# Study of the Impacts of Implements of Husbandry on Bridges

Volume III: Appendices August 2017



#### Sponsored by

Iowa Highway Research Board (IHRB Project TR-613) Iowa Department of Transportation (InTrans Projects 9-364 and 11-399) Federal Highway Administration Transportation Pooled Fund TPF-5(232)



# IOWA STATE UNIVERSITY

# About the Bridge Engineering Center

The mission of the Bridge Engineering Center (BEC) is to conduct research on bridge technologies to help bridge designers/owners design, build, and maintain long-lasting bridges.

# About the Institute for Transportation

The mission of the Institute for Transportation (InTrans) at Iowa State University is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, reliability, and sustainability while improving the learning environment of students, faculty, and staff in transportation-related fields.

# **Disclaimer** Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

# Iowa State University Non-Discrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries regarding non-discrimination policies may be directed to Office of Equal Opportunity, 3410 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, Tel. 515-294-7612, Hotline: 515-294-1222, email eooffice@iastate.edu.

# Iowa Department of Transportation Statements

Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran's status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or Iowa Department of Transportation's affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation's services, contact the agency's affirmative action officer at 800-262-0003.

The preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its "Second Revised Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation" and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation or the U.S. Department of Transportation Federal Highway Administration.

| 1. Report No.                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. Government Accession No.                                                                                                        | 3. Recipient's Cata                                                        | log No.                                                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| IHRB Project TR-613 and TPF-5(232)                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                            |                                                                        |  |  |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | 5. Report Date                                                             |                                                                        |  |  |
| Study of the Impacts of Implements of Husbandry on Bridges                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | August 2017                                                                |                                                                        |  |  |
| Volume III: Appendices                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    | 6. Performing Organization Code                                            |                                                                        |  |  |
| 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    | 8. Performing Orga                                                         | anization Report No.                                                   |  |  |
| Katelyn Freeseman (orcid.org/0000-00<br>(orcid.org/0000-0001-5894-4774), Lo<br>2488-6865), and Chandra Teja Kilaru                                                                                                                                                                                                                                                                                                                      | 003-0546-3760), Brent Phares<br>well Greimann (orcid.org/0000-0003-<br>(orcid.org/0000-0002-1399-7132)                             | InTrans Projects 9-3                                                       | 64 and 11-399                                                          |  |  |
| 9. Performing Organization Name a                                                                                                                                                                                                                                                                                                                                                                                                       | nd Address                                                                                                                         | 10. Work Unit No. (TRAIS)                                                  |                                                                        |  |  |
| Bridge Engineering Center                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                                                                            |                                                                        |  |  |
| Iowa State University<br>2711 South Loop Drive, Suite 4700<br>Ames, IA 50010-8664                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    | 11. Contract or Grant No.                                                  |                                                                        |  |  |
| 12. Sponsoring Organization Name                                                                                                                                                                                                                                                                                                                                                                                                        | and Address                                                                                                                        | 13. Type of Report                                                         | and Period Covered                                                     |  |  |
| Iowa Highway Research Board                                                                                                                                                                                                                                                                                                                                                                                                             | Federal Highway Administration                                                                                                     | Volume III: Appendices                                                     |                                                                        |  |  |
| Iowa Department of Transportation                                                                                                                                                                                                                                                                                                                                                                                                       | Transportation Pooled Fund                                                                                                         | 14. Sponsoring Agency Code IHRB                                            |                                                                        |  |  |
| Ames, IA 50010                                                                                                                                                                                                                                                                                                                                                                                                                          | Washington, DC 20590                                                                                                               | Project TR-613 and TPF-5(232)                                              |                                                                        |  |  |
| 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                    |                                                                            |                                                                        |  |  |
| Visit www.intrans.iastate.edu for color                                                                                                                                                                                                                                                                                                                                                                                                 | r pdfs of this and other research reports.                                                                                         |                                                                            |                                                                        |  |  |
| 16. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                            |                                                                        |  |  |
| The objectives of this study were to de<br>traditional bridges, with a specific focu<br>accurately analyzing bridges for these                                                                                                                                                                                                                                                                                                          | evelop guidance for engineers on how impl<br>is on bridges commonly found on the seco<br>loading effects; and make suggestions for | ements of husbandry l<br>ondary road system; pro<br>the rating and posting | oads are resisted by<br>ovide recommendations for<br>of these bridges. |  |  |
| To achieve the objectives, the distribution of live load and dynamic impact effects for different types of farm vehicles on three general bridge types—steel-concrete, steel-timber, and timber-timber—were investigated through load testing and analytical modeling. The types of vehicles studied included, but were not limited to, grain wagons/grain carts, manure tank wagons, agriculture fertilizer applicators, and tractors. |                                                                                                                                    |                                                                            |                                                                        |  |  |
| Once the effects of these vehicles had been determined, a parametric study was carried out to develop live load distribution factor (LLDF) equations that account for the effect of husbandry vehicle loads. Similarly, recommendations for dynamic effects were also developed. The live load distribution factors and dynamic load allowances are covered in the first volume of the report.                                          |                                                                                                                                    |                                                                            |                                                                        |  |  |
| Finally, suggestions on the analysis, rating, and posting of bridges for husbandry implements were developed. Those suggestions are covered in the second volume of the report.                                                                                                                                                                                                                                                         |                                                                                                                                    |                                                                            |                                                                        |  |  |
| This third volume of the report contains six appendices that include the 19 mini-reports for field tested and analytically modeled steel-concrete, steel-timber, and timber-timber bridges, the farm implement and bridge inventories for the project, and survey responses.                                                                                                                                                            |                                                                                                                                    |                                                                            |                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                    |                                                                            |                                                                        |  |  |
| 17. Key Words                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    | 18. Distribution Sta                                                       | atement                                                                |  |  |
| bridge inventory—bridge testing mini-<br>live load testing—steel-concrete bridg                                                                                                                                                                                                                                                                                                                                                         | reports—farm implement inventory—<br>e tests—steel-timber bridge tests—<br>ge tests—live load testing                              | No restrictions.                                                           |                                                                        |  |  |
| 10 Security Classification (of this                                                                                                                                                                                                                                                                                                                                                                                                     | 20 Security Classification (of this                                                                                                | 21 No. of Pages                                                            | 22 Price                                                               |  |  |
| report)                                                                                                                                                                                                                                                                                                                                                                                                                                 | page)                                                                                                                              | 21. 110. 01 1 ages                                                         | 22. I INC                                                              |  |  |
| Unclassified.                                                                                                                                                                                                                                                                                                                                                                                                                           | Unclassified.                                                                                                                      | 252                                                                        | NA                                                                     |  |  |
| Form DOT F 1700 7 (8-72)                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                  | Penroduction of co                                                         | I<br>mnleted nage authorized                                           |  |  |

**Technical Report Documentation Page** 

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

# STUDY OF THE IMPACTS OF IMPLEMENTS OF HUSBANDRY ON BRIDGES

#### Volume III: Appendices August 2017

Principal Investigator Brent Phares, Director Bridge Engineering Center, Iowa State University

#### **Co-Principal Investigator**

Terry Wipf, Professor and Chair Civil, Construction, and Environmental Engineering, Iowa State University

Authors Katelyn Freeseman, Brent Phares, Lowell Greimann, and Chandra Kilaru

> Sponsored by Iowa Highway Research Board (IHRB Project TR-613), Iowa Department of Transportation, and Federal Highway Administration Transportation Pooled Fund (TPF-5(232))

Preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its Research Management Agreement with the Institute for Transportation (InTrans Projects 9-364 and 11-399)

> A report from Bridge Engineering Center and Institute for Transportation Iowa State University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-8103 / Fax: 515-294-0467 www.intrans.iastate.edu

| ACKNOWLEDGMENTS                                 | . xiii |
|-------------------------------------------------|--------|
| THREE-VOLUME EXECUTIVE SUMMARY                  | xv     |
| INTRODUCTION                                    | 1      |
| Problem Statement                               | 1      |
| Research Objective and Scope                    | 2      |
| Research Methodology                            | 2      |
| Three-Volume Report Organization                | 2      |
| Volume III: Appendices Content and Organization | 2      |
| APPENDIX A. FIELD TESTED STEEL-CONCRETE BRIDGES | 3      |
| A.1 Steel-Concrete Bridge 1                     | 3      |
| A.1.1 Background                                | 3      |
| A.1.2 Bridge Description                        | 3      |
| A.1.3 Field Testing                             | 6      |
| A.1.4 Analytical Modeling                       | 10     |
| A.1.5 Results                                   | 13     |
| A.2 Steel-Concrete Bridge 2                     | 14     |
| A.2.1 Background                                | 14     |
| A.2.2 Bridge Description                        | 15     |
| A.2.3 Field Testing                             | 18     |
| A.2.4 Analytical Modeling                       | 22     |
| A.2.5 Results                                   | 25     |
| A.3 Steel-Concrete Bridge 3                     | 26     |
| A.3.1 Background                                | 26     |
| A.3.2 Bridge Description                        | 27     |
| A.3.3 Field Testing                             | 30     |
| A.3.4 Analytical Modeling                       | 34     |
| A.3.5 Results                                   | 37     |
| A.4 Steel-Concrete Bridge 4                     | 38     |
| A.4.1 Background                                | 38     |
| A.4.2 Bridge Description                        | 39     |
| A.4.3 Field Testing                             | 42     |
| A.4.4 Analytical Modeling                       | 46     |
| A.4.5 Results                                   | 48     |
| A.5 Steel-Concrete Bridge 5                     | 49     |
| A.5.1 Background                                | 49     |
| A.5.2 Bridge Description                        | 50     |
| A.5.3 Field Testing                             | 52     |
| A.5.4 Analytical Modeling                       | 56     |
| A.5.5 Results                                   | 59     |
| APPENDIX B. FIELD TESTED STEEL-TIMBER BRIDGES   | 61     |
| B.1 Steel-Timber Bridge 1                       | 61     |

# TABLE OF CONTENTS

| B.1.1 Background          | 61  |
|---------------------------|-----|
| B.1.2 Bridge Description  | 61  |
| B.1.3 Field Testing       | 64  |
| B.1.4 Analytical Modeling | 68  |
| B.1.5 Results             | 70  |
| B.2 Steel-Timber Bridge 2 | 71  |
| B.2.1 Background          | 71  |
| B.2.2 Bridge Description  | 72  |
| B.2.3 Field Testing       | 74  |
| B.2.4 Analytical Modeling | 78  |
| B.2.5 Results             | 81  |
| B.3 Steel-Timber Bridge 3 | 82  |
| B.3.1 Background          | 83  |
| B.3.2 Bridge Description  | 83  |
| B.3.3 Field Testing       | 84  |
| B.3.4 Analytical Modeling | 88  |
| B.3.5 Results             | 91  |
| B.4 Steel-Timber Bridge 4 | 92  |
| B.4.1 Background          | 93  |
| B.4.2 Bridge Description  | 93  |
| B.4.3 Field Testing.      | 94  |
| B.4.4 Analytical Modeling | 99  |
| B.4.5 Results             | 102 |
| B.5 Steel-Timber Bridge 5 | 103 |
| B.5.1 Background          | 103 |
| B.5.2 Bridge Description  | 104 |
| B.5.3 Field Testing       | 106 |
| B.5.4 Analytical Modeling | 110 |
| B.5.5 Results             | 113 |
| B.6 Steel-Timber Bridge 6 | 114 |
| B.6.1 Background          | 114 |
| B.6.2 Bridge Description  | 115 |
| B.6.3 Field Testing       | 117 |
| B.6.4 Analytical Modeling | 121 |
| B.6.5 Results             | 124 |
| B.7 Steel-Timber Bridge 7 | 125 |
| B.7.1 Background          | 126 |
| B.7.2 Bridge Description  | 126 |
| B.7.3 Field Testing       | 128 |
| B.7.4 Analytical Modeling | 132 |
| B.7.5 Results             | 135 |
| B.8 Steel-Timber Bridge 8 | 136 |
| B.8.1 Background          | 136 |
| B.8.2 Bridge Description  | 137 |
| B.8.3 Field Testing       | 139 |
| B.8.4 Analytical Modeling | 143 |

| B.8.5 Results                                 | 145 |
|-----------------------------------------------|-----|
| B.9 Steel-Timber Bridge 9                     | 146 |
| B.9.1 Background                              | 146 |
| B.9.2 Bridge Description                      | 147 |
| B.9.3 Field Testing                           | 149 |
| B.9.4 Analytical Modeling                     |     |
| B.9.5 Results                                 | 156 |
| B.10 Steel-Timber Bridge 10                   | 157 |
| B.10.1 Background                             | 157 |
| B.10.2 Bridge Description                     | 158 |
| B.10.3 Field Testing                          | 160 |
| B.10.4 Analytical Modeling                    | 164 |
| B.10.5 Results                                | 167 |
| B.11 Steel-Timber Bridge 11                   |     |
| B.11.1 Background                             |     |
| B.11.2 Bridge Description                     | 169 |
| B.11.3 Field Testing                          | 170 |
| B.11.4 Analytical Modeling                    | 174 |
| B.11.5 Results                                | 176 |
| APPENDIX C FIFLD TESTED TIMBER-TIMBER BRIDGES | 179 |
|                                               | 170 |
| C.1 Timber-Timber Bridge 1                    |     |
| C.1.1 Background                              |     |
| C.1.2 Bridge Description                      |     |
| C.1.3 Field Testing                           |     |
| C.1.4 Analytical Modeling                     |     |
| C.1.5 Results                                 |     |
| C.2 Timber-Timber Bridge 2                    |     |
| C.2.1 Background                              |     |
| C.2.2 Bridge Description                      |     |
| C.2.3 Field Testing                           |     |
| C.2.4 Analytical Modeling                     |     |
| C.2.5 Results                                 |     |
| C.3 Timber-Timber Bridge 3                    |     |
| C.3.1 Background                              |     |
| C.3.2 Bridge Description                      | 201 |
| C.3.3 Field Testing                           | 202 |
| C.3.4 Analytical Modeling                     |     |
| C.3.5 Results                                 | 209 |
| APPENDIX D. FARM IMPLEMENT INVENTORY          | 211 |
| APPENDIX E. BRIDGE INVENTORY                  | 215 |
| APPENDIX F. SURVEY RESPONSES                  | 229 |
| Survey                                        |     |
| Responses                                     |     |

## LIST OF FIGURES

| Figure A-1. Location overview of Steel-Concrete Bridge 1                                 | 3  |
|------------------------------------------------------------------------------------------|----|
| Figure A-2. Steel-Concrete Bridge 1: Elevation view (left) and end view (right)          | 4  |
| Figure A-3. Steel-Concrete Bridge 1: Cross-section A-A (top) and plan (bottom)           | 5  |
| Figure A-4. Farm vehicles used for field testing                                         | 8  |
| Figure A-5. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 1    | 9  |
| Figure A-6. Comparison between static and dynamic strain for Steel-Concrete Bridge 1     | 10 |
| Figure A-7. Finite element model of Steel-Concrete Bridge 1                              | 12 |
| Figure A-8. LLDFs for Steel-Concrete Bridge 1                                            | 14 |
| Figure A-9. Location overview of Steel-Concrete Bridge 2                                 | 15 |
| Figure A-10. Steel-Concrete Bridge 2: Elevation view (left) and end view (right)         | 15 |
| Figure A-11. Steel-Concrete Bridge 2: Cross-section A-A (top) and plan (bottom)          | 17 |
| Figure A-12. Farm vehicles used for field testing                                        | 20 |
| Figure A-13. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 2   | 21 |
| Figure A-14. Comparison between static and dynamic strain for Steel-Concrete Bridge 2    | 22 |
| Figure A-15. Finite element model of Steel-Concrete Bridge 2                             | 24 |
| Figure A-16. LLDFs for Steel-Concrete Bridge 2                                           | 26 |
| Figure A-17. Location overview of Steel-Concrete Bridge 3                                | 27 |
| Figure A-18. Steel-Concrete Bridge 3: Elevation view (left) and end view (right)         | 27 |
| Figure A-19. Steel-Concrete Bridge 3: Cross-section A-A (top) and plan (bottom)          | 29 |
| Figure A-20. Farm vehicles used for field testing                                        | 32 |
| Figure A-21. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 3   | 33 |
| Figure A-22. Comparison between static and dynamic strain for Steel-Concrete Bridge 3    | 34 |
| Figure A-23. Finite element model of Steel-Concrete Bridge 3                             | 36 |
| Figure A-24. LLDFs for Steel-Concrete Bridge 3                                           | 38 |
| Figure A-25. Location overview of Steel-Concrete Bridge 4                                | 39 |
| Figure A-26. Steel-Concrete Bridge 4: Elevation view (left) and end view (right)         | 39 |
| Figure A-27. Steel-Concrete Bridge 4: Cross-section A-A (top) and plan (bottom)          | 41 |
| Figure A-28. Farm vehicles used for field testing                                        | 44 |
| Figure A-29. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 4   | 45 |
| Figure A-30. Finite element model of Steel-Concrete Bridge 4                             | 47 |
| Figure A-31. LLDFs for Steel-Concrete Bridge 4                                           | 49 |
| Figure A-32. Location overview of Steel-Concrete Bridge 5                                | 50 |
| Figure A-33. Steel-Concrete Bridge 5: Elevation view (left) and end view (right)         | 50 |
| Figure A-34. Steel-Concrete Bridge 5: Cross-section A-A (top) and plan (bottom)          | 51 |
| Figure A-35. Farm vehicles used for field testing                                        | 54 |
| Figure A-36. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 5   | 55 |
| Figure A-37. Comparison between static and dynamic strain for Steel-Concrete Bridge 5    | 56 |
| Figure A-38. Finite element model of Steel-Concrete Bridge 5                             | 58 |
| Figure A-39. LLDFs for Steel-Concrete Bridge 5                                           | 60 |
| Figure B-1. Location overview of Steel-Timber Bridge 1                                   | 61 |
| Figure B-2. Steel-Timber Bridge 1: West elevation view (left) and north end view (right) | 62 |
| Figure B-3. Steel-Timber Bridge 1: Cross-section A-A (top) and plan (bottom)             | 63 |
| Figure B-4. Farm vehicles used for field testing                                         | 66 |
| Figure B-5. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 1      | 67 |

| Figure B-6. Comparison between static and dynamic strain for Steel-Timber Bridge 1        | 68  |
|-------------------------------------------------------------------------------------------|-----|
| Figure B-7. Finite element model of Steel-Timber Bridge 1                                 | 69  |
| Figure B-8. LLDFs for Steel-Timber Bridge 1                                               | 71  |
| Figure B-9. Location overview of Steel-Timber Bridge 2                                    | 72  |
| Figure B-10. Steel-Timber Bridge 2: South elevation view (left) and west end view         |     |
| (right)                                                                                   | 73  |
| Figure B-11. Steel-Timber Bridge 2: Cross-section A-A (top) and plan (bottom)             | 73  |
| Figure B-12. Farm vehicles used for field testing                                         | 76  |
| Figure B-13. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 2      | 77  |
| Figure B-14. Comparison between static and dynamic strain for Steel-Timber Bridge 2       | 78  |
| Figure B-15. Finite element model of Steel-Timber Bridge 2                                | 80  |
| Figure B-16. LLDFs for Steel-Timber Bridge 2                                              | 82  |
| Figure B-17. Location overview of Steel-Timber Bridge 3                                   | 83  |
| Figure B-18. Steel-Timber Bridge 3: Elevation view (left) and east end view (right)       | 84  |
| Figure B-19. Steel-Timber Bridge 3: Cross-section A-A (top) and plan (bottom)             | 84  |
| Figure B-20. Farm vehicles used for field testing                                         | 86  |
| Figure B-21. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 3      | 87  |
| Figure B-22. Comparison between static and dynamic strain for Steel-Timber Bridge 3       | 88  |
| Figure B-23. Finite element model of Steel-Timber Bridge 3                                | 90  |
| Figure B-24. LLDFs for Steel-Timber Bridge 3                                              | 92  |
| Figure B-25. Location overview of Steel-Timber Bridge 4                                   | 93  |
| Figure B-26. Bridge 4: Elevation view (left) and east end view (right)                    | 94  |
| Figure B-27. Steel-Timber Bridge 4: Cross-section A-A (top) and plan (bottom)             | 94  |
| Figure B-28. Farm vehicles used for field testing                                         | 97  |
| Figure B-29. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 4      | 98  |
| Figure B-30. Comparison between static and dynamic strain for Steel-Timber Bridge 4       | 99  |
| Figure B-31. Finite element model of Steel-Timber Bridge 4                                | 101 |
| Figure B-32. LLDFs for Steel-Timber Bridge 4                                              | 103 |
| Figure B-33. Location overview of Steel-Timber Bridge 5                                   | 104 |
| Figure B-34. Bridge 5: West elevation view (left) and north end view (right)              | 105 |
| Figure B-35. Steel-Timber Bridge 5: Cross-section A-A (top) and plan (bottom)             | 106 |
| Figure B-36. Farm vehicles used for field testing                                         | 108 |
| Figure B-37. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 5      | 109 |
| Figure B-38. Comparison between static and dynamic strain for Steel-Timber Bridge 5       | 110 |
| Figure B-39. Finite element model of Steel-Timber Bridge 5                                | 112 |
| Figure B-40. LLDFs for Steel-Timber Bridge 5                                              | 114 |
| Figure B-41. Location overview of Steel-Timber Bridge 6                                   | 115 |
| Figure B-42. Steel-Timber Bridge 6: North elevation view (left) and east end view (right) | 116 |
| Figure B-43. Steel-Timber Bridge 6: Cross-section A-A (top) and plan (bottom)             | 116 |
| Figure B-44. Farm vehicles used for field testing                                         | 119 |
| Figure B-45. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 6      | 120 |
| Figure B-46. Comparison between static and dynamic strain for Steel-Timber Bridge 6       | 121 |
| Figure B-47. Finite element model of Steel-Timber Bridge 6                                | 123 |
| Figure B-48. LLDFs for Steel-Timber Bridge 6                                              | 125 |
| Figure B-49. Location overview of Steel-Timber Bridge 7                                   | 126 |

| Figure B-50. Steel-Timber Bridge 7: West elevation view (left) and north end view         |     |
|-------------------------------------------------------------------------------------------|-----|
| (right)                                                                                   | 127 |
| Figure B-51. Steel-Timber Bridge 7: Cross-section A-A (top) and plan (bottom)             | 128 |
| Figure B-52. Farm vehicles used for field testing                                         | 130 |
| Figure B-53. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 7      | 131 |
| Figure B-54. Comparison between static and dynamic strain for Steel-Timber Bridge 7       | 132 |
| Figure B-55. Finite element model of Steel-Timber Bridge 7                                | 134 |
| Figure B-56. LLDFs for Steel-Timber Bridge 7                                              | 136 |
| Figure B-57. Location overview of Steel-Timber Bridge 8                                   | 137 |
| Figure B-58. Steel-Timber Bridge 8: South elevation view (left) and west end view         |     |
| (right)                                                                                   | 138 |
| Figure B-59. Steel-Timber Bridge 8: Cross-section A-A (top) and plan (bottom)             | 139 |
| Figure B-60. Farm vehicles used for field testing                                         | 141 |
| Figure B-61. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 8      | 142 |
| Figure B-62. Finite element model of Steel-Timber Bridge 8                                | 144 |
| Figure B-63. LLDFs for Steel-Timber Bridge 8                                              | 146 |
| Figure B-64. Location overview of Steel-Timber Bridge 9                                   | 147 |
| Figure B-65. Steel-Timber Bridge 9: North elevation view (left) and east end view (right) | 148 |
| Figure B-66. Steel-Timber Bridge 9: Cross-section A-A (top) and plan (bottom)             | 149 |
| Figure B-67. Farm vehicles used for field testing.                                        | 151 |
| Figure B-68. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 9      | 152 |
| Figure B-69. Comparison between static and dynamic strain for Steel-Timber Bridge 9       | 153 |
| Figure B-70. Finite element model of Steel-Timber Bridge 9                                | 155 |
| Figure B-71. LLDFs for Steel-Timber Bridge 9                                              | 157 |
| Figure B-72. Location overview of Steel-Timber Bridge 10                                  | 158 |
| Figure B-73. Steel-Timber Bridge 10: North elevation view (left) and east end view        |     |
| (right)                                                                                   | 159 |
| Figure B-74. Steel-Timber Bridge 10: Cross-section A-A (top) and plan (bottom)            | 160 |
| Figure B-75. Farm vehicles used for field testing                                         | 162 |
| Figure B-76. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 10     | 163 |
| Figure B-77. Comparison between static and dynamic strain for Steel-Timber Bridge 10      | 164 |
| Figure B-78. Finite element model of Steel-Timber Bridge 10                               | 166 |
| Figure B-79. LLDFs for Steel-Timber Bridge 10                                             | 168 |
| Figure B-80. Location overview of Steel-Timber Bridge 11                                  | 169 |
| Figure B-81. Steel-Timber Bridge 11: South elevation view (left) and east end view        |     |
| (right)                                                                                   | 170 |
| Figure B-82. Steel-Timber Bridge 11: Cross-section A-A (top) and plan (bottom)            | 170 |
| Figure B-83. Farm vehicles used for field testing                                         | 172 |
| Figure B-84. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 11     | 173 |
| Figure B-85. Finite element model of Steel-Timber Bridge 11.                              |     |
| Figure B-86 LLDFs for Steel-Timber Bridge 11                                              | 177 |
| Figure C-1 Location overview of Timber-Timber Bridge 1                                    | 179 |
| Figure C-2. Timber-Timber Bridge 1: West elevation view (left) and north end view         |     |
| (right)                                                                                   | 180 |
| Figure C-3. Timber-Timber Bridge 1: Cross-section A-A (top) and plan (bottom)             | 181 |
| Figure C-4. Farm vehicles used for field testing                                          |     |
| 0 ····································                                                    |     |

| 184 |
|-----|
| 185 |
| 187 |
| 189 |
| 190 |
|     |
| 191 |
| 191 |
| 194 |
| 195 |
| 196 |
| 198 |
| 200 |
| 201 |
| 202 |
| 202 |
| 204 |
| 205 |
| 206 |
| 208 |
| 210 |
| 229 |
|     |

## LIST OF TABLES

| Table A-1. Axle weight and total length of each testing vehicle | 7   |
|-----------------------------------------------------------------|-----|
| Table A-2. Model calibration for Steel-Concrete Bridge 1        | 13  |
| Table A-3. Axle weight and total length of each testing vehicle | 19  |
| Table A-4. Model calibration for Steel-Concrete Bridge 2        | 25  |
| Table A-5. Axle weight and total length of each testing vehicle | 31  |
| Table A-6. Model calibration for Steel-Concrete Bridge 3        | 37  |
| Table A-7. Axle weight and total length of each testing vehicle | 43  |
| Table A-8. Model calibration for Steel-Concrete Bridge 4        | 48  |
| Table A-9. Axle weight and total length of each testing vehicle | 53  |
| Table A-10. Model calibration for Steel-Concrete Bridge 5       | 59  |
| Table B-1. Axle weight and total length of each testing vehicle | 65  |
| Table B-2. Model calibration for Steel-Timber Bridge 1          | 70  |
| Table B-3. Axle weight and total length of each testing vehicle | 75  |
| Table B-4. Model calibration for Steel-Timber Bridge 2          | 81  |
| Table B-5. Axle weight and total length of each testing vehicle | 85  |
| Table B-6. Model calibration for Steel-Timber Bridge 3          | 91  |
| Table B-7. Axle weight and total length of each testing vehicle | 96  |
| Table B-8. Model calibration for Steel-Timber Bridge 4          | 102 |
| Table B-9. Axle weight and total length of each testing vehicle | 107 |
| Table B-9. Axle weight and total length of each testing vehicle | 107 |

| Table B-10. Model calibration for Steel-Timber Bridge 5          | 113 |
|------------------------------------------------------------------|-----|
| Table B-11. Axle weight and total length of each testing vehicle | 118 |
| Table B-12. Model calibration for Steel-Timber Bridge 6          | 124 |
| Table B-13. Axle weight and total length of each testing vehicle | 129 |
| Table B-14. Model calibration for Steel-Timber Bridge 7          | 135 |
| Table B-15. Axle weight and total length of each testing vehicle | 140 |
| Table B-16. Model calibration for Steel-Timber Bridge 8          | 145 |
| Table B-17. Axle weight and total length of each testing vehicle | 150 |
| Table B-18. Model calibration for Steel-Timber Bridge 9          | 156 |
| Table B-19. Axle weight and total length of each testing vehicle | 161 |
| Table B-20. Model calibration for Steel-Timber Bridge 10         | 167 |
| Table B-21. Axle weight and total length of each testing vehicle | 171 |
| Table B-22. Model calibration for Steel-Timber Bridge 11         | 176 |
| Table C-1. Axle weight and total length of each testing vehicle  | 182 |
| Table C-2. Model calibration for Timber-Timber Bridge 1          | 188 |
| Table C-3. Axle weight and total length of each testing vehicle  | 193 |
| Table C-4. Model calibration for Timber-Timber Bridge 2          | 199 |
| Table C-5. Axle weight and total length of each testing vehicle  | 203 |
| Table C-6. Model calibration for Timber-Timber Bridge 3          | 209 |
| Table D-1. Farm vehicle inventory                                | 211 |
| Table E-1a. One-way traffic lane steel-concrete bridges          | 215 |
| Table E-1b. Multiple traffic lane steel-concrete bridges         | 216 |
| Table E-1c. Skewed steel-concrete bridges                        | 217 |
| Table E-2a. One-way traffic lane steel-timber bridges            | 218 |
| Table E-2b. Multiple traffic lane steel-timber bridges           | 219 |
| Table E-2c. Skewed steel-timber bridges                          | 220 |
| Table E-3a. One-way traffic lane timber-timber bridges           | 220 |
| Table E-3b. Multiple traffic lane timber-timber bridges          | 222 |
| Table E-3c. Skewed timber-timber bridges                         | 222 |
| Table E-4. 174 Bridges used in Volume II                         | 223 |
| Table F-1. Definition of implements of husbandry                 | 230 |
| Table F-2. Gross weight limits and single-axle weight limits     | 233 |

#### ACKNOWLEDGMENTS

The research team would like to acknowledge the Iowa Highway Research Board, the Iowa Department of Transportation (DOT), and the Federal Highway Administration for sponsoring this research with support from the following Transportation Pooled Fund TPF-5(232) partners:

- Illinois
- Iowa (lead state)
- Kansas
- Minnesota
- Nebraska
- Oklahoma
- Wisconsin
- Wisconsin

The authors would like to express their gratitude to the Iowa DOT and the other pooled fund state partners for their financial support and technical assistance and also thank the USDA Forest Products Laboratory for their support of this project. In addition, the authors would like to acknowledge the support of the Iowa DOT Office of Bridges and Structures staff members, who continually provide great insight, guidance, and motivation for practical and implementable research.

#### THREE-VOLUME EXECUTIVE SUMMARY

The deterioration of bridges is a prevalent issue in the US. A portion of that deterioration comes from the frequent subjection of bridges to oversized loads. Of those oversized loads, implements of husbandry are of particular interest. Although states differ in their definition, an implement of husbandry can generally be thought of as a vehicle used to carry out agricultural activities. These vehicles often carry heavy loads, and little is known on how husbandry implements affect today's bridges.

The behavior of bridges with these vehicles, particularly regarding live load distribution and impact, is not explicitly enveloped within the design, rating, and posting vehicles presented in current American Association of State Highway and Transportation Officials (AASHTO) specifications. Because of the large axle loads and varying axle spacings, the current AASHTO vehicles, such as the HL-93 design truck and the HS20 rating truck, may not accurately represent husbandry implements.

The objectives of this research, presented in a three-volume report series, were to develop guidance for engineers on how implements of husbandry loads are resisted by traditional bridges, with a specific focus on bridges commonly found on the secondary road system; provide recommendations for accurately analyzing bridges for these loading effects; and make suggestions for the rating and posting of these bridges

Volume I focuses on the impacts of husbandry implements on actual bridges by way of field testing as well as analytical finite element models. With these data, the objective was to develop equations and limits for dynamic load allowances and live load distribution factors that apply directly to husbandry vehicles.

Included in the testing were bridges with steel girders with both concrete and timber decks as well as bridges with timber girders and timber decks. Field testing was conducted on 19 of the bridges in this collection. Brief reports for each of the 19 bridges are in Volume III: Appendices.

The data collected from field tests were used to determine a reasonable bound for impact factors for husbandry implements as well as to get a base understanding of how live load moments created by husbandry vehicles are distributed among girders. In addition to the field tests, finite element models were created for the 19 bridges and calibrated with the field test results. Using these models as guidelines, finite element modes were created for 151 bridges included in the inventory (also included in Volume III: Appendices). The finite element models were subjected to the loads of 121 typical husbandry vehicles inventoried (also included in Volume III: Appendices) and modeled using finite element analysis.

Results show that the impact factors currently presented in the AASHTO specifications are too low for husbandry vehicles. Similarly, provisions provided by AASHTO for live load distribution are, in some cases, drastically different from live load distribution factors determined from loading the 151 bridges with the 121 husbandry vehicles. Volume I provides recommendations on upper limits for dynamic load allowances as well as several equations for determining live load distribution specifically for husbandry implements.

The purpose of the work covered in Volume II was to determine whether current AASHTO rating and posting vehicles can be used to accurately represent husbandry implements. Using software generated by the Bridge Engineering Center at Iowa State University's Institute for Transportation, AASHTO vehicles and the same 121 husbandry vehicles inventoried and used in the Volume I work were theoretically driven across 174 bridges (151 of which were also included in the parametric study in Volume I).

With the moments produced by both the AASHTO and husbandry vehicles on these bridges, comparisons were made between moment envelopes for both vehicle types as well as for theoretical operating ratings for both vehicle types. Results showed that the vehicles provided in AASHTO specifications do not accurately represent the effects caused by husbandry vehicles. In addition, on shorter span bridges, husbandry vehicles tend to produce lower operating ratings than the AASHTO vehicles. On longer span bridges, husbandry vehicles seem to lead to higher operating ratings than AASHTO vehicles.

Volume II presents the development of an overarching husbandry vehicle, recommendations on signage and posting for husbandry vehicles, as well as bridge rating examples, for both short and long span bridges, using updated distribution and impact factors as presented in Volume I.

Finally, Volume III is a collection of appendices referenced in Volumes I and II. Appendices A, B, and C are a series of mini reports for the 19 field tested bridges from Volume I. Appendix D includes detailed information of the 121 farm vehicles used for the study. Appendix E is a detailed inventory of the 151 bridges from Volume I and 174 bridges used in Volume II. Appendix F includes the survey sent to the state departments of transportation and responses to questions about their rules and regulations for husbandry implements on bridges.

#### **INTRODUCTION**

In the US, bridges are typically designed and load rated based on the specifications provided by the American Association of State Highway and Transportation Officials (AASHTO). These specifications were developed to ensure the safety of bridges for traditional highway vehicles. As a part of both the design and rating process, live loads in the form of a typical highway truck are distributed across the various structural elements to determine the shear and moments in those elements. Although the process to determine these shear and moments can be quite intensive, the process has been simplified to a degree through the use of the live load distribution factors (LLDFs) and the dynamic load allowance (IM) specified by the AASHTO standards and LRFD specifications (AASHTO 1996, AASHTO 2010).

LLDFs can be broadly defined as the ratio of the maximum live-load effect in a component to the maximum live-load effect in a system when using beam-line model techniques (Barker and Puckett 2013). LLDFs were developed to examine the bridge's capability to resist traditional highway-type vehicles (e.g., trucks, which tend to have relatively consistent widths and other characteristics) (AASHTO 1996, AASHTO 2010). AASHTO defines the dynamic load allowance, IM, as an increase in the applied static force effects to account for the dynamic interaction between the bridge and moving loads.

While the AASHTO specifications are generally thought to be conservative when used to predict the response of bridges to highway-type vehicles, concerns have been raised about their applicability to non-highway vehicles such as husbandry implements, which often have large axle loads and varying axle spacings.

#### **Problem Statement**

As of 2013, there were 607,380 bridges in the US (ASCE 2013), with the majority of these bridges found on secondary roadways and generally thought of as "rural" bridges. Statistics show that 13 percent of the rural bridges are structurally deficient and 10 percent are functionally obsolete (Orr 2012). Combining these statistics indicates that there are a large number of bridges in rural settings that do not meet current design standards, although this does not necessarily mean they are unsafe.

At the same time, changing technology in farming has led to heavier farm vehicles in a variety of configurations. While these vehicles are developed for use on a farm, they commonly travel on the roadway system as well. These vehicles tend to have different wheel spacing, gauge widths, wheel footprints, and dynamic coupling characteristics than traditional highway vehicles, which means they are likely resisted differently than the vehicles addressed by AASHTO specifications (Wood and Wipf 1999, Phares et al. 2005, Seo et al. 2013).

Currently, an engineer who wants to assess a bridge's ability to resist implements of husbandry must make many assumptions and use best judgement. Therefore, there is a need to provide engineers with the tools to accurately assess how highway bridges resist these atypical vehicles.

#### **Research Objective and Scope**

The objectives of this study were to develop guidance for engineers on how implements of husbandry loads are resisted by traditional bridges, with a specific focus on bridges commonly found on the secondary road system; provide recommendations for accurately analyzing bridges for these loading effects; and make suggestions for the rating and posting of these bridges.

#### **Research Methodology**

To achieve the objectives, the distribution of live load and dynamic impact effects for different types of farm vehicles on three general bridge types—steel-concrete, steel-timber, and timber-timber—were investigated by load testing and analytical modeling. The types of vehicles studied included, but were not limited to, grain wagons/grain carts, manure tank wagons, agriculture fertilizer applicators, and tractors.

Once the effects of these vehicles had been determined, a parametric study was carried out to develop live load distribution factor (LLDF) equations that account for the effect of husbandry vehicle loads. Similarly, recommendations for dynamic effects were also developed. Finally, suggestions on the analysis, rating, and posting of bridges for husbandry implements were developed.

#### **Three-Volume Report Organization**

This final report is presented in three volumes and summarizes the results of this project as follows.

Volume I: Live Load Distribution Factors and Dynamic Load Allowances

Volume II: Rating and Posting Recommendations

Volume III: Appendices

#### **Volume III: Appendices Content and Organization**

The appendices in Volume III are referenced in Volumes I and II. Volume III includes the following for this project:

- Appendix A. Field Tested Steel-Concrete Bridges
- Appendix B. Field Tested Steel-Timber Bridges
- Appendix C. Field Tested Timber-Timber Bridges
- Appendix D. Farm Implement Inventory
- Appendix E. Bridge Inventory
- Appendix F. Survey Responses

#### APPENDIX A. FIELD TESTED STEEL-CONCRETE BRIDGES

#### A.1 Steel-Concrete Bridge 1

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a concrete deck (Steel-Concrete Bridge 1) under loading from multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under loading from implements of husbandry.

#### A.1.1 Background

The steel-concrete bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 77560 and will be henceforth be referred to as Steel-Concrete Bridge 1. The bridge is located about 5 miles south of Beaver, on 250th Street over the East Beaver Creek, in Boone County, Iowa. Figure A-1 shows the general location of the bridge.



Map: ©Google 2014

Figure A-1. Location overview of Steel-Concrete Bridge 1

#### A.1.2 Bridge Description

Steel-Concrete Bridge 1 is open to a single lane of traffic and has one span with overall dimensions of 29.9 ft long by 18 ft wide with zero degrees of skew. The deck is comprised of continuous concrete decking with a thickness of 7.5 in. An elevation view and an end view of the bridge are shown in Figure A-2.



Figure A-2. Steel-Concrete Bridge 1: Elevation view (left) and end view (right)

The bridge consists of seven steel interior girders and two concrete exterior girders with spacing between adjacent girders of 2.3 ft for interior girders and 3.0 ft for exterior girders. The I cross-section girders are approximately 14.0 in. by 5.25 in. The rectangular concrete girders are approximately 18 in. by 9 in. Figure A-3 shows a typical cross-section and plan view of the bridge.



Figure A-3. Steel-Concrete Bridge 1: Cross-section A-A (top) and plan (bottom)

#### A.1.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, the field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the concrete deck of Steel-Concrete Bridge 1 is in fair condition with some spalling. The steel girders are in fair condition and show some signs of corrosion. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom and top of the girders at mid-span as shown in Figure A-3. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table A-1. As shown in Figure A-4, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

| -                                     | Weight (lbs)  |              |                |                                 | Total   |        |                 |
|---------------------------------------|---------------|--------------|----------------|---------------------------------|---------|--------|-----------------|
| Farm Vehicles                         | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon                  | Trailer | Total  | Length (ft-in.) |
| Tractor Honey<br>Wagon (one<br>tank)  | 11,800        | 15,900       | -              | 48,800                          | -       | 76,500 | 40'-8"          |
| Tractor Honey<br>Wagon<br>(two tanks) | 10,580        | 22,800       | -              | 14,300 (front)<br>18,300 (rear) | -       | 68,900 | 63'-7"          |
| Terragator                            | 11,060        | 32,400       | -              | -                               | -       | 43,460 | 25'-7"          |
| Tractor Grain<br>Wagon                | 18,840        | 18,660       | 15,660         | -                               | -       | 53,160 | 35'-2"          |
| Semi-Truck                            | 10,760        | 33,856       | -              | -                               | 33,084  | 77,700 | 52'-2"          |

 Table A-1. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon - two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure A-4. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from north to south. In general, the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing, showing the strain experienced by one of the girders under all test vehicles, is shown in Figure A-5. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure A-5. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 1

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure A-5. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure A-6.



Figure A-6. Comparison between static and dynamic strain for Steel-Concrete Bridge 1

It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.

#### A.1.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Concrete Bridge 1. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

#### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 3200 ksi and 29000 ksi was used for all concrete and steel components in the model, respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure A-7 shows a representative model of the bridge.



Figure A-7. Finite element model of Steel-Concrete Bridge 1

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table A-2 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.

|                                           |                                 |            | Calibrated             |
|-------------------------------------------|---------------------------------|------------|------------------------|
| <b>Calibration Parameters</b>             | <b>Bridge Components</b>        | Plan Value | Value                  |
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girder                 | 17,760     | 14,160                 |
|                                           | Intermediate Girder             | 1,296      | 1,128                  |
|                                           | Interior Girder                 | 1,320      | 1,128                  |
| Young's Modulus (ksi)                     | Deck                            | 3,191      | 2,176                  |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Exterior Abutment 0             |            | 9.73 x 10 <sup>5</sup> |
|                                           | Interior Abutment               | 0          | 0.487                  |
| Statistical Decults                       | Percent Error                   | 3          | .9%                    |
| Stausucal Results                         | <b>Correlation Coefficients</b> | C          | ).98                   |

#### Table A-2. Model calibration for Steel-Concrete Bridge 1

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles that covered a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical control limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

#### A.1.5 Results

The envelopes of LLDFs for Bridge 1 are presented in Figure A-8 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure A-8. LLDFs for Steel-Concrete Bridge 1

It appears that the analytical LLDF envelopes for the interior girders are smaller than those from the AASHTO LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G9, which has an LLDF of 0.30, while that of the interior girders was found in G2, which has an LLDF of 0.22. The statistical limits for the interior girder group also show smaller values than the AASHTO LRFD specifications. The field LLDF envelope for this bridge has similar values to that of the semi-truck for most of the girders, indicating that farm vehicles result in similar values of LLDFs compared to those from the conventional highway vehicle.

#### A.2 Steel-Concrete Bridge 2

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a concrete deck (Steel-Concrete Bridge 2) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

#### A.2.1 Background

The steel-concrete bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 76891 and will be henceforth be referred to as Steel-Concrete Bridge 2. The bridge is located about 4 miles northeast of Madrid, on 290th Avenue over Big Creek, in Boone County, Iowa. Figure A-9 shows the general location of the bridge.



Map: ©Google 2014

Figure A-9. Location overview of Steel-Concrete Bridge 2

### A.2.2 Bridge Description

Steel-Concrete Bridge 2 is open to two-lane traffic and has one span with overall dimensions of 39.7 ft long by 26.9 ft wide with zero degrees of skew. The deck is comprised of continuous concrete decking with a thickness of 7.5 in. An elevation view and an end view of the bridge are shown in Figure A-10.



Figure A-10. Steel-Concrete Bridge 2: Elevation view (left) and end view (right)

The bridge consists of 10 steel interior girders and 2 concrete exterior girders with spacing between adjacent girders of 2.3 ft for interior girders and 3.3 ft for exterior girders. The I cross-section steel girders are approximately 20 in. by 6 in. and the concrete I girders are

approximately 32 in. by 10 in. Figure A-11 shows a typical cross-section and plan view of the bridge.



Figure A-11. Steel-Concrete Bridge 2: Cross-section A-A (top) and plan (bottom)

#### A.2.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the concrete deck of Steel-Concrete Bridge 2 is in satisfactory condition. The steel girders are in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom and the top of the girders one foot off mid-span and at the abutment as shown in Figure A-11. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table A-3. As shown in Figure A-12, the configurations of the farm vehicles were notably different from that of the conventional highway truck.
|                                       | Weight (lbs)  |              |                |                                 |         | Total  |                    |
|---------------------------------------|---------------|--------------|----------------|---------------------------------|---------|--------|--------------------|
| Farm Vehicles                         | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon                  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey<br>Wagon (one<br>tank)  | 11,800        | 15,900       | -              | 48,800                          | -       | 76,500 | 40'-8"             |
| Tractor Honey<br>Wagon<br>(two tanks) | 10,580        | 22,800       | -              | 14,300 (front)<br>18,300 (rear) | -       | 68,900 | 63'-7"             |
| Terragator                            | 11,060        | 32,400       | -              | -                               | -       | 43,460 | 25'-7"             |
| Tractor Grain<br>Wagon                | 18,840        | 18,660       | 15,660         | -                               | -       | 53,160 | 35'-2"             |
| Semi-Truck                            | 10,760        | 33,856       | -              | -                               | 33,084  | 77,700 | 52'-2"             |

 Table A-3. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure A-12. Farm vehicles used for field testing

During testing the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure A-13. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure A-13. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 2

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure A-13. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure A-14. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



Figure A-14. Comparison between static and dynamic strain for Steel-Concrete Bridge 2

## A.2.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Concrete Bridge 2. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

## Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 3200 ksi and 29000 ksi was used for all

concrete and steel components in the model, respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure A-15 shows a representative model of the bridge.



Figure A-15. Finite element model of Steel-Concrete Bridge 2

### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table A-4 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.

| Calibration Parameters                    | Bridge Components               | Plan Value | Calibrated<br>Value |
|-------------------------------------------|---------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girder                 | 160,800    | 194,400             |
|                                           | Intermediate Girder             | 2,232      | 1,752               |
|                                           | Interior Girder                 | 3,600      | 4,080               |
| Young's Modulus (ksi)                     | Deck                            | 3,191      | 3,916               |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Exterior Abutment               | 0          | 97,354              |
|                                           | Interior Abutment               | 0          | 37,172              |
| Statistical Deculta                       | Percent Error                   | 2          | .8%                 |
| Stausucal Results                         | <b>Correlation Coefficients</b> | ).99       |                     |

### Table A-4. Model calibration for Steel-Concrete Bridge 2

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical control limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## A.2.5 Results

The envelopes of LLDFs for Steel-Concrete Bridge 2 are presented in Figure A-16 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure A-16. LLDFs for Steel-Concrete Bridge 2

It appears that the analytical LLDF envelope for the interior girders are much smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G12, which has an LLDF of 0.50, while that of the interior girders was found in G6, which has an LLDF of 0.13. The statistical limits for the interior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope has similar values to that of the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in similar values of LLDFs compared to those from the conventional highway vehicle.

## A.3 Steel-Concrete Bridge 3

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a concrete deck (Steel-Concrete Bridge 3) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

## A.3.1 Background

The steel-concrete bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 78060 and will be henceforth be referred to as Steel-Concrete Bridge 3. The

bridge is located about 2 miles north of Beaver, on C Avenue, in Boone County, Iowa. Figure A-17 shows the general location of the bridge.



Figure A-17. Location overview of Steel-Concrete Bridge 3

# A.3.2 Bridge Description

Steel-Concrete Bridge 3 is open to a single lane of traffic and has one span with overall dimensions of 36.1 ft long by 18 ft wide with zero degrees of skew. The deck is comprised of continuous concrete decking with a thickness of 7.5 in. An elevation view and an end view of the bridge are shown in Figure A-18.



Figure A-18. Steel-Concrete Bridge 3: Elevation view (left) and end view (right)

The bridge consists of seven interior steel girders and two exterior concrete girders with a spacing between adjacent girders of 2.3 ft. The I cross-section steel girders are approximately 18.0 in. by 6.0 in. The concrete girders are approximately 17.0 in. by 12.5 in. Figure A-19 shows a typical cross-section and plan view of the bridge.



Figure A-19. Steel-Concrete Bridge 3: Cross-section A-A (top) and plan (bottom)

### A.3.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the concrete deck of Steel-Concrete Bridge 3 is in poor condition with cracking and leaching. The steel girders are in poor condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom and top of the girders at mid-span as shown in Figure A-19. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The farm vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table A-5. As shown in Figure A-20, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                       | Weight (lbs)  |              |                |                                 |         | Total  |                    |
|---------------------------------------|---------------|--------------|----------------|---------------------------------|---------|--------|--------------------|
| Farm Vehicles                         | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon                  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey<br>Wagon (one<br>tank)  | 11,800        | 15,900       | -              | 48,800                          | -       | 76,500 | 40'-8"             |
| Tractor Honey<br>Wagon<br>(two tanks) | 10,580        | 22,800       | -              | 14,300 (front)<br>18,300 (rear) | -       | 68,900 | 63'-7"             |
| Terragator                            | 11,060        | 32,400       | -              | -                               | -       | 43,460 | 25'-7"             |
| Tractor Grain<br>Wagon                | 18,840        | 18,660       | 15,660         | -                               | -       | 53,160 | 35'-2"             |
| Semi-Truck                            | 10,760        | 33,856       | -              | -                               | 33,084  | 77,700 | 52'-2"             |

 Table A-5. Axle weight and total length of each testing vehicle



Honey Wagon - one tank

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure A-20. Farm vehicles used for field testing

During testing the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure A-21. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure A-21. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 3

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure A-21. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure A-22. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



Figure A-22. Comparison between static and dynamic strain for Steel-Concrete Bridge 3

## A.3.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Concrete Bridge 3. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

## Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 3200 ksi and 29000 ksi was used for all concrete and steel components in the model, respectively. The FEA model consisted of beam

elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure A-23 shows a representative model of the bridge.



Figure A-23. Finite element model of Steel-Concrete Bridge 3

### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table A-6 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.

| Calibration Parameters                    | Bridge Components               | Plan Value | Calibrated<br>Value    |
|-------------------------------------------|---------------------------------|------------|------------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girder                 | 33,600     | 40,800                 |
|                                           | Intermediate Girder             | 1,704      | 2,112                  |
|                                           | Interior Girder                 | 1,704      | 1,560                  |
| Young's Modulus (ksi)                     | Deck                            | 3,191      | 4,061                  |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Exterior Abutment               | 0          | 1.86 x 10 <sup>6</sup> |
|                                           | Interior Abutment               | 0          | 1.86 x 10 <sup>6</sup> |
|                                           | Percent Error                   | 4          | .4%                    |
| Statistical Results                       | <b>Correlation Coefficients</b> | (          | ).98                   |

### Table A-6. Model calibration for Steel-Concrete Bridge 3

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical control limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## A.3.5 Results

The envelopes of LLDFs for Steel-Concrete Bridge 3 are presented in Figure A-24 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure A-24. LLDFs for Steel-Concrete Bridge 3

It appears that the analytical LLDF envelope for the interior girders are smaller than those from the AASHTO LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G9, which has an LLDF of 0.40, while that of the interior girders was found in G5, which has an LLDF of 0.18. The statistical limits for interior girders also show smaller values than the AASHTO specifications. The field LLDF envelope has similar values to that of the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in similar values of LLDFs compared to those from the conventional highway vehicle.

### A.4 Steel-Concrete Bridge 4

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a concrete deck (Steel-Concrete Bridge 4) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

## A.4.1 Background

The steel-concrete bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 78100 and will be henceforth be referred to as Steel-Concrete Bridge 4. The bridge is located about 3 miles northeast of Beaver, on D Avenue over Middle Beaver Creek, in Boone County, Iowa. Figure A-25 shows the general location of the bridge.



Figure A-25. Location overview of Steel-Concrete Bridge 4

## A.4.2 Bridge Description

Steel-Concrete Bridge 4 is open to one lane of traffic and has one span with overall dimensions of 37 ft long by 19.4 ft wide with zero degrees of skew. The deck is comprised of continuous concrete decking with a thickness of 7.5 in. An elevation view and an end view of the bridge are shown in Figure A-26.



Figure A-26. Steel-Concrete Bridge 4: Elevation view (left) and end view (right)

The bridge consists of five steel girders with spacing between adjacent girders of 4.9 ft. The I cross-section girders are approximately 23.5 in. by 7 in. Figure A-27 shows a typical cross-section and plan view of the bridge.



Figure A-27. Steel-Concrete Bridge 4: Cross-section A-A (top) and plan (bottom)

### A.4.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the concrete deck of Steel-Concrete Bridge 4 is in poor condition with scaling, delamination, cracking, and spalling. The steel girders are in fair condition and show some signs of rust. These inspection-based observations were corroborated by the Iowa State University field testing team.

### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom and top of the girders at mid-span and at the abutment as shown in Figure A-27. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table A-7. As shown in Figure A-28, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                       | Weight (lbs)  |              |                |                                 |         | Total  |                    |
|---------------------------------------|---------------|--------------|----------------|---------------------------------|---------|--------|--------------------|
| Farm Vehicles                         | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon                  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey<br>Wagon (one<br>tank)  | 11,800        | 15,900       | -              | 48,800                          | -       | 76,500 | 40'-8"             |
| Tractor Honey<br>Wagon<br>(two tanks) | 10,580        | 22,800       | -              | 14,300 (front)<br>18,300 (rear) | -       | 68,900 | 63'-7"             |
| Terragator                            | 11,060        | 32,400       | -              | -                               | -       | 43,460 | 25'-7"             |
| Tractor Grain<br>Wagon                | 18,840        | 18,660       | 15,660         | -                               | -       | 53,160 | 35'-2"             |
| Semi-Truck                            | 10,760        | 33,856       | -              | -                               | 33,084  | 77,700 | 52'-2"             |

 Table A-7. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure A-28. Farm vehicles used for field testing

During testing the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure A-29. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure A-29. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 4

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure A-29. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

## A.4.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Concrete Bridge 4. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 3200 ksi and 29000 ksi was used for all concrete and steel components in the model, respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure A-30 shows a representative model of the bridge.



Figure A-30. Finite element model of Steel-Concrete Bridge 4

### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table A-8 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.

|                                           |                                 |            | Calibrated             |  |
|-------------------------------------------|---------------------------------|------------|------------------------|--|
| Calibration Parameters                    | Bridge Components               | Plan Value | Value                  |  |
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girder                 | 18,720     | 23,280                 |  |
|                                           | Intermediate Girder             | 4,800      | 6,000                  |  |
|                                           | Interior Girder                 | 4,800      | 6,000                  |  |
| Young's Modulus (ksi)                     | Deck                            | 3,191      | 2,466                  |  |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Exterior Abutment               | 0          | 2.39 x 10 <sup>6</sup> |  |
|                                           | Interior Abutment               | 0          | 2.39 x 10 <sup>6</sup> |  |
| Statistical Decults                       | Percent Error                   | 2          | .3%                    |  |
| Staustical Results                        | <b>Correlation Coefficients</b> | ).99       |                        |  |

### Table A-8. Model calibration for Steel-Concrete Bridge 4

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical control limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## A.4.5 Results

The envelopes of LLDFs for Steel-Concrete Bridge 4 are presented in Figure A-31 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure A-31. LLDFs for Steel-Concrete Bridge 4

It appears that the analytical LLDF envelope for the interior girders are smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G5, which has an LLDF of 0.54, while that of the interior girders was found in G4, which has an LLDF of 0.24. The statistical limits for interior girders also show smaller values than the AASHTO specifications. The field LLDF envelope has similar values to that of the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in similar values of LLDFs compared to those from the conventional highway vehicle.

## A.5 Steel-Concrete Bridge 5

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a concrete deck (Steel-Concrete Bridge 5) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

## A.5.1 Background

The steel-concrete bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 162060 and will be henceforth be referred to as Steel-Concrete Bridge 5. The bridge is located about 3 miles east of Grand Junction, on County Road P-46 over West Beaver Creek, in Greene County, Iowa. Figure A-32 shows the general location of the bridge.



Figure A-32. Location overview of Steel-Concrete Bridge 5

# A.5.2 Bridge Description

Steel-Concrete Bridge 5 is open to two-lane traffic and has one span with overall dimensions of 42 ft long by 24.3 ft wide with zero degrees of skew. The deck is comprised of continuous concrete decking with a thickness of 7.5 in. An elevation view and an end view of the bridge are shown in Figure A-33.



Figure A-33. Steel-Concrete Bridge 5: Elevation view (left) and end view (right)

The bridge consists of nine steel girders with spacing between adjacent girders of 3.3 ft for the interior girders and 3.0 ft for the exterior girders. The I cross-section girders are approximately 24 in. by 7 in. Figure A-34 shows a typical cross-section and plan view of the bridge.

Facing: South



Figure A-34. Steel-Concrete Bridge 5: Cross-section A-A (top) and plan (bottom)

### A.5.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the concrete deck of Steel-Concrete Bridge 5 is in fair condition with numerous pits and popouts, and the fascia is spalled and crumbling. The steel girders are in satisfactory condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom and top of the girders at mid-span and at the north diaphragm as shown in Figure A-35. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table A-9. As shown in Figure A-35, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                       | Weight (lbs)  |              |                |                                 |         | Total  |                    |
|---------------------------------------|---------------|--------------|----------------|---------------------------------|---------|--------|--------------------|
| Farm Vehicles                         | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon                  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey<br>Wagon (one<br>tank)  | 11,800        | 15,900       | -              | 48,800                          | -       | 76,500 | 40'-8"             |
| Tractor Honey<br>Wagon<br>(two tanks) | 10,580        | 22,800       | -              | 14,300 (front)<br>18,300 (rear) | -       | 68,900 | 63'-7"             |
| Terragator                            | 11,060        | 32,400       | -              | -                               | -       | 43,460 | 25'-7"             |
| Tractor Grain<br>Wagon                | 18,840        | 18,660       | 15,660         | -                               | -       | 53,160 | 35'-2"             |
| Semi-Truck                            | 10,760        | 33,856       | -              | -                               | 33,084  | 77,700 | 52'-2"             |

 Table A-9. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure A-35. Farm vehicles used for field testing
During testing, the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure A-36. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure A-36. Strain plot of a girder for all test vehicles for Steel-Concrete Bridge 5

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure A-36. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure A-37. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



Figure A-37. Comparison between static and dynamic strain for Steel-Concrete Bridge 5

# A.5.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Concrete Bridge 5. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite

element software WinGEN. A modulus of elasticity of 3200 ksi and 29000 ksi was used for all concrete and steel components in the model, respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure A-38 shows a representative model of the bridge.



Figure A-38. Finite element model of Steel-Concrete Bridge 5

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table A-10 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.

|                                           |                                 | Calibrated |       |  |  |
|-------------------------------------------|---------------------------------|------------|-------|--|--|
| <b>Calibration Parameters</b>             | <b>Bridge Components</b>        | Value      |       |  |  |
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girder                 | 5,280      | 6,480 |  |  |
|                                           | Intermediate Girder             | 4,560      | 5,760 |  |  |
|                                           | Interior Girder 4,560           |            | 5,760 |  |  |
| Young's Modulus (ksi)                     | Deck 3,191                      |            | 4,061 |  |  |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Exterior Abutment               | 0          | 2,478 |  |  |
|                                           | Interior Abutment               | 0          | 2,478 |  |  |
| Statistical Deculta                       | Percent Error                   | 7          | .9%   |  |  |
| Staustical Results                        | <b>Correlation Coefficients</b> | 0          | 0.97  |  |  |

#### Table A-10. Model calibration for Steel-Concrete Bridge 5

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical control limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

### A.5.5 Results

The envelopes of LLDFs for Steel-Concrete Bridge 5 are presented in Figure A-39 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure A-39. LLDFs for Steel-Concrete Bridge 5

It appears that the analytical LLDF envelope for all the girders is much smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G1, which has an LLDF of 0.17, while that of the interior girders was found in G2, which has an LLDF of 0.23. The statistical limits for either the interior or exterior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope has similar values to that of the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in similar values of LLDFs compared to those from the conventional highway vehicle.

# APPENDIX B. FIELD TESTED STEEL-TIMBER BRIDGES

## **B.1 Steel-Timber Bridge 1**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 1) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

#### B.1.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 126231 and will be henceforth be referred to as Steel-Timber Bridge 1. The bridge is located about 12 miles west of Manning, on 360th Street, in Crawford County, Iowa. Figure B-1 shows the general location of the bridge.



Figure B-1. Location overview of Steel-Timber Bridge 1

### B.1.2 Bridge Description

Steel-Timber Bridge 1 is open to two-lane traffic and has one span with overall dimensions of 31 ft long by 24.7 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-2.



Figure B-2. Steel-Timber Bridge 1: West elevation view (left) and north end view (right)

The bridge consists of 10 timber girders with spacing between adjacent girders of 2.6 ft. The I cross-section girders are approximately 15.0 in. by 5.5 in. Figure B-3 shows a typical cross-section and plan view of the bridge.



Figure B-3. Steel-Timber Bridge 1: Cross-section A-A (top) and plan (bottom)

#### B.1.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to of the most recent field inspection report, the timber deck of Steel-Timber Bridge 1 is in very good condition. The steel girders are in good condition and show some signs of rust. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-3. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-1. As shown in Figure B-4, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | -              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

 Table B-1. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-4. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-5. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-5. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 1

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-5. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-6. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



# Figure B-6. Comparison between static and dynamic strain for Steel-Timber Bridge 1

### B.1.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 1. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

#### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model, respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-7 shows a representative model of the bridge.



Figure B-7. Finite element model of Steel-Timber Bridge 1

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-2 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.

| <b>Calibration Parameters</b>             | Bridge Components               | Plan Value | Calibrated<br>Value |
|-------------------------------------------|---------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                     | 377        | 375                 |
| Modulus of Elasticity, E (Ksi)            | Deck                            | 1600       | 1551                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections (springs)   | 0          | 82540               |
| Statistical Desults                       | Percent Error                   |            | .6%                 |
| Statistical Results                       | <b>Correlation Coefficients</b> | 0          | .94                 |

#### Table B-2. Model calibration for Steel-Timber Bridge 1

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical control limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

### B.1.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 1 are presented in Figure B-8 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-8. LLDFs for Steel-Timber Bridge 1

It appears that the analytical LLDF envelope for all the girders is much smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G10, which has an LLDF of 0.24, while that of the interior girders was found in G5, which has an LLDF of 0.24. The statistical limits for either the interior or exterior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in higher values of LLDFs compared to those from the conventional highway vehicle.

### **B.2 Steel-Timber Bridge 2**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 2) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

### B.2.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 126252 and will be henceforth be referred to as Steel-Timber Bridge 2. The bridge is

located about 12 miles west of Manning, on 390th Street, in Crawford County, Iowa. Figure B-9 shows the general location of the bridge.



Figure B-9. Location overview of Steel-Timber Bridge 2

# B.2.2 Bridge Description

Steel-Timber Bridge 2 is open to two-lane traffic and has one span with overall dimensions of 33.5 ft long by 24.5 ft wide with 30 degrees of skew. The deck is comprised of continuous timber decking with a thickness of 3 in. An elevation view and an end view of the bridge are shown in Figure B-10. The bridge consists of nine steel girders with spacing between adjacent girders of 2.8 ft. The I cross-section girders are approximately 20.0 in. by 7.0 in. Figure B-11 shows a typical cross-section and plan view of the bridge.



Figure B-10. Steel-Timber Bridge 2: South elevation view (left) and west end view (right)



Figure B-11. Steel-Timber Bridge 2: Cross-section A-A (top) and plan (bottom)

#### **B.2.3** Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 2 timber deck is in very good condition with no problems noted. The steel girders are also in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-11. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-3. As shown in Figure B-12, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | -              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

 Table B-3. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-12. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from south to north. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured Later, two sets of dynamic load testing was completed with the vehicles traveling at approximately 10 and 25 mph (maximum safe speed at the site) respectively.

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-13. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-13. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 2

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-13. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-14. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



Figure B-14. Comparison between static and dynamic strain for Steel-Timber Bridge 2

# B.2.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Bridge 2. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-15 shows a representative model of the bridge.

# Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-4 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.



Figure B-15. Finite element model of Steel-Timber Bridge 2

| <b>Calibration Parameters</b>             | Bridge Components                | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                      | 1250       | 1165                |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1943                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 22980               |
| Statistical Desults                       | Percent Error                    |            | 5.1%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .89                 |

#### Table B-4. Model calibration for Steel-Timber Bridge 2

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

### B.2.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 2 are presented in Figure B-16 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-16. LLDFs for Steel-Timber Bridge 2

It appears that the analytical LLDF envelope for most of the girders is larger than those based on the AASHTO values. For girders G2, G4, G6, and G8, the analytical values are very close to AASHTO Standard and AASHTO LRFD specifications. The variability of LLDFs can be attributed to the skewness of the bridge. When a farm vehicle with an axle width of 10 ft is made to run across the bridge, which is 24.5 ft wide and has a 30-degree skew angle, there is a chance that one wheel is on the bridge and other is completely off the bridge, which causes unexpected moments on the girders and results in different LLDFs. The peak value of the analytical exterior girder LLDFs was observed in G1, which has an LLDF of 0.57, while that of the interior girders was found in G3, which has an LLDF of 0.48. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in higher values of LLDFs compared to the values from the conventional highway vehicle. The statistical limits for either the interior or exterior girder group show smaller values than the AASHTO specifications.

#### **B.3 Steel-Timber Bridge 3**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 3) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

#### B.3.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 127121 and will be henceforth be referred to as Steel-Timber Bridge 3. The bridge is located about 25 miles east of Loess Hills State Forest, on O'Banion Road, in Dunlap near Crawford County, Iowa. Figure B-17 shows the general location of the bridge.



Figure B-17. Location overview of Steel-Timber Bridge 3

# B.3.2 Bridge Description

Steel-Timber Bridge 3 is open to two-lane traffic and has three spans with overall dimensions of 102 ft long by 24 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-18. The bridge consists of seven steel girders with spacing between adjacent girders of 3.5 ft. The I cross-section girders are approximately 24.0 in. by 9.0 in. Figure B-19 shows a typical cross-section and plan view of the bridge.



Figure B-18. Steel-Timber Bridge 3: Elevation view (left) and east end view (right)



Figure B-19. Steel-Timber Bridge 3: Cross-section A-A (top) and plan (bottom)

### B.3.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 3 timber deck is in good condition with some minor problems. The steel girders are also in good condition and show some signs of rust on them. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span of Span 2 as shown in Figure B-19. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-5. As shown in Figure B-20, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | _              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | _              | -              | 33,084  | 77,700 | 52'-1"             |

#### Table B-5. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator





Semi Truck

Figure B-20. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from west to east. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. The dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-21. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-21. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 3

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-21. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-22. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



### Figure B-22. Comparison between static and dynamic strain for Steel-Timber Bridge 3

### B.3.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 3. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

#### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-23 shows a representative model of the bridge.

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-6 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure B-23. Finite element model of Steel-Timber Bridge 3
| <b>Calibration Parameters</b>             | <b>Bridge</b> Components         | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                      | 2080       | 1620                |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 618666              |
| Statistical Pagulta                       | Percent Error                    | 10         | .41%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .90                 |

#### Table B-6. Model calibration for Steel-Timber Bridge 3

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## B.3.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 3 are presented in Figure B-24 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-24. LLDFs for Steel-Timber Bridge 3

It appears that the analytical LLDF envelope for all the interior girders are smaller than those from the AASHTO standard and LRFD specifications. In the case of exterior girders, the analytical LLDFs merely exceed the AASHTO values. The peak value of the analytical exterior girder LLDFs was observed in G7, which has an LLDF of 0.49, while that of the interior girders was found in G4, which has an LLDF of 0.44. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders. The statistical limits for either the interior or exterior girder group show smaller values than the AASHTO specifications.

#### **B.4 Steel-Timber Bridge 4**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 4) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

#### B.4.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 128051 and will be henceforth be referred to as Steel-Timber Bridge 4. The bridge is located at intersection of O Avenue and 220th Street, in Arion, Crawford County, Iowa. Figure B-25 shows the general location of the bridge.



Map: ©Google 2014

Figure B-25. Location overview of Steel-Timber Bridge 4

## B.4.2 Bridge Description

Steel-Timber Bridge 4 is open to two-lane traffic and has two spans with overall dimensions of 75.7 ft long by 23.7 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-26. The bridge consists of eight steel girders with spacing between adjacent girders of 3.2 ft. The I cross-section girders are approximately 24.0 in. by 9.0 in. Figure B-27 shows a typical cross-section and plan view of the bridge.



Figure B-26. Bridge 4: Elevation view (left) and east end view (right)



Figure B-27. Steel-Timber Bridge 4: Cross-section A-A (top) and plan (bottom)

## B.4.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical

models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 4 timber deck is in good condition with some minor problems. The steel girders are also in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span of Span 2 as shown in Figure B-27. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-7. As shown in Figure B-28, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | -              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

 Table B-7. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator





Semi Truck

Figure B-28. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from east to west. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. The dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-29. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-29. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 4

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-29. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-30. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



# Figure B-30. Comparison between static and dynamic strain for Steel-Timber Bridge 4

# B.4.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 4. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

## Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-31 shows a representative model of the bridge.

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-8 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure B-31. Finite element model of Steel-Timber Bridge 4

| <b>Calibration Parameters</b>             | Bridge Components                  | Plan Value | Calibrated<br>Value |
|-------------------------------------------|------------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                        | 2360       | 2300                |
| Modulus of Elasticity, E (Ksi)            | Deck                               | 1600       | 1494                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) 0 |            | 155772              |
| Statistical Desults                       | Percent Error                      | 10         | .41%                |
| Statistical Results                       | <b>Correlation Coefficients</b>    | 0          | .90                 |

#### Table B-8. Model calibration for Steel-Timber Bridge 4

Once model calibration was completed, the analytical was model loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## B.4.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 4 are presented in Figure B-32 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-32. LLDFs for Steel-Timber Bridge 4

It appears that the analytical LLDF envelope for most of the interior and exterior girders are larger than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G1, which has an LLDF of 0.45, while that of the interior girders was found in G4, which has an LLDF of 0.49. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders. The statistical limits for either the interior or exterior girder group show smaller values than the AASHTO specifications.

## **B.5 Steel-Timber Bridge 5**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 5) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

## B.5.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 128211 and will be henceforth be referred to as Steel-Timber Bridge 5. The bridge is

located at intersection of N Avenue and 130th Street, in Arion, Crawford County, Iowa. Figure B-33 shows the general location of the bridge.



Figure B-33. Location overview of Steel-Timber Bridge 5

# B.5.2 Bridge Description

Bridge 5 is open to two-lane traffic and has one span with overall dimensions of 38.1 ft long by 22.0 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-34. The bridge consists of nine steel girders with spacing between adjacent girders of 2.7 ft. The I cross-section girders are approximately 16.1 in. by 8.8 in. Figure B-35 shows a typical cross-section and plan view of the bridge.



Figure B-34. Bridge 5: West elevation view (left) and north end view (right)



Figure B-35. Steel-Timber Bridge 5: Cross-section A-A (top) and plan (bottom)

#### **B.5.3** Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 5 timber deck is in good condition with some minor problems. The steel girders are also in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-35. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The farm vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table 1. As shown in Figure B-36, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | _              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

#### Table B-9. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-36. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from east to west. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. The dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-37. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-37. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 5

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-37. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-38. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



## Figure B-38. Comparison between static and dynamic strain for Steel-Timber Bridge 5

#### B.5.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 5. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

#### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-39 shows a representative model of the bridge.

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-10 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure B-39. Finite element model of Steel-Timber Bridge 5

| <b>Calibration Parameters</b>             | Bridge Components                | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                      | 490        | 480                 |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 10001               |
| Statistical Desults                       | Percent Error                    | 7.         | .2%                 |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .96                 |

#### Table B-10. Model calibration for Steel-Timber Bridge 5

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## B.5.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 5 are presented in Figure B-40 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-40. LLDFs for Steel-Timber Bridge 5

It appears that the analytical LLDF envelope for all the interior and exterior girders are smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G9, which has an LLDF of 0.25, while that of the interior girders was found in G4, which has an LLDF of 0.22. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders. The statistical limits for either the interior or exterior girder group show smaller values than the AASHTO specifications.

## **B.6 Steel-Timber Bridge 6**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 6) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

## B.6.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 128370 and will be henceforth be referred to as Steel-Timber Bridge 6. The bridge is

located on Q Avenue in between 120th and 130th Street, in Arion, Crawford County, Iowa. Figure B-41 shows the general location of the bridge.



Figure B-41. Location overview of Steel-Timber Bridge 6

# B.6.2 Bridge Description

Steel-Timber Bridge 6 is open to two-lane traffic and has two spans with overall dimensions of 66.0 ft long by 21.0 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-42. The bridge consists of seven steel girders with spacing between adjacent girders of 3.2 ft. The I cross-section girders are approximately 27.0 in. by 10.0 in. Figure B-43 shows a typical cross-section and plan view of the bridge.



Figure B-42. Steel-Timber Bridge 6: North elevation view (left) and east end view (right)



Figure B-43. Steel-Timber Bridge 6: Cross-section A-A (top) and plan (bottom)

#### B.6.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 6 timber deck is in good condition with some minor problems. The steel girders are also in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span of Span 2 as shown in Figure B-43. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

## Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-11. As shown in Figure B-44, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | -              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

 Table B-11. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-44. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from east to west. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. The dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-45. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-45. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 6

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-45. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-46. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



## Figure B-46. Comparison between static and dynamic strain for Steel-Timber Bridge 6

## B.6.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 6. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

## Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-47 shows a representative model of the bridge.

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-12 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure B-47. Finite element model of Steel-Timber Bridge 6

| <b>Calibration Parameters</b>             | Bridge Components                | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                      | 3245       | 2550                |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1500                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 78595               |
| Statistical Pagulta                       | Percent Error                    | 11.        | .56%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .93                 |

#### Table B-12. Model calibration for Steel-Timber Bridge 6

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## B.6.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 6 are presented in Figure B-48 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-48. LLDFs for Steel-Timber Bridge 6

It appears that the analytical LLDF envelope for all the interior girders are smaller than those from the AASHTO standard and LRFD specifications. In the case of exterior girders, the analytical LLDFs are larger than AASHTO values. The peak value of the analytical exterior girder LLDFs was observed in G7, which has an LLDF of 0.52, while that of the interior girders was found in G4, which has an LLDF of 0.39. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders. The statistical limits for either the interior or exterior girder group show smaller values than the AASHTO specifications.

## **B.7 Steel-Timber Bridge 7**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 7) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

#### B.7.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 162051 and will be henceforth be referred to as Steel-Timber Bridge 7. The bridge is located on X Avenue about 7 miles east of Grand Junction, in Greene County, Iowa. Figure B-49 shows the general location of the bridge.



Figure B-49. Location overview of Steel-Timber Bridge 7

# B.7.2 Bridge Description

Steel-Timber Bridge 7 is open to two-lane traffic and has two spans with overall dimensions of 39.4 ft long by 23.6 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-50. The bridge consists of 15 steel girders with approximate spacing between adjacent girders of 1.6 ft. The exterior girders are C-section and are approximately 15.0 in. by 3.4 in.; whereas, the interior girders are I cross-section and are approximately 15.0 in. by 5.5 in. Figure B-51 shows a typical cross-section and plan view of the bridge.


Figure B-50. Steel-Timber Bridge 7: West elevation view (left) and north end view (right)



Figure B-51. Steel-Timber Bridge 7: Cross-section A-A (top) and plan (bottom)

### **B.7.3** Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 7 timber deck is in good condition with some minor problems. The steel girders are in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-51. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a tractor with grain wagon, a tractor with one liquid manure applicator tank, a tractor with two liquid manure applicator tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-13. As shown in Figure B-52, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                     | Weight (lbs)  |              |                |        |         |        | Total              |
|---------------------|---------------|--------------|----------------|--------|---------|--------|--------------------|
| Farm Vehicles       | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Tanks  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor w/ 1 tank   | 11,800        | 15,900       | -              | 48,800 | -       | 76,500 | 40'-8"             |
| Tractor w/ 2 tanks  | 11,800        | 15,900       | -              | 32,600 | -       | 68,900 | 63'-7"             |
| Terragator          | 11,060        | 32,400       | -              | -      | -       | 43,460 | 25'-7"             |
| Tractor Grain Wagon | 18,840        | 18,660       | 15,660         | -      | -       | 53,160 | 35'-2"             |
| Semi-Truck          | 10,760        | 33,856       | -              | -      | 33,084  | 77,700 | 52'-1"             |

### Table B-13. Axle weight and total length of each testing vehicle



Tractor w/1 tank

Tractor w/ 2 tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-52. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from south to north. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 20 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-53. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-53. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 7

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-53. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-54. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



# Figure B-54. Comparison between static and dynamic strain for Steel-Timber Bridge 7

### B.7.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 7. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-55 shows a representative model of the bridge.

# Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-14 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.



Figure B-55. Finite element model of Steel-Timber Bridge 7

|                                           |                                  |            | Calibrated |
|-------------------------------------------|----------------------------------|------------|------------|
| Calibration Parameters                    | Bridge Components                | Plan Value | Value      |
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girders                 | 257        | 250        |
|                                           | Interior Girders                 | 341        | 341        |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200       |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 21418      |
| Statistical Results                       | Percent Error                    | 1(         | ).5%       |
|                                           | Correlation Coefficients         | 0          | 0.92       |

## Table B-14. Model calibration for Steel-Timber Bridge 7

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

# B.7.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 7 are presented in Figure B-56 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-56. LLDFs for Steel-Timber Bridge 7

It appears that the analytical LLDF envelope for all the girders is equivalent to those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G15, which has an LLDF of 0.23, while that of the interior girders was found in G2, G3, G4, G13, and G14, which have LLDFs of 0.22. The statistical limits for either the interior or exterior girder group show smaller values than the AASHTO specifications. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders.

# **B.8 Steel-Timber Bridge 8**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 8) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

# B.8.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 162511 and will be henceforth be referred to as Steel-Timber Bridge 8. The bridge is

located on 185th Street about 6 miles North of Jefferson, in Greene County, Iowa. Figure B-57 shows the general location of the bridge.



Figure B-57. Location overview of Steel-Timber Bridge 8

# B.8.2 Bridge Description

Steel-Timber Bridge 8 is open to two-lane traffic and has two spans with overall dimensions of 28.9 ft long by 20.4 ft wide with 7.3 degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-58. The bridge consists of 13 steel girders with spacing between adjacent girders of 1.5 ft. The exterior girders are C-section and are approximately 15.0 in. by 3.5 in.; whereas, the interior girders are I cross-section and are approximately 15.0 in. by 5.5 in. Figure B-59 shows a typical cross-section and plan view of the bridge.



Figure B-58. Steel-Timber Bridge 8: South elevation view (left) and west end view (right)



Figure B-59. Steel-Timber Bridge 8: Cross-section A-A (top) and plan (bottom)

## B.8.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A

description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 8 timber deck is in good condition with some minor problems. The steel girders are in average condition and show signs of rust. These inspection-based observations were corroborated by the Iowa State University field testing team.

## Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-59. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing.

## Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a tractor with grain wagon, a tractor with one liquid manure applicator tank, a tractor with two liquid manure applicator tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-15. As shown in Figure B-60, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

### Table B-15. Axle weight and total length of each testing vehicle

|                     |               | Total        |                |        |         |        |                    |
|---------------------|---------------|--------------|----------------|--------|---------|--------|--------------------|
| Farm Vehicles       | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Tanks  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor w/ 1 tank   | 11,800        | 15,900       | -              | 48,800 | -       | 76,500 | 40'-8"             |
| Tractor w/ 2 tanks  | 11,800        | 15,900       | -              | 32,600 | -       | 68,900 | 63'-7"             |
| Terragator          | 11,060        | 32,400       | -              | -      | -       | 43,460 | 25'-7"             |
| Tractor Grain Wagon | 18,840        | 18,660       | 15,660         | -      | -       | 53,160 | 35'-2"             |
| Semi-Truck          | 10,760        | 33,856       | -              | -      | 33,084  | 77,700 | 52'-1"             |



Tractor w/1 tank

Tractor w/ 2 tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-60. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from east to west. In general the centerlines of the bridge and vehicle were approximately aligned. Static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured.

### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-61. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-61. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 8

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-61. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

### B.8.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Bridge 8. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

## Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-62 shows a representative model of the bridge.

## Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-16 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.



Figure B-62. Finite element model of Steel-Timber Bridge 8

|                                           |                                  |            | Calibrated |
|-------------------------------------------|----------------------------------|------------|------------|
| Calibration Parameters                    | <b>Bridge Components</b>         | Plan Value | Value      |
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girders                 | 262        | 262        |
|                                           | Interior Girders                 | 341        | 341        |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1363       |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 34606      |
| Statistical Pasults                       | Percent Error                    |            | 2.9%       |
|                                           | <b>Correlation Coefficients</b>  | 0          | ).89       |

## Table B-16. Model calibration for Steel-Timber Bridge 8

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

# B.8.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 8 are presented in Figure B-63 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-63. LLDFs for Steel-Timber Bridge 8

It appears that the analytical LLDF envelope for all the girders is smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G13, which has an LLDF of 0.18, while that of the interior girders was found in G2 and G12, which have LLDFs of 0.20. The statistical limits for either the interior or exterior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders.

# **B.9 Steel-Timber Bridge 9**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 9) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

# B.9.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 162691 and will be henceforth be referred to as Steel-Timber Bridge 9. The bridge is

located on 180th Street at the intersection of X Avenue, about 10 miles north of Jefferson, in Greene County, Iowa. Figure B-64 shows the general location of the bridge.



Figure B-64. Location overview of Steel-Timber Bridge 9

# **B.9.2** Bridge Description

Steel-Timber Bridge 9 is open to two-lane traffic and has one span with overall dimensions of 29.5 ft long by 20.3 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 3 in. An elevation view and an end view of the bridge are shown in Figure B-65. The bridge consists of 13 steel girders with approximate spacing between adjacent girders of 1.7 ft. The exterior girders are C-section and are approximately 15.0 in. by 3.1 in.; whereas, the interior girders are I cross-section and are approximately 15.0 in. by 5.4 in. Figure B-66 shows a typical cross-section and plan view of the bridge.



Figure B-65. Steel-Timber Bridge 9: North elevation view (left) and east end view (right)



Figure B-66. Steel-Timber Bridge 9: Cross-section A-A (top) and plan (bottom)

## **B.9.3** Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### Field Inspections

According to the most recent field inspection report, the Steel-Timber Bridge 9 timber deck is in satisfactory condition with minor deterioration. The steel girders are in good condition. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-66. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 50 Hz during static testing and at 50 Hz during dynamic testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a tractor with grain wagon, a tractor with one liquid manure applicator tank, a tractor with two liquid manure applicator tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-17. As shown in Figure B-67, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                     |               | Total        |                |        |         |        |                    |
|---------------------|---------------|--------------|----------------|--------|---------|--------|--------------------|
| Farm Vehicles       | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Tanks  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor w/ 1 tank   | 11,800        | 15,900       | -              | 48,800 | -       | 76,500 | 40'-8"             |
| Tractor w/ 2 tanks  | 11,800        | 15,900       | -              | 32,600 | -       | 68,900 | 63'-7"             |
| Terragator          | 11,060        | 32,400       | -              | -      | -       | 43,460 | 25'-7"             |
| Tractor Grain Wagon | 18,840        | 18,660       | 15,660         | -      | -       | 53,160 | 35'-2"             |
| Semi-Truck          | 10,760        | 33,856       | -              | -      | 33,084  | 77,700 | 52'-1"             |

### Table B-17. Axle weight and total length of each testing vehicle



Tractor w/1 tank

Tractor w/ 2 tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-67. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from west to east. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 20 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-68. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-68. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 9

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-68. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-69. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



# Figure B-69. Comparison between static and dynamic strain for Steel-Timber Bridge 9

### **B.9.4** Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 9. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-70 shows a representative model of the bridge.

# Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-18 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.



Figure B-70. Finite element model of Steel-Timber Bridge 9

|                                           |                                  |            | Calibrated |
|-------------------------------------------|----------------------------------|------------|------------|
| Calibration Parameters                    | <b>Bridge Components</b>         | Plan Value | Value      |
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girders                 | 216        | 262        |
|                                           | Interior Girders                 | 368        | 458        |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200       |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 978        |
| Statistical Posulta                       | Percent Error                    |            | .4%        |
|                                           | <b>Correlation Coefficients</b>  | 0          | 0.93       |

## Table B-18. Model calibration for Steel-Timber Bridge 9

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

# B.9.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 9 are presented in Figure B-71 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-71. LLDFs for Steel-Timber Bridge 9

It appears that the analytical LLDF envelope for all the girders is much smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G1 and G13, which have LLDFs of 0.16, while that of the interior girders was found in G2, which has an LLDF of 0.20. The statistical limits for either the interior or exterior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders.

# **B.10 Steel-Timber Bridge 10**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 10) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

# B.10.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 77470 and will be henceforth be referred to as Steel-Timber Bridge 10. The bridge is

located at intersection of 201st Street and D Avenue, about 5 miles west of Ogden, in Boone County, Iowa. Figure B-72 shows the general location of the bridge.



Figure B-72. Location overview of Steel-Timber Bridge 10

# B.10.2 Bridge Description

Steel-Timber Bridge 10 is open to one-lane traffic and has one span with overall dimensions of 29.9 ft long by 18.0 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 3 in. An elevation view and an end view of the bridge are shown in Figure B-73. The bridge consists of eight steel girders with approximate spacing between adjacent girders of 2.5 ft. The girders are I cross-section and are approximately 21.3 in. by 8.3 in. Figure B-74 shows a typical cross-section and plan view of the bridge.



Figure B-73. Steel-Timber Bridge 10: North elevation view (left) and east end view (right)



Figure B-74. Steel-Timber Bridge 10: Cross-section A-A (top) and plan (bottom)

### **B.10.3** Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### Field Inspections

According to the most recent field inspection report, the Steel-Timber Bridge 10 timber deck is in fair condition with minor section loss. The steel girders are in satisfactory condition and show signs of rust. These inspection-based observations were corroborated by the Iowa State University field testing team.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-74. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a tractor with grain wagon, a tractor with one liquid manure applicator tank, a tractor with two liquid manure applicator tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-19. As shown in Figure B-75, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                     | Weight (lbs)  |              |                |        |         |        | Total              |
|---------------------|---------------|--------------|----------------|--------|---------|--------|--------------------|
| Farm Vehicles       | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Tanks  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor w/ 1 tank   | 11,800        | 15,900       | -              | 48,800 | -       | 76,500 | 40'-8"             |
| Tractor w/ 2 tanks  | 11,800        | 15,900       | -              | 32,600 | -       | 68,900 | 63'-7"             |
| Terragator          | 11,060        | 32,400       | -              | -      | -       | 43,460 | 25'-7"             |
| Tractor Grain Wagon | 18,840        | 18,660       | 15,660         | -      | -       | 53,160 | 35'-2"             |
| Semi-Truck          | 10,760        | 33,856       | -              | -      | 33,084  | 77,700 | 52'-1"             |

| Table B-19 | ) Axle weight  | and total | length of   | each test | ing vehicle |
|------------|----------------|-----------|-------------|-----------|-------------|
| Table D-17 | '. AAIC WEIGHT | and total | icingtin or | cach usu  | ing venicie |



Tractor w/1 tank

Tractor w/ 2 tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-75. Farm vehicles used for field testing
During testing, the vehicles were driven across the bridge from west to east. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 20 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-76. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



#### Figure B-76. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 10

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-76. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure B-77. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



# Figure B-77. Comparison between static and dynamic strain for Steel-Timber Bridge 10

#### B.10.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Steel-Timber Bridge 10. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

#### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-78 shows a representative model of the bridge.

# Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-20 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.



Figure B-78. Finite element model of Steel-Timber Bridge 10

| <b>Calibration Parameters</b>             | Bridge Components                | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | Girders                          | 1621       | 1667                |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 59674               |
| Statistical Posults                       | Percent Error                    |            | .45%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .92                 |

#### Table B-20. Model calibration for Steel-Timber Bridge 10

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

### B.10.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 10 are presented in Figure B-79 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-79. LLDFs for Steel-Timber Bridge 10

It appears that the analytical LLDF envelope for all the girders is much smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G8, which has an LLDF of 0.26, while that of the interior girders was found in G2, G3, G4, G5, and G7, which have LLDFs of 0.23. The statistical limits for either the interior or exterior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has smaller values than that for the semi-truck for most of the girders.

# **B.11 Steel-Timber Bridge 11**

This mini test and evaluation report documents the results of field testing and subsequent analysis of a steel girder bridge with a timber deck (Steel-Timber Bridge 11) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the steel girder bridge under implements of husbandry.

# B.11.1 Background

The steel-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 77790 and will be henceforth be referred to as Steel-Timber Bridge 11. The bridge is

on I Avenue between 170th Street and 200th Street, about 5 miles south of Fraser, in Boone County, Iowa. Figure B-80 shows the general location of the bridge.



Map: ©Google 2014

Figure B-80. Location overview of Steel-Timber Bridge 11

# B.11.2 Bridge Description

Steel-Timber Bridge 11 is open to one-lane traffic and has three spans with overall dimensions of 73.5 ft long by 18.0 ft wide with zero degrees of skew. The deck is comprised of continuous timber decking with a thickness of 4 in. An elevation view and an end view of the bridge are shown in Figure B-81. The bridge consists of eight steel girders with spacing between adjacent girders of 1.2 ft. The girders are I cross-section and are approximately 14.3 in. by 6.9 in. Figure B-82 shows a typical cross-section and plan view of the bridge.



Figure B-81. Steel-Timber Bridge 11: South elevation view (left) and east end view (right)



Figure B-82. Steel-Timber Bridge 11: Cross-section A-A (top) and plan (bottom)

# B.11.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A

description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the Steel-Timber Bridge 11 timber deck is in fair condition with minor section loss. The steel girders are in average condition and show signs of rust. These inspection-based observations were corroborated by the Iowa State University field testing team.

### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span as shown in Figure B-82. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a tractor with grain wagon, a tractor with one liquid manure applicator tank, a tractor with two liquid manure applicator tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table B-21. As shown in Figure B-83, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

#### Table B-21. Axle weight and total length of each testing vehicle

|                     | Weight (lbs)  |              |                |        |         | Total  |                    |
|---------------------|---------------|--------------|----------------|--------|---------|--------|--------------------|
| Farm Vehicles       | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Tanks  | Trailer | Total  | Length<br>(ft-in.) |
| Tractor w/ 1 tank   | 11,800        | 15,900       | -              | 48,800 | -       | 76,500 | 40'-8"             |
| Tractor w/ 2 tanks  | 11,800        | 15,900       | -              | 32,600 | -       | 68,900 | 63'-7"             |
| Terragator          | 11,060        | 32,400       | -              | -      | -       | 43,460 | 25'-7"             |
| Tractor Grain Wagon | 18,840        | 18,660       | 15,660         | -      | -       | 53,160 | 35'-2"             |
| Semi-Truck          | 10,760        | 33,856       | -              | -      | 33,084  | 77,700 | 52'-1"             |



Tractor w/1 tank

Tractor w/ 2 tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure B-83. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from west to east. In general the centerlines of the bridge and vehicle were approximately aligned. Static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured.

### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure B-84. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure B-84. Strain plot of a girder for all test vehicles for Steel-Timber Bridge 11

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure B-84. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

### B.11.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Bridge 11. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

### Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi and 29000 ksi was used for all timber and steel components in the model respectively. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure B-85 shows a representative model of the bridge.

### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table B-22 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values.



Figure B-85. Finite element model of Steel-Timber Bridge 11

| <b>Calibration Parameters</b>             | Bridge Components                | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | Exterior Girders                 | 418        | 315                 |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 86294               |
| Statistical Desults                       | Percent Error 14.79              |            | 1.7%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .88                 |

#### Table B-22. Model calibration for Steel-Timber Bridge 11

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

### B.11.5 Results

The envelopes of LLDFs for Steel-Timber Bridge 11 are presented in Figure B-86 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure B-86. LLDFs for Steel-Timber Bridge 11

It appears that the analytical LLDF envelope for all the girders is smaller than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G8, which has an LLDF of 0.32, while that of the interior girders was found in G4 and G5, which have LLDFs of 0.34. The statistical limits for either the interior or exterior girder group also show smaller values than the AASHTO specifications. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders.

# APPENDIX C. FIELD TESTED TIMBER-TIMBER BRIDGES

# C.1 Timber-Timber Bridge 1

This mini test and evaluation report documents the results of field testing and subsequent analysis of a timber girder bridge with a timber deck (Timber-Timber Bridge 1) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the timber girder bridge under implements of husbandry.

# C.1.1 Background

The timber-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 68790 and will be henceforth be referred to as Timber-Timber Bridge 1. The bridge is located about 20 miles east of Prairie Rose State Park, on Falcon Avenue, in Audubon County, Iowa. Figure C-1 shows the general location of the bridge.



Figure C-1. Location overview of Timber-Timber Bridge 1

# C.1.2 Bridge Description

Timber-Timber Bridge 1 is open to single-lane traffic and has two equal spans with overall dimensions of 30 ft long by 18 ft wide with zero degrees of skew. The deck is comprised of

continuous timber decking with a thickness of 3 in. An elevation view and an end view of the bridge are shown in Figure C-2. The bridge consists of 17 timber girders with variable spacing between adjacent girders (varying from 4.5 in to 18.5 in.) The girders have a rectangular cross-section measuring approximately 15.1 in. by 3.8 in. Figure C-3 shows a typical cross-section and plan view of the bridge.



Figure C-2. Timber-Timber Bridge 1: West elevation view (left) and north end view (right)



Figure C-3. Timber-Timber Bridge 1: Cross-section A-A (top) and plan (bottom)

# C.1.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

#### **Field Inspections**

According to the most recent field inspection report, the Timber-Timber Bridge 1 timber girders are not in good condition and show obvious signs of normal wear, tear, and decay. The bridge piers are also not in a good condition, showing similar signs of deterioration. These inspection-based observations were corroborated by the Iowa State University field testing team, who observed cracking and deterioration in multiple timber girders. At the time of testing, the deck was considered to be in average condition.

### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span of Span 1 as shown in Figure C-3. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table C-1. As shown in Figure C-4, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | _              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

#### Table C-1. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure C-4. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, dynamic load testing was completed with the vehicles traveling at approximately 15 mph (maximum safe speed at the site).

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure C-5. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure C-5. Strain plot of a girder for all test vehicles for Timber-Timber Bridge 1

Although the semi-truck normally results in higher strains compared to other farm vehicles, the terragator occasionally yields somewhat greater strains than the truck. This tendency can be seen in Figure C-5. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure C-6. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.





# Figure C-6. Comparison between static and dynamic strain for Timber-Timber Bridge 1

# C.1.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Timber-Timber Bridge 1. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

# Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi was used for all timber components in the model. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure C-7 shows a representative model of the bridge.

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, it was assumed that the girders could be grouped into four groups, where within each group the girders had the same properties: (1) G2 and G16, (2) G6 and G7, (3) G11, and (4) G1, G3, G4, G5, G8, G9, G10, G13, G14, G15, and G17. Also note that a very low field and analytical strain was observed for G12, and the response at this location was not considered during model calibration. Table C-2 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure C-7. Finite element model of Timber-Timber Bridge 1

|                                           |                                  |            | Calibrated |
|-------------------------------------------|----------------------------------|------------|------------|
| Calibration Parameters                    | <b>Bridge Components</b>         | Plan Value | Value      |
|                                           | Girder 2,16                      |            | 1207       |
| Moment of Inertia, I (in <sup>4</sup> )   | Girders 6,7                      | 1265       | 1184       |
|                                           | Girder 11                        | 1303       | 960.8      |
|                                           | Other Girders                    |            | 1699       |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1201       |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 36288      |
| ~                                         | Percent Error                    | 17         | .12%       |
| Statistical Results                       | Correlation Coefficients         | C          | ).92       |

### Table C-2. Model calibration for Timber-Timber Bridge 1

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

# C.1.5 Results

The envelopes of LLDFs for Timber-Timber Bridge 1 are presented in Figure C-8 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure C-8. LLDFs for Timber-Timber Bridge 1

It appears that the analytical LLDF envelope for most girders is larger than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G1, which has an LLDF of 0.29, while that of the interior girders was found in G13, which has an LLDF of 0.31. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in higher values of LLDFs compared to those from the conventional highway vehicle. The statistical limits for either the interior or exterior girder group also show larger values than the AASHTO specifications.

# C.2 Timber-Timber Bridge 2

This mini test and evaluation report documents the results of field testing and subsequent analysis of a timber girder bridge with a timber deck (Timber-Timber Bridge 2) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the timber girder bridge under implements of husbandry.

# C.2.1 Background

The timber-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 68800 and will be henceforth be referred to as Timber-Timber Bridge 2. The

bridge is located about 20 miles east of Prairie Rose State Park, on Falcon Avenue, in Audubon County, Iowa. Figure C-9 shows the general location of the bridge.



Figure C-9. Location overview of Timber-Timber Bridge 2

# C.2.2 Bridge Description

Timber-Timber Bridge 2 is open to two-lane traffic and has three spans with overall dimensions of 62 ft long by 20 ft wide with 25 degrees of skew. The deck is comprised of continuous timber decking with a thickness of 6 in. An elevation view and an end view of the bridge are shown in Figure C-10. The bridge consists of 27 timber girders with variable spacing between adjacent girders (varying from 6.6 in to 11.8 in.) The girders have a rectangular cross-section measuring approximately 16 in. by 4 in. Figure C-11 shows a typical cross-section and plan view of the bridge.



Figure C-10. Timber-Timber Bridge 2: West elevation view (left) and south end view (right)



Figure C-11. Timber-Timber Bridge 2: Cross-section A-A (top) and plan (bottom)

# C.2.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical

models, which were then used to conduct a detailed parametric study related to a wide variety of implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the Timber-Timber Bridge 2 timber deck is in good condition with some minor problems. The timber girders are not in good condition and show obvious signs of normal wear, tear, and decay. The bridge piers are also not in a good condition, showing similar signs of deterioration. These inspection-based observations were corroborated by the Iowa State University field testing team, who observed cracking and deterioration in multiple timber girders.

### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span of Span 2 as shown in Figure C-11. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 20 Hz during static testing and at 20 Hz during dynamic testing.

# Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table C-3. As shown in Figure C-12, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

|                                               | Weight (lbs)  |              |                |                | Total   |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | -              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |

 Table C-3. Axle weight and total length of each testing vehicle



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure C-12. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from north to south. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured Later, two sets of dynamic load testing was completed with the vehicles traveling at approximately 10 and 15 mph (maximum safe speed at the site) respectively.

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure C-13. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure C-13. Strain plot of a girder for all test vehicles for Timber-Timber Bridge 2

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure C-13. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure C-14. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.



----- Tractor Grain Wagon (Static) ----- Tractor Grain Wagon (Dynamic)

# Figure C-14. Comparison between static and dynamic strain for Timber-Timber Bridge 2

# C.2.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Timber-Timber Bridge 2. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

# Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi was used for all timber components in the model. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure C-15 shows a representative model of the bridge.

### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table C-4 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure C-15. Finite element model of Timber-Timber Bridge 2
| <b>Calibration Parameters</b>             | <b>Bridge</b> Components         | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                      | 1365       | 1081                |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 69036               |
| Statistical Desults                       | Percent Error                    | 21         | .90%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .88                 |

#### Table C-4. Model calibration for Timber-Timber Bridge 2

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## C.2.5 Results

The envelopes of LLDFs for Timber-Timber Bridge 2 are presented in Figure C-16 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure C-16. LLDFs for Timber-Timber Bridge 2

Because Timber-Timber Bridge 2 is a two-lane traffic bridge, it has the same value for LLDF as that in the AASHTO standard and LRFD specifications. It appears that the analytical LLDF envelope for all the girders is larger than those from the AASHTO values. The peak value of the analytical exterior girder LLDFs was observed in G27, which has an LLDF of 0.27, while that of the interior girders was found in G20, which has an LLDF of 0.23. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in higher values of LLDFs compared to those from the conventional highway vehicle. The statistical limits for either the interior or exterior girder group also show larger values than the AASHTO specifications.

#### C.3 Timber-Timber Bridge 3

This mini test and evaluation report documents the results of field testing and subsequent analysis of a timber girder bridge with a timber deck (Timber-Timber Bridge 3) under multiple implements of husbandry. For completeness, this mini-report includes a description of the bridge, a description of the live load testing procedures followed, sample data, a description of analytical modeling, plots of analytical results, and a discussion of the overall behavior of the timber girder bridge under implements of husbandry.

### C.3.1 Background

The timber-timber bridge described here is known in the National Bridge Inventory (NBI) database as Bridge 68930 and will be henceforth be referred to as Timber-Timber Bridge 3. The bridge is located about 20 miles east of Prairie Rose State Park, on 190th Street, in Audubon County, Iowa. Figure C-17 shows the general location of the bridge.



Map: ©Google 2014

Figure C-17. Location overview of Timber-Timber Bridge 3

## C.3.2 Bridge Description

Timber-Timber Bridge 3 is open to one-lane traffic and has two spans with overall dimensions of 61 ft long by 18 ft wide with 30 degrees of skew. The deck is comprised of continuous timber decking with a thickness of 3 in. An elevation view and an end view of the bridge are shown in Figure C-18. The bridge consists of 18 timber girders with variable spacing between adjacent girders (varying from 3.0 in to 12.0 in.) The girders have a rectangular cross-section measuring approximately 16 in. by 6 in. Figure C-19 shows a typical cross-section and plan view of the bridge.



Figure C-18. Timber-Timber Bridge 3: Elevation view (left) and east end view (right)



Figure C-19. Timber-Timber Bridge 3: Cross-section A-A (top) and plan (bottom)

## C.3.3 Field Testing

Field testing of this bridge was conducted for two reasons. First, field testing was conducted to determine experimental live load distribution factors (LLDFs) and dynamic impact factors for the individual bridge girders. Second, these field data were also used to calibrate analytical models, which were then used to conduct a detailed parametric study related to a wide variety of

implements of husbandry. A description of field tests, the procedures followed, and sample field results are detailed in the following sections.

### **Field Inspections**

According to the most recent field inspection report, the Timber-Timber Bridge 3 timber deck is in satisfactory condition with minor deterioration. The timber girders are not in good condition and show obvious signs of normal wear, tear, and decay. The bridge piers are also not in a good condition, showing similar signs of deterioration. These inspection-based observations were corroborated by the Iowa State University field testing team, who observed cracking and deterioration in multiple timber girders.

#### Instrumentation Plan

Given that the primary goal of the testing plan was to measure the live load response of the primary load-carrying members, a network of multiple strain gages was used to measure the strain under the weight of the vehicles. The strain gages were attached to the bottom of the girders at mid-span of Span 1 as shown in Figure C-19. The strain sensors used to conduct this testing were installed with a 3 in. gage length, and data were collected at a rate of 100 Hz during static testing and at 100 Hz during dynamic testing.

#### Test Load Paths

The vehicles utilized during field testing of this bridge consisted of four common farm vehicles and one typical highway truck. The vehicles included a terragator, a grain cart, a honey wagon with one tank, a honey wagon with two tanks, and a typical five-axle semi-truck. The individual axle loads, total weights, and lengths of the five vehicles used for field testing are summarized in Table C-5. As shown in Figure C-20, the configurations of the farm vehicles were notably different from that of the conventional highway truck.

#### Table C-5. Axle weight and total length of each testing vehicle

|                                               |               | Total        |                |                |         |        |                    |
|-----------------------------------------------|---------------|--------------|----------------|----------------|---------|--------|--------------------|
| Farm Vehicles                                 | Front<br>Axle | Rear<br>Axle | Grain<br>Wagon | Honey<br>Wagon | Trailer | Total  | Length<br>(ft-in.) |
| Tractor Honey Wagon<br>(empty)                | 10,960        | 15,740       | -              | 26,720         | -       | 53,420 | 40'-4"             |
| Tractor Honey Wagon<br>(half full with water) | 10,580        | 22,800       | -              | 40,620         | -       | 74,000 | 40'-4"             |
| Terragator                                    | 23,380        | 17,840       | -              | -              | -       | 41,220 | 19'-0"             |
| Tractor Grain Wagon                           | 24,480        | 19,700       | 11,980         | -              | -       | 56,160 | 31'-0"             |
| Semi-Truck                                    | 10,760        | 33,856       | -              | -              | 33,084  | 77,700 | 52'-1"             |



Honey Wagon

Honey Wagon- two tanks

Terragator



Tractor Grain Wagon

Semi Truck

Figure C-20. Farm vehicles used for field testing

During testing, the vehicles were driven across the bridge from west to east. In general the centerlines of the bridge and vehicle were approximately aligned. Initial static load testing was completed with the vehicles traveling at approximately 3 mph such that the pseudo-static bridge response could be captured. Later, two sets of dynamic load testing was completed with the vehicles traveling at approximately 10 and 15 mph (maximum safe speed at the site) respectively.

#### Sample Field Results

Representative plots from static load testing showing the strain experienced by one of the girders under all test vehicles is shown in Figure C-21. It was observed that the girders at the center of the bridge experienced the maximum strain magnitudes as the test vehicles crossed the bridge.



Figure C-21. Strain plot of a girder for all test vehicles for Timber-Timber Bridge 3

The semi-truck normally results in higher strains compared to other farm vehicles, and this tendency can be seen in Figure C-21. These recorded strains were employed to calculate the field LLDFs for each girder based upon the following equation.

$$LLDF^{f} = \frac{\varepsilon^{m} \max i, t}{\sum_{i=1}^{n} \varepsilon^{m} \max i, t}$$
(1)

Where  $LLDF^{f}$  is the field live load distribution factor and  $\epsilon^{m}$  are the measured maximum strains for individual girders over time, respectively.

A representative plot showing the comparison between static and dynamic strain for one of the girders under a test vehicle is shown in Figure C-22. It was generally observed that the girders experience more strain under dynamic loads than under static loading. The strain values from dynamic load tests were utilized to calculate the dynamic amplification factors (DAFs) for each girder.





## C.3.4 Analytical Modeling

In lieu of field testing with a large number of vehicles, finite element analysis (FEA) simulations were used to estimate LLDFs for other vehicle configurations. As a result, analytical LLDFs were determined based upon FEA simulations of over 121 different farm vehicles on Timber-Timber Bridge 3. The FEA model was developed as described subsequently, and specific bridge information is presented in the following sections.

## Model Generation

The bridge was initially modeled with the geometric and material properties taken directly from available bridge plans and/or field inspections using the BDI (Bridge Diagnostics, Inc.) finite element software WinGEN. A modulus of elasticity of 1600 ksi was used for all timber components in the model. The FEA model consisted of beam elements for the girders, shell elements for the deck, and rotational springs that simulated rotational restraint at the abutments and piers. Figure C-23 shows a representative model of the bridge.

#### Model Calibration

To improve the model accuracy, a calibration process that identified the bridge properties that resulted in the lowest error was completed. Based upon similarities in the response and observed field condition, a single cross-section was considered for all the girders. Table C-6 summarizes the original and calibrated values for the various bridge components along with percent error and correlation coefficient values. The moderately high percent error is most likely due to the highly variable material properties associated with timber components.



Figure C-23. Finite element model of Timber-Timber Bridge 3

| <b>Calibration Parameters</b>             | Bridge Components                | Plan Value | Calibrated<br>Value |
|-------------------------------------------|----------------------------------|------------|---------------------|
| Moment of Inertia, I (in <sup>4</sup> )   | All Girders                      | 2048       | 1850                |
| Modulus of Elasticity, E (Ksi)            | Deck                             | 1600       | 1200                |
| Rotational Stiffness, kr<br>(Kips-in/rad) | Support Connections<br>(springs) | 0          | 15931               |
| Statistical Pagulta                       | Percent Error                    | 23.        | .80%                |
| Statistical Results                       | <b>Correlation Coefficients</b>  | 0          | .86                 |

#### Table C-6. Model calibration for Timber-Timber Bridge 3

Once model calibration was completed, the analytical model was loaded with 121 farm vehicles covering a wide range of axle spacings, weights, and gage widths. The analytical strain response was then used to compute analytical LLDFs for each simulation vehicle using Equation (1).

To interpret the results efficiently, the LLDFs of the girders were grouped together as either interior or exterior girder LLDFs. Statistical limits for the interior and exterior girder LLDFs were determined from cumulative distribution function (CDF) curves defined to be at the 95% confidence thresholds.

## C.3.5 Results

The envelopes of LLDFs for Timber-Timber Bridge 3 are presented in Figure C-24 for both the field and analytical LLDFs for each girder. In addition to the envelopes, the AASHTO LLDFs and statistical control limits for each group of interior and exterior girders are also shown.



Figure C-24. LLDFs for Timber-Timber Bridge 3

It appears that the analytical LLDF envelope for most girders is larger than those from the AASHTO standard and LRFD specifications. The peak value of the analytical exterior girder LLDFs was observed in G18, which has an LLDF of 0.28, while that of the interior girders was found in G17, which has an LLDF of 0.23. The field LLDF envelope represents the highest LLDF observed in each girder due to field testing using farm vehicles, whereas the semi-truck envelope represents the extreme LLDFs for field testing using a five-axle semi-truck. The field LLDF envelope has larger values than that for the semi-truck for most of the girders, indicating for this bridge that farm vehicles result in higher values of LLDFs compared to those from the conventional highway vehicle. The statistical limits for either the interior or exterior girder group also show larger values than the AASHTO specifications.

#### APPENDIX D. FARM IMPLEMENT INVENTORY

This farm vehicle inventory includes 121 farm vehicles and implements that were used in this study. Through internet searches and manufacturer inquiries, information regarding axle weights and configurations was gathered for 121 farm vehicles and implements. These combinations encompassed most combinations seen on US secondary roadway bridges.

The table below summarizes the characteristics of the farm vehicle inventory. The table classifies each vehicle as grain cart or tanker or agricultural truck depending on the use. It also includes the number of axles, axle spacing, and weight of each axle and the spacing between consecutive axles. This information was used to model the vehicular input loads on the finite element models.

| Table D-1. Farm vehicle in | ventory |
|----------------------------|---------|
|----------------------------|---------|

|    |                                             |                    |   | 1   | 2   | 3   | 4   | 5   | 6 | 1     | 2     | 3     | 4     | 5     | 6 | 1   | 2    | 3   | 4   | 5 |
|----|---------------------------------------------|--------------------|---|-----|-----|-----|-----|-----|---|-------|-------|-------|-------|-------|---|-----|------|-----|-----|---|
| 1  | Grain Semi                                  | Semi Trailer       | 4 | 6.1 | 6.1 | 6.1 | 6.1 |     |   | 17300 | 17460 | 16600 | 16720 |       |   | 4.0 | 4.0  | 4.0 |     |   |
| 2  | John Deere 8520 & Kinze 1050 ROW            | Grain Cart         | 3 | 7.0 | 7.0 | 7.0 |     |     |   | 11525 | 11525 | 73381 |       |       |   | 9.9 | 23.9 |     |     |   |
| 3  | John Deere 8520 & Houle 3-axle Tank         | Manure Tanker      | 5 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 |   | 11525 | 11525 | 26600 | 26600 | 26600 |   | 9.9 | 14.8 | 5.7 | 5.7 |   |
| 4  | John Deere 8520 & Houle 2-axle Tank         | Manure Tanker      | 4 | 7.0 | 7.0 | 7.0 | 7.0 |     |   | 11525 | 11525 | 31290 | 31290 |       |   | 9.9 | 17.5 | 5.7 |     |   |
| 5  | New Holland TD5050 & Houle 3-axle Tank      | Manure Tanker      | 5 | 6.6 | 6.6 | 7.0 | 7.0 | 7.0 |   | 8070  | 8070  | 26600 | 26600 | 26600 |   | 7.7 | 15.0 | 5.7 | 5.7 |   |
| 6  | New Holland TD5050 & Houle 2-axle Tank      | Manure Tanker      | 4 | 6.6 | 6.6 | 7.0 | 7.0 |     |   | 8070  | 8070  | 31290 | 31290 |       |   | 7.7 | 18.0 | 5.7 |     |   |
| 7  | New Holland TD5050 & Kinze 1050 ROW         | Grain Cart         | 3 | 6.6 | 6.6 | 7.0 |     |     |   | 8070  | 8070  | 73381 |       |       |   | 7.7 | 24.6 |     |     |   |
| 8  | New Holland T4040 & Houle 3-axle Tank       |                    | 5 | 5.1 | 5.1 | 7.0 | 7.0 | 7.0 |   | 6724  | 6724  | 26600 | 26600 | 26600 |   | 7.2 | 15.0 | 5.7 | 5.7 |   |
| 9  | New Holland T4040 & Houle 2-axle Tank       |                    | 4 | 5.1 | 5.1 | 7.0 | 7.0 |     |   | 6724  | 6724  | 31290 | 31290 |       |   | 7.2 | 18.0 | 5.7 |     |   |
| 10 | New Holland T4040 & Kinze 1050 Row          |                    | 3 | 5.1 | 5.1 | 7.0 |     |     |   | 6724  | 6724  | 73381 |       |       |   | 7.2 | 24.6 |     |     |   |
| 11 | John Deere 8520 & Balzer 6350 Narrow        | Manure Tanker      | 4 | 7.0 | 7.0 | 7.3 | 7.3 |     |   | 11525 | 11525 | 36183 | 36183 |       |   | 9.9 | 24.3 | 5.6 |     |   |
| 12 | New Holland TD5050 & Balzer 6350 Narrow     | Manure Tanker      | 4 | 6.6 | 6.6 | 7.3 | 7.3 |     |   | 8070  | 8070  | 36183 | 36183 |       |   | 7.7 | 24.5 | 5.6 |     |   |
| 13 | New Holland T4040 & Balzer 6350 Narrow      |                    | 4 | 5.1 | 5.1 | 7.3 | 7.3 |     |   | 6724  | 6724  | 36183 | 36183 |       |   | 7.2 | 24.5 | 5.6 |     |   |
| 14 | Terragator 8400                             | Agricultural Truck | 2 | 7.0 | 7.5 |     |     |     |   | 9338  | 10758 |       |       |       | 1 | 6.8 |      |     |     |   |
| 15 | John Deere 8520 with Brent 1082 Grain Wagon |                    | 3 | 7.0 | 7.0 | 7.8 |     |     |   | 11525 | 11525 | 15660 |       |       |   | 9.9 | 23.9 |     |     |   |
| 16 | New Holland TD5050 with Grain Wagon         | Agricultural Truck | 3 | 6.6 | 6.6 | 7.8 |     |     |   | 8070  | 8070  | 15660 |       |       |   | 7.7 | 23.9 |     |     |   |
| 17 | New Holland T4040 with Grain Wagon          |                    | 3 | 5.1 | 5.1 | 7.8 |     |     |   | 6724  | 6724  | 15660 |       |       |   | 7.2 | 23.9 |     |     |   |
| 18 | John Deere 8520 & Better-Bilt 3400          | Manure Tanker      | 4 | 7.0 | 7.0 | 7.9 | 7.9 |     |   | 11525 | 11525 | 18421 | 18421 |       |   | 9.9 | 22.7 | 4.1 |     |   |
| 19 | New Holland TD5050 & Better-Bilt 3400       | Manure Tanker      | 4 | 6.6 | 6.6 | 7.9 | 7.9 |     |   | 8070  | 8070  | 18421 | 18421 |       |   | 7.7 | 23.0 | 4.1 |     |   |
| 20 | New Holland T4040 & Better-Bilt 3400        |                    | 4 | 5.1 | 5.1 | 7.9 | 7.9 |     |   | 6724  | 6724  | 18421 | 18421 |       |   | 7.2 | 23.0 | 4.1 |     |   |
| 21 | Terragator 7300                             | Agricultural Truck | 2 | 0.0 | 8.0 |     |     |     |   | 9338  | 10758 |       |       |       | 2 | 2.8 |      |     |     |   |
| 22 | John Deere 8520 & Kinze 1050 SOF            | Grain Cart         | 3 | 7.0 | 7.0 | 8.0 |     |     |   | 11525 | 11525 | 72101 |       |       |   | 9.9 | 23.9 |     |     |   |
| 23 | John Deere 8520 & Better-Bilt 4950          | Manure Tanker      | 4 | 7.0 | 7.0 | 8.0 | 8.0 |     |   | 11525 | 11525 | 27252 | 27252 |       |   | 9.9 | 25.3 | 4.4 |     |   |
| 24 | New Holland TD5050 & Better-Bilt 4950       | Manure Tanker      | 4 | 6.6 | 6.6 | 8.0 | 8.0 |     |   | 8070  | 8070  | 27252 | 27252 |       |   | 7.7 | 25.5 | 4.4 |     |   |
| 25 | New Holland TD5050 & Kinze 1050 SOF         | Grain Cart         | 3 | 6.6 | 6.6 | 8.0 |     |     |   | 8070  | 8070  | 72101 |       |       |   | 7.7 | 24.6 |     |     |   |
| 26 | New Holland T4040 & Better-Bilt 4950        |                    | 4 | 5.1 | 5.1 | 8.0 | 8.0 |     |   | 6724  | 6724  | 27252 | 27252 |       |   | 7.2 | 25.5 | 4.4 |     |   |
| 27 | Hew Holland T4040 & Kinze 1050 SOF          |                    | 3 | 5.1 | 5.1 | 8.0 |     |     |   | 6724  | 6724  | 72101 |       |       |   | 7.2 | 24.6 |     |     |   |
| 28 | Terragator 2505                             | Agricultural Truck | 3 | 0.0 | 8.0 | 8.0 |     |     |   | 11060 | 16200 | 16200 |       |       | 1 | 9.2 | 6.4  |     |     |   |
| 29 | Versatile 280 & Kinze 1050 ROW              | Grain Cart         | 3 | 8.0 | 8.0 | 7.0 |     |     |   | 11800 | 15900 | 73381 |       |       | 1 | 0.7 | 24.0 |     |     |   |

|    |                                                    |                    |   | 1   | 2   | 3   | 4   | 5   | 6   | 1     | 2     | 3     | 4     | 5     | 6    | 1    | 2    | 3   | 4    | 5   |
|----|----------------------------------------------------|--------------------|---|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|-------|------|------|------|-----|------|-----|
| 30 | Versatile 280 & Kinze 1050 SOF                     | Grain Cart         | 3 | 8.0 | 8.0 | 8.0 |     |     |     | 11800 | 15900 | 72101 |       |       |      | 10.7 | 24.0 |     |      |     |
| 31 | Versatile 280 & Better-Bilt 4950                   | Manure Tanker      | 4 | 8.0 | 8.0 | 8.0 | 8.0 |     |     | 11800 | 15900 | 27252 | 27252 |       |      | 10.7 | 25.5 | 4.4 |      |     |
| 32 | Versatile 280 & Better-Bilt 3400                   | Manure Tanker      | 4 | 8.0 | 8.0 | 7.9 | 7.9 |     |     | 11800 | 15900 | 18421 | 18421 |       |      | 10.7 | 23.0 | 4.1 |      |     |
| 33 | Versatile 280 & Balzer 6350 Narrow                 | Manure Tanker      | 4 | 8.0 | 8.0 | 7.3 | 7.3 |     |     | 11800 | 15900 | 36183 | 36183 |       |      | 10.7 | 24.5 | 5.6 |      |     |
| 34 | Versatile 280 & Houle 3-axle Tank                  | Manure Tanker      | 5 | 8.0 | 8.0 | 7.0 | 7.0 | 7.0 |     | 11800 | 15900 | 26600 | 26600 | 26600 |      | 10.7 | 15.0 | 5.7 | 5.7  |     |
| 35 | Versatile 280 & Houle 2-axle Tank                  | Manure Tanker      | 4 | 8.0 | 8.0 | 7.0 | 7.0 |     |     | 11800 | 15900 | 31290 | 31290 |       |      | 10.7 | 18.0 | 5.7 |      |     |
| 36 | Versatile 280 with Half Full Houle 7300 Tank       | Agricultural Truck | 5 | 8.0 | 8.3 | 8.0 | 8.0 | 8.0 |     | 11800 | 15900 | 16267 | 16267 | 16267 |      | 10.7 | 18.4 | 5.8 | 5.8  |     |
| 37 | John Deere 8520 & Better-Bilt 6600                 | Manure Tanker      | 5 | 7.0 | 7.0 | 8.4 | 8.4 | 8.4 |     | 11525 | 11525 | 24826 | 24826 | 24826 |      | 9.9  | 23.6 | 5.2 | 5.2  |     |
| 38 | Versatile 280 & Better-Bilt 6600                   | Manure Tanker      | 5 | 8.0 | 8.0 | 8.4 | 8.4 | 8.4 |     | 11800 | 15900 | 24826 | 24826 | 24826 |      | 10.7 | 24.0 | 5.2 | 5.2  |     |
| 39 | New Holland TD5050 & Better-Bilt 6600              | Manure Tanker      | 5 | 6.6 | 6.6 | 8.4 | 8.4 | 8.4 |     | 8070  | 8070  | 24826 | 24826 | 24826 |      | 7.7  | 24.0 | 5.2 | 5.2  |     |
| 40 | New Holland T4040 & Better-Bilt 6600               |                    | 5 | 5.1 | 5.1 | 8.4 | 8.4 | 8.4 |     | 6724  | 6724  | 24826 | 24826 | 24826 |      | 7.2  | 24.0 | 5.2 | 5.2  |     |
| 41 | Case 340B                                          |                    | 3 | 8.5 | 8.5 | 8.5 |     |     |     | 31614 | 16160 | 16160 |       |       |      | 13.7 | 6.8  |     |      |     |
| 42 | John Deere 9200 & Kinze 1050 ROW                   | Grain Cart         | 3 | 8.7 | 8.7 | 7.0 |     |     |     | 18840 | 18660 | 73381 |       |       |      | 11.3 | 24.0 |     |      |     |
| 43 | John Deere 9200 & Kinze 1050 SOF                   | Grain Cart         | 3 | 8.7 | 8.7 | 8.0 |     |     |     | 18840 | 18660 | 72101 |       |       |      | 11.3 | 24.0 |     |      |     |
| 44 | John Deere 9200 & Better-Bilt 6600                 | Manure Tanker      | 5 | 8.7 | 8.7 | 8.4 | 8.4 | 8.4 |     | 18840 | 18660 | 24826 | 24826 | 24826 |      | 11.3 | 24.0 | 5.2 | 5.2  |     |
| 45 | John Deere 9200 & Better-Bilt 4950                 | Manure Tanker      | 4 | 8.7 | 8.7 | 8.0 | 8.0 |     |     | 18840 | 18660 | 27252 | 27252 |       |      | 11.3 | 25.5 | 4.4 |      |     |
| 46 | John Deere 9200 & Better-Bilt 3400                 | Manure Tanker      | 4 | 8.7 | 8.7 | 7.9 | 7.9 |     |     | 18840 | 18660 | 18421 | 18421 |       |      | 11.3 | 23.0 | 4.1 |      |     |
| 47 | John Deere 9200 & Balzer 6350 Narrow               | Manure Tanker      | 4 | 8.7 | 8.7 | 7.3 | 7.3 |     |     | 18840 | 18660 | 36183 | 36183 |       |      | 11.3 | 24.5 | 5.6 |      |     |
| 48 | John Deere 9200 & Houle 3-axle Tank                | Manure Tanker      | 5 | 8.7 | 8.7 | 7.0 | 7.0 | 7.0 |     | 18840 | 18660 | 26600 | 26600 | 26600 |      | 11.3 | 15.0 | 5.7 | 5.7  |     |
| 49 | John Deere 9200 & Houle 2-axle Tank                | Manure Tanker      | 4 | 8.7 | 8.7 | 7.0 | 7.0 |     |     | 18840 | 18660 | 31290 | 31290 |       |      | 11.3 | 18.0 | 5.7 |      |     |
| 50 | John Deere 9200 with Brent 1082 Grain Wagon        | Agricultural Truck | 3 | 8.7 | 8.7 | 7.8 |     |     |     | 18840 | 18660 | 15660 |       |       |      | 11.3 | 23.9 |     |      |     |
| 51 | Case 380 & Better-Bilt 6600                        | Manure Tanker      | 5 | 8.7 | 8.7 | 8.4 | 8.4 | 8.4 |     | 20240 | 16060 | 24826 | 24826 | 24826 |      | 12.9 | 24.0 | 5.2 | 5.2  |     |
| 52 | Case 380 & Better-Bilt 4950                        | Manure Tanker      | 4 | 8.7 | 8.7 | 8.0 | 8.0 |     |     | 20240 | 16060 | 27252 | 27252 |       |      | 12.9 | 25.5 | 4.4 |      |     |
| 53 | Case 380 & Better-Bilt 3400                        | Manure Tanker      | 4 | 8.7 | 8.7 | 7.9 | 7.9 |     |     | 20240 | 16060 | 18421 | 18421 |       |      | 12.9 | 23.0 | 4.1 |      |     |
| 54 | Case 380 & Balzer 6350 Narrow                      | Manure Tanker      | 4 | 8.7 | 8.7 | 7.3 | 7.3 |     |     | 20240 | 16060 | 36183 | 36183 |       |      | 12.9 | 24.5 | 5.6 |      |     |
| 55 | Case 380 & Houle 3-axle Tank                       | Manure Tanker      | 5 | 8.7 | 8.7 | 7.0 | 7.0 | 7.0 |     | 20240 | 16060 | 26600 | 26600 | 26600 |      | 12.9 | 15.0 | 5.7 | 5.7  |     |
| 56 | Case 380 & Houle 2-axle Tank                       | Manure Tanker      | 4 | 8.7 | 8.7 | 7.0 | 7.0 |     |     | 20240 | 16060 | 31290 | 31290 |       |      | 12.9 | 18.0 | 5.7 |      |     |
| 57 | Case 380 & Kinze 1050 ROW                          | Grain Cart         | 3 | 8.7 | 8.7 | 7.0 |     |     |     | 20240 | 16060 | 73381 |       |       |      | 12.9 | 24.6 |     |      |     |
| 58 | Case 380 & Kinze 1050 SOF                          | Grain Cart         | 3 | 8.7 | 8.7 | 8.0 |     |     |     | 20240 | 16060 | 72101 |       |       |      | 12.9 | 24.6 |     |      |     |
| 59 | Case 380 with Brent 1082 Grain Wagon               |                    | 3 | 8.7 | 8.7 | 7.8 |     |     |     | 20240 | 20240 | 15660 |       |       |      | 12.9 | 23.9 |     |      |     |
| 60 | John Deere 8520 with 2 Empty NUHN QT Quad Tanks    | Agricultural Truck | 6 | 7.0 | 7.0 | 9.5 | 9.5 | 9.5 | 9.5 | 11525 | 11525 | 7150  | 7150  | 9150  | 9150 | 9.9  | 21.0 | 6.3 | 17.2 | 6.3 |
| 61 | John Deere 9200 with 2 Empty NUHN QT Quad Tanks    | Agricultural Truck | 6 | 8.7 | 8.7 | 9.5 | 9.5 | 9.5 | 9.5 | 18840 | 18660 | 7150  | 7150  | 9150  | 9150 | 11.3 | 21.0 | 6.3 | 17.2 | 6.3 |
| 62 | New Holland TD5050 with 2 Empty NUHN QT Quad Tanks |                    | 6 | 6.6 | 6.6 | 9.5 | 9.5 | 9.5 | 9.5 | 8070  | 8070  | 7150  | 7150  | 9150  | 9150 | 7.7  | 18.0 | 6.3 | 17.2 | 6.3 |
| 63 | New Holland T4040 with 2 Empty NUHN QT Quad Tanks  |                    | 6 | 5.1 | 5.1 | 9.5 | 9.5 | 9.5 | 9.5 | 6724  | 6724  | 7150  | 7150  | 9150  | 9150 | 7.2  | 18.0 | 6.3 | 17.2 | 6.3 |
| 64 | Case 380 with 2 Empty NUHN QT Quad Tanks           | Agricultural Truck | 5 | 8.7 | 8.7 | 9.5 | 9.5 | 9.5 | 9.5 | 20240 | 16060 | 7150  | 7150  | 9150  | 9150 | 12.9 | 21.0 | 6.3 | 17.2 | 6.3 |
| 65 | John Deere 9620 & Kinze 1050 ROW                   | Grain Cart         | 3 | 9.7 | 9.7 | 7.0 |     |     |     | 20175 | 20175 | 73381 |       |       |      | 11.5 | 24.6 |     |      |     |
| 66 | John Deere 9620 & Kinze 1050 SOF                   | Grain Cart         | 3 | 9.7 | 9.7 | 8.0 |     |     |     | 20175 | 20175 | 72101 |       |       |      | 11.5 | 24.6 |     |      |     |
| 67 | John Deere 9620 & Better-Bilt 6600                 | Manure Tanker      | 5 | 9.7 | 9.7 | 8.4 | 8.4 | 8.4 |     | 20175 | 20175 | 24826 | 24826 | 24826 |      | 11.5 | 24.3 | 5.2 | 5.2  |     |
| 68 | John Deere 9620 & Better-Bilt 4950                 | Manure Tanker      | 4 | 9.7 | 9.7 | 8.0 | 8.0 |     |     | 20175 | 20175 | 27252 | 27252 |       |      | 11.5 | 26.0 | 4.4 |      |     |
| 69 | John Deere 9620 & Better-Bilt 3400                 | Manure Tanker      | 4 | 9.7 | 9.7 | 7.9 | 7.9 |     |     | 20175 | 20175 | 18421 | 18421 |       |      | 11.5 | 23.4 | 4.1 |      |     |
| 70 | John Deere 9620 & Balzer 6350 Narro                | Manure Tanker      | 4 | 9.7 | 9.7 | 7.3 | 7.3 |     |     | 20175 | 20175 | 36183 | 36183 |       |      | 11.5 | 25.0 | 5.6 |      |     |
| 71 | John Deere 9620 & Houle 3-axle Tank                | Manure Tanker      | 5 | 9.7 | 9.7 | 7.0 | 7.0 | 7.0 |     | 20175 | 20175 | 26600 | 26600 | 26600 |      | 11.5 | 15.5 | 5.7 | 5.7  |     |
| 72 | John Deere 9620 & Houle 2-axle Tank                | Manure Tanker      | 4 | 9.7 | 9.7 | 7.0 | 7.0 |     |     | 20175 | 20175 | 31290 | 31290 |       |      | 11.5 | 18.2 | 5.7 |      |     |
| 73 | John Deere 9620 with Brent 1082 Grain Wagon        | Agricultural Truck | 3 | 9.7 | 9.7 | 7.8 |     |     |     | 20175 | 20175 | 15660 |       |       |      | 11.5 | 23.9 |     |      |     |
| 74 | John Deere 9620 with 2 Empty NUHN QT Quad Tanks    | Agricultural Truck | 6 | 9.7 | 9.7 | 9.5 | 9.5 | 9.5 | 9.5 | 20175 | 20175 | 7150  | 7150  | 9150  | 9150 | 11.5 | 21.0 | 6.3 | 17.2 | 6.3 |

|     |                                               |            |   | 1    | 2    | 3    | 4    | 5    | 6   | 1     | 2     | 3     | 4     | 5     | 6    | 1    | 2    | 3   | 4    | 5   |
|-----|-----------------------------------------------|------------|---|------|------|------|------|------|-----|-------|-------|-------|-------|-------|------|------|------|-----|------|-----|
| 75  | John Deere 9620 & Balzer 1250                 | Grain Cart | 4 | 9.7  | 9.7  | 10.0 | 10.0 |      |     | 20175 | 20175 | 43512 | 43512 |       |      | 11.5 | 21.9 | 6.5 |      |     |
| 76  | John Deere 9620 & Balzer 1500                 | Grain Cart | 5 | 9.7  | 9.7  | 10.0 | 10.0 | 10.0 |     | 20175 | 20175 | 34443 | 34443 | 34443 |      | 11.5 | 18.6 | 6.5 | 6.5  |     |
| 77  | John Deere 8520 & Balzer 1250                 | Grain Cart | 4 | 7.0  | 7.0  | 10.0 | 10.0 |      |     | 11525 | 11525 | 43512 | 43512 |       |      | 9.9  | 21.2 | 6.5 |      |     |
| 78  | John Deere 8520 & Balzer 1500                 | Grain Cart | 5 | 7.0  | 7.0  | 10.0 | 10.0 | 10.0 |     | 11525 | 11525 | 34443 | 34443 | 34443 |      | 9.9  | 17.9 | 6.5 | 6.5  |     |
| 79  | John Deere 9200 & Balzer 1250                 | Grain Cart | 4 | 8.7  | 8.7  | 10.0 | 10.0 |      |     | 18840 | 18660 | 43512 | 43512 |       |      | 11.3 | 21.5 | 6.5 |      |     |
| 80  | John Deere 9200 & Balzer 1500                 | Grain Cart | 5 | 8.7  | 8.7  | 10.0 | 10.0 | 10.0 |     | 18840 | 18660 | 34443 | 34443 | 34443 |      | 11.3 | 18.0 | 6.5 | 6.5  |     |
| 81  | Versatile 280 & Balzer 1250                   | Grain Cart | 4 | 8.0  | 8.0  | 10.0 | 10.0 |      |     | 11800 | 15900 | 43512 | 43512 |       |      | 10.7 | 21.5 | 6.5 |      |     |
| 82  | Versatile 280 & Balzer 1500                   | Grain Cart | 5 | 8.0  | 8.0  | 10.0 | 10.0 | 10.0 |     | 11800 | 15900 | 34443 | 34443 | 34443 |      | 10.7 | 18.0 | 6.5 | 6.5  |     |
| 83  | Case 380 & Balzer 1250                        | Grain Cart | 4 | 8.7  | 8.7  | 10.0 | 10.0 |      |     | 20240 | 16060 | 43512 | 43512 |       |      | 12.9 | 21.9 | 6.5 |      |     |
| 84  | Case 380 & Balzer 1500                        | Grain Cart | 5 | 8.7  | 8.7  | 10.0 | 10.0 | 10.0 |     | 20240 | 16060 | 34443 | 34443 | 34443 |      | 12.9 | 18.6 | 6.5 | 6.5  |     |
| 85  | New Holland TD5050 & Balzer 1250              | Grain Cart | 4 | 6.6  | 6.6  | 10.0 | 10.0 |      |     | 8070  | 8070  | 43512 | 43512 |       |      | 7.7  | 21.9 | 6.5 |      |     |
| 86  | New Holland TD5050 & Balzer 1500              | Grain Cart | 5 | 6.6  | 6.6  | 10.0 | 10.0 | 10.0 |     | 8070  | 8070  | 34443 | 34443 | 34443 |      | 7.7  | 18.6 | 6.5 | 6.5  |     |
| 87  | New Holland T4040 & Balzer 1250               |            | 4 | 5.1  | 5.1  | 10.0 | 10.0 |      |     | 6724  | 6724  | 43512 | 43512 |       |      | 7.2  | 21.9 | 6.5 |      |     |
| 88  | New Holland T4040 & B alzer 1500              |            | 5 | 5.1  | 5.1  | 10.0 | 10.0 | 10.0 |     | 6724  | 6724  | 34443 | 34443 | 34443 |      | 7.2  | 18.6 | 6.5 | 6.5  |     |
| 89  | Case 600 with 2 Empty NUHN QT Quad Tanks      |            | 6 | 10.0 | 10.0 | 9.5  | 9.5  | 9.5  | 9.5 | 23000 | 23000 | 7150  | 7150  | 9150  | 9150 | 12.8 | 18.0 | 6.3 | 17.2 | 6.3 |
| 90  | Case 600 with Grain Wagon                     |            | 3 | 10.0 | 10.0 | 7.8  |      |      |     | 23000 | 23000 | 15660 |       |       |      | 12.8 | 23.9 |     |      |     |
| 91  | Case 600 & Better-Bilt 6600                   |            | 5 | 10.0 | 10.0 | 8.4  | 8.4  | 8.4  |     | 23000 | 23000 | 24826 | 24826 | 24826 |      | 12.8 | 24.0 | 5.2 | 5.2  |     |
| 92  | Case 600 & Better-Bilt 4950                   |            | 4 | 10.0 | 10.0 | 8.0  | 8.0  |      |     | 23000 | 23000 | 27252 | 27252 |       |      | 12.8 | 25.5 | 4.4 |      |     |
| 93  | Case 600 & Better-Bilt 3400                   |            | 4 | 10.0 | 10.0 | 7.9  | 7.9  |      |     | 23000 | 23000 | 18421 | 18421 |       |      | 12.8 | 23.0 | 4.1 |      |     |
| 94  | Case 600 & Balzer 6350 Narrow                 |            | 4 | 10.0 | 10.0 | 7.3  | 7.3  |      |     | 23000 | 23000 | 36183 | 36183 |       |      | 12.8 | 24.5 | 5.6 |      |     |
| 95  | Case 600 & Houle 3-axle Tank                  |            | 5 | 10.0 | 10.0 | 7.0  | 7.0  | 7.0  |     | 23000 | 23000 | 26600 | 26600 | 26600 |      | 12.8 | 15.0 | 5.7 | 5.7  |     |
| 96  | Case 600 & Houle 2-axle Tank                  |            | 4 | 10.0 | 10.0 | 7.0  | 7.0  |      |     | 23000 | 23000 | 31290 | 31290 |       |      | 12.8 | 18.0 | 5.7 |      |     |
| 97  | Case 600 & Kinze 1050 Row                     |            | 3 | 10.0 | 10.0 | 7.0  |      |      |     | 23000 | 23000 | 73381 |       |       |      | 12.8 | 24.6 |     |      |     |
| 98  | Case 600 & Kinze 1050 SOF                     |            | 3 | 10.0 | 10.0 | 8.0  |      |      |     | 23000 | 23000 | 72101 |       |       |      | 12.8 | 24.6 |     |      |     |
| 99  | Case 600 & Balzer 1250                        |            | 4 | 10.0 | 10.0 | 10.0 | 10.0 |      |     | 23000 | 23000 | 43512 | 43512 |       |      | 12.8 | 21.9 | 6.5 |      |     |
| 100 | Case 600 & B alzer 1500                       |            | 5 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |     | 23000 | 23000 | 34443 | 34443 | 34443 |      | 12.8 | 18.6 | 6.5 | 6.5  |     |
| 101 | Versatile 535 with 2 Empty NUHN QT Quad Tanks |            | 6 | 10.0 | 10.0 | 9.5  | 9.5  | 9.5  | 9.5 | 22500 | 22500 | 7150  | 7150  | 9150  | 9150 | 12.8 | 18.0 | 6.3 | 17.2 | 6.3 |
| 102 | Versatile 535 with Grain Wagon                |            | 3 | 10.0 | 10.0 | 7.8  |      |      |     | 22500 | 22500 | 15660 |       |       |      | 12.8 | 23.9 |     |      |     |
| 103 | Versatile 535 & Better-Bilt 6600              |            | 5 | 10.0 | 10.0 | 8.4  | 8.4  | 8.4  |     | 22500 | 22500 | 24826 | 24826 | 24826 |      | 12.8 | 24.0 | 5.2 | 5.2  |     |
| 104 | Versatile 535 & Better-Bilt 4950              |            | 4 | 10.0 | 10.0 | 8.0  | 8.0  |      |     | 22500 | 22500 | 27252 | 27252 |       |      | 12.8 | 25.5 | 4.4 |      |     |
| 105 | Versatile 535 & Better-Bilt 3400              |            | 4 | 10.0 | 10.0 | 7.9  | 7.9  |      |     | 22500 | 22500 | 18421 | 18421 |       |      | 12.8 | 23.0 | 4.1 |      |     |
| 106 | Versatile 535 & Balzer 6350 Narrow            |            | 4 | 10.0 | 10.0 | 7.3  | 7.3  |      |     | 22500 | 22500 | 36183 | 36183 |       |      | 12.8 | 24.5 | 5.6 |      |     |
| 107 | Versatile 535 & Houle 3-axle Tank             |            | 5 | 10.0 | 10.0 | 7.0  | 7.0  | 7.0  |     | 22500 | 22500 | 26600 | 26600 | 26600 |      | 12.8 | 15.0 | 5.7 | 5.7  |     |
| 108 | Versatile 535 & Houle 2-axle Tank             |            | 4 | 10.0 | 10.0 | 7.0  | 7.0  |      |     | 22500 | 22500 | 31290 | 31290 |       |      | 12.8 | 18.0 | 5.7 |      |     |
| 109 | Versatile 535 & Kinze 1050 Row                |            | 3 | 10.0 | 10.0 | 7.0  |      |      |     | 22500 | 22500 | 73381 |       |       |      | 12.8 | 24.6 |     |      |     |
| 110 | Versatile 535 & Kinze 1050 SOF                |            | 3 | 10.0 | 10.0 | 8.0  |      |      |     | 22500 | 22500 | 72101 |       |       |      | 12.8 | 24.6 |     |      |     |
| 111 | Versatile 535 & Balzer 1250                   |            | 4 | 10.0 | 10.0 | 10.0 | 10.0 |      |     | 22500 | 22500 | 43512 | 43512 |       |      | 12.8 | 21.9 | 6.5 |      |     |
| 112 | Versatile 535 & B alzer 1500                  |            | 5 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |     | 22500 | 22500 | 34443 | 34443 | 34443 |      | 12.8 | 18.6 | 6.5 | 6.5  |     |
| 113 | John Deere 9620 & J&M 1075-22                 | Grain Cart | 3 | 9.7  | 9.7  | 12.2 |      |      |     | 20175 | 20175 | 68700 |       |       |      | 11.5 | 19.5 |     |      |     |
| 114 | John Deere 8520 & J&M 1075-22                 | Grain Cart | 3 | 7.0  | 7.0  | 12.2 |      |      |     | 11525 | 11525 | 68700 |       |       |      | 9.9  | 18.8 |     |      |     |
| 115 | John Deere 9200 & J&M 1075-22                 | Grain Cart | 3 | 8.7  | 8.7  | 12.2 |      |      |     | 18840 | 18660 | 68700 |       |       |      | 11.3 | 19.0 |     |      |     |
| 116 | Versatile 280 & J&M 1075-22                   | Grain Cart | 3 | 8.0  | 8.0  | 12.2 |      |      |     | 11800 | 15900 | 68700 |       |       |      | 10.7 | 19.0 |     |      |     |
| 117 | Case 380 & J&M 1075-22                        | Grain Cart | 3 | 8.7  | 8.7  | 12.2 |      |      |     | 20240 | 16060 | 68700 |       |       |      | 12.9 | 19.5 |     |      |     |
| 118 | New Holland TD5050 & J&M 1075-22              | Grain Cart | 3 | 6.6  | 6.6  | 12.2 |      |      |     | 8070  | 8070  | 68700 |       |       |      | 7.7  | 19.5 |     |      |     |
| 119 | New Holland T4040 & J&M 1075-22               |            | 3 | 5.1  | 5.1  | 12.2 |      |      |     | 6724  | 6724  | 68700 |       |       |      | 7.2  | 19.5 |     |      |     |

|                                 |   | 1    | 2    | 3    | 4 | 5 | 6 | 1     | 2     | 3     | 4 | 5 | 6 | 1    | 2    | 3 | 4 | 5 |
|---------------------------------|---|------|------|------|---|---|---|-------|-------|-------|---|---|---|------|------|---|---|---|
| 120 Case 600 & J&M 1075-22      | 3 | 10.0 | 10.0 | 12.2 |   |   |   | 23000 | 23000 | 68700 |   |   |   | 12.8 | 19.5 |   |   |   |
| 121 Versatile 535 & J&M 1075-22 | 3 | 10.0 | 10.0 | 12.2 |   |   |   | 22500 | 22500 | 68700 |   |   |   | 12.8 | 19.5 |   |   |   |

#### **APPENDIX E. BRIDGE INVENTORY**

The bridge inventory consists of data for a total of 174 bridges supplied by the participating states (Iowa, Oklahoma, and Wisconsin). Of these bridges, 151 had sufficient data for the parametric study in Volume I for the three bridge types:

1. Steel girder bridges with concrete deck (Steel-Concrete): Table E-1

2. Steel girder bridges with timber deck (Steel-Timber): Table E-2

3. Timber girder bridges with timber deck (Timber-Timber): Table E-3

Each bridge is classified as one of the following:

- One-lane traffic bridges (bridge width < 20 ft)
- Multiple-lane traffic bridges (bridge width  $\ge 20$  ft)
- Skewed bridges (skew angle > 0 degrees)

The bridge characteristics used to create the finite element models are summarized in the following tables based on the classification above. The bridge number in these tables correspond to the results presented in the reports.

Span and rating information for all 174 bridges used in Volume II are listed in the following tables.

## Table E-1a. One-way traffic lane steel-concrete bridges

| Bridge<br>No. | Total Bridge<br>Length (ft) | Number of<br>Spans | Maximum<br>Span Length<br>(ft) | Girder<br>Spacing (ft) | Number of<br>Girders | Bridge<br>Width (ft) | Deck<br>Thickness (in.) | Skew (deg)  |
|---------------|-----------------------------|--------------------|--------------------------------|------------------------|----------------------|----------------------|-------------------------|-------------|
| 1             | 30.0                        | 1                  | 29.0                           | 2.0                    | 10                   | 17.8                 | 7.5                     | 7°          |
| 2             | 28.0                        | 1                  | 26.0                           | 2.3                    | 9                    | 17.1                 | 7.5                     | 0°          |
| 3             | 34.0                        | 1                  | 32.0                           | 2.3                    | 8                    | 16.0                 | 7.5                     | $0^{\circ}$ |
| 4             | 42.0                        | 1                  | 40.0                           | 2.4                    | 9                    | 19.5                 | 7.5                     | $0^{\circ}$ |
| 5             | 53.0                        | 1                  | 50.0                           | 6.4                    | 4                    | 19.7                 | 7.5                     | 0°          |

| Bridge<br>No. | Total Bridge<br>Length (ft) | Number of<br>Spans | Maximum<br>Span Length<br>(ft) | Girder<br>Spacing (ft) | Number of<br>Girders | Bridge<br>Width (ft) | Deck<br>Thickness (in.) | Skew (deg)  |
|---------------|-----------------------------|--------------------|--------------------------------|------------------------|----------------------|----------------------|-------------------------|-------------|
| 1             | 32.0                        | 1                  | 30.0                           | 1.7                    | 14                   | 24.5                 | 7.8                     | 0°          |
| 2             | 37.0                        | 1                  | 34.0                           | 2.0                    | 16                   | 30.7                 | 7.5                     | $0^{\circ}$ |
| 3             | 40.0                        | 1                  | 39.0                           | 2.0                    | 15                   | 31.0                 | 7.5                     | $0^{\circ}$ |
| 4             | 39.0                        | 1                  | 37.0                           | 2.4                    | 11                   | 24.5                 | 7.0                     | $0^{\circ}$ |
| 5             | 43.0                        | 1                  | 41.0                           | 3.0                    | 9                    | 24.1                 | 7.5                     | $0^{\circ}$ |
| 6             | 43.0                        | 1                  | 42.0                           | 3.5                    | 8                    | 24.5                 | 6.5                     | $0^{\circ}$ |
| 7             | 39.0                        | 1                  | 32.0                           | 3.6                    | 7                    | 22.0                 | 7.5                     | $0^{\circ}$ |
| 8             | 43.0                        | 1                  | 43.0                           | 3.9                    | 9                    | 31.3                 | 6.5                     | $0^{\circ}$ |
| 9             | 43.0                        | 1                  | 43.0                           | 4.4                    | 7                    | 28.2                 | 7.5                     | $0^{\circ}$ |
| 10            | 160.0                       | 3                  | 80.0                           | 4.6                    | 6                    | 23.4                 | 4.6                     | $0^{\circ}$ |
| 11            | 68.5                        | 2                  | 34.3                           | 5.4                    | 6                    | 31.5                 | 6.0                     | $0^{\circ}$ |
| 12            | 68.0                        | 1                  | 66.0                           | 5.8                    | 5                    | 23.6                 | 5.8                     | $0^{\circ}$ |
| 13            | 104.0                       | 2                  | 52.0                           | 7.3                    | 5                    | 34.0                 | 6.0                     | $0^{\circ}$ |
| 14            | 62.0                        | 2                  | 31.0                           | 7.5                    | 4                    | 26.0                 | 6.5                     | $0^{\circ}$ |
| 15            | 227.0                       | 2                  | 112.0                          | 9.3                    | 5                    | 40.0                 | 8.5                     | $0^{\circ}$ |
| 16            | 293.0                       | 4                  | 93.5                           | 9.3                    | 4                    | 30.0                 | 8.6                     | $0^{\circ}$ |
| 17            | 266.0                       | 4                  | 85.5                           | 9.3                    | 4                    | 30.0                 | 8.2                     | $0^{\circ}$ |
| 18            | 292.0                       | 4                  | 93.5                           | 9.3                    | 4                    | 30.0                 | 7.8                     | $0^{\circ}$ |
| 19            | 232.0                       | 3                  | 132.0                          | 9.5                    | 5                    | 32.0                 | 8.3                     | $0^{\circ}$ |
| 20            | 83.0                        | 1                  | 80.0                           | 9.5                    | 3                    | 20.1                 | 7.0                     | 0°          |
| 21            | 57.0                        | 1                  | 55.0                           | 9.5                    | 3                    | 20.0                 | 7.0                     | $0^{\circ}$ |
| 22            | 236.0                       | 4                  | 79.0                           | 9.7                    | 4                    | 32.0                 | 8.8                     | $6^{\circ}$ |
| 23            | 240.0                       | 4                  | 66.0                           | 9.7                    | 4                    | 29.8                 | 8.5                     | 1°          |
| 24            | 316.0                       | 4                  | 94.0                           | 10.0                   | 4                    | 32.0                 | 8.5                     | $2^{\circ}$ |

| Table E-1b. Multiple traffic lane steel-concrete bridges |  |
|----------------------------------------------------------|--|
|----------------------------------------------------------|--|

| Bridge | Total Bridge | Number of | Maximum<br>Span Length | Girder       | Number of | Bridge     | Deck            |              |
|--------|--------------|-----------|------------------------|--------------|-----------|------------|-----------------|--------------|
| No.    | Length (ft)  | Spans     | (ft)                   | Spacing (ft) | Girders   | Width (ft) | Thickness (in.) | Skew (deg)   |
| 1      | 59.0         | 1         | 59.0                   | 1.8          | 14        | 22.7       | 7.5             | 45°          |
| 2      | 35.0         | 1         | 32.0                   | 2.3          | 10        | 21.0       | 6.5             | 25°          |
| 3      | 32.0         | 1         | 28.0                   | 2.5          | 9         | 20.3       | 9.5             | 45°          |
| 4      | 31.0         | 1         | 30.0                   | 3.5          | 8         | 24.7       | 10.5            | 30°          |
| 5      | 44.0         | 1         | 40.0                   | 3.9          | 10        | 35.8       | 7.5             | 30°          |
| 6      | 99.0         | 3         | 61.0                   | 4.6          | 6         | 23.5       | 4.6             | 45°          |
| 7      | 57.0         | 1         | 50.0                   | 5.5          | 6         | 28.0       | 7.5             | 23°          |
| 8      | 191.6        | 3         | 72.0                   | 6.5          | 5         | 28.0       | 6.0             | 45°          |
| 9      | 85.0         | 3         | 42.0                   | 6.7          | 4         | 23.5       | 5.3             | 45°          |
| 10     | 55.0         | 1         | 55.0                   | 7.2          | 4         | 24.0       | 6.5             | 55°          |
| 11     | 57.0         | 1         | 55.0                   | 7.4          | 4         | 24.0       | 7.5             | 30°          |
| 12     | 284.0        | 4         | 81.0                   | 7.7          | 4         | 24.0       | 6.8             | 41°          |
| 13     | 324.0        | 4         | 92.0                   | 8.0          | 4         | 24.0       | 7.5             | 47°          |
| 14     | 266.0        | 4         | 74.0                   | 9.0          | 4         | 28.0       | 8.5             | 32°          |
| 15     | 325.0        | 4         | 104.0                  | 9.3          | 4         | 30.0       | 8.5             | $26^{\circ}$ |
| 16     | 240.0        | 4         | 66.0                   | 9.7          | 4         | 29.9       | 8.6             | $20^{\circ}$ |

# Table E-1c. Skewed steel-concrete bridges

| Bridge<br>No. | Total Bridge<br>Length (ft) | Number of<br>Spans | Maximum<br>Span Length<br>(ft) | Girder<br>Spacing (ft) | Number of<br>Girders | Bridge<br>Width (ft) | Deck<br>Thickness (in.) | Skew (deg)  |
|---------------|-----------------------------|--------------------|--------------------------------|------------------------|----------------------|----------------------|-------------------------|-------------|
| 1             | 20.0                        | 1                  | 19.0                           | 1.5                    | 11                   | 16.3                 | 4.0                     | 0°          |
| 2             | 60.0                        | 1                  | 59.0                           | 1.9                    | 10                   | 17.5                 | 4.0                     | $0^{\circ}$ |
| 3             | 24.0                        | 1                  | 23.0                           | 2.3                    | 9                    | 18.0                 | 4.0                     | $0^{\circ}$ |
| 4             | 24.0                        | 1                  | 23.0                           | 2.3                    | 9                    | 18.9                 | 4.0                     | $0^{\circ}$ |
| 5             | 30.0                        | 1                  | 29.0                           | 2.3                    | 9                    | 19.4                 | 4.0                     | $0^{\circ}$ |
| 6             | 61.0                        | 1                  | 60.0                           | 2.3                    | 9                    | 18.0                 | 4.0                     | $0^{\circ}$ |
| 7             | 62.0                        | 1                  | 60.0                           | 2.3                    | 9                    | 18.0                 | 4.0                     | 0°          |
| 8             | 34.0                        | 1                  | 33.0                           | 2.3                    | 9                    | 19.0                 | 4.0                     | 0°          |
| 9             | 63.0                        | 1                  | 61.0                           | 2.3                    | 9                    | 18.6                 | 4.0                     | 0°          |
| 10            | 24.0                        | 1                  | 23.0                           | 2.4                    | 9                    | 19.0                 | 4.0                     | 0°          |
| 11            | 60.0                        | 1                  | 59.0                           | 2.4                    | 9                    | 19.3                 | 4.0                     | 0°          |
| 12            | 76.0                        | 3                  | 38.0                           | 2.4                    | 9                    | 19.7                 | 4.0                     | 0°          |
| 13            | 177.0                       | 3                  | 58.5                           | 2.5                    | 7                    | 16.0                 | 3.0                     | $0^{\circ}$ |
| 14            | 60.0                        | 1                  | 59.0                           | 2.5                    | 8                    | 17.3                 | 3.5                     | $0^{\circ}$ |
| 15            | 26.0                        | 1                  | 24.0                           | 2.5                    | 9                    | 18.0                 | 4.0                     | $0^{\circ}$ |
| 16            | 24.0                        | 1                  | 23.0                           | 2.5                    | 9                    | 19.4                 | 4.0                     | $0^{\circ}$ |
| 17            | 62.0                        | 1                  | 60.0                           | 2.5                    | 9                    | 19.7                 | 4.0                     | $0^{\circ}$ |
| 18            | 46.2                        | 1                  | 46.2                           | 2.5                    | 8                    | 18.0                 | 3.0                     | $0^{\circ}$ |
| 19            | 59.0                        | 1                  | 58.0                           | 2.6                    | 7                    | 16.2                 | 3.4                     | 0°          |
| 20            | 61.0                        | 1                  | 60.0                           | 2.6                    | 7                    | 16.4                 | 6.0                     | 0°          |
| 21            | 62.0                        | 2                  | 46.0                           | 2.8                    | 8                    | 18.7                 | 4.0                     | 0°          |
| 22            | 24.5                        | 1                  | 24.5                           | 3.1                    | 8                    | 18.0                 | 3.0                     | $0^{\circ}$ |
| 23            | 42.5                        | 1                  | 42.5                           | 5.0                    | 4                    | 15.0                 | 6.0                     | $0^{\circ}$ |

| Table | E-2a. | One-way | traffic | lane stee | l-timbe | er brid | lges |
|-------|-------|---------|---------|-----------|---------|---------|------|
|-------|-------|---------|---------|-----------|---------|---------|------|

| Bridge | Total Bridge | Number of | Maximum<br>Span Length | Girder       | Number of | Bridge     | Deck            |             |
|--------|--------------|-----------|------------------------|--------------|-----------|------------|-----------------|-------------|
| No.    | Length (ft)  | Spans     | ( <b>ft</b> )          | Spacing (ft) | Girders   | Width (ft) | Thickness (in.) | Skew (deg)  |
| 1      | 59.0         | 1         | 59.2                   | 1.5          | 17        | 23.3       | 2.8             | $0^{\circ}$ |
| 2      | 39.4         | 2         | 19.7                   | 1.7          | 15        | 22.5       | 3.0             | $0^{\circ}$ |
| 3      | 29.5         | 1         | 29.5                   | 1.7          | 13        | 20.3       | 3.0             | $0^{\circ}$ |
| 4      | 34.0         | 1         | 33.0                   | 1.8          | 14        | 24.0       | 3.0             | $0^{\circ}$ |
| 5      | 30.0         | 1         | 29.0                   | 2.0          | 11        | 20.0       | 3.0             | $0^{\circ}$ |
| 6      | 41.0         | 1         | 39.0                   | 2.2          | 9         | 20.3       | 4.0             | $0^{\circ}$ |
| 7      | 25.0         | 1         | 24.0                   | 2.3          | 9         | 20.0       | 4.0             | $0^{\circ}$ |
| 8      | 61.0         | 1         | 59.0                   | 2.4          | 9         | 20.0       | 4.0             | $0^{\circ}$ |
| 9      | 35.0         | 1         | 33.0                   | 2.5          | 13        | 31.0       | 6.0             | $0^{\circ}$ |
| 10     | 34.0         | 1         | 32.0                   | 2.5          | 11        | 23.9       | 4.0             | $0^{\circ}$ |
| 11     | 32.0         | 1         | 31.0                   | 2.5          | 9         | 20.5       | 6.0             | 0°          |
| 12     | 28.0         | 1         | 26.0                   | 2.5          | 9         | 20.0       | 4.0             | $0^{\circ}$ |
| 13     | 56.0         | 2         | 31.3                   | 2.6          | 10        | 24.8       | 4.0             | $0^{\circ}$ |
| 14     | 38.0         | 1         | 38.0                   | 2.7          | 9         | 22.2       | 4.0             | $0^{\circ}$ |
| 15     | 52.0         | 1         | 51.0                   | 2.8          | 8         | 20.0       | 4.0             | $0^{\circ}$ |
| 16     | 34.2         | 1         | 32.0                   | 2.8          | 11        | 29.2       | 4.0             | $0^{\circ}$ |
| 17     | 75.7         | 2         | 42.0                   | 3.2          | 7         | 23.7       | 4.0             | $0^{\circ}$ |
| 18     | 66.0         | 2         | 42.0                   | 3.2          | 7         | 21.0       | 3.0             | $0^{\circ}$ |
| 19     | 102.0        | 3         | 34.0                   | 3.5          | 8         | 24.0       | 3.0             | $0^{\circ}$ |
| 20     | 40.5         | 2         | 20.3                   | 4.4          | 7         | 26.4       | 6.0             | $0^{\circ}$ |
| 21     | 49.0         | 1         | 49.0                   | 4.5          | 6         | 23.0       | 6.0             | $0^{\circ}$ |

 Table E-2b. Multiple traffic lane steel-timber bridges

|        |              |           | Maximum       |              |           |            |                 |            |
|--------|--------------|-----------|---------------|--------------|-----------|------------|-----------------|------------|
| Bridge | Total Bridge | Number of | Span Length   | Girder       | Number of | Bridge     | Deck            |            |
| No.    | Length (ft)  | Spans     | ( <b>ft</b> ) | Spacing (ft) | Girders   | Width (ft) | Thickness (in.) | Skew (deg) |
| 1      | 23.0         | 1         | 21.0          | 2.3          | 9         | 18.0       | 4.0             | 20         |
| 2      | 28.0         | 1         | 27.0          | 2.3          | 9         | 20.0       | 4.0             | 15         |
| 3      | 50.0         | 1         | 49.0          | 2.3          | 9         | 18.7       | 3.8             | 36         |
| 4      | 42.3         | 1         | 41.0          | 2.4          | 11        | 24.8       | 4.0             | 45         |
| 5      | 39.0         | 1         | 37.3          | 2.4          | 9         | 19.4       | 4.0             | 28         |
| 6      | 24.0         | 1         | 22.0          | 2.5          | 9         | 19.0       | 4.0             | 15         |
| 7      | 42.0         | 1         | 40.0          | 2.5          | 9         | 19.4       | 4.0             | 23         |
| 8      | 24.0         | 1         | 23.0          | 2.5          | 8         | 20.0       | 4.0             | 30         |
| 9      | 24.0         | 1         | 23.0          | 2.7          | 7         | 16.3       | 4.0             | 15         |
| 10     | 39.0         | 1         | 38.0          | 2.8          | 7         | 20.5       | 3.0             | 45         |

# Table E-2c. Skewed steel-timber bridges

 Table E-3a. One-way traffic lane timber-timber bridges

| Bridge<br>No. | Total Bridge<br>Length (ft) | Number of<br>Spans | Maximum<br>Span Length<br>(ft) | Girder<br>Spacing (ft) | Number of<br>Girders | Bridge<br>Width (ft) | Deck<br>Thickness (in.) | Skew (deg)  |
|---------------|-----------------------------|--------------------|--------------------------------|------------------------|----------------------|----------------------|-------------------------|-------------|
| 1             | 66.0                        | 3                  | 22.0                           | 0.8                    | 23                   | 17.8                 | 2.8                     | $0^{\circ}$ |
| 2             | 38.0                        | 2                  | 19.0                           | 0.9                    | 22                   | 18.9                 | 3.0                     | $0^{\circ}$ |
| 3             | 66.0                        | 3                  | 23.0                           | 1.0                    | 20                   | 18.1                 | 3.0                     | $0^{\circ}$ |
| 4             | 63.0                        | 3                  | 21.0                           | 1.0                    | 19                   | 17.6                 | 3.0                     | $0^{\circ}$ |
| 5             | 70.0                        | 3                  | 23.0                           | 1.0                    | 19                   | 17.8                 | 3.0                     | $0^{\circ}$ |
| 6             | 25.0                        | 1                  | 23.0                           | 1.1                    | 17                   | 18.3                 | 2.8                     | $0^{\circ}$ |
| 7             | 57.0                        | 3                  | 23.0                           | 1.2                    | 16                   | 18.0                 | 3.0                     | $0^{\circ}$ |
| 8             | 40.0                        | 2                  | 23.0                           | 1.3                    | 13                   | 15.7                 | 3.0                     | $0^{\circ}$ |
| 9             | 21.0                        | 1                  | 19.0                           | 1.3                    | 13                   | 15.7                 | 3.0                     | $0^{\circ}$ |
| 10            | 25.0                        | 1                  | 23.0                           | 1.3                    | 13                   | 16.0                 | 3.0                     | $0^{\circ}$ |

| Bridge<br>No. | Total Bridge<br>Length (ft) | Number of<br>Spans | Maximum<br>Span Length<br>(ft) | Girder<br>Spacing (ft) | Number of<br>Girders | Bridge<br>Width (ft) | Deck<br>Thickness (in.) | Skew (deg)  |
|---------------|-----------------------------|--------------------|--------------------------------|------------------------|----------------------|----------------------|-------------------------|-------------|
| 11            | 24.0                        | 1                  | 23.0                           | 1.3                    | 14                   | 17.4                 | 3.0                     | 0°          |
| 12            | 54.0                        | 3                  | 19.0                           | 1.4                    | 14                   | 17.7                 | 2.8                     | $0^{\circ}$ |
| 13            | 24.0                        | 1                  | 23.0                           | 1.4                    | 14                   | 17.7                 | 3.0                     | $0^{\circ}$ |
| 14            | 71.0                        | 3                  | 23.0                           | 1.4                    | 14                   | 17.7                 | 2.8                     | 0°          |
| 15            | 62.0                        | 3                  | 23.0                           | 1.4                    | 14                   | 17.8                 | 2.8                     | $0^{\circ}$ |
| 16            | 62.0                        | 3                  | 23.0                           | 1.4                    | 14                   | 18.0                 | 3.0                     | $0^{\circ}$ |
| 17            | 62.0                        | 3                  | 23.0                           | 1.4                    | 14                   | 18.0                 | 3.0                     | $0^{\circ}$ |
| 18            | 21.0                        | 1                  | 19.5                           | 1.4                    | 15                   | 19.5                 | 3.0                     | $0^{\circ}$ |
| 19            | 130.0                       | 3                  | 58.0                           | 1.4                    | 12                   | 15.8                 | 3.0                     | $0^{\circ}$ |
| 20            | 24.0                        | 1                  | 23.0                           | 1.4                    | 19                   | 17.9                 | 3.0                     | $0^{\circ}$ |
| 21            | 70.0                        | 3                  | 23.0                           | 1.4                    | 21                   | 18.0                 | 2.8                     | $0^{\circ}$ |
| 22            | 58.0                        | 3                  | 23.0                           | 1.5                    | 13                   | 17.4                 | 3.0                     | $0^{\circ}$ |
| 23            | 24.0                        | 1                  | 23.0                           | 1.5                    | 13                   | 17.8                 | 3.0                     | 0°          |
| 24            | 24.0                        | 1                  | 23.0                           | 1.5                    | 13                   | 17.8                 | 3.0                     | 0°          |
| 25            | 54.0                        | 3                  | 23.0                           | 1.5                    | 13                   | 17.8                 | 3.0                     | $0^{\circ}$ |
| 26            | 54.0                        | 3                  | 23.0                           | 1.5                    | 13                   | 18.0                 | 3.0                     | $0^{\circ}$ |
| 27            | 46.7                        | 3                  | 16.0                           | 1.6                    | 13                   | 19.0                 | 4.0                     | $0^{\circ}$ |
| 28            | 29.0                        | 1                  | 28.0                           | 1.6                    | 13                   | 19.0                 | 4.0                     | $0^{\circ}$ |
| 29            | 24.0                        | 1                  | 23.0                           | 1.8                    | 10                   | 16.5                 | 2.8                     | $0^{\circ}$ |
| 30            | 58.0                        | 3                  | 19.0                           | 2.0                    | 10                   | 17.8                 | 3.0                     | $0^{\circ}$ |
| 31            | 91.7                        | 4                  | 23.5                           | 2.1                    | 9                    | 16.7                 | 2.8                     | 0°          |
| 32            | 76.0                        | 3                  | 35.0                           | 2.2                    | 14                   | 17.8                 | 3.0                     | $0^{\circ}$ |
| 33            | 73.9                        | 3                  | 26.0                           | 2.2                    | 8                    | 15.2                 | 4.5                     | $0^{\circ}$ |

|        |              |           | Maximum       |              |           |            |                 |             |
|--------|--------------|-----------|---------------|--------------|-----------|------------|-----------------|-------------|
| Bridge | Total Bridge | Number of | Span Length   | Girder       | Number of | Bridge     | Deck            |             |
| No.    | Length (ft)  | Spans     | ( <b>ft</b> ) | Spacing (ft) | Girders   | Width (ft) | Thickness (in.) | Skew (deg)  |
| 1      | 26.0         | 1         | 24.0          | 0.8          | 28        | 23.9       | 3.0             | $0^{\circ}$ |
| 2      | 69.0         | 3         | 24.0          | 0.8          | 28        | 23.9       | 3.0             | $0^{\circ}$ |
| 3      | 71.0         | 3         | 23.0          | 0.9          | 23        | 20.0       | 3.0             | $0^{\circ}$ |
| 4      | 24.0         | 1         | 23.0          | 1.3          | 17        | 21.3       | 3.0             | $0^{\circ}$ |
| 5      | 54.0         | 3         | 23.0          | 1.4          | 18        | 23.8       | 3.0             | $0^{\circ}$ |
| 6      | 24.0         | 1         | 23.0          | 1.4          | 19        | 23.8       | 3.0             | $0^{\circ}$ |
| 7      | 55.0         | 3         | 23.0          | 1.5          | 16        | 22.2       | 3.0             | 0°          |
| 8      | 31.0         | 2         | 15.0          | 2.0          | 13        | 23.9       | 3.0             | 0°          |
| 9      | 125.0        | 7         | 21.0          | 2.1          | 12        | 21.9       | 3.4             | $0^{\circ}$ |

# Table E-3b. Multiple traffic lane timber-timber bridges

## Table E-3c. Skewed timber-timber bridges

| Bridge<br>No. | Total Bridge<br>Length (ft) | Number of<br>Spans | Maximum<br>Span Length<br>(ft) | Girder<br>Spacing (ft) | Number of<br>Girders | Bridge<br>Width (ft) | Deck<br>Thickness (in.) | Skew (deg) |
|---------------|-----------------------------|--------------------|--------------------------------|------------------------|----------------------|----------------------|-------------------------|------------|
| 1             | 24.0                        | 1                  | 24.0                           | 0.9                    | 22                   | 18.3                 | 2.8                     | 22         |
| 2             | 23.0                        | 1                  | 23.0                           | 1.3                    | 17                   | 21.4                 | 3.0                     | 13         |
| 3             | 23.0                        | 1                  | 23.0                           | 1.5                    | 13                   | 17.6                 | 2.8                     | 10         |
| 4             | 23.0                        | 1                  | 23.0                           | 1.7                    | 10                   | 15.3                 | 2.8                     | 15         |
| 5             | 26.0                        | 1                  | 26.0                           | 2.0                    | 11                   | 20.0                 | 4.0                     | 47         |
| 6             | 72.0                        | 3                  | 24.0                           | 1.3                    | 19                   | 24.0                 | 3.0                     | 40         |
| 7             | 23.0                        | 1                  | 22.0                           | 1.3                    | 18                   | 23.6                 | 2.8                     | 24         |
| 8             | 36.0                        | 2                  | 17.0                           | 1.5                    | 17                   | 23.9                 | 3.0                     | 40         |
| 9             | 74.3                        | 3                  | 25.0                           | 1.8                    | 14                   | 23.0                 | 2.8                     | 30         |
| 10            | 26.2                        | 1                  | 25.3                           | 2.5                    | 13                   | 21.8                 | 3.0                     | 30         |

| Bridge ID from |                  |           |                 |           |             |        |                   |  |  |  |
|----------------|------------------|-----------|-----------------|-----------|-------------|--------|-------------------|--|--|--|
|                |                  |           | Tables <b>E</b> | E-1a–E-3c |             |        | TICOO             |  |  |  |
|                | Bridge<br>ID for | Bridge ID |                 |           | Minimum     | Number | HS20<br>Operating |  |  |  |
| FHWA           | Moment           | for OR    |                 | Bridge    | Span Length | of     | Rating            |  |  |  |
| Number         | Ratios           | Ratios    | Table           | No.       | (ft)        | Spans  | (tons)            |  |  |  |
| 298820         | D.1 1            | Br1_1a    | 2a              | 1         | 19          | 1      | 4                 |  |  |  |
| 60620          | DII_I            | Br1_1b    | 3a              | 9         | 19          | 1      | 38.4              |  |  |  |
| 245005         | Br1_2            | Br1_2     | 3a              | 18        | 20          | 1      | 34.2              |  |  |  |
| 8910           | Br1_3            | Br1_3     | N/A             | N/A       | 20          | 1      | 28                |  |  |  |
| 122322         | Br1_4            | Br1_4     | 2c              | 1         | 21          | 1      | 91.7              |  |  |  |
| 123441         | Br1 5            | Br1_5a    | 2c              | 6         | 22          | 1      | 79.9              |  |  |  |
| 285860         | DII_J            | Br1_5b    | 3c              | 7         | 22          | 1      | 46.6              |  |  |  |
| 245710         | Br1_6            | Br1_6     | 3a              | 20        | 23          | 1      | 10.4              |  |  |  |
| 123940         |                  | Br1_7a    | 2a              | 3         | 23          | 1      | 40.2              |  |  |  |
| 122301         |                  | Br1_7b    | 2a              | 4         | 23          | 1      | 71.6              |  |  |  |
| 121881         |                  | Br1_7c    | 2a              | 10        | 23          | 1      | 73.2              |  |  |  |
| 122261         |                  | Br1_7d    | 2a              | 16        | 23          | 1      | 66.5              |  |  |  |
| 122101         |                  | Br1_7e    | 2c              | 8         | 23          | 1      | 91.9              |  |  |  |
| 290440         |                  | Br1_7f    | 2c              | 9         | 23          | 1      | 52.3              |  |  |  |
| 290530         |                  | Br1_7g    | 3a              | 6         | 23          | 1      | 32.8              |  |  |  |
| 60640          | Br1_7            | Br1_7h    | 3a              | 10        | 23          | 1      | 29.9              |  |  |  |
| 121610         |                  | Br1_7i    | 3a              | 11        | 23          | 1      | 37.9              |  |  |  |
| 289830         |                  | Br1_7j    | 3b              | 4         | 23          | 1      | 48.1              |  |  |  |
| 160240         |                  | Br1_7k    | 3b              | 6         | 23          | 1      | 12                |  |  |  |
| 290111         |                  | Br1_71    | 3a              | 13        | 23          | 1      | 33.9              |  |  |  |
| 288000         |                  | Br1_7m    | 3a              | 23        | 23          | 1      | 37.4              |  |  |  |
| 287150         |                  | Br1_7n    | 3a              | 24        | 23          | 1      | 47.5              |  |  |  |
| 11478          |                  | Br1_70    | 3a              | 29        | 23          | 1      | N/A               |  |  |  |
| 363200         |                  | Br1_8a    | 2b              | 7         | 24          | 1      | 58.5              |  |  |  |
| 122871         | Br1 8            | Br1_8b    | 2a              | 15        | 24          | 1      | 54.5              |  |  |  |
| 270391         | DII_0            | Br1_8c    | 3b              | 1         | 24          | 1      | 0.68              |  |  |  |
| 290000         |                  | Br1_8d    | 3c              | 1         | 24          | 1      | 31.3              |  |  |  |
| 26692          | Br1_9            | Br1_9     | 3c              | 10        | 25          | 1      | N/A               |  |  |  |
| 269710         |                  | Br1_10a   | 1a              | 2         | 26          | 1      | 0.25              |  |  |  |
| 125012         | Br1_10           | Br1_10b   | 2b              | 12        | 26          | 1      | 99                |  |  |  |
| 269420         |                  | Br1_10c   | 3c              | 5         | 26          | 1      | 0.72              |  |  |  |
| 122820         | Br1_11           | Br1_11    | 2c              | 2         | 27          | 1      | 41                |  |  |  |
| 93091          | Br1 12           | Br1_12    | 1c              | 3         | 28          | 1      | 34.9              |  |  |  |
| 22963          | 211_12           | Br1_12a   | 3a              | 28        | 28          | 1      | N/A               |  |  |  |
| 284231         | Br1 13           | Br1_13a   | 1a              | 1         | 29          | 1      | 40                |  |  |  |
| 361970         | DI1_13           | Br1_13b   | 2b              | 5         | 29          | 1      | 25.6              |  |  |  |

|                |                                      |                               | Bridge<br>Tables F | ID from<br>C-1a–E-3c |                                |                       |                                       |
|----------------|--------------------------------------|-------------------------------|--------------------|----------------------|--------------------------------|-----------------------|---------------------------------------|
| FHWA<br>Number | Bridge<br>ID for<br>Moment<br>Ratios | Bridge ID<br>for OR<br>Ratios | Table              | Bridge<br>No.        | Minimum<br>Span Length<br>(ft) | Number<br>of<br>Spans | HS20<br>Operating<br>Rating<br>(tons) |
| 122131         |                                      | Br1_13c                       | 2a                 | 5                    | 29                             | 1                     | 68.3                                  |
| 94821          | D 1 14                               | Br1_14a                       | 1b                 | 1                    | 30                             | 1                     | 60.1                                  |
| 92971          | Br1_14                               | Br1_14b                       | 1c                 | 4                    | 30                             | 1                     | 84.6                                  |
| 246180         | Br1_15                               | Br1_15                        | 2b                 | 11                   | 31                             | 1                     | 18.9                                  |
| 269880         |                                      | Br1_16a                       | 1c                 | 2                    | 32                             | 1                     | 0.4                                   |
| 268750         |                                      | Br1_16b                       | 1a                 | 3                    | 32                             | 1                     | 31.4                                  |
| 123050         | Br1_16                               | Br1_16c                       | 1b                 | 7                    | 32                             | 1                     | 36.6                                  |
| 263921         |                                      | Br1_16d                       | 2b                 | 10                   | 32                             | 1                     | 38.3                                  |
| 93682          |                                      | Br1_16e                       | 2b                 | 16                   | 32                             | 1                     | 63.2                                  |
| 96361          |                                      | Br1_17a                       | 2b                 | 4                    | 33                             | 1                     | 32.2                                  |
| 121541         | Br1_17                               | Br1_17b                       | 2a                 | 8                    | 33                             | 1                     | 65.5                                  |
| 94511          |                                      | Br1_17c                       | 2b                 | 9                    | 33                             | 1                     | 39.8                                  |
| 263921         | D <sub>m</sub> 1 10                  | Br1_18a                       | 1b                 | 2                    | 34                             | 1                     | 57.9                                  |
| 93682          | Br1_18                               | Br1_18b                       | N/A                | N/A                  | 34                             | 1                     | 63.2                                  |
| 95031          | Br1_19                               | Br1_19                        | 1b                 | 4                    | 37                             | 1                     | 52.9                                  |
| 285961         | Br1_20                               | Br1_20                        | 2c                 | 5                    | 37                             | 1                     | 57.4                                  |
| 160440         | Br1_21                               | Br1_21                        | 2c                 | 10                   | 38                             | 1                     | 19.5                                  |
| 320641         | Dr1 22                               | Br1_22a                       | 1b                 | 3                    | 39                             | 1                     | 32.3                                  |
| 122832         | DI 1_22                              | Br1_22b                       | 2b                 | 6                    | 39                             | 1                     | 58.8                                  |
| 285291         |                                      | Br1_23a                       | 1a                 | 4                    | 40                             | 1                     | 49.9                                  |
| 268950         | Br1_23                               | Br1_23b                       | 1c                 | 5                    | 40                             | 1                     | 33.2                                  |
| 124451         |                                      | Br1_23c                       | 2c                 | 7                    | 40                             | 1                     | 48.3                                  |
| 284381         | Br1_24                               | Br1_24                        | 1b                 | 5                    | 41                             | 1                     | 75.4                                  |
| 96091          | Br1_25                               | Br1_25                        | 2c                 | 4                    | 41                             | 1                     | 37.9                                  |
| 94051          | Br1_26                               | Br1_26                        | 1b                 | 6                    | 42                             | 1                     | 42.8                                  |
| p-32-903       | Br1_27                               | Br1_27                        | 2a                 | 23                   | 43                             | 1                     | N/A                                   |
| 96490          | Br1 28                               | Br1_28a                       | 1b                 | 8                    | 43                             | 1                     | 31                                    |
| 355810         | DI1_20                               | Br1_28b                       | 1b                 | 9                    | 43                             | 1                     | 17                                    |
| 286481         | Br1 29                               | Br1_29                        | 2c                 | 3                    | 49                             | 1                     | 35.5                                  |
| p-37-174       | $D\Pi_2$                             | Br1_29a                       | 2b                 | 21                   | 49                             | 1                     | N/A                                   |
| 269630         | Br1 30                               | Br1_30a                       | 1c                 | 7                    | 50                             | 1                     | 20                                    |
| 262620         | DI1_50                               | Br1_30b                       | 1a                 | 5                    | 50                             | 1                     | 34.5                                  |
| 125521         | Br1_31                               | Br1_31                        | 2b                 | 15                   | 51                             | 1                     | 39.4                                  |
| b-52-042       |                                      | Br1_32                        | 1c                 | 10                   | 55                             | 1                     | N/A                                   |
| 302990         | Br1_32                               | Br1_32a                       | 1c                 | 11                   | 55                             | 1                     | 36                                    |
| 60660          |                                      | Br1_32b                       | 1b                 | 21                   | 55                             | 1                     | 32.2                                  |
| 286590         | Br1_33                               | Br1_33                        | 2a                 | 19                   | 58                             | 1                     | 29.8                                  |

| Bridge ID from |                            |           |          |               |                        |        |                             |  |  |  |
|----------------|----------------------------|-----------|----------|---------------|------------------------|--------|-----------------------------|--|--|--|
| EHW A          | Bridge<br>ID for<br>Moment | Bridge ID | Tables E | <u>Bridge</u> | Minimum<br>Span Longth | Number | HS20<br>Operating<br>Pating |  |  |  |
| Number         | Ratios                     | Ratios    | Table    | No.           | (ft)                   | Spans  | (tons)                      |  |  |  |
| 289591         |                            | Br1_34a   | 1c       | 1             | 59                     | 1      | 47.8                        |  |  |  |
| 286570         |                            | Br1_34b   | 2a       | 2             | 59                     | 1      | 34.8                        |  |  |  |
| 285610         | Br1_34                     | Br1_34c   | 2a       | 11            | 59                     | 1      | 22.3                        |  |  |  |
| 125761         |                            | Br1_34d   | 2b       | 8             | 59                     | 1      | 48.8                        |  |  |  |
| 284641         |                            | Br1_34e   | 2a       | 14            | 59                     | 1      | 26.1                        |  |  |  |
| 288151         | Br1_35                     | Br1_35    | 2b       | 1             | 59                     | 1      | 49                          |  |  |  |
| 122241         |                            | Br1_36a   | 2a       | 6             | 60                     | 1      | 59.6                        |  |  |  |
| 122201         | Br1 36                     | Br1_36b   | 2a       | 7             | 60                     | 1      | 33.1                        |  |  |  |
| 123071         | DI1_30                     | Br1_36c   | 2a       | 17            | 60                     | 1      | 36.9                        |  |  |  |
| 179650         |                            | Br1_36d   | 2a       | 20            | 60                     | 1      | 25.3                        |  |  |  |
| 125861         | Br1_37                     | Br1_37    | 2a       | 9             | 61                     | 1      | 36                          |  |  |  |
| 94431          | Br1_38                     | Br1_38    | 1b       | 12            | 66                     | 1      | 68.4                        |  |  |  |
| 60560          | Br1_39                     | Br1_39    | 1b       | 20            | 80                     | 1      | 37.6                        |  |  |  |
| 263390         | Br2_1                      | Br2_1     | 3b       | 8             | 15                     | 2      | 31.1                        |  |  |  |
| 270151         | Br2_2                      | Br2_2     | 3c       | 8             | 17                     | 2      | 12.8                        |  |  |  |
| 68970          | Br2_3                      | Br2_3     | 3a       | 2             | 19                     | 2      | 62.4                        |  |  |  |
| 289870         | Br2_4                      | Br2_4     | 3a       | 8             | 17                     | 2      | 32.4                        |  |  |  |
| p-09-902       | Br2_5                      | Br2_5     | 2b       | 20            | 20                     | 2      | N/A                         |  |  |  |
| b-37-046       | Br2_6                      | Br2_6     | 1b       | 14            | 31                     | 2      | N/A                         |  |  |  |
| 122561         | Br2_7                      | Br2_7     | 2a       | 21            | 14                     | 2      | 48.1                        |  |  |  |
| b-13-028       | Br2_8                      | Br2_8     | 1b       | 11            | 34                     | 2      | N/A                         |  |  |  |
| b-13-075       | Br2_9                      | Br2_9     | 1b       | 13            | 52                     | 2      | N/A                         |  |  |  |
| 601605         | Br2_10                     | Br2_10    | 1b       | 15            | 112                    | 2      | 63                          |  |  |  |
| 606515         | Br2_11                     | Br2_11    | N/A      | N/A           | 118                    | 2      | 70.2                        |  |  |  |
| 13774          | Br3_1                      | Br3_1     | 3a       | 27            | 15                     | 3      | N/A                         |  |  |  |
| 286050         | Br3_2                      | Br3_2     | 3a       | 12            | 18                     | 3      | 32                          |  |  |  |
| 161010         |                            | Br3_3a    | 3b       | 5             | 16                     | 3      | 28.5                        |  |  |  |
| 289980         | Br3_3                      | Br3_3b    | 3a       | 25            | 16                     | 3      | 37.3                        |  |  |  |
| 289860         |                            | Br3_3c    | 3a       | 26            | 16                     | 3      | 37.6                        |  |  |  |
| 285360         | Br3_4                      | Br3_4     | 3b       | 7             | 16                     | 3      | 37.3                        |  |  |  |
| 287490         | Br3_5                      | Br3_5     | 3a       | 7             | 17                     | 3      | 27.7                        |  |  |  |
| 290520         | Br3_6                      | Br3_6     | 3a       | 22            | 18                     | 3      | 38.9                        |  |  |  |
| 287380         | Br3_7                      | Br3_7     | 3a       | 30            | 19                     | 3      | 46.8                        |  |  |  |
| 286580         |                            | Br3_8a    | 3a       | 15            | 20                     | 3      | 35                          |  |  |  |
| 287850         | Br3 8                      | Br3_8b    | 3a       | 16            | 20                     | 3      | 30.5                        |  |  |  |
| 289900         | <b>D</b> 15_0              | Br3_8c    | 3a       | 17            | 20                     | 3      | 28.9                        |  |  |  |
| 285680         |                            | Br3_8d    | 3c       | 4             | 20                     | 3      | 32.3                        |  |  |  |

| Bridge ID from<br>Tables F 1a, F 3a |                                      |                               |       |               |                                |                       |                                       |
|-------------------------------------|--------------------------------------|-------------------------------|-------|---------------|--------------------------------|-----------------------|---------------------------------------|
| FHWA<br>Number                      | Bridge<br>ID for<br>Moment<br>Ratios | Bridge ID<br>for OR<br>Ratios | Table | Bridge<br>No. | Minimum<br>Span Length<br>(ft) | Number<br>of<br>Spans | HS20<br>Operating<br>Rating<br>(tons) |
| 290351                              | Br3_9                                | Br3_9                         |       | 4             | 20                             | 3                     | 32.9                                  |
| 287920                              | Br3_10                               | Br3_10                        | 3c    | 3             | 21                             | 3                     | 31.1                                  |
| 286141                              | Br3_11                               | Br3_11                        | 3a    | 1             | 22                             | 3                     | 37.5                                  |
| 288201                              | Br3_12                               | Br3_12                        | 3a    | 3             | 22                             | 3                     | 30.4                                  |
| 363596                              | Br3_13                               | Br3_13                        | 3b    | 2             | 23                             | 3                     | 0.76                                  |
| 284750                              |                                      | Br3_14a                       | 3a    | 5             | 23                             | 3                     | 32.6                                  |
| 286681                              | D-2 14                               | Br3_14b                       | 3a    | 21            | 23                             | 3                     | 27.6                                  |
| 289991                              | Br3_14                               | Br3_14c                       | 3b    | 3             | 23                             | 3                     | 32.4                                  |
| 284480                              |                                      | Br3_14d                       | 3a    | 14            | 23                             | 3                     | 23.5                                  |
| 67180                               | Br3_15                               | Br3_15                        | 3c    | 6             | 24                             | 3                     | 15.5                                  |
| 12324                               | Br3_16                               | Br3_16                        | 3a    | 33            | 23                             | 3                     | N/A                                   |
| 13474                               | Br3_17                               | Br3_17                        | 3c    | 9             | 24                             | 3                     | N/A                                   |
| 121931                              | Br3_18                               | Br3_18                        | 2a    | 12            | 19                             | 3                     | 36.4                                  |
| 244880                              | Br3_19                               | Br3_19                        | 3a    | 32            | 17                             | 3                     | 4                                     |
| 245360                              | Br3_20                               | Br3_20                        | 1c    | 9             | 22                             | 3                     | 41.5                                  |
| 95621                               | Br3_21                               | Br3_21                        | 1c    | 6             | 19                             | 3                     | 77.2                                  |
| 284890                              | Br3_22                               | Br3_22                        | 3a    | 19            | 36                             | 3                     | 30.8                                  |
| 43340                               | Br3_23                               | Br3_23                        | N/A   | N/A           | 46                             | 3                     | 0                                     |
| 93231                               | Br3_24                               | Br3_24                        | 1b    | 10            | 39                             | 3                     | 64.8                                  |
| 246460                              | Br3_25                               | Br3_25                        | 2a    | 13            | 59                             | 3                     | 21.7                                  |
| b-05-048                            | Br3_26                               | Br3_26                        | 1c    | 8             | 59                             | 3                     | N/A                                   |
| 606750                              | Br3_27                               | Br3_27                        | 1b    | 19            | 50                             | 3                     | 69.7                                  |
| 284690                              | Br4_1                                | Br4_1                         | 3c    | 2             | 17                             | 4                     | 30.6                                  |
| 13489                               | Br4_2                                | Br4_2                         | 3a    | 31            | 22                             | 4                     | N/A                                   |
| 30620                               | Brd 3                                | Br4_3a                        | N/A   | N/A           | 43                             | 4                     | 54.5                                  |
| 30610                               | DI4_3                                | Br4_3b                        | 1b    | 22            | 43                             | 4                     | 59.2                                  |
| 32110                               | Brd 1                                | Br4_4a                        | 1c    | 16            | 52                             | 4                     | 50                                    |
| 32120                               | DI4_4                                | Br4_4b                        | 1b    | 23            | 52                             | 4                     | 49.7                                  |
| 21990                               | Br4_5                                | Br4_5                         | N/A   | N/A           | 49                             | 4                     | 50                                    |
| 28170                               | Br4_6                                | Br4_6                         | N/A   | N/A           | 53                             | 4                     | 31.7                                  |
| 18640                               | Br4_7                                | Br4_7                         | N/A   | N/A           | 57                             | 4                     | 31.9                                  |
| 22400                               | Br4_8                                | Br4_8                         | 1c    | 14            | 55                             | 4                     | 45                                    |
| 18330                               | Br4_9                                | Br4_9                         | N/A   | N/A           | 57                             | 4                     | 37                                    |
| 23370                               | Br4_10                               | Br4_10                        | 1b    | 17            | 48                             | 4                     | 42                                    |
| 45360                               | Br4_11                               | Br4_11                        | N/A   | N/A           | 48                             | 4                     | 43.9                                  |
| 53660                               | Br4_12                               | Br4_12                        | 1c    | 12            | 59                             | 4                     | 29.5                                  |
| 602050                              | Br4_13                               | Br4_13                        | N/A   | N/A           | 52                             | 4                     | 63                                    |

| Bridge ID from |                                      |                               |          |               |                                |                       |                                       |
|----------------|--------------------------------------|-------------------------------|----------|---------------|--------------------------------|-----------------------|---------------------------------------|
| FHWA<br>Number | Bridge<br>ID for<br>Moment<br>Ratios | Bridge ID<br>for OR<br>Ratios | Tables E | Bridge<br>No. | Minimum<br>Span Length<br>(ft) | Number<br>of<br>Spans | HS20<br>Operating<br>Rating<br>(tons) |
| 602555         | D 4 14                               | Br4_14a                       | N/A      | N/A           | 50                             | 4                     | 53.7                                  |
| 600230         | Br4_14                               | Br4_14b                       | 1b       | 18            | 50                             | 4                     | 48.1                                  |
| 602025         | Br4_15                               | Br4_15                        | N/A      | N/A           | 50                             | 4                     | 62.7                                  |
| 22270          | Br4_16                               | Br4_16                        | N/A      | N/A           | 59                             | 4                     | 61.3                                  |
| 19270          | Br4_17                               | Br4_17                        | 1b       | 16            | 51                             | 4                     | 54.5                                  |
| 19250          | Br4_18                               | Br4_18                        | N/A      | N/A           | 51                             | 4                     | 66                                    |
| 605485         | Br4_19                               | Br4_19                        | N/A      | N/A           | 53                             | 4                     | 62.9                                  |
| 23000          | Br4_20                               | Br4_20                        | N/A      | N/A           | 59                             | 4                     | 45.5                                  |
| 605065         | Br4_21                               | Br4_21                        | N/A      | N/A           | 55                             | 4                     | 56.6                                  |
| 22950          | Br4_22                               | Br4_22                        | 1b       | 24            | 52                             | 4                     | 76.8                                  |
| 22190          | Br4_23                               | Br4_23                        | 1c       | 13            | 70                             | 4                     | 33.8                                  |
| 602435         | Br4_24                               | Br4_24                        | 1c       | 15            | 56                             | 4                     | 49.8                                  |
| 602455         | Br4_25                               | Br4_25                        | N/A      | N/A           | 56                             | 4                     | 60.6                                  |
| 28000          | Br4_26                               | Br4_26                        | N/A      | N/A           | 70                             | 4                     | 59.7                                  |
| 22990          | Br4_27                               | Br4_27                        | N/A      | N/A           | 54                             | 4                     | 50.8                                  |
| 600050         | Br4_28                               | Br4_28                        | N/A      | N/A           | 56                             | 4                     | 70.6                                  |
| 602465         | Br4_29                               | Br4_29                        | N/A      | N/A           | 59                             | 4                     | 44.8                                  |
| 605500         | Br4_30                               | Br4_30                        | N/A      | N/A           | 59                             | 4                     | 58                                    |
| 22980          | Br4_31                               | Br4_31                        | N/A      | N/A           | 60                             | 4                     | 59                                    |
| 600130         | Br4_32                               | Br4_32                        | N/A      | N/A           | 60                             | 4                     | 51.1                                  |
| 605515         | Br4_33                               | Br4_33                        | N/A      | N/A           | 63                             | 4                     | 56                                    |
| 603655         | Br4_34                               | Br4_34                        | N/A      | N/A           | 66                             | 4                     | 55.5                                  |
| 605085         | Br4_35                               | Br4_35                        | N/A      | N/A           | 66                             | 4                     | 62.5                                  |
| 22600          | Br4_36                               | Br4_36                        | N/A      | N/A           | 69                             | 4                     | 49.9                                  |
| 15225          | Br4_37                               | Br4_37                        | N/A      | N/A           | 68                             | 4                     | 66.4                                  |
| 605510         | Br4_38                               | Br4_38                        | N/A      | N/A           | 77                             | 4                     | 50.6                                  |
| 600770         | Br4_39                               | Br4_39                        | N/A      | N/A           | 100                            | 4                     | 80.5                                  |

## **APPENDIX F. SURVEY RESPONSES**

### Survey

Bridge Weight Limits for Implements of Husbandry Survey State:\_\_\_\_\_\_ Name of DOT official completing the survey:\_\_\_\_\_ May we contact you regarding questions on this survey (Yes/No)?\_\_\_\_ Please provide contact information:\_\_\_\_\_

- A. Questionnaire
  - 1. What is your state's definition of an "implement of husbandry?"
  - 2. Must implements of husbandry comply with bridge posting signs?
  - 3. In addition to limits on bridge posting signs, what are the **gross** vehicle weight limits for implements of husbandry on **bridges**? If certain implements of husbandry are exempt from gross weight limits, please list them.
  - 4. In addition to limits on bridge posting signs, what are the **single axle** weight limits for implements of husbandry on **bridges**? If certain implements of husbandry are exempt from single axle weight limits, please list them.
  - 5. Is the weight of the tractor or other towing vehicle included in either of these weight limits (gross or single axle)?
  - 6. Please provide the respective website addresses to the information listed above.
- B. Current Information.

Listed below are the single axle and gross weight limits for a selected group of states. If your state is included in the table below, please check the information to ensure that it is consistent with the answers provided in the questionnaire above. The weight limits shown were determined for the three-axle vehicle in Figure F-1.



Figure F-1. Three-axle vehicle

## Responses

| State      | Definition of Implement of Husbandry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alabama    | Farm equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Alaska     | Farm equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Arizona    | In the border area currently we allow the following: The vehicle or vehicle combination must be transporting perishable fresh fruits or vegetables in a sealed container and must meet the criteria as below: 1. The overall Gross Vehicle Weight cannot exceed 90,800 lbs. 2. The vehicle configuration must have at least five axles, and 3. The axle group weight configuration cannot exceed the maximum weight allowed in Arizona Administrative Code R17-6-411.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Arkansas   | A vehicle used in the operation of a farm or ranch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| California | A vehicle which is used exclusively in the conduct of agricultural operations. An implement of husbandry does not include a vehicle if its existing design is primarily for the transportation of persons or property on a highway, unless specifically designated as such by some other provision of this code.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Colorado   | No state definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Florida    | Any vehicle designed and adapted exclusively for agricultural, horticultural, or livestock-<br>raising operations or for lifting or carrying an implement of husbandry and in either case<br>not subject to registration if used upon the highways.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hawaii     | Such terms as "farm equipment", "agricultural equipment", "vehicles transporting agricultural products and equipment", and "vehicles used in agricultural operations and activities."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Illinois   | Every vehicle designed and adapted exclusively for agricultural, horticultural, or<br>livestock raising operations, including farm wagons, wagon trailers or like vehicles used<br>in connection therewith, or for lifting or carrying an implement of husbandry provided<br>that no farm wagon, wagon trailer or like vehicle having a gross weight of more than<br>36,000 pounds, shall be included hereunder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iowa       | Vehicle or special mobile equipment designed for agricultural purposes and used exclusively in an agricultural operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kansas     | Every vehicle designed or adapted and used exclusively for agricultural operations and only incidentally moved or operated upon the highways. Such term shall include, but not be limited to, a fertilizer spreader or nurse tank used exclusively for dispensing or spreading water, dust or liquid fertilizers or agricultural chemicals, as defined in K.S.A. 2-2202, and amendments thereto, regardless of ownership. For the purpose of this section or for the purpose of the act of which this section is a part, "implement of husbandry" shall not include: (a) A truck mounted with a fertilizer spreader used or manufactured principally to spread animal dung; (b) a mixer-feed truck owned and used by a feedlot, as defined by K.S.A. 47-1501, and amendments thereto, and specially designed and used exclusively for dispensing feed to livestock in such feedlot; or (c) a truck permanently mounted with a spreader used exclusively for dispensing or spreading water, dust or liquid fertilizers or agricultural chemicals, as defined in K.S.A. 2-2202, and amendments thereto, so the special or manufactured principally to spread animal dung; (b) a mixer-feed truck owned and used by a feedlot, as defined by K.S.A. 47-1501, and amendments thereto, and specially designed and used exclusively for dispensing feed to livestock in such feedlot; or (c) a truck permanently mounted with a spreader used exclusively for dispensing or spreading water, dust or liquid fertilizers or agricultural chemicals, as defined in K.S.A. 2-2202, and amendments thereto, regardless of ownership. |
| Minnesota  | Any vehicle designed or adapted exclusively for agricultural, horticultural or livestock operations, or for lifting and carrying an implement of husbandry. Any towed vehicle, which meets this definition, is also an implement of husbandry. This includes wagon trailers and implement trailers used in a farm operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Table F-1. Definition of implements of husbandry

| State        | Definition of Implement of Husbandry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Missouri     | All self-propelled machinery operated at speeds of less than 30 mph, specifically designed for, or especially adapted to be capable of, incidental over-the-road and primary offroad usage and used exclusively for the application of commercial plant-food materials or agricultural chemicals, and not specifically designed or intended for transportation of such chemicals and materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nebraska     | Any sort of farm equipment, machinery, combines, trucks, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nevada       | Information not provided.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| New York     | A vehicle designed or adapted exclusively for agricultural, horticultural or livestock raising operations or for lifting or carrying an implement of husbandry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ohio         | No state definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Oklahoma     | Every device, whether it is self-propelled, designed and adapted so as to be used<br>exclusively for agricultural, horticultural or livestock-raising operations or for lifting or<br>carrying an implement of husbandry and, in either case, not subject to registration if<br>operated upon the highways. 1. Farm wagon type tank trailers of not over one thousand<br>two hundred (1,200) gallons capacity, used during the liquid fertilizer season as field<br>storage "nurse tanks" supplying the fertilizer to a field applicator and moved on highways<br>only for bringing the fertilizer from a local source of supply to farms or field or from one<br>farm or field to another, shall be considered implements of husbandry for purposes of this<br>title. 2. Trailers or semitrailers owned by a person engaged in the business of farming and<br>used exclusively for the purpose of transporting farm products to market or for the<br>purpose of transporting to the farm material or things to be used thereon shall also be<br>considered implements of husbandry for purposes of this title. Provided, no truck or<br>semitrailer with an axle weight of twenty thousand (20,000) pounds or more, which is<br>used to haul manure and operated on the public roads or highways of this state shall be<br>considered an implement of husbandry for the purposes of this title. 3. Utility-type, all-<br>terrain vehicles with a maximum curb weight of one thousand five hundred (1,500)<br>pounds which are equipped with metal front or rear carrying racks when used for<br>agricultural, horticultural or livestock-raising operations shall be considered implements<br>of husbandry for purposes of this title. |
| Pennsylvania | <ul> <li>Farm equipment that meets all of the following criteria:</li> <li>(1) Is equipped with pneumatic tires except if prohibited by religious beliefs.</li> <li>(2) Is infrequently operated or moved upon highways.</li> <li>(3) Is used in agriculture for any of the following purposes:</li> <li>(i) performance of agriculture production or harvesting activities for the farmer's agricultural operations; or</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | (ii) transportation of agricultural products or agricultural supplies for the benefit of the farmer's agricultural operations.<br>The term also includes earthmoving equipment and any other vehicle determined by the department to be an implement of husbandry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| South Dakota | No definition in statute.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| State         | Definition of Implement of Husbandry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vermont       | Farm Tractor means a traveling power plant or a self-propelled device which functions as<br>part of crop production, harvesting, feeding, or livestock management, or is used for<br>drawing a farm trailer. Farm tractor also means a self-propelled vehicle designed to<br>perform single-purpose functions, such as land preparation, crop protection, or<br>harvesting. The term "farm tractor" shall not include a "motor truck" as defined in<br>subdivision (20) of this section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | Farm Trailer means a single vehicle or equipment, designed and adapted exclusively for tilling, planting, harvesting, management, or for carrying inputs or outputs from agricultural, horticultural, or livestock-raising operations, or farm equipment without motive power, designed to be drawn by a motor vehicle, a farm truck, or a farm tractor, and, in any case, not subject to registration if used upon the highway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Vermont also has some other definitions that address certain types of motor vehicles used exclusively on a farm or commercial operations that service farms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Virginia      | Unladen self-propelled equipment and tracked vehicles used in the mining and construction industry as set out in 46.2-1149, and 46.2-1149.7 which are conceptually very similar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Washington    | A farm implement includes any device that directly affects the production of agricultural products, including fertilizer and chemical applicator apparatus (complete with auxiliary equipment). For purposes of this section, the implement must be nondivisible, weigh less than sixty-five thousand pounds, and comply with the requirements of RCW 46.44.091. The implement must be less than twenty feet in width and not exceed sixteen feet in height. However, for purposes of this section, farm implements must not exceed fourteen feet in height in the counties of Whatcom, Skagit, Island, Snohomish, and King. If the implement is self-propelled, it must not exceed forty feet in length, or seventy feet overall length if being towed. The implement must move on pneumatic tires, or solid rubber tracks that will not damage public highways with parts that extend beyond the tracks. Implements exceeding any of these criteria must meet all requirements for special permits as referenced in other sections in this chapter and chapter 46.44 RCW. |
| West Virginia | Every vehicle which is designed for or adapted to agricultural purposes and used by the owner thereof primarily in the conduct of his or her agricultural operations, including, but not limited to, trucks used for spraying trees and plants: Provided, That the vehicle may not be let for hire at any time. (WV Code 17A-1-1 Definitions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wisconsin     | A self-propelled or towed vehicle that is manufactured, designed, or reconstructed to be used and that is exclusively used in the conduct of agriculture operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Table F-2. | Gross weigh | t limits and | single-axle | weight limits |
|------------|-------------|--------------|-------------|---------------|
|            |             |              |             |               |

| State      | Husbandry<br>vehicle type   | Tractor included<br>in weight limit? | Gross Weight<br>Limits (lbs)<br>3-axle vehicle<br>(Figure 1)                                                                                                                                                                              | Single-Axle<br>Weight Limit<br>(lbs)<br>3-axle vehicle<br>(Figure 1) | Websites                                                                                               |
|------------|-----------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Alabama    | All                         | N                                    | Exempt                                                                                                                                                                                                                                    | Exempt                                                               | http://www.dot.state.al.us/maweb/doc/Title32Chapte<br>r9.pdf                                           |
| Alaska     | All                         | Y                                    | Exempt                                                                                                                                                                                                                                    | Exempt                                                               | http://www.touchngo.com/lglcntr/akstats/Statutes/Tit<br>le19/Chapter10/Section065.htm                  |
| Arizona    | All                         | Y                                    | 90,800                                                                                                                                                                                                                                    | 20,000                                                               | ADOT Motor Vehicle Division Office Memo T5621<br>dated May 11, 2010                                    |
|            | Compacted seed cotton       | Y                                    | 80,000                                                                                                                                                                                                                                    | 28,000                                                               | http://www.arkansashighways.com/act300/AR%20M<br>otor%20Vehicle%202013%20Edition.pdf sec 27-35-<br>202 |
| Arkansas   | Animal feed and solid waste | Y                                    | 80,000                                                                                                                                                                                                                                    | 21,600                                                               | http://www.arkansashighways.com/act300/AR%20M<br>otor%20Vehicle%202013%20Edition.pdf sec 27-35-<br>203 |
| California | All                         | Y                                    | 80,000                                                                                                                                                                                                                                    | 20,000                                                               | https://www.dmv.ca.gov/portal/dmv/detail/pubs/vcto<br>p/vc/vc                                          |
| Colorado   | All                         | Y                                    | 80,000 for<br>interstate; 85,000<br>for non-interstate                                                                                                                                                                                    | 20,000                                                               | https://www.codot.gov/business/permits/truckpermits<br>/documents                                      |
| Florida    | All                         | Y                                    | Federal bridge<br>formula                                                                                                                                                                                                                 | 22,000                                                               | http://www.fdotmaint.com/permit; Weight<br>Restrictions Chart                                          |
| Hawaii     | All                         | N                                    | They must follow<br>the same as other<br>vehicles on the<br>highways except<br>at on-grade<br>roadway crossings<br>that the owners of<br>the vehicles must<br>construct and<br>maintain<br>structurally<br>suitable pavement<br>sections. | No difference<br>from other<br>vehicles                              | Information not provided                                                                               |

| State    | Husbandry<br>vehicle type                                                                                                                                                                                                                                                                                                                                                                                                                             | Tractor included<br>in weight limit? | Gross Weight<br>Limits (lbs)<br>3-axle vehicle<br>(Figure 1) | Single-Axle<br>Weight Limit<br>(lbs)<br>3-axle vehicle<br>(Figure 1) | Websites                                                                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Illinois | Implements of<br>husbandry, as<br>defined in<br>Chapter 1 of this<br>Code, temporarily<br>operated or towed<br>in a combination<br>upon a highway<br>provided such<br>combination does<br>not consist of<br>more than 3<br>vehicles or, in the<br>case of hauling<br>fresh, perishable<br>fruits or<br>vegetables from<br>farm to the point<br>of first<br>processing, not<br>more than 3<br>wagons being<br>towed by an<br>implement of<br>husbandry | Y                                    | 66,000                                                       | Exempt                                                               | http://www.ilga.gov/legislation/ilcs/ilcs4.asp?DocNa<br>me=062500050HCh%2E+15&ActID=1815&Chapter<br>ID=49&SeqStart=153100000&SeqEnd=158100000 |
| Iowa     | Wheeled grain<br>carts, wheeled<br>tank wagons,<br>wheeled fence-<br>line feeders                                                                                                                                                                                                                                                                                                                                                                     | Ν                                    | 80,000                                                       | 20,000                                                               |                                                                                                                                               |
|          | All others,<br>excluding tracked<br>and flotation<br>vehicles                                                                                                                                                                                                                                                                                                                                                                                         | N                                    | Exempt                                                       | Exempt                                                               |                                                                                                                                               |
| State     | Husbandry<br>vehicle type                                                                                          | Tractor included<br>in weight limit? | Gross Weight<br>Limits (lbs)<br>3-axle vehicle<br>(Figure 1)                                                                                                                                                                                                            | Single-Axle<br>Weight Limit<br>(lbs)<br>3-axle vehicle<br>(Figure 1) | Websites                                                                                                                                                                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kansas    | All                                                                                                                | Y                                    | Federal bridge<br>formula                                                                                                                                                                                                                                               | 20,000                                                               | http://kslegislature.org/li/b2015_16/statute/008_000_<br>0000_chapter/http://www.sos.ks.gov/pubs/kar/2009/3<br>%20036_36-<br>Department%20of%20Transportation,%202009%20<br>KAR%20Vol%203.pdf |
| Minnesota | All                                                                                                                | Y                                    | 30' betwn frnt &<br>rear axles (3<br>axle=58,500, 4<br>axle=62,000, 5<br>axle=67,000)<br>50' betwn frnt &<br>rear axles (3<br>axle=60,000, 4<br>axle=75,500, 5<br>axle=79,500)<br>60' betwn frnt &<br>rear axles (3<br>axle=60,000, 4<br>axle=80,000, 5<br>axle=85,500) | 9 tons for 9 ton<br>roads, 10 tons for<br>10 ton roads               | https://www.revisor.mn.gov/statutes/?id=169.824                                                                                                                                               |
| Missouri  | All                                                                                                                | Y                                    | 80,000                                                                                                                                                                                                                                                                  | 20,000                                                               | http://www.modot.org/mcs/                                                                                                                                                                     |
| Nebraska  | Agricultural<br>floater-spreader<br>implement to<br>carry/apply<br>fertilizer,<br>chemicals or<br>related products | Ν                                    | Exempt                                                                                                                                                                                                                                                                  | Exempt                                                               | -                                                                                                                                                                                             |
|           | All others                                                                                                         | Ν                                    | 48,000                                                                                                                                                                                                                                                                  | 48,000                                                               | _                                                                                                                                                                                             |
| Nevada    | Information not provided                                                                                           | Y                                    | Information not provided                                                                                                                                                                                                                                                | Information not provided                                             | Information not provided                                                                                                                                                                      |
| New York  | All                                                                                                                | Y                                    | Same as other vehicles                                                                                                                                                                                                                                                  | 22,400                                                               | www.nypermits.org.                                                                                                                                                                            |
| Ohio      | All                                                                                                                | Y                                    | 80,000                                                                                                                                                                                                                                                                  | 20,000                                                               | Information not provided                                                                                                                                                                      |

| State         | Husbandry<br>vehicle type                                            | Tractor included<br>in weight limit? | Gross Weight<br>Limits (lbs)<br>3-axle vehicle<br>(Figure 1) | Single-Axle<br>Weight Limit<br>(lbs)<br>3-axle vehicle<br>(Figure 1)                                             | Websites                                                                                                                                                                                                                         |
|---------------|----------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oklahoma      | All                                                                  | Y                                    | Information not<br>provided                                  | 20,000                                                                                                           | https://www.dps.state.ok.us/ohp/SFarm.pdf                                                                                                                                                                                        |
| Pennsylvania  | All                                                                  | Y                                    | Legal Load                                                   | Legal Load                                                                                                       | http://www.pacode.com/<br>http://www.dot3.state.pa.us/vehicle_code/index.shtm<br>1                                                                                                                                               |
| South Dakota  | All                                                                  | Y                                    | Federal bridge<br>formula                                    | 20,000                                                                                                           | http://law.lis.virginia.gov/vacode/title46.2/chapter10/<br>section46.2-1149 /<br>http://law.lis.virginia.gov/vacode/title46.2/chapter10/<br>section46.2-1149.7 /                                                                 |
| Vermont**     | Farm truck and farm trailer                                          | Y                                    | 60,000                                                       | 600 lbs/in tire<br>width                                                                                         | http://legislature.vermont.gov/statutes/                                                                                                                                                                                         |
| Virginia      | All                                                                  | Y                                    | Legal limits                                                 | Analyzed                                                                                                         | http://law.lis.virginia.gov/vacode/title46.2/chapter10/<br>section46.2-1149/<br>http://law.lis.virginia.gov/vacode/title46.2/chapter10/<br>section46.2-1149.7/                                                                   |
| Washington    | All                                                                  | Y                                    | 65,000                                                       | 22,000 lbs max or<br>600 lbs/in for<br>four-tire axles;<br>10,000 lbs max or<br>500 lbs/in for<br>two-tire axles | http://apps.leg.wa.gov/WAC/default.aspx?cite=468-<br>38-290<br>http://app.leg.wa.gov/RCW/default.aspx?cite=46.44.<br>041<br>http://app.leg.wa.gov/RCW/default.aspx?cite=46.44.<br>042                                            |
| West Virginia | All                                                                  | Y                                    | Exempt                                                       | Exempt                                                                                                           | http://www.legis.state.wv.us/WVcode/code.cfm?cha<br>p=17a&art=1<br>http://www.legis.state.wv.us/WVcode/Code.cfm?cha<br>p=17c&art=17#17<br>http://www.legis.state.wv.us/WVcode/ChapterEntire.<br>cfm?chap=17c&art=17§ion=12#17#17 |
| Wisconsin     | Empty 2 vehicle<br>combination<br>transporting<br>a potato harvester | Y                                    | Exempt                                                       | Exempt                                                                                                           |                                                                                                                                                                                                                                  |
|               | All Others                                                           | Y                                    | 15% over Federal<br>Bridge Formula                           | 15% over Federal<br>Bridge Formula                                                                               |                                                                                                                                                                                                                                  |

\*\* Need not comply with bridge posting signs