.  Let {𝑞 (𝛺), 𝑙 = 1, 2, ⋯ } denote a 

sequence of known basis functions that can approximate a real valued measurable function of state 

variables 𝛺 arbitrarily for a sufficiently large value of the basis function dimension. Although the 

sieve could be formed using splines, Fourier series, or orthogonal polynomials (Bajari and Hong, 

2006), we set a simplest form of the sieve: a space of polynomials. Owing to state space 

considerations since we have many state variables, we set the degree of the sieve dimension to 𝑙 =

4.  

For the continuous state variables 𝛺 , we choose a parametric method to estimate the 

transition densities 𝑔(𝛺 |𝛺,  𝑎 = 0, 𝑎 )  because we have little prior knowledge on the form of 

the state transitions. We define 𝑔(𝛺 |𝛺,  𝑎 = 0, 𝑎 )  as a density function and then let 

𝑔(𝛺 |𝛺,  𝑎 = 0, 𝑎 ; 𝛼) be a flexible parametric density with parameter 𝛼.  We assume the all 

state variables 𝛺 except government policies and the strategic factors satisfy a multivariate normal 

distribution and use a seemingly unrelated regression to estimate 𝛼, thus enabling us to obtain 

𝑔(𝛺 |𝛺, 𝑎 = 0, 𝑎 ).   

For the strategic state variables 𝑛  , the number of existing plants in the market that use 

each feedstock at time 𝑡 + 1 is a known deterministic function of  the number of existing plants 

that use each feedstock at time 𝑡 as well as the investment decisions made by potential investors 

at time 𝑡.   Thus, the transition density 𝑔(𝛺 |𝛺,  𝑎 = 0, 𝑎 ) for the strategic state variables 𝑛   
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is a known deterministic function that does not need to be estimated. 

Because we estimate our model using data that is pooled across all markets, we assume 

that the data are generated by a single Markov perfect equilibrium profile 𝛔 (Bajari, Benkard and 

Levin, 2007), and therefore that the same equilibrium is played in each market.  By assuming that 

the data generating process follows the players’ optimal behavior in the game, we can estimate the 

choice probabilities in the first step without having to solve for the equilibria of the game, enabling 

us to avoid a high computational burden.  

In the present model, the existence of multiple equilibria is a prevalent feature in most 

empirical games where best response functions are nonlinear in other players’ actions. We can 

either use estimators that explicitly accommodate multiplicity, which is analytically difficult, or 

assume uniqueness. When observed games are drawn from a population that is culturally or 

geographically close, sharing similar norms and conventions, as perhaps can be argued holds for 

Europe, one would expect that it is adequate to assume that the same equilibrium is played across 

games (de Paula, 2013).   

Bresnahan and Reiss (1990, 1991) consider a specification where, conditional on the state 

variables, a firm’s action depends on the number of firms that are operating in the market, not on 

the identity of these firms. Their assumption is that all the firms are symmetric conditional on the 

state variables and that they produce a homogeneous good. Therefore, we will follow this method 

and use only the number of other plants choosing certain feedstocks, rather than the identity of the 

plants choosing certain feedstocks, to represent the strategic interactions.   

If a long panel is available, it may be sometimes possible to estimate the policy functions 

separately for each market (Bajari, Benkard and Levin, 2007).  However, due to the scarcity of 
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long panel data, we instead assume that the pooled data have a unique equilibrium.4 

In the second step of the econometric estimation, we estimate the choice-specific value 

function  𝑉(0, 𝛺)  for 𝑎 = 0 and then use this estimate to estimate the choice-specific value 

functions 𝑉(𝑎 , 𝛺) for all actions 𝑎  by applying the Hotz-Miller inversion:  

𝑉(𝑎 , 𝛺) − 𝑉(0, 𝛺) = log 𝜎 (𝑎 |𝛺) − log 𝜎 (0|𝛺) ,                             (10) 

and using the choice probabilities 𝜎 (𝑎 |𝛺)  that were estimated in the first step.  𝑉(0, 𝛺)  is 

assumed to have the following linear series approximation: 

𝑉(0, 𝛺) = 𝑞 (𝛺)  𝜃   ,                                                          (11) 

and is estimated using the empirical analog estimation method based on series expansion suggested 

by Bajari et al. (2015).  

In the third step of the econometric estimation, we estimate 𝑢 (𝑎 , 𝛺), the static choice-

specific deterministic payoff function given that the action is 𝑎  and the state is 𝛺 . Solving 

equation (8) for the deterministic payoff 𝑢 (𝑎 , 𝛺) and then using the estimates of the choice-

specific value function 𝑉(𝑎 , 𝛺), we can estimate  𝑢 (𝑎 , 𝛺)  using the following equation: 

𝑢 (𝑎 , 𝛺) =
𝑉(𝑎 , 𝛺) − 𝛽𝐸[𝑉(𝛺 )|𝑎 = 0, 𝛺] if 𝑎 = 0,

𝑉(𝑎 , 𝛺)  if 𝑎 > 0
,                      (12) 

where, owing to the extreme value distributional assumptions for the shocks 𝜖 , the continuation 

value can be written as: 

                                                        
4 Otsu, Pesendorfer and Takahashi (2016) propose statistical tests for finite state Markov games to examine whether 

data from distinct markets can be pooled.  Unfortunately, their test is not applicable to our context for two reasons.  

First, their test is for finite state variables, while some of our state variables are continuous.  Second, their test performs 

well for moderate values of the number of markets (e.g., 20 or 40), while our study involves a large number of markets 

(168) and a small number of time periods (7).  As seen in their Monte Carlo results when multiple equilibria are 

possible with non-zero probability in Tables 3 and 4, their test does not perform well in their simulations in which the 

number of markets is closest to that in our study (i.e., 80 or 160) and the number of time periods is closest to that in 

our study (i.e., 5 or 10).    
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𝐸[𝑉(𝛺 )|𝑎 = 0, 𝛺]  =

 ∫ log ∑ exp 𝑉(𝑘, 𝛺 ) 𝑔(𝛺 |𝛺, 𝑎 = 0, 𝑎 )𝜎 (𝑎 |𝛺)𝑑𝛺  ,              (13) 

To calculate the continuation value we use numerical integration, in which we randomly 

draw 𝛺  multiple times from the transition density 𝑔(𝛺 |𝛺, 𝑎 = 0, 𝑎 ) estimated in the first step, 

where 𝑎  is drawn from the choice probabilities 𝜎 (𝑎 |𝛺) also estimated in the first step, and 

then take the mean value of log ∑ exp(𝑉(𝑘, 𝛺 ))  over all the draws.   For the structural 

estimation, we set the discount factor β to 0.9. 

In the fourth step of the econometric estimation, we estimate the parameters  𝛾 of the 

deterministic component 𝑢 (𝑎 , 𝛺)  of the payoff from investing in an ethanol plant for each 

feedstock 𝑎 . A nonparametric method for  𝑢 (𝑎 , 𝛺) is more flexible, but is not practical for our 

intermediate-sized sample because nonparametric estimators may be poorly estimated due to the 

sensitivity of the bandwidth or choice of the kernel without a sufficiently large sample. Therefore, 

our strategy is to choose appropriate parameters 𝛾 to minimize the distance between the choice-

specific payoff functions 𝑢 (𝑎 , 𝛺) estimated in the third step and the parametric form of the 

deterministic payoff function 𝑢 (𝑎 , 𝛺 ) given in equation (2). To this end, our semiparametric 

approach solves the following minimization problem:  

𝛾 = argmin
 
∑ ∑ ( 𝑢 (𝑎 , 𝛺 )  − (𝑥 𝛾 +  𝑛 𝛾 ))            (14) 

where, as defined in equation (2), the deterministic component  𝑢 (𝑎 , 𝛺 )  of the payoff to 

investing in an ethanol plant that uses feedstock 𝑎  is a linear function of the state variables. As 

common in semiparametric estimation,  𝛾 converges to the true value at a rate proportational to 

the square root of the sample size and has a normal asymptotic distribution (Bajari et al., 2015).  

Standard errors are formed by a nonparametric bootstrap. Markets are randomly drawn 

from the data set with replacement to generate 100 independent panels of size equal to the actual 
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sample size. The structural econometric model is run on each of the new panels. The standard error 

is then formed by taking the standard deviation of the estimates from each of the random samples. 

 

6. Data  

We apply our model of the ethanol investment timing game to the European ethanol 

industry.  Of the 27 members of the European Union (EU), we focus on the 20 countries for which 

ethanol price was available. As seen in Table 2, there were 75 ethanol plants running in these 20 

European countries in 2007. Six plants were built before 2001 and the earliest one was built in 

1979.  We choose 2001 to 2007 as our period of study to coincide with the second ethanol boom 

in the US, during which ethanol plant technology was different from that of the first ethanol boom 

preceding it (Thome and Lin Lawell, 2018) and because country-level ethanol price data was not 

available for the 20 countries before 2001.  

Figure 2 presents the number of ethanol plants that use barley, corn, sugar beet, and wheat, 

respectively, in the years from 2001 to 2007.  Except for barley-based ethanol plants, the number 

of plants is increasing in time for each feedstock.  The total number of ethanol plants has increased 

rapidly since 2005, especially for wheat-based ethanol plants.  In 2007, 2 ethanol plants used barley 

as feedstock, 12 plants used corn, 13 plants used sugar beet and the remaining 42 ethanol plants 

used wheat as feedstock. We therefore model the choice set of a potential investor in each year t 

as having five options including the outside option of not investing: 𝑎 ∈ {outside option,

barley, corn, sugar beet, wheat}.  

We collect information on the feedstock used for all ethanol plants in the 20 European 

countries from 2001 to 2007 from either the plants’ own websites or from existing survey 

information. Rye is also an alternative feedstock used in Europe ethanol production (GAIN, 2010), 

however, it constitutes an extremely small proportion of ethanol production in Europe and is 
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usually used in conjunction with another primary feedstock such as wheat or barley. Therefore, to 

simplify the discrete choice model, we focus on the decision to choose a single primary feedstock 

out of the choice set of barley, corn, sugar beet, or wheat.  

In the semiparametric estimation, the 20 EU countries are divided into 168 “markets” based 

on the Nomenclature of Territorial Units for Statistics (NUTS).  We choose to use the NUTS 

delineation for markets for several reasons.  First, the NUTS delineation yields markets with 

geographical areas commensurate with the extent of local competition.  Owing to high 

transportation costs, the geographical extent of local competition in both the feedstock input 

market and the ethanol output market is unlikely to be larger than the size of markets defined at 

the NUTS level.  Second, even at the NUTS level, we never observe more than 3 ethanol plants in 

any market.  If we were to define markets to be smaller than the NUTS delineation, we would have 

few if any markets with more than one ethanol plant.  Since we are interested in analyzing the 

possibility of strategic interaction, we want to define the markets to be large enough for us to 

observe multiple ethanol plants in some markets.  Third, defining markets based on the NUTS 

delineation makes the area of each market as similar as possible across the different countries.  

Fourth, the NUTS level was the finest geographical resolution for which any of our variables was 

available for all 20 EU countries.   

Table 2 describes the ethanol markets by country.  The average area of each market over 

all the countries is 23,064 km2.  Since we never observe more than 3 ethanol plants in any market 

in our data set, we assume that the maximum number of potential investors in each market is 3.  

We chose our state variables based on considerations of state space and data availability.  

By using an estimation approach that does not need a preliminary estimation of the continuation 

values of the players (Bajari et al., 2015), our estimation does not rely on the discreteness of state 

space, so we can keep the continuous state variable continuous as they are.  
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For the ethanol price, since regional ethanol prices are not available, we use country-level 

ethanol prices. In particular, we use ethanol import prices for net ethanol importing countries and 

the ethanol export prices for net ethanol exporting countries. All the prices are from Global 

Information, Inc.  Since we do not have local variation in ethanol prices, local competition in the 

ethanol output market is captured by the strategic state variables 𝑛   that track, for each feedstock, 

the number of existing plants in the market that use that particular feedstock.   

For the natural gas price, since historical natural gas prices are not available for each NUTS 

region, we use country-level natural gas prices. We use several different sources for the natural 

gas prices: OECD (Austria, Germany, Italy, Netherlands), Energy Information Administration 

(EIA) (Czech Republic, Finland, France, Hungary, Ireland, Poland, Slovakia, Spain, UK), 

EUROSTAT (Belgium, Bulgaria, Denmark, Sweden), and the Mundi Index (Latvia, Lithuania, 

Romania).  Since we do not have local variation in natural gas prices, local competition in the 

natural gas input market is captured by the strategic state variables 𝑛   that measure the net 

strategic interaction. 

For gasoline price, we use country-level gasoline prices from the EIA.  Since we do not 

have local variation in gasoline prices, local competition in the gasoline input and output markets 

is again captured by the strategic state variables 𝑛   that measure the net strategic interaction.  

As a measure of local feedstock availability, we use market-level feedstock intensities, 

which we calculate by dividing the market-level output for each feedstock by the geographical 

area of the respective market.  For market-level feedstock output, we use market-level feedstock 

production data from the European Commission’s data base.  Since the markets vary in their 

geographical area, we use feedstock intensity to capture the area-independent production by each 

market.  

We calculate market-level feedstock prices using the market-level outputs for all the 
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feedstocks and their corresponding yearly total values from the European Commission’s data base.   

Production values for corn are not available for several markets, including some in the UK; for 

these markets, we use FAO national prices to represent local prices. As a robustness check, we run 

a specification of our model where we use national feedstock prices for all markets.  The European 

Commission’s database shows that none of the markets in Finland produce corn, so we use FAO 

import prices of corn to represent the corn feedstock prices in all markets in Finland.   

As a measure of proximity to cattle and hogs, we use local livestock densities, which we 

calculate by dividing the market-level numbers of cattle and hogs from the European 

Commission’s data base by the geographic areas of the respective markets. 

There are 3 different types of ethanol support policies in Europe: financial support, 

blending mandate and R&D support. Financial support policies include tax credits and direct 

funding support from the local government. Blending mandates are mandates that gasoline should 

contain a certain percentage of ethanol.  R&D support policies provide support for research and 

development (R&D).  For each policy, we include a dummy variable that equals 1 if the policy is 

in place in a particular market m in year t and 0 otherwise.  Data for these policies are from 

European Renewable Energy Council’s Renewable Energy Policy Review (2009).  Table 1 lists 

the ethanol policies implemented in each country in Europe by 2007 and the dates they were 

implemented. 

In our dynamic structural econometric model, we assume that the ethanol support policies 

evolve as a first-order Markov process. From the perspective of potential ethanol plant investors, 

the evolution of these policies over time was uncertain at the beginning of the study period, due to 

the democratic nature of lawmaking and uncertainty about the evolution of the European ethanol 

industry. Although the basic strategy of providing government support for ethanol was likely 

known by potential investors, the exact timing of the ethanol support policies could not have been 



 

30 
 

perfectly anticipated.  We therefore model future implementation and timing of these policies as 

uncertain from the point of view of potential investors in any given year of our period of study.  

We use empirical probabilities to estimate a potential investors' expectation of the implementation 

and timing of these policies conditional on current values of these policies and on current values 

of other state variables. 

Table 3 presents summary statistics for the state variables. In addition to our state variables, 

we also include country fixed effects to control for unobserved industry policies and market 

conditions that can affect the investment decisions of potential investors.  In one of our 

specifications we also include year effects to control for unobserved common shocks. 

 

7.  Results 

We run three different specifications of our econometric model. The parameters estimated 

are the coefficients 𝛾  in the payoff function for investing in an ethanol plant that uses feedstock 

𝑎 for each of the four feedstocks (barley, corn, sugar beet, and wheat).  The coefficients on the 

number of existing plants using the same feedstock and the number of existing plants using a 

different feedstock measure the net effect of the strategic interactions.  The coefficients the 

economic and policy state variables measure the effects of economic factors and government 

policy, respectively, on the payoffs to investing in an ethanol plant that uses feedstock 𝑎.  We 

include country fixed effects in all our specifications. 

Table 4 reports the results from the base case model.  According to the results, for each of 

the feedstocks, both the number of existing plants using the same feedstock and the number of 

existing plants using a different feedstock have a significant negative effect on the payoffs to 

investing in an ethanol plant that uses that feedstock.  For barley, corn and sugar beet, the effect 

of existing plants using the same feedstock is larger in magnitude than the effect of existing plants 
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using a different feedstock; for wheat, the effects of both types of existing plants are similar in 

magnitude.  Our results on the strategic interaction therefore show that the competition effect 

dominates the agglomeration effect, yielding a net negative strategic effect.  Competition between 

plants deters local investments and has a large negative effect on the payoffs from investment.     

According to the results from the base case model, ethanol price does not have significant 

effect on the ethanol plant’s profit although it has the expected positive sign. As an input, natural 

gas price has a significant negative effect on the payoffs to investing in a barley-based ethanol 

plant, but does not have a significant effect on the payoffs to investing in ethanol plants using any 

other feedstock. Gasoline price has a significant positive effect on the payoffs from investing in 

barley-, corn- and wheat-based ethanol plants, and this suggests that the positive effect of gasoline 

price on payoffs due to the complementary nature of gasoline and ethanol when blended in fuel 

outweighs the negative effect of gasoline price on payoffs due to its use as an input.  

As expected, feedstock prices have negative effects on the payoff to investing in an ethanol 

plant using the respective feedstock. Barley prices, sugar beet prices, and wheat prices have 

significant negative effects on the payoffs to investing in ethanol plants using barley, sugar beet 

and wheat, respectively, as the feedstock. For all feedstocks, feedstock availability, as measured 

by feedstock intensity, has a positive effect on the payoffs to investing in ethanol plants, but the 

only significant effect is the positive effect of local corn intensity on the payoffs to investing in an 

ethanol plant using corn as a feedstock.  Thus, while local feedstock price has a significant effect 

on payoffs to investing in ethanol plants using barley, sugar beet and wheat, local feedstock 

intensity has a significant effect on the payoff to investing in an ethanol plant that uses corn as a 

feedstock. 

There are interesting results governing the relationships between ethanol plants and 

livestock.  Proximity to cattle, as measured by cattle density, has a significant positive effect on 
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the payoffs to investing in an ethanol plant that uses either barley or corn as the feedstock, since 

the co-products from ethanol production can be used to feed cattle.   In contrast, proximity to hogs, 

as measured by hog density, has a significant negative effect on the payoffs to investing in an 

ethanol plant that uses either barley or corn as the feedstock, which suggests that hog production 

competes with barley-based and corn-based ethanol plants in the feedstock markets and this 

negative competition effect dominates the positive effect that co-products from ethanol production 

can feed hogs.   

As expected, all three ethanol support policies (financial support, blending mandate, and 

R&D support) have positive effects on the payoffs from investing in ethanol plants for all 

feedstocks.  All the positive effects are significant except the effect of financial support on payoffs 

to investing in sugar beet-based ethanol plants and the effect of R&D support on payoffs to 

investing in wheat-based plants.   

The magnitudes of the effects of strategic interactions and of the government support 

policies are comparable to each other and quite large in comparison to the magnitudes of the effects 

of the economic variables.  For barley, an increase in the number of existing ethanol plants using 

barley by one has roughly the same magnitude of an effect on the payoffs to investing in a barley-

based ethanol plant as the implementation of a blending mandate (though the former is a negative 

effect while the latter is a positive effect), and the magnitude of each effect is slightly greater than 

the magnitude of the effect of an increase in the number of existing ethanol plants using a feedstock 

other than barley, more than twice as large as the magnitude of the effect from a change in the 

gasoline price of $0.12/liter (which is roughly 10% of its mean value), and more than 11 times as 

large as the magnitude of the effect from a change in local barley price of $1.69/ton (which is 

roughly 10% of its mean value).  Other economic variables, such as the ethanol price and the 

natural gas price, have no significant effect on the payoffs to investing in an ethanol plant that uses 
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barley.  

For corn, an increase in the number of existing ethanol plants using corn by one has roughly 

the same magnitude of an effect on the payoffs to investing in a corn-based ethanol plant as the 

implementation of a financial support policy (though the former is a negative effect while the latter 

is a positive effect), and the magnitude of each effect is more than ten times the effect of an increase 

by one in the number of existing ethanol plants that use a feedstock other than corn and orders of 

magnitude larger than the effect of a change in local corn intensity.  Other economic variables, 

such as the ethanol price, gasoline price and the natural gas price, have no significant effect on the 

payoffs to investing in an ethanol plant that uses corn.  

For sugar beet, an increase in the number of existing ethanol plants using sugar beet by one 

has more than 1.5 times the effects on the payoffs to investing in a sugar beet-based ethanol plant 

as the implementation of an R&D support policy (though the former is a negative effect while the 

latter is a positive effect), and the magnitude of the effect is about 2.5 times the magnitude of the 

effect of an increase by one in the number of existing ethanol plants that use a feedstock other than 

sugar beet, about 100 times magnitude of the effect of a change in the natural gas price of 

$0.69/MBtu (which is roughly 10% of its mean value), more than 40 times the magnitude of the 

effect of a change in the gasoline price of $0.12/liter (which is roughly 10% of its mean value), 

more than 3 times the magnitude of the effect of a change in the sugar beet price of $4.82/ton 

(which is roughly 10% of its mean value).  The ethanol price has no significant effect on the 

payoffs to investing in an ethanol plant that uses sugar beet.  

For wheat, an increase in the number of existing ethanol plants using wheat by one has 

roughly the same magnitude of an effect on the payoffs to investing in a wheat-based ethanol plant 

as the implementation of either a financial support policy, the implementation of a blending 

mandate, or an increase in the number of existing plants using a feedstock other than wheat, and 
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the magnitude of each effect is orders of magnitude larger than the magnitude of the effect from a 

change in the gasoline price of $0.12/liter (which is roughly 10% of its mean value) and orders of 

magnitude larger than the magnitude of the effect from a change in local wheat price of $17.32/ton 

(which is roughly 10% of its mean value).  Other economic variables, such as the ethanol price 

and the natural gas price, have no significant effect on the payoffs to investing in an ethanol plant 

that uses wheat.  

The second specification adds year effects to the base case model, and the results are in 

Table 5. The year effects control for any unobserved common shocks.  For the most part, the 

qualitative results and the signs and relative magnitudes of the significant coefficients are robust 

to the addition of year effects.  

The third specification uses national feedstock prices instead of local feedstock prices. We 

did not have data for local feedstock prices for all four feedstocks for the UK, Finland, Denmark, 

Czech Republic, and Spain; for these countries we used national prices for regions without a local 

price. The third specification is a robustness check in which we use only national feedstock prices 

for all the markets.  The results are shown in Table 6.  For the most part, the qualitative results and 

the signs and relative magnitudes of the significant coefficients on the strategic, policy and 

economic variables are robust.  The main difference is that while the number of existing plants 

using corn had a more negative effect on the payoffs to investing in an ethanol plant that uses corn 

than did the number of existing plants using a feedstock other than corn in the first two 

specifications, the reverse is true when national feedstock prices are used instead of local feedstock 

prices.  A second difference is that while the ethanol price did not have a significant effect on the 

payoffs to investing in an ethanol plant of any feedstock in either of the first two specifications, in 

the third specification ethanol price has a significant positive effect on the payoffs to investing in 

an ethanol plant that uses sugar beet. 
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8. Conclusion 

The decision to invest in building an ethanol plant that uses a particular feedstock is a 

dynamic decision that may be affected by economic factors and government policies.  Owing to 

competition effects and agglomeration effects, a potential investor’s investment decision may also 

depend on the investment decisions of other investors.  This paper analyzes how economic factors, 

strategic factors, and government policies affect the decision to invest in building new ethanol 

plants in Europe.  We distinguish among investments in ethanol plants of different feedstocks.   

Our empirical methodology is to estimate a structural econometric model of the dynamic 

ethanol investment timing game.   We build upon the previous literature on ethanol investment by 

developing and estimating a model that incorporates the dynamic and strategic aspects of the 

investment decision, that allows for a choice among multiple feedstocks, and that does not require 

continuous variables to be discretized.  The econometric model we use in this paper is based on 

one developed by Bajari et al. (2015). This paper is the first to our knowledge to apply the 

econometric model developed by Bajari et al. (2015) to actual data. 

According to our results, competition between plants dominates the agglomeration effect 

and has a large negative effect on the payoffs from investment.  We also find that government 

policies have a large positive effect on payoffs from investment.   Ethanol support policies play an 

important role in the development of the ethanol industry in Europe.   Ethanol investment decisions 

in Europe are affected more by government policies and strategic interactions than by economic 

factors such as ethanol prices, natural gas prices, and feedstock prices: the effects of government 

policies and strategic interactions on the payoffs to ethanol plant investment are more statistically 

significant than the effects of these economic factors.   

Our results that financial support policies and R&D support policies have a positive effect 
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on ethanol investment are consistent with the results of Bloom, Griffith and Van Reenen (2002), 

who find that fiscal incentives have a positive effect on R&D investment in the manufacturing 

sector in OECD countries.  Our result that blending mandates have a positive effect on ethanol 

investment is consistent with Lade, Lin Lawell and Smith (forthcoming), who argue that binding 

mandates provide an incentive to invest in technologies to meet the future objectives of the policy. 

Our results are of interest to academics, policy-makers, and industry practitioners alike 

who are interested in the effects of economic factors, strategic interactions, and government policy 

on investment decisions not only in the ethanol industry in particular, but also in any other industry 

that may have been affected by government policy or in which strategic interactions may be 

important. 

In future work, we hope to further analyze the effects of the government policies on the 

ethanol investment decision, including the channels through which the government policies affect 

payoffs; and the particular characteristics, levels, and combinations of the policies that are most 

effective, cost-effective, and efficient. 
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Figure 1.  Ethanol production and consumption in Europe  

 

 

Sources: Ethanol consumption data is from the United Nations Statistics Division.  Ethanol 

production data is from the European Union of Ethanol Producers. 
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Table 1. Implementation dates for ethanol support policies implemented by 2007 

 
Country Financial Support Blending Mandate R&D Support 
Austria 2007 2005 - 
Belgium 2006 2005 - 
Bulgaria 2005 - - 
Czech Republic 2006 - - 
Denmark 2005 2005 - 
Finland - - - 
France 2006 2005 2005 
Germany 1999 - - 
Hungary 2007 2007 - 
Ireland 2005 2007 - 
Italy - - - 
Latvia - 2005 - 
Lithuania - - - 
Netherlands 2006 2007 2006 
Poland 2004 - - 
Romania - 2007 - 
Slovakia 2004 2006 - 
Spain 2003 2007 2003 
Sweden 2006 - - 
UK - 2006 - 

Source: Renewable Energy Council’s Renewable Energy Policy Review (2009). 
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Figure 2. Number of ethanol plants by feedstock 
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Table 2. Ethanol markets by country 

Country Number of markets 
Number of ethanol plants 

 in 2001-2007 
Average area for each market (km2) 

Austria 8 1 10,441 
Belgium 2 3 15,279 
Bulgaria 6 3 18,475 
Czech Republic 7 7 11,269 
Denmark 5 0 8,602 
Finland 5 3 58,433 
France 21 13 25,506 
Germany 13 9(1) 27,469 
Hungary 7 5 13,293 
Ireland 2 1(1) 34,899 
Italy 20 4(2) 15,067 
Latvia 1 1 64,589 
Lithuania 1 2 65,200 
Netherlands 4 3 9,335 
Poland 16 6 19,538 
Romania 7 1 33,814 
Slovakia 4 2 14,780 
Spain 17 7(1) 29,743 
Sweden 8 2(1) 45,659 
UK 14 2 16,505 
Total 168 75(6) 23,064 

Notes: Number of ethanol plants built before 2001 in parentheses. 
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Table 3.  Summary statistics                                                   

Variable Obs Mean Std. Dev. Min Max 

Ethanol price ($/ton) 168 833.627 454.689 460.000 4180.000 
Natural gas price ($/MMBtu) 168 6.912 2.681 2.686 15.365 
Gasoline price ($/liter) 168 1.213 0.323 0.522 1.999 
Barley price ($/ton) 168 169.044 61.641 56.918 390.071 
Corn price ($/ton) 168 207.450 142.337 56.293 1081.871 
Sugar beet price ($/ton) 168 48.159 21.373 16.240 247.230 
Wheat price ($/ton) 168 173.155 65.336 51.011 397.202 
Barley intensity (000ton/km2) 168 0.015 0.017 0 0.093 
Corn intensity (000ton/km2) 168 0.016 0.029 0 0.184 
Sugar beet intensity (000ton/km2) 168 0.040 0.072 0 0.639 
Wheat intensity (000ton/km2) 168 0.039 0.042 0 0.244 
Cattle density (head/km2) 168 0.029 0.106 0.000 3.522 
Hog density (head/km2) 168 0.054 0.123 0.000 1.068 
Financial support (dummy) 168 0.043 0.204 0 1 
Blending mandate (dummy) 168 0.155 0.362 0 1 
R&D support (dummy) 168 0.133 0.339 0 1 
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Table 4:  Results of base case model 
Coefficients in the payoffs from investing in an ethanol plant of feedstock: 

 Barley Corn Sugar beet Wheat 
Number of existing plants using the same feedstock -149.876 *** 

  (1.027) 
-179.170 *** 

(0.243) 
-500.116 *** 

(5.662) 
-1935.29 *** 

(0.558) 
Number of existing plants using a different feedstock -138.494 *** 

(14.614) 
-14.924 * 
(6.758) 

-203.814 *** 
(27.445) 

-1935.57 *** 
(0.536) 

Ethanol price ($/ton) 0.524 
(17.967) 

0.044 
(0.470) 

2.105 
(4.168) 

0.444 
(0.254) 

Natural gas price ($/MBtu) -36.617 
(25.346) 

-0.294 
(0.722) 

-7.138 * 
(2.942) 

0.040 
(0.198) 

Gasoline price ($/liter) 540.263 * 
(256.554) 

3.860 
(12.002) 

90.245 * 
(39.903) 

6.472 * 
(2.687) 

Local feedstock price ($/ton) 
 

-7.857 * 
(3.660) 

-12.289 
(4.277) 

-31.193 * 
(12.200) 

-0.262 ** 
(0.089) 

Local feedstock intensity (000 ton/km2) 24.298 
(45.270) 

1.693 * 
(0.782) 

0.752 
(1.587) 

0.138 
(0.093) 

Cattle density (head/ km2) 610.557 * 
(253.294) 

125.478 * 
(49.002) 

-62.088 
(59/961) 

-4.573 
(4.2723) 

Hog density (head/ km2) -262.823 * 
(114.629) 

-15.274 * 
(6.702) 

32.319 
(42.337) 

-0.120 
(0.885) 

Financial support (dummy) 29.791 * 
(11.972) 

179.977 *** 
(0.243) 

59.000 
(43.533) 

1934.952 *** 
(0.570) 

Blending mandate (dummy) 142.631 *** 
(7.676) 

15.430 * 
(6.758) 

202.077 *** 
(19.049) 

1935.207 *** 
(0.497) 

R&D support (dummy) 87.630 *** 
(11.599) 

109.431 * 
(51.394) 

296.156 *** 
(5.662) 

1.787 
(1.147) 

Constant -30.243 
(19.890) 

0.067 
(1.1795) 

4.099 
(2.995) 

-0.942 ** 
(0.416) 

     
Country fixed effects YES 
Year Effects NO 

Notes: Standard errors are in parentheses.  Significance codes: * 5% level, ** 1% level, *** 0.1% level.  Local feedstock price refers to local barley 

price, corn price, sugarbeet price, and wheat price for the payoffs to investing in ethanol plants using barley, corn, sugarbeet, and wheat, respectively.  

Similarly, local feedstock intensity refers to the local intensity of barley, corn, sugarbeet, and wheat, respectively. 
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Table 5:  Results of year effect model 
Coefficients in the payoffs from investing in an ethanol plant of feedstock: 

 Barley Corn Sugar beet Wheat 
Number of existing plants using the same feedstock -128.660 *** 

(1.029) 
-194.375 *** 

(0.226) 
-719.827 *** 

(23.431) 
-1915.86 *** 

(0.606) 
Number of existing plants using a different feedstock -117.313 *** 

(13.433) 
-29.013 *** 

(6.749) 
-660.805 *** 

(111.652) 
-1916.21 *** 

(0.573) 
Ethanol price ($/ton) 0.390 

(18.209) 
0.089 

(0.465) 
0.695 

(4.546) 
0.537 

(0.288) 
Natural gas price ($/MMBtu) -36.669 

(25.871) 
-0.332 
(0.647) 

-7.108 * 
(2.892) 

0.063 
(0.197) 

Gasoline price ($/liter) 541.078 * 
(261.831) 

5.430 
(13.152) 

92.641 * 
(40.382) 

5.746  
(2.942) 

Local feedstock price ($/ton) -7.841 
(4.461) 

-11.661 ** 
(4.222) 

-30.166 * 
(11.779) 

-0.197 
(0.114) 

Local feedstock intensity (000 ton/km2) 24.018 
(39.201) 

1.640 * 
(0.772) 

0.688 
(1.437) 

0.159 
(0.104) 

Cattle density (head/ km2) 607.281 * 
(255.769) 

107.526 * 
(44.928) 

-60.695 
(61.497) 

-4.677 
(4.136) 

Hog density (head/ km2) -253.474 * 
(110.926) 

-13.291 * 
(6.659) 

34.097 
(42.850) 

-0.098 
(0.855) 

Financial support (dummy) 29.795 * 
(10.506) 

195.152 *** 
(0.226) 

59.011 
(179.495) 

1915.87 *** 
(0.596) 

Blending mandate (dummy) 121.405 *** 
(7.723) 

29.294 *** 
(6.749) 

658.764 *** 
(78.940) 

1915.70 *** 
(0.536) 

R&D support (dummy) 87.644 *** 
(11.589) 

109.431 * 
(51.328) 

59.319 * 
(23.431) 

1.881 
(1.320) 

Constant -30.314 
(19.907) 

-0.047 
(1.1749) 

4.342 
(2.984) 

-0.960 
(0.512) 

     
Country fixed effects YES 
Year Effects YES 

Notes: Standard errors are in parentheses.  Significance codes: * 5% level, ** 1% level, *** 0.1% level.  Local feedstock price refers to local barley 

price, corn price, sugarbeet price, and wheat price for the payoffs to investing in ethanol plants using barley, corn, sugarbeet, and wheat, respectively.  

Similarly, local feedstock intensity refers to the local intensity of barley, corn, sugarbeet, and wheat, respectively. 
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Table 6:  Results of national feedstock price model 
Coefficients in the payoffs from investing in an ethanol plant of feedstock: 

 Barley Corn Sugar beet Wheat 
Number of existing plants using the same feedstock -121.195 *** 

(1.195) 
-26.769 *** 

(0.654) 
-520.431 *** 

(7.356) 
-1890.256 *** 

(1.803) 
Number of existing plants using a different feedstock -110.154 *** 

(11.929) 
-45.182 *** 

(7.356) 
-248.653 *** 

(34.266) 
-1890.750 *** 

(1.743) 
Ethanol price ($/ton) -0.989 

(7.335) 
2.651 

(-0.407) 
7.721 * 
(3.616) 

0.354 
(1.935) 

Natural gas price ($/MMBtu) -33.669 
(22.715) 

-0.587 
(1.941) 

-11.628 * 
(4.917) 

-0.148 
(2.092) 

Gasoline price ($/liter) 498.674 * 
(240.253) 

54.360 
(32.478) 

100.681 * 
(45.475) 

8.087 
(44.832) 

National feedstock price ($/ton) 
 

-6.558 
(3.933) 

-24.069 * 
(10.580) 

-42.052 * 
(16.917) 

-0.240 
(0.397) 

Local feedstock intensity (000 ton/km2) 24.137 
(39.400) 

0.772 
(1.113) 

0.988 
(1.295) 

0.128 
(1.334) 

Cattle density (head/ km2) 599.876 * 
(261.768) 

150.140 
(86.306) 

-11.365 
(26.494) 

-0.526 
(30.368) 

Hog density (head/ km2) -261.530 
(136.774) 

-21.876 
(18.871) 

-92.506 
(51.673) 

-0.488 
(11.722) 

Financial support (dummy) 31.112 *** 
(8.643) 

26.767 *** 
(0.654) 

57.732 
(55.306) 

1891.00 *** 
(1.690) 

Blending mandate (dummy) 114.267 *** 
(7.702) 

44.729 *** 
(5.878) 

246.252 *** 
(23.815) 

1890.21 *** 
(1.653) 

R&D support (dummy) 88.129 *** 
(11.662) 

111.437 * 
(52.638) 

271.965 *** 
(7.356) 

2.900 
(3.255) 

Constant -31.414 
(22.324) 

-2.853 
(2.582) 

11.749 * 
(5.425) 

-0.989 
(7.335) 

     
Country fixed effects YES 
Year Effects NO 

Notes: Standard errors are in parentheses.  Significance codes: * 5% level, ** 1% level, *** 0.1% level.  National feedstock price refers to national 

barley price, corn price, sugarbeet price, and wheat price for the payoffs to investing in ethanol plants using barley, corn, sugarbeet, and wheat, 

respectively.  Similarly, local feedstock intensity refers to the local intensity of barley, corn, sugarbeet, and wheat, respectively. 


