
SAFETY ASSESSMENT OF FREEWAY 

ACTIVE TRAFFIC MANAGEMENT BY 

EXPLORING THE RELATIONSHIP 

BETWEEN SAFETY AND CONGESTION 

Final Report 
 

PROJECT SPR 793 

  



 

  



SAFETY ASSESSMENT OF FREEWAY ACTIVE TRAFFIC 

MANAGEMENT BY EXPLORING THE RELATIONSHIP 

BETWEEN SAFETY AND CONGESTION 

Final Report 

PROJECT 793 

by 

 

Xiugang (Joe) Li, Ph.D. 

Research Coordinator 

 

Tony Knudson 

Research Coordinator 

for 

 

Oregon Department of Transportation 

Research Section 

555 13th Street NE, Suite 1 

Salem OR 97301 

 

and 

 

Federal Highway Administration 

400 Seventh Street, SW 

Washington, DC  20590-0003 

 

 

November 2018 

  



 

 



 i 

Technical Report Documentation Page 

1. 1. Report No. 

FHWA-OR-RD-19-05 

2. Government Accession No. 

 

3. Recipient’s Catalog No. 

  

4. Title and Subtitle 

Safety Assessment of Freeway Active Traffic Management by 

Exploring the Relationship between Safety and Congestion 

5. Report Date 

 November 2018 

6. Performing Organization 

Code 

7. Author(s)  

Xiugang (Joe) Li, Ph.D., Tony Knudson 

8. Performing Organization 

Report No. 

9. Performing Organization Name and Address 

 Oregon Department of Transportation 

 Research Section 

 555 13th Street NE, Suite 1 

 Salem, OR  97301 

10. Work Unit No. (TRAIS) 

  

11. Contract or Grant No. 

  

12. Sponsoring Agency Name and Address 

 Oregon Dept. of  Transportation 

 Research Section Federal Highway Admin. 

 555 13th Street NE, Suite 1 400 Seventh Street, SW 

 Salem, OR  97301 Washington, DC  20590-0003 

13. Type of Report and Period 

Covered 

  Final Report    

14. Sponsoring Agency Code 

  

15. Supplementary Notes  

16. Abstract:  This study has shown how Oregon crash incident data and PSU Portal traffic data can be 

combined to determine what factors lead to increased crash risk. Data related to Oregon highway 217 

was used to conduct the analysis. The first analysis used Portal traffic data to determine Level of 

Service (LOS) and then determine the relationship between that and crash rate (Fatal and Injury) which 

was derived from ODOT’s crash database. Similar to studies conducted in other states, there was a 

clear relationship between LOS and crash rate, with worse LOS associated with increased crash rate. 

The second part of the study used Portal data again, but this time the mean and variation of the 

variables speed, occupancy and volume were calculated 5-10 and 10-15 minutes before a crash incident 

on Oregon 217 on both the upstream and downstream directions. The crash incidents this time were 

derived from the Traffic Management Operations Center (TMOC) incident data which gave incident 

times to the nearest minute as opposed to the nearest hour in the LOS study. Given the number of 

correlated predictors in the data, logistic regression modeling may have led to regression estimates with 

large variances. Instead, logistic lasso regression was used to select a subset of significant predictor 

variables to predict the probability of a crash occurring given the traffic conditions at the time. 

Increasing upstream speed variation and occupancy, and downstream occupancy variation, volume and 

volume variation were associated with increased crash risk. Slower or decreasing downstream speed 

was associated with an increased crash risk. 

17. Key Words 

Crash Data Analysis, Traffic Data, Crashes, Level of 

Service, Logistic Lasso Regression, Crash Rate 

18. Distribution Statement 

Copies available from NTIS, and online at 

www.oregon.gov/ODOT/TD/TP_RES/ 

19. Security Classification 

(of this report) 

 Unclassified 

20. Security Classification 

(of this page) 

 Unclassified 

21. No. of Pages 

32 

22. Price 

Technical Report Form DOT F 1700.7  (8-72) Reproduction of completed page authorized  Printed on recycled paper 

 

http://www.oregon.gov/ODOT/TD/TP_RES/


 ii 

  



 

iii 

SI* (MODERN METRIC) CONVERSION FACTORS 

APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS 

Symbol 
When You 

Know 

Multiply 

By 
To Find Symbol Symbol 

When You 

Know 

Multiply 

By 
To Find Symbol 

LENGTH LENGTH 

  in inches 25.4 millimeters mm   mm millimeters 0.039 inches in 

  ft feet 0.305 meters m   m meters 3.28 Feet ft 

  yd yards 0.914 meters m   m meters 1.09 yards yd 

  mi miles 1.61 kilometers km   km kilometers 0.621 miles mi 

AREA AREA 

  in2 square inches 645.2 
millimeters 

squared 
mm2   mm2 millimeters 

squared 
0.0016 square inches in2 

  ft2 square feet 0.093 meters squared m2   m2 meters squared 10.764 square feet ft2 

  yd2 square yards 0.836 meters squared m2   m2 meters squared 1.196 square yards yd2 

  ac acres 0.405 hectares ha   ha hectares 2.47 acres ac 

  mi2 square miles 2.59 
kilometers 

squared 
km2   km2 

kilometers 

squared 
0.386 square miles mi2 

VOLUME VOLUME 

  fl oz fluid ounces 29.57 milliliters ml   ml milliliters 0.034 fluid ounces fl oz 

  gal gallons 3.785 liters L   L liters 0.264 gallons gal 

  ft3 cubic feet 0.028 meters cubed m3   m3 meters cubed 35.315 cubic feet ft3 

  yd3 cubic yards 0.765 meters cubed m3   m3 meters cubed 1.308 cubic yards yd3 

*NOTE: Volumes greater than 1000 L shall be shown in m3.      

MASS MASS 

  oz ounces 28.35 grams g   g grams 0.035 ounces oz 

  lb pounds 0.454 kilograms kg   kg kilograms 2.205 pounds lb 

  T 
short tons (2000 

lb) 
0.907 megagrams Mg   Mg megagrams 1.102 short tons (2000 lb) T 

TEMPERATURE (exact) TEMPERATURE (exact) 

  °F Fahrenheit 
(F-

32)/1.8 
Celsius °C   °C Celsius 

1.8C+3

2 
Fahrenheit °F 

*SI is the symbol for the International System of Measurement 



 

iv
 

 



v 

ACKNOWLEDGEMENTS 

The authors would like to acknowledge the valuable assistance in this project from members and 

friends of our Technical Advisory Committee (TAC), who helped us make key decisions at 

various points of the project and kept us focused on relevance and usability of project outcomes: 

Zahidul Siddique, Highway Safety Engineer 

Robin Ness, Crash Data Analysis 

Dennis Mitchell, ODOT Region 1 Traffic Engineer 

Brian Dunn, ODOT Transportation Planning Analysis Unit Manager 

Galen McGill, ODOT ITS Unit Manager 

We would also like to thank Michael Bufalino for his support and guidance as this research 

project was conducted. 

DISCLAIMER 

This document is disseminated under the sponsorship of the Oregon Department of 

Transportation and the United States Department of Transportation in the interest of information 

exchange.  The State of Oregon and the United States Government assume no liability of its 

contents or use thereof. 

The contents of this report reflect the view of the authors who are solely responsible for the facts 

and accuracy of the material presented.  The contents do not necessarily reflect the official views 

of the Oregon Department of Transportation or the United States Department of Transportation. 

The State of Oregon and the United States Government do not endorse products of 

manufacturers.  Trademarks or manufacturers’ names appear herein only because they are 

considered essential to the object of this document. 

This report does not constitute a standard, specification, or regulation. 

  



vi 



vii 

TABLE OF CONTENTS 

1.0 LITERATURE REVIEW ................................................................................................ 1 

1.1 OVERVIEW OF ACTIVE TRAFFIC MANAGEMENT ................................................................ 1 
1.2 REAL-TIME CRASH-RISK ASSESSMENT .............................................................................. 1 
1.3 REMARKS ......................................................................................................................... 2 

2.0 CRASH RATE AND TRAFFIC DENSITY ................................................................... 5 

3.0 CRASH PREDICTION .................................................................................................... 9 

4.0 CONCLUSION ............................................................................................................... 17 

5.0 REFERENCES ................................................................................................................ 19 

 LIST OF TABLES  

Table 2.1. LOS Category and Traffic Density (source: (Potts, 2014)) ........................................... 5 
Table 3.1 - Traffic Variables and Descriptions ............................................................................. 10 

 

LIST OF FIGURES 

Figure 2.1 - Crash rate (fatal & injury) and traffic density ............................................................. 6 
Figure 2.2 - Crash rate (PDO) and traffic density ........................................................................... 7 

Figure 2.3 - Crash rate (total) and traffic density............................................................................ 7 
Figure 3.1 - Correlation between traffic metric variables ............................................................. 11 

Figure 3.2 - Effect of upstream speed variation on crash probability ........................................... 13 
Figure 3.3 - Effect of upstream occupancy on crash probability .................................................. 13 
Figure 3.4 - Effect of downstream speed on crash probability ..................................................... 14 

Figure 3.5 - Effect of downstream occupancy variation on Crash probability ............................. 14 
Figure 3.6 - Effect of downstream volume on probability of a crash ........................................... 15 
Figure 3.7 - Effect of downstream volume variation on probability of a crash ............................ 15 

 

  



viii 

 



 

1 

1.0 LITERATURE REVIEW 

1.1 OVERVIEW OF ACTIVE TRAFFIC MANAGEMENT 

Active Traffic Management (ATM) improves the efficiency of freeways through the use of 

traffic operation strategies and automated system technologies to increase throughput and safety. 

Examples of ATM operation strategies are dynamic speed limits, dynamic lane use control, and 

weather responsive curve warning. As traffic congestion is a significant concern in many 

metropolitan areas, ATM may be cost-effective without having to widen freeways to mitigate 

congestion.   

ATM has been deployed in several areas around the United States. Federal Highway 

Administration (FHWA) summarized some ATM deployments: 

https://ops.fhwa.dot.gov/atdm/approaches/atm.htm.  In Oregon the ATM deployments include 

variable advisory speed system (VAS), adaptive ramp metering and weather responsive curve 

warning system along OR 217, I-5 and I-405.  

In July 2014, Oregon Department of Transportation (ODOT) deployed the OR217 ATM project 

composed of six systems including Travel Time, Queue Warning, Congestion Responsive 

Variable Speed, Weather Responsive Variable Speed, Dynamic Ramp-Metering and Curve 

Warning (ODOT, 2015). The system utilizes sensors to collect traffic and weather conditions in 

real time, process the data, and distribute information to the motorist by means of variable 

message and variable speed signs. 

ATM has the potential to improve traffic flow by increasing capacity, throughput, and travel time 

reliability, and decreasing accidents and accident severity (Levecq, 2011). It may harmonize the 

speeds during congested periods and delay the onset of freeway break down. ODOT (2015) 

collected peak-hour traffic and crash data for nine months both before and after the ATM project 

deployment, and found that OR217 ATM reduced total crashes by 21% and buffer time (an index 

of travel time reliability) by 10%. This evaluation suggests the positive safety benefits of ATM, 

although long-term safety assessment typically needs three to five years of historical crash data 

before and after the ATM project deployment. 

Recently, exploratory studies on real-time crash-risk assessment have been performed for 

freeway traffic operations. The methods of real-time assessments may be applied to assess and 

improve the safety and effectiveness of ATM. 

1.2 REAL-TIME CRASH-RISK ASSESSMENT 

Real-time crash-risk models are estimated from the real-time traffic data and/or weather data. 

The models predict the probability of crash occurrence on a specific highway segment to 

proactively improve safety and possibly prevent the crash occurrence. 

https://ops.fhwa.dot.gov/atdm/approaches/atm.htm
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Estimated predictive crash-risk models from crash data and real-time traffic data over 16 months 

on the U.S. 101 NB corridor in California (Pande, Nuworsoo, Shew, & Mineta Transportation 

Institute, 2012). The crash data were from the California Highway Patrol Incident section of 

Caltrans’ Performance Measurement System (PeMS) database. Real-time traffic data at intervals 

of 5 minutes was generated by loop detectors. Logistic regression and classification trees were 

used to estimate the models. The results showed that speed variations were significantly 

associated with crash risk. They evaluated the models’ transferability with data from three other 

freeways, and found that the models may be transferred to them, but the prediction accuracy was 

not as good as the freeway that the models were estimated on. The model transfer was improved 

if they were estimated using only one upstream or downstream vehicle-detection station rather 

than using two or three vehicle detection stations. They provided an extensive literature review 

on the previous studies. In addition, (Shew, Pande, & Nuworsoo, 2013) used the same data to 

estimate a multi-layer perceptron (MLP) neural network model which performed better. 

Developed real-time crash risk models using data for 13 months (from October 2010 to October 

2011) on a mountainous 15-mile segment of I-70 in Colorado (Ahmed, 2013). This study used 

Automatic Vehicle Identification (AVI) data for space mean speed, and used Remote Traffic 

Microwave Sensors (RTMS) data for volume, occupancy, and time mean speed. The authors 

claimed it was the first study using real-time weather data (precipitation and visibility) gathered 

by weather stations located on the roadway section. Stochastic Gradient Boosting (SGB), a 

machine-learning technique, was used to estimate models from the real-time data at intervals of 6 

minutes. The models were not tested using data from other freeways for transferability. 

Used the data from the 15-mile segment on I-70 in Colorado to estimate a real-time risk model 

by using Support Vector Machines (SVM) (Yu, 2013). In addition, they used traffic simulations 

to develop an algorithm of Variable Speed Limits (VSL) to reduce crash risk. The logistic 

regression model was estimated to measure the crash risk. The traffic simulation showed that the 

VSL reduced crash risk from 0.2% to 11.8% at different locations. 

Published a follow-on report from their work a year earlier, where they looked at data from the 

Gardiner Expressway in Toronto Canada (Lee, Hellinga, & Saccomanno, January 2003). Initially 

they looked at the crash precursors of coefficient of variation in speed within and across lanes, 

density, weather, and proportion of peak period volume to create a log-linear model of exposure 

when a crash has occurred. They used an interesting approach to determine time of crash by 

looking for sudden drops in speed at detectors upstream of the reported crash. 

In their follow-on study, they looked at rational methods to determine the correct crash 

precursors. The precursors found to have different distributions when crashes occurred, versus 

when there were no crashes should be the main criteria for their selection.  

1.3 REMARKS 

Real-time crash-risk modeling has been studied in order to proactively prevent crash occurrence 

and improve traffic safety. The ATM may adopt the models to change the traffic flow, such as 

speed variation reduction, to reduce crash risk and prevent crash occurrence. 
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OR-217 ATM can change upstream traffic speed if an incident or crash happens (DKS, 2015). 

For example, after a minor incident happened, the inductive loops detect slow speed. Then the 

VAS sign display “SLOW” at the upstream message board. Similarly, the VAS can adjust the 

upstream advisory speed after a crash happened. But the OR-217 ATM cannot predict the times 

and locations of increased risk of crashes, and adjust the traffic speed to prevent the crashes 

proactively. 

Previous studies predicted crash risk 5 to 6 minutes ahead of time. Longer prediction times, such 

as 10 minutes or 15 minutes as done in this study, can provide more time to respond. Previous 

studies of real-time crash-risk prediction were for freeways, whereas Oregon has ATM on two-

lane highways. The models estimated from the two-lane highways in the future could be adopted 

by the ATM to reduce crashes. 

The real-time crash-risk models can be used to assess the safety of highway operations in the 

short term even without the ATM. The application includes most segments of freeways (or some 

two-lane highways in our plan). Further, for segments with the ATM, the assessment helps the 

ATM change the traffic flow to prevent crash occurrences. 

The potential use of this research project includes 

 Short-term safety assessments of freeway or highway traffic operation including the 

corridor with the ATM, such as OR 217. Currently the long-term evaluation needs at 

least 5-year historical crash data. 

 The research predicts times and locations with higher crash risk in real-time (5 

minutes or 15 minutes ahead). The ATM may adopt the prediction to proactively 

prevent the crash occurrences. 

 The research could help Traffic Incident Management (TIM) responders to reduce 

time needed for arrival on scene. Reduced lane clearance time results in reduction of 

secondary crash risk. 
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2.0 CRASH RATE AND TRAFFIC DENSITY 

The Strategic Highway Research Program 2 (SHRP 2) project “Further Development of the 

Safety and Congestion Relationship for Urban Freeways” (Potts, 2014) produced the relationship 

between crash rate and traffic density by using data divided into 15-minute intervals. The results 

for different cities, such as Seattle and Minneapolis-St. Paul, produced unique results. The 

project did not use Oregon data, so it’s not clear if the results can be used in Oregon for 

applications such as the evaluation of ATM.  

This study used crash and traffic data from OR 217 to produce a relationship between crash rate 

and traffic density. ODOT Crash Analysis and Reporting Unit (CARU) provided the crash data. 

The time of the crash was estimated to the nearest hour, so the analysis divided the time into one-

hour intervals. The analysis may be less accurate but it did successfully produce a similar 

relationship to results from other studies. 

The analysis aggregated the crash and traffic data at one-hour intervals and divided highway 

OR217 into segments.  The start and end points of the segments are typically interchanges. The 

segment length is approximately 0.5 to 1.2 miles.  Using ten years of data from 2005 to 2014 for 

each segment, traffic data (volume, speed and occupancy) was calculated from detectors installed 

on that segment. VMT was used to estimate traffic density which was then used to estimate the 

Level of Service (LOS). 

LOS represents traffic conditions, such as congestion. The Highway Capacity Manual (National 

Research Council (U.S.), 2010) defines LOS using traffic density. This study adopted the LOS 

categories defined by (Potts, 2014), listed in Table 2.1. 

Table 2.1. LOS Category and Traffic Density (source: (Potts, 2014)) 

LOS Category Traffic Density  

(pc/mi/ln) 

LOS Category Traffic Density  

(pc/mi/ln) 

A+ 0-3 D+ 26-29 

A 3-7 D 29-32 

A- 7-11 D- 32-35 

B+ 11-13 E+ 35-38 

B 13-15 E 38-41 

B- 15-18 E- 41-45 

C+ 18-20 F+ 45-50 

C 20-23 F 50-55 

C- 23-26 F- 55+ 

 

The average crash rate and traffic density were calculated for each category, then the relationship 

between traffic density and crash rate was estimated. The graphs shown as Figures 1 to 3 display 

this relationship for fatal and injury, Property Damage Only (PDO), and total respectively. 
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Each type of crash rate is much higher at LOS E and F, and increases with density. At LOS A, 

the crash rate decreases with density. This result is similar to Seattle, but different from 

Minneapolis-St. Paul. The crash rates are lower than those reported by (Potts, 2014) for Seattle. 

The regression equations are as follows. Cr is the crash rate (crashes per million VMT) and d is 

traffic density, passenger cars per mile per lane (pc/mi/ln). 

Fatal and Injury Crash: 

Cr = 0.00003d3+0.003d2-0.0709d+0.7922 

(2-1) 

Property Damage Only Crash: 

Cr = -0.00006d3+0.006d2-0.1453d+1.3628 

(2-2) 

Total Crash: 

Cr = -0.00008d3+0.009d2-0.2162d+2.155 

(2-3) 

 

Figure 2.1 - Crash rate (fatal & injury) and traffic density 

y = -3E-05x3 + 0.003x2 - 0.0709x + 0.7922
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Figure 2.1 - Crash rate (PDO) and traffic density 

 

Figure 2.2 - Crash rate (total) and traffic density 
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3.0 CRASH PREDICTION 

Using incident data from the Traffic Management Operations Center (TMOC) which provides 

time of incidents to the nearest minute instead of hour, a logistic regression model was fit to 

determine which variables were significant in predicting crashes. Incident data from OR-217 

from July 2015 to August 2017 was used and only records containing Event_type “Crash” or 

“Fatal Crash” were kept for further analysis. Both northbound and southbound roadways were 

segmented by milepost based on traffic detector locations. Random times with no crashes were 

also selected. 

Data related to traffic volume, speed, and occupancy was downloaded for each detector site for 

the same time period as the incident data from the Portal site at Portland State University. 

Volume, occupancy, and speed were aggregated at five minute intervals based on start times 

from the Portal data set. Then for each of those variables by detector station located before and 

after the incident, the volume for five to ten minutes and ten to fifteen minutes before each crash 

or non-crash time period was summed. The same was done to calculate variation of volume, 

speed (calculated by summing up speed and then dividing by volume), variation of speed, mean 

occupancy and variation of occupancy. A table of the variables and their descriptions are in 

Table 3.1 below.  
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Table 3.1 - Traffic Variables and Descriptions 

Variable Description 

Vol_bef_tm1 Sum of traffic volume from upstream station 5-10 minutes before 

incident. 

VolVar_bef_tm1 Traffic volume variation from upstream station 5-10 minutes before 

incident. 

Spd_bef_tm1 Mean traffic speeds from upstream station 5-10 minutes before incident. 

SpdVar_bef_tm1 Traffic speed variation from upstream station 5-10 minutes before 

incident. 

Occ_bef_tm1 Mean occupancy from upstream station 5-10 minutes before incident. 

OccVar_bef_tm1 Mean occupancy variation from upstream station 5-10 minutes before 

incident. 

Vol_bef_tm2 Sum of traffic volume from upstream station 10-15 minutes before 

incident. 

VolVar_bef_tm2 Traffic volume variation from upstream station 10-15 minutes before 

incident. 

Spd_bef_tm2 Mean speed from upstream station 10-15 minutes before incident. 

SpdVar_bef_tm2 Speed variation from upstream station 10-15 minutes before incident. 

Occ_bef_tm2 Mean occupancy from upstream station 10-15 minutes before incident. 

OccVar_bef_tm2 Occupancy variation from upstream station 10-15 minutes before 

incident. 

Vol_aft_tm1 Sum of traffic volume from downstream station 5-10 minutes before 

incident. 

VolVar_aft_tm1 Traffic volume variation from downstream station 5-10 minutes before 

incident. 

Spd_aft_tm1 Mean traffic speeds from downstream station 5-10 minutes before 

incident. 

SpdVar_aft_tm1 Traffic speed variation from downstream station 5-10 minutes before 

incident. 

Occ_aft_tm1 Mean occupancy from downstream station 5-10 minutes before incident. 

OccVar_aft_tm1 Mean occupancy variation from downstream station 5-10 minutes 

before incident. 

Vol_aft_tm2 Sum of traffic volume from downstream station 10-15 minutes before 

incident. 

VolVar_aft_tm2 Traffic volume variation from downstream station 10-15 minutes before 

incident. 

Spd_aft_tm2 Mean speed from downstream station 10-15 minutes before incident. 

SpdVar_aft_tm2 Speed variation from downstream station 10-15 minutes before incident. 

Occ_aft_tm2 Mean occupancy from downstream station 10-15 minutes before 

incident. 

OccVar_aft_tm2 Occupancy variation from downstream station 10-15 minutes before 

incident. 
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Several of these variables are significantly correlated with each other as Figure 3.1 shows. There 

are negative correlations between speed and occupancy and positive correlations between 

volume and occupancy metrics and other volume and occupancy variables respectively. 

 

Figure 3.1 - Correlation between traffic metric variables 
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Logit {𝒀 = 𝟏|𝒙} = 𝒍𝒏 (
𝑷(𝒀=𝟏|𝒙)

𝟏−𝑷(𝒀=𝟏|𝒙)
) =  𝜷𝟎 +  𝜷𝟏𝒙𝟏 +  𝜷𝟐𝒙𝟐 + ⋯ +  + 𝜷𝒌𝒙𝒌 

(3-1) 

Using least squares to estimate 𝛽0, 𝛽1, … , 𝛽𝑘 requires one to minimize Residual Sums of Squares 

(RSS), defined by 

RSS = ∑ (𝒚𝒊 −  𝜷𝟎 −  ∑ 𝜷𝒋𝒙𝒊𝒋
𝒌
𝒋=𝟏 )

𝟐𝒏
𝒊=𝟏  

(3-2) 

Lasso regression is similar, except the coefficients are estimated by minimizing the following 

∑ (𝒚𝒊 −  𝜷𝟎 −  ∑ 𝜷𝒋𝒙𝒊𝒋
𝒌
𝒋=𝟏 )

𝟐𝒏
𝒊=𝟏  + 𝝀 ∑ |𝜷𝒋|𝒌

𝒋=𝟏  

(3-3) 

This estimation attempts to shrink the coefficient estimates to zero and will set some of the 

estimates to exactly zero if the tuning parameter λ is sufficiently large enough. This gives a 

sparse model with only a subset of the variables selected and is easily interpreted. Using 10-fold 

cross validation cv.glmnet (Friedman, Hastie, & Tibshirani, 2010) in R, the procedure fit 

possible λ values on the data, chose the best λ and then trained the model with appropriate 

parameters.  

Using the crash data, the odds of a crash using the sparse subset of predictors is shown in 

equation (3-4) below 

𝑶𝒅𝒅𝒔 =  𝒆
(−𝟎.𝟑𝟔𝟑𝟗𝟖 + 𝟎.𝟎𝟎𝟎𝟒∗𝐒𝐩𝐝𝐕𝐚𝐫_𝐛𝐞𝐟_𝐭𝐦𝟏 + 𝟎.𝟎𝟒𝟐𝟖∗𝐎𝐜𝐜_𝐛𝐞𝐟_𝐭𝐦𝟏 + −𝟎.𝟎𝟒𝟏𝟒∗𝐒𝐩𝐝_𝐚𝐟𝐭_𝐭𝐦𝟏 +

  𝟎.𝟎𝟎𝟎𝟗∗𝐎𝐜𝐜𝐕𝐚𝐫_𝐚𝐟𝐭_𝐭𝐦𝟏 + 𝟎.𝟎𝟎𝟎𝟓∗𝐕𝐨𝐥_𝐚𝐟𝐭_𝐭𝐦𝟐 + 𝟎.𝟎𝟑𝟎𝟒∗𝐕𝐨𝐥𝐕𝐚𝐫_𝐚𝐟𝐭_𝐭𝐦𝟐)   

(3-4) 

As you can see, some selected parameters will have a smaller effect on the odds since they are 

closer to zero than others since the data was normalized before the cross validation procedure 

was done. 

Finally, we can calculate the probability of a crash for various values of each subset parameter 

and graph the results by calculating 

P {𝒀 = 𝟏|𝒙} = 
𝑶𝒅𝒅𝒔

𝟏−𝑶𝒅𝒅𝒔
 

(3-5) 

Graphing how the probability of a crash changes as you vary one of the model parameters over 

its range while holding the others at their mean is shown in Figures 3-2 through 3-7. Two of the 

parameters having the largest effects on the probability of a crash were upstream occupancy and 

downstream speed 5 – 10 minutes before a crash. Increasing upstream occupancy leads to 
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increasing probabilities for a crash, and decreasing downstream speeds also increase that 

probability. 

 

Figure 3.2 - Effect of upstream speed variation on crash probability 

 

Figure 3.3 - Effect of upstream occupancy on crash probability 
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Figure 3.4 - Effect of downstream speed on crash probability 

 

Figure 3.5 - Effect of downstream occupancy variation on crash probability 
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Figure 3.6 - Effect of downstream volume on probability of a crash 

 

Figure 3.7 - Effect of downstream volume variation on probability of a crash  

0.0

0.2

0.4

0.6

0 100 200 300 400

Vol_aft_tm2

P
ro

ba
bi

lit
y

Probability of a Crash Given Volume at Downstream Detector 10-15 Minutes before Crash

0.0

0.2

0.4

0.6

0 10 20

VolVar_aft_tm2

P
ro

ba
bi

lit
y

Probability of a Crash Given Volume Variation at Downstream Detector 10-15 Minutes before Crash



 

16 

 



 

17 

4.0 CONCLUSION 

The previous discussion has shown how Oregon crash incident data and PSU Portal traffic data 

can be combined to determine what factors lead to increased crash risk. A clear link was shown 

to exist between traffic density and crash risk, as well as between occupancy, speed, and volume 

and crash probability. 

A follow-up to this work would be to see if using traffic speed data by itself could predict the 

probability of a crash, for example using HERE or Waze data. Utilizing that data could expand 

the method to highways which don’t have access to loop or video detector technology. 
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